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Abstract

In high-speed SONET rings with point-to-point WDM links, the cost of SONET Add-Drop

Multiplexers (S-ADMs) can be dominantly high. However, by grooming traffic (i.e. multiplexing

lower rate streams) appropriately and using wavelength ADMs (WADMs), the number of S-ADMs

used can be dramatically reduced. In this paper, we propose optimal or near-optimal algorithms

for traffic grooming and wavelength assignment to reduce both the number of wavelengths and the

number of S-ADMs. The algorithms proposed are generic in that they can be applied to both uni-

directional and bidirectional rings having an arbitrary number of nodes under both uniform and

non-uniform (i.e. arbitrary) traffic with an arbitrary grooming factor. Several lower bounds on the

number of wavelengths and S-ADMs required for a given traffic pattern are derived, and used to

determine the optimality of the proposed algorithms. Our study shows that these lower bounds can

be closely approached in most cases or even achieved in some cases using the proposed algorithms.

In addition, even when using a minimum number of wavelengths, the savings in S-ADMs due to

traffic grooming (and the use of WADMs) are significant, especially for large networks.
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1. INTRODUCTION

Synchronous Optical Network (SONET) rings are widely used in today’s network infrastructures.

Each SONET ring is constructed by using fibers to connect SONET Add Drop Multiplexers (here-

after called S-ADM for simplicity). Typically, for each working fiber, there is a protection fiber

and hence, two and four fibers are usually used to construct unidirectional and bidirectional rings,

respectively. One of the critical operations of the S-ADMs is traffic grooming. Specifically, each

S-ADM can multiplex multiple lower rate streams to form a higher rate stream, or demultiplex a

higher rate stream to several lower rate ones. For example, four OC-12 streams can form one OC-48

stream, in which case the grooming factor is 4.

In a SONET ring with point-to-point WDM links, each having W wavelengths, every node hasW S-ADMs, one for each wavelength, and the total number of S-ADMs is N �W , where N is the

number of nodes. When the number of wavelengths is large (e.g. W � 32) and each wavelength

operates at OC-48 (or higher), the dominant system cost is no longer the cost of the fibers but that of

S-ADMs. Fortunately, a node may not need to add/drop streams on every wavelength, especially

if we can groom the traffic destined to the node onto only one or a few wavelengths (instead of

spreading it over all wavelengths). By employing wavelength routing at each node, that is, using a

wavelength ADM (WADM) capable of dropping (and adding) only the wavelengths carrying traf-

fic destined to (and originated from) a node, the number of S-ADMs needed can be dramatically

reduced. For example, Figure 1 shows a node with two different configurations, one at left using

3 S-ADMs with point-to-point WDM links, and the other at right using only one S-ADM plus a

WADM (assuming that only �3 carries streams that need to be added/dropped at this node). LetD be the number of S-ADMs required when using WADMs and traffic grooming, then the saving

percentage on the number of S-ADMs can be defined as S = N �W�DN �W .
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Figure 1. Reducing the number of S-ADMs.

In this paper, we consider cost-effective designs of SONET/WDM rings for a given (static) traf-

fic pattern, where the traffic from one node to another may require a fraction of the bandwidth pro-

vided by one wavelength. We assume that at each node, a WADM and as many S-ADMs as nec-
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essary may be used. Our objective is to minimize the number of wavelengths per link (W ) and the

total number of S-ADMs (D) required to support the given traffic pattern by grooming (or multi-

plexing) traffic between different source-destination node pairs at each node whenever needed (in

addition to assigning wavelengths appropriately). Note that, one may not always be able to mini-

mize bothW andD at the same time. Examples in which they cannot be minimized simultaneously

are provided in [3] and [5].

The basic idea of our approach is as follows. Let the traffic from one node to another be ex-

pressed as a number of connections each requiring a base bandwidth (e.g. OC-3) which is 1M (e.g.M = 16) of the bandwidth of a wavelength (e.g. OC-48). Heuristic algorithms based on the

scheduling algorithms proposed in [6, 8, 9] are first used to construct as many circles as needed

to include all the connections, where each circle consists of non-overlapping connections. As to be

described later, a circle may be full or partial, and in a full circle, the number of S-ADMs needed is

equal to the number of end nodes involved, i.e. nodes that are either sources or destinations of the

connections forming the circle. After the circles (say C in total) are constructed, another heuristic

algorithm is used to groom up to M circles onto each of W = d CM e wavelengths while trying to

overlap as many end nodes belonging to different circles as possible so as to result in a small D.

Note that wavelength assignment is normally a part of the traffic grooming problem. Using

our approach, however, wavelength assignment has largely been accomplished in the circle con-

struction phase. In other words, our approach can effectively separate wavelength assignment from

traffic grooming, and thus help simplify both problems and obtain efficient solutions. For instance,

once the circles are constructed, it has been determined that the connections in each circle will be

assigned the same wavelength; the number of wavelengths to be used, W , has also been determined

(and possibly minimized). IfD needs not to be minimized, one may simply groom arbitrary M cir-

cles onto an available wavelength; Otherwise, these circles can be groomed in a more judicious

way.

Another major difference between this work and the work done previously is the generality of

our approach in that the proposed traffic grooming and wavelength assignment algorithms can be

applied to either unidirectional or bidirectional SONET/WDM rings with an arbitrary network sizeN and an arbitrary grooming factor. More specifically, [3] considered wavelength assignment for

a given set of lightpaths in SONET/WDM rings to reduce D and/or W but did not consider traf-

fic grooming. [5] proposed heuristics for grooming uniform traffic in unidirectional SONET/WDM

rings. Traffic grooming for uniform traffic in bidirectional SONET/WDM rings having an odd num-

ber of nodes is discussed in [7] without specifying the algorithm(s) or heuristic(s) employed. In [4],

2



analytic results (such as D and W required) were presented for several specific optical WDM ring

designs under uniform traffic (although a framework allowing non-uniform was also discussed).

The SONET/WDM rings considered in this paper differ from all the designs considered in [4]. To

our best knowledge, this is also the first paper to report quantitative results for non-uniform traffic

grooming.

The rest of the paper is organized as follows. Section 2 deals with uniform traffic, in which

optimal circle construction algorithms (i.e. those resulting in a minimum number of circles) are

presented for both unidirectional and bidirectional SONET/WDM rings. In addition, for the cases

with and without traffic grooming, respectively, lower bounds on the number of S-ADMs required

are determined and a circle grooming algorithm is proposed. The latter is also applicable to non-

uniform traffic, which is treated in Section 3. Numerical results are presented and discussed in Sec-

tion 4. Finally, Section 5 concludes the paper.

2. UNIFORM TRAFFIC

In the rest of the paper, we will let B be the bandwidth of one wavelength (e.g. OC-48) and Rb
the base bandwidth of a connection (e.g. OC-3), where B = M � Rb for some integer M � 1. To

facilitate our presentation, we number the N nodes in a ring from 0 toN�1, and use (i; s) to denote

a connection from node i to another node (say j) that is s hops away (along a shortest path from i
to j = (i+ s)mod N ). Hereafter, such a connection will be said to have a stride (or hop count) ofs.

In addition, letRi;s denote the total bandwidth required by the traffic from node i to a node s hops

away, whereRi;s = Hi;s�Rb for some integerHi;s � 0. Since each connection has a base bandwidth

of Rb, the number of connections to be established from i to j isHi;s. Note that, if Hi;s > M , these

connections have to be groomed onto different wavelengths. Even if Hi;s < M , these connections

may still be groomed onto different wavelengths in order to minimize W and/or D.

In uniform traffic, Ri;s is the same for every i and s, and thus we may letR = Ri;s andH = Hi;s.
If R = B (or H = M ), it is natural to bundle all H connections from one node to another into a

super-connection which is then assigned one wavelength. Doing so eliminates the need to groom

traffic between different pairs of nodes while fully utilizing the bandwidth of each wavelength. It

also effectively increases the base bandwidth by H (= M ) times. That is, we may define the ef-

fective base bandwidth (of a super-connection) to be rb, where rb = H � Rb. Accordingly, we can

express B and R in terms of rb as B = m � rb and R = h � rb, where m = h = 1. In short, havingM = H can be treated as equivalent to having m = h = 1.
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In general, one may bundleGCD(M;H) (whereGCD stands for the greatest common divider)

connections from one node to another into a super-connection, and then groom m = MGCD(M;H)
super-connections onto one wavelength. Since the effective base bandwidth of a super-connection

is rb = GCD(M;H) � Rb, we may express R as h � rb, where h = HGCD(M;H) . For example, letB = 2:488 Gbps (OC-48) and Rb = 155:52 Mbps (OC-3). If R = 7 � 155:52 Mbps, we haveM = 16 and H = 7, and no bundling can be performed since GCD(16; 7) = 1 (and hence, we

may set m = M = 16, h = H = 7 and rb = Rb). However, if R = 4 � 155:52 Mbps (i.e. OC-

12), GCD(16; 4) = 4 connections can be bundled into one super-connection, effectively makingm = 4 and h = 1 (since rb = 4Rb). If R = 10� 155:52 Mbps, GCD(16; 10) = 2 connections can

be bundled, effectively making m = 8 and h = 5 (since rb = 2Rb). Finally, if R = 64 � 155:52
Mbps (i.e, OC-192), GCD(16; 64) = 16 connections can be bundled, effectively making m = 1
and h = 4 (since rb = 16Rb = B).

In what follows, we assume that bundling is performed whenever possible, and use the term

“connection” to refer to “super-connection” as well if bundling does occur. Accordingly, we will

focus only on the values ofm and h, and define m to be the grooming factor. Note thatm and h are

integers (and GCD(m; h) = 1) even though neither RB nor BR needs to be an integer. In addition,

when m = 1, no traffic grooming is needed, and hence each connection will be established as a

lightpath. On the other hand, traffic grooming is needed when m > 1, which is only possible ifR <B (that is, H < M ), or R > B but R is not a multiple of B (that is, H > M but GCD(H;M) <M ). We will study how to construct circles using connections and groom circles in unidirectional

rings first.

2.1. Unidirectional rings

2.1.1. No traffic grooming (m = 1)

In this subsection, we start with the simplest case where the traffic from one node to another requires

the full bandwidth of a wavelength (i.e. R = B). As a result, m = h = 1. In such a case, each

node needs to establish one connection to every other node for a total of N(N � 1) connections

from all N nodes.

Note that the minimum number of wavelengths needed to establish all these connections, i.e. the

lower bound on W , is WLB = N(N�1)2 [8]. Since there are at least 2 S-ADMs on each wavelength

carrying (at least) one connection, one for the source and the other for the destination of the connec-

tion, the minimum number of S-ADMs, i.e. the lower bound onD, isDLB = 2 �WLB = N(N�1).
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These two lower bounds can be achieved by using the following Algorithm I (note that the algo-

rithm merely constructs circles since no circle grooming will be needed).

Algorithm I: Construct circles in unidirectional rings for uniform traffic

for i = 0; 1; � � � ; N � 2
for s = 1; 2; � � � ; N � 1� i

combine (i; s) and (i+ s;N � s) in one circle

Specifically, the algorithm combines two connections which have common end nodes (e.g. one

from i to j and the other from j to i) and thus complementary strides, s and N � s, to form a full

circle. The total number of circles formed is C = PN�2i=0 (N � 1� i) = N(N�1)2 =WLB . Once the

circles are formed, wavelengths can be assigned arbitrarily (one wavelength to each circle). Given

that each circle needs 2 S-ADMs, one for each end node involved in the circle, the total number

of S-ADMs is equal to DLB . In general, whenever there is no traffic grooming, the number of S-

ADMs needed on each full circle is equal to the number of connections in the circle, and thus is

minimized.

Note that the case wherem = 1 but h > 1 is the same except that each node will need h connec-

tions to every other node, and the total number of connections will be h �N(N�1). Accordingly, h
sets ofC circles will be constructed, and bothW andD (as well asWLB andDLB) will be increased

by h times. In short, both W and D will be minimized as long as m = 1.

2.1.2. With traffic grooming (m > 1)

We now consider unidirectional rings under uniform traffic where either R < B, or R > B butR is not a multiple of B. In either case, m > 1. In order to increase bandwidth utilization (and

minimizeW ), we need to groom multiple (up to m if necessary) circles onto each wavelength. We

will consider two cases where h = 1 and h > 1, respectively. If h = 1, only one set of circles

which can be constructed using Algorithm I as described earlier needs to be groomed. If h > 1, h
such sets of C circles need to be groomed. Since Algorithm I results in the minimum number of

circles, if we groom as many circles as possible (up to m circles) onto each wavelength, the number

of wavelengths needed, W , will be minimized. By carefully selecting the m circles to be groomed

onto the same wavelength, the number of S-ADMs can also be reduced.

In the following, we will first consider the case where h = 1 and describe an algorithm to de-

termine a lower bound on the number of S-ADMs required, DLB. We then propose an efficient
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algorithm to groom circles for either h = 1 or h > 1.

A lower bound on D (DLB) when h = 1
Let the number of circles constructed using Algorithm I (or Algorithms IV and V to be described

later) be denoted by C. It is clear that WLB = dCme. Assume that the number of circles groomed

onto wavelength �w is mw (where mw may be different for different �w and 1 � w � W ), we

have
PWw=1mw = C. Let the minimum number of S-ADMs needed on �w be denoted by d(mw)

(note that d(mw) is also the number of end nodes involved on �w). Since the maximum number of

circles that can be constructed using Algorithm I among n end nodes is n(n�1)2 or
�n2�, in order to

have mw circles on �w, we need to have
�d(mw)2 �� mw. On the other hand, in order for d(mw) to

be the minimum number of S-ADMs on �w, we also need to have
�d(mw)�12 �< mw. Based on this

observation, we can obtain a unique value of d(mw) for any given mw. For example, let mw = 11.

Since
�62�= 15 > 11 but

�52�= 10 < 11, we have d(mw) = 6, meaning that at least 6 S-ADMs

are needed in order to groom 11 circles onto a wavelength. Similarly, d(1) = 2, d(2) = 3, � � �,d(16) = 7, and so on. Accordingly, given the values of all mw’s, where w = 1; 2; � � � ;W , the

minimum number of S-ADMs required is at least tempDLB = PWw=1 d(mw). Hereafter, we will

call the set of values ofmw’s a solution and denote it by fmwg. In addition, we will call the solution

which results in the minimum tempDLB (among all possible solutions) the theoretically optimal

solution, and set DLB to be equal to the corresponding minimum tempDLB .

We now propose the following Algorithm II to find the theoretically optimal solution (andDLB) without searching for all possible solutions. The basic idea is as follows. Without loss of gen-

erality, we may assume that 1 � m1 � m2 � � � � � mW � m since the wavelength assignment can

be arbitrary. In Algorithm II, function FindM() is called recursively to determine mw in a wave-

length index descending order. That is, it finds mW first, mW�1 second and so on. Accordingly, for

a given wavelength index w, at the time mw is to be determined, all mk’s with w + 1 � k � W
have been determined, and the number of circles groomed so far is tempC = PWk=w+1mk. In

addition, since at least one circle needs to be groomed onto wavelengths having index from 1 to(w � 1), the number of circles that could possibly be groomed onto wavelength �w is at mostC�tempC�(w�1). Furthermore, according to the assumption described earlier, mw � mw+1, and

hence, we havemw � minfmw+1; C� tempC�w+1g. On the other hand, since the C� tempC
circles which have not groomed so far will be allocated onto w wavelengths among which �w will

be allocated the largest number of circles, we have mw � dC�tempCw e. In this way, we have limited

the possible values of each mw and in turn, the number of solutions to be examined by the algo-

rithm. For each solution fmwg examined by the algorithm, the corresponding number of S-ADMs
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required (tempDLB) is calculated and the best solution with the lowest tempDLB found so far is

recorded. At the end of the algorithm, the theoretically optimal solution fmwg and DLB can thus

be obtained.

Algorithm II: Determine a lower bound on the number of S-ADMs for uniform traffic

main() fDLB = N �M ; //may set it to any large value
FindM(W ); //start with �W
// DLB and the corresponding fmwg are obtainedg

FindM(integer w) f
if (w =W ) ftempC = 0; // tempC is the number of circles groomed so farU = m; // U is an upper bound on the number of circles on �wg
else f // w < WtempC =PWk=w+1mk;U = mw+1;g
if (w > 1) f // as long as this is not the last wavelengthMmax = minfU;C � tempC � w + 1g;

for mw = dC�tempCw e; dC�tempCw e+ 1; � � � ;Mmax
FindM(w � 1);g

else f // groom all remaining circles onto the last wavelengthm1 = C � tempC;tempDLB =PWk=1 d(mk);
if (DLB > tempDLB) fDLB = tempDLB ;

save the solution fmkgggg
Circle grooming (and wavelength assignment)

After the circles are constructed using Algorithm I (or other algorithms to be described later), the

following Algorithm III can be applied to groom multiple (up to m) circles onto each wavelength

such that the resulting D can be as close to DLB as possible.
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Algorithm III: Groom circles onto W wavelengths

//determine the number of circles to be groomed onto each wavelength
if (using Method A)

invokes Algorithm II to find the theoretically optimal solution fmwg;
if (using Method B) f //distribute circles as evenly as possibleCg = 0; // the number of circles groomed so far;

for w =W;W � 1; � � � ; 1 fw0 = dC�Cgm e;mw = dC�Cgw0 e;Cg = Cg + mw;gg
//use a heuristic to groom a pre-determined number of cirlces onto each wavelength
find the number of S-ADMs in each circle;D = 0;
for w =W;W � 1; � � � ; 1 f

find the circle which has the maximum number of S-ADMs (i.e. end nodes involved)
over all existing circles, and groom it onto �w;

for k = 1; 2; � � � ;mw � 1 f // groom other mw � 1 circles onto �wL: find a circle which, if groomed onto �w, results in a minimum number of
additional S-ADMs (or maximum overlapping among the end nodes);

groom this circle onto �w;gD = D + number of S-ADMs on �w;g
Note that for a given number of circles, C, Algorithm III will groom these circles ontoW = dCme

wavelengths. Since we can construct a minimum number of circles under uniform traffic in either

unidirectional or bidirectional rings (to be discussed later), this means that the algorithm will use a

minimum number of wavelengths.

Basically, Algorithm III works as follows. It first determines a solution fmwg using either of the

following two methods. Method A is to use Algorithm II which identifies the theoretically optimal

solution. However, Algorithm II may be time consuming when C and W are large. In fact, among

all the algorithms (to be) described in this paper, Algorithm II is the only one whose worse-case

computational time complexity is exponential toN . An alternative is to use Method B, which tends

to distribute all the circles as uniformly as possible amongW wavelengths. More specifically, when

determining the value of mw, assume that there are X circles left to be groomed. Since at leastw0 = dXme additional wavelengths (including�w) will be needed, we may groommw = dXw0 e circles
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onto �w. Note that using Method B, we also have 1 � m1 � m2 � � � � � mW � m. After the

solution fmwg is determined, the rest of Algorithm III uses a heuristic to decide which mw circles

are groomed onto wavelength �w. Note that, given the heuristic nature of the algorithm, even if we

use Method A and groom the same number of circles as that specified by the theoretically optimal

solution onto each wavelength, the total number of S-ADMs used by Algorithm III may still be

larger than DLB determined by Algorithm II.

It is clear that Algorithm III also applies to the case where h > 1. More specifically, whenh > 1, all Algorithm III needs to do differently is to groom h times more circles (since each circle

has h identical copies). As long as additional circles need to be groomed onto a wavelength, a circle

identical to the one just groomed will be chosen by the algorithm since in this way, no additional

S-ADMS will be needed (see the pseudo code starting at the line labeled with L). Of course, the

values of D and W will be different when compared to the case where h = 1. In particular, unlike

the case for m = 1, D will not simply increase by h times due to traffic grooming although we will

still have W =WLB = dh�Cm e.
Since Algorithm III merely grooms the circles, and does not depend on the traffic pattern or the

way the circles are constructed, it is applicable to both unidirectional and bidirectional rings, as well

as to both uniform traffic and non-uniform traffic. We will present algorithms to construct circles

for bidirectional rings and for non-uniform traffic next.

2.2. Bidirectional rings

In this section, we consider uniform traffic in bidirectional rings (where shortest path routing is

assumed). Based on our previous discussion on unidirectional rings, we will only consider the case

where h = 1 since the case where h > 1 is similar.

2.2.1. No traffic grooming (m = 1)

As for the case of unidirectional rings, we start by assuming that the traffic from one node to another

requires the full bandwidth of a wavelength, and accordingly, m = h = 1, and the total number of

connections to be established is N(N � 1). In [2] (which discussed the case where N is odd only)

and [1,6,9], it is given that the minimum number of wavelengths required in a bidirectional ring is:WLB = 8<: N2�18 for odd NdN28 e for even N (1)

In order to establish these connections using a minimum number of wavelengths, the basic idea

of the scheduling algorithms proposed in [6] can be used. Specifically, for an even N , the following
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Figure 2. Construct circles in bidirectional rings when N is even.

Algorithm IV combines 4 clockwise connections having two complementary strides s and N2 �s to

form a full clockwise circle as shown by the solid lines in Figure 2 (a), and assigns one wavelength

to the circle (Figure 2 (b) illustrates the special case where s = N2 ). The total number of clockwise

circles constructed by Algorithm IV is 2� (bN�24 c+ 1) + N2 bN�24 c (if N = 4n) or (bN�24 c+ 1) +N2 bN�24 c (ifN = 4n+2), which is equal to dN28 e (the same as the minimum number of wavelengths

needed given by Eq. 1).

Note that, counter-clockwise connections can be established in the same way as shown by the

dashed lines in Figure 2. In general, since uniform traffic can be distributed among the two direc-

tions (i.e. clockwise and counterwise) in a symmetrical way based on shortest-path routing, we will

only focus on those connections (and circles) that are clockwise in the following discussion.

Algorithm IV: Construct clockwise circles in bidirectional rings for uniform traffic (even N )

for i = 0; 1; � � � ; bN�24 c // s = N2
combine (i; N2 ) and (N2 + i; N2 ) in one circle

for i = 0; 1; � � � ; bN�24 c // s = N4 (this is a special case when N = 4n)
combine (i; N4 ), (N4 + i; N4 ), (N2 + i; N4 ) and (3N4 + i; N4 ) in one circle

for i = 0; 1; � � � ; N2 � 1
for s = 1; 2; � � � ; bN�24 c

combine (i; s), (i+ s; N2 � s), (N2 + i; s) and (N2 + i+ s; N2 � s) in one circle

Similarly, when N is odd, the following Algorithm V combines either 3 or 4 connections to

form a full circle as shown in Figure 3, in which the case where s = i is shown in solid lines and

the case where s = i � 1 is shown in dashed lines. The total number of circles constructed in

Algorithm V is
Pn1�1i=0 (i + 1) = N2�18 (see [9]), which is also equal to the minimum number of
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wavelengths needed. In addition, in both Algorithms IV and V, N(N�1)2 connections are established

on each direction in full circles, and thus the number of S-ADMs used (D) is minimized to N(N�1)2
given that there is no need for traffic grooming.

Algorithm V: Construct clockwise circles in bidirectional rings for uniform traffic (odd N )n1 = N�12 ;n2 = n1 + 1 = N+12 ;
for i = 0; 1; 2; � � � ; n1 � 1 f // the starting node of each circle

for s = i; i� 1; � � � ; 1 f // the value of one stride
construct a circle involving nodes i; i+ n1 � s; n2 + i and i� s, i.e.
containing connections (i; n1 � s); (n1 + i� s; s+ 1); (n2 + i; n1 � s) and (i� s; s)g

// the following is for a special case where s = 0
construct a circle involving nodes i; i+ n1 and n2 + i, i.e.
containing connections (i; n1); (n1 + i; 1) and (n2 + i; n1)g

n1n2

n1+1

n1n2

n1+1

n1 n1n2
n1

n2

n1+1

n1

( a )  i=0, s=0 ( b )  i=1, s=1

0

or 

0

or 

1

+2

0

+2

1
2

i

+ i

or 

Ν−1

−1

( c )  s=i and s=i-1

Figure 3. Constructing circles to establish all clockwise connections when N is odd.

Note that, when m = 1, a bidirectional SONET/WDM ring employing our proposed traffic

grooming and wavelength assignment algorithms behaves as a fully-optical ring, which is consid-

ered in [4]. In other words, when there is no traffic grooming, our results on W and D agree with

those obtained for the fully-optical ring in [4]. However, in the case to be discussed next, wherem > 1 and h < m (i.e. when the traffic from one node to another requires a fraction of the band-

width of one wavelength), the bidirectional SONET/WDM ring will require fewer D and W than

the fully-optical ring (and other designs considered in [4]).
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2.2.2. With traffic grooming (m > 1)

Similar to the case for unidirectional rings, after the circles are constructed using Algorithm IV or

V in bidirectional rings, Algorithm III can be used to groom up to m circles onto every wavelength

(according to the solution fmwg obtained using either Method A or Method B as described in Sec-

tion 2.1.2).

However, since Algorithm IV or V is now used to construct circles instead of Algorithm I, there

are usually more end nodes involved in a circle. Accordingly, d(mw) needs to be calculated differ-

ently. Specifically, the maximum number of circles involving n nodes is now given by:C(n) = 8<: n2�18 for odd ndn28 e for even n (2)

and thus, the following condition will be used to determine d(mw) for a given mw:C[d(mw)� 1] < mw < C[d(mw)] (3)

Note that, a d(mw) determined here can be less than the actual number of end nodes (S-ADMs)

required on each wavelength. This is because, for example, when N is even, the number of end

nodes (or connections) involved in each circle constructed using Algorithm IV is either 2 or 4. If two

circles are groomed on �w (i.e. mw = 2), we have d(mw = 2) = 4 according to the above equation,

which is applicable if each of the two circles contains two nodes. However, when each of the two

circles contains four nodes, the minimal number of S-ADMs needed could be 8. Accordingly, the

lower bound on the required number of S-ADMs determined by Algorithm II based on d(mw)’s
will be loose for bidirectional rings.

3. NON-UNIFORM TRAFFIC

In non-uniform traffic, the bandwidth required by the traffic from node i to another node s hops away

may vary with i and s. LetH 0 be the greatest common divider (GCD) of all non-zeroHi;s. As in the

case for uniform traffic, we may bundle GCD(H 0;M) connections into one super-connection, and

thus treat the case as having m = MGCD(H0;M) and hi;s = Hi;sGCD(H0;M) is the number of connections

to be established from node i to another node s hops away. In this section, we propose a heuristic

algorithm to construct circles for a given traffic matrix fhi;sg, which can then be groomed by using

Algorithm III described earlier.

Recall from the algorithms described so far for uniform traffic that the following rules seem to

be useful in minimizing the number of wavelengths and the number of S-ADMs: in unidirectional
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rings, if two connections with complementary strides exist, they will be combined in one circle;

Similarly, in bidirectional rings, up to four connections with complementary strides will be com-

bined in one circle. For non-uniform traffic, it is natural to first follow these rules when constructing

circles. Denote by C1 the maximum number of circles constructed in this way. Then, we can apply

the following heuristic algorithm, Algorithm VI, to continue the construction of circles until all

connections have been included. This algorithm can be applied to both unidirectional and bidirec-

tional rings. Note that the circles constructed using Algorithm VI may not be full. In a partial circle,

there are one or more “gaps” which can not be fit in by any remaining connection to be established,

resulting in some bandwidth waste.

In Algorithm VI, we construct circles using the connections having the longest stride in the traf-

fic matrix fhi;sg first. This is because connections with shorter strides are more likely to be able to fit

into the gaps generated by the connections with longer strides. Intuitively, a fewer gaps help reduce

not only the number of wavelengths (due to a better bandwidth utilization), but also the number of

S-ADMs. Accordingly, the algorithm attempts to fit each connection into existing circles without

generating an additional gap. If the connection being considered share at least one end node (source

or destination) with other connections already contained in the circle, it will be added into the cir-

cle (unless there is no room, or in other words, the new connection will overlap with an existing

one). If fitting a connection into any existing circle will generate an additional gap, we will call

this connection a “gap maker”, and put it into a GapMaker list which is initially empty. After all

the connections in the traffic matrix has been either included in some existing circles, or put into

the GapMaker list, we start to process the GapMaker list by using its connections to construct (ad-

ditional) circles. Note that, it is possible that some connections from the GapMaker list will now fit

into some existing circles without creating an additional gap. For example, as shown in Figure 4,

connections a and b are “gap makers”, and will initially be put into the GapMaker list. If later on,

connection x is added on circle 1 because it is not a “gap maker”, connection a can be added to

circle 1 as well and removed from the GapMaker list.

a

b

a b

circle 2

circle 1

circle 1

circle 2

circle3

Minimizing  W 

Minimizing  D 

x

Figure 4. An illustration of the two options in Algorithm IV.

13



Algorithm VI: Construct circles for non-uniform trafficC2 = 1; // C2 is the number of circles constructed by this algorithm so fars0 = N � 1 for unidirectional rings or s0 = N2 for bidirectional rings; //the maximum stride
for s = s0; s0 � 1; � � � ; 1 f // consider connections with longer strides first

for i = 0; 1; � � � ; N � 1 f // one node at a time
while (hi;s > 0)f

for c = 1; 2; � � � ; C2 f // try all circles if necessary
try to fit connection (i; s) into circle c without creating an additional gap;
if (succeed) fhi;s = hi;s � 1;

break from the inner “for” loop; // no need to try the remaining circlesg // else fail and then try the next circleg
if (fail because (i; s) would overlap with some connections in any existing circle) f

do f
generate a new circle for (i; s); hi;s = hi;s � 1; C2 = C2 + 1;g while (hi;s > 0);g

if (fail because fitting (i; s) in any existing circle would generate an additional gap) f
do f

put (i; s) into the GapMaker list (to be processed later); hi;s = hi;s � 1;g while (hi;s > 0);gggg // all hi;s have been included either in the circles or in the GapMaker list

if (the objective is to minimize the number of wavelengths) f
for each connection in the GapMaker list f

try to fit into existing circles;
if (fail) f // because it overlaps with existing connections

generate a new circle for the connection; C2 = C2 + 1;g
remove the connection from the GapMaker list;gg

if (the objective is to minimize the number of S-ADMs) f
for each connection in the GapMaker list f

try to fit into existing circles without creating an additional gap;
if (fail) f // because it either overlaps with existing connections

// or it creates an additional gap
generate a new circle for the connection; C2 = C2 + 1;g

remove the connection from the GapMaker list;gg
14



If there are still some connections left in the GapMaker list that cannot be fit into any existing

circle without creating an additional gap, we have two options: one is to minimize the number of

wavelengths (W ) used, and the other is to minimize the number of S-ADMs (D) used. If W is to

be minimized, each connection will be fit into an existing circle as long as there is enough band-

width, even though an additional gap may be created. In other words, a new circle is created for

a connection only if there is no room for the connection in any existing circle. On the other hand,

if D is to be minimized, a new circle will be generated for a connection that cannot be fit into any

existing circle without creating an additional gap. Figure 4 illustrates the difference between the

two options, assuming that connection x does not exist. As can be seen, the first option results in

one fewer wavelengths (2) and one more S-ADMs (8) than the second option (when there is no

grooming).

The total number of circles constructed is C = C1+C2. As mentioned earlier, Algorithm III can

then be used to groom these circles on toW = dCmewavelengths. To see how effective our approach

is in minimizingW , we may, for a given traffic matrix fhi;sg, determine the traffic load on each and

every link. Let the maximum traffic load over all links be Rmax, we can then use WLB = RmaxB as a

lower bound on the number of wavelengths required. Note that, for unidirectional rings, one may

calculate another lower bound on W as
PN�1i=0 PN�1s=1 hi;s�sm�N (for bidirectional rings, a similar formula

may be used). However, this lower bound is not as tight as the former and hence will not be used. In

addition, with non-uniform traffic, we will not compare the number of S-ADMs used by Algorithm

III with any lower bound on D because even a lower bound such as 2 �WLB would be too loose to

be meaningful, especially when m > 1. To obtain a tight lower bound on D in such a case would

require exhaustive search for all possible combinations.

4. NUMERICAL RESULTS

In this section, we present numerical results onW ,D, and their corresponding lower bounds (when-

ever applicable). For non-uniform traffic requiring the use of Algorithm VI to construct circles, the

results reported here are obtained with the objective to minimize W unless otherwise specified.

By default, we assume 4 � N � 20. Figure 5 shows the number of wavelengths required

and the corresponding lower bound for both uniform traffic and non-uniform traffic when there is

no traffic grooming (m = 1). For uniform traffic, only the case where h = 1 is shown since ifh > 1, one may simplify multiply both W and WLB by h, as discussed earlier. For non-uniform

traffic, we assume that hi;s is evenly distributed between 0 and hmax = maxfhi;sg with an average

of h0 = hmax2 . Two cases, in which h0 = 2:5 and 5, respectively, are shown in Figure 5. As can
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be seen, WLB is achieved for uniform traffic, and closely approached for non-uniform traffic. Note

that without traffic grooming,W = C. Hence, even with traffic grooming (i.e. m > 1), bothW andWLB will be 1m of their values shown in the figure according to previous discussion on Algorithm

III, implying that they will be identical or at least very close to each other.
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Figure 5. Wavelength requirement in SONET/WDM rings with no traffic grooming.
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Figure 6. The number of S-ADMs needed in SONET/WDM rings for uniform traffic when h = 1.

Figure 6 compares the number of S-ADMs used by Algorithm III with the DLB obtained by

Algorithm II for uniform traffic with and without traffic grooming (i.e. m = 1; 2; 4; 8 and 16)

and h = 1. Recall that we have two different methods to determine the number of circles to be

groomed onto each circle, but since our results show that these two methods give almost the same

performance, we will not distinguish them in this section. As shown in the figure, D = DLB whenm = 1, and D is close to DLB when m � 8 in unidirectional rings. The main reason for D > DLB
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when m > 1 is that DLB obtained using Algorithm II may not be tight (i.e. achievable) in some

cases, especially in bidirectional rings with even N , as discussed in Section 2.2.2.
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Figure 7. Number of S-ADMs needed in SONET/WDM rings for uniform traffic (h = 3) and for

non-uniform traffic (h0 = 2:5).

Figure 7 shows the number of S-ADMs needed when h = 3 for uniform traffic and whenh0 = 2:5 for non-uniform traffic. As can be seen, for uniform traffic, as m increases from 1 to

4, D is reduced by about 60% when h = 3 (compared to about 50% when h = 1 in Figure 6) for

unidirectional as well as bidirectional rings. In addition, when m = 1, the number of S-ADMs

needed when h = 3 is exactly 3 times of that needed when h = 1. However, if m = 4, the number

of S-ADMs needed when h = 3 is only about 2 times of that needed when h = 1. This is because

with 3 copies for each connection, the traffic can be groomed more efficiently. In addition, one can

see from the results that, for non-uniform traffic with h0 = 2:5, the number of S-ADMs required is

close to that for uniform traffic when h = 3 (this is because non-uniform traffic usually cannot be

groomed as efficiently as uniform traffic). Note that if we compare the results in Figure 7 (b) with

those in Figure 10 (b) where h0 = 5 (to be discussed later), we may conclude that for non-uniform

traffic, D also increases linearly with h0 when m = 1, but sub-linearly when m > 1.

Figures 8 and 9 show the saving percentage (S) on the number of S-ADMs due to the proposed

traffic grooming algorithms, which is calculated as S = N �WLB�DN �WLB , for uniform (where h = 1) and

non-uniform traffic (where h0 = 2:5), respectively. Note that whenm increases, the saving percent-

age decreases for a fixed N because when more circles need to be groomed onto each wavelength,

more S-ADMs are involved. As N increases, the saving percentage increases and then saturates

gradually. The saving percentage can be as high as 90% in unidirectional rings and 81% in bidirec-

tional rings whenm = 1 andN = 20. Even whenm = 16, the saving percentage is still significant
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whenN = 20 (e.g. about 60% for uniform traffic and 67% for non-uniform traffic in unidirectional

rings. The respective percentages in bidirectional rings are 30% and 40%).
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Figure 8. Saving percentage in S-ADMs for uniform traffic (h = 1).
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Figure 9. Saving percentage in S-ADMs for non-uniform traffic (h0 = 2:5).

Recall that when using Algorithm VI to construct circles for non-uniform traffic, we can min-

imize either W or D. The values of W and D obtained by using these two options, respectively,

are shown in Figure 10 for bidirectional rings (the case for unidirectional rings is similar). As can

be seen, when the first option (minimizing W ) is adopted, the resulting W is nearly the same asWLB , and when the second option (minimizing D) is adopted, a few more wavelengths than WLB
are usually required (see Figure 10 (a)). On the other hand, the two options result in almost the

same D (see Figure 10 (b)). This is because when the objective is to minimize W , the number of

circles constructed, C, will be near minimum, which in turn results in a near minimum W = dCme
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Figure 10. The effect of minimizing W and D for non-uniform traffic in bidirectional rings (h0 =2:5).

and helps reduce D used by Algorithm III as well. However, when the objective is to minimizeD,

Algorithm VI only tries to minimize the total number of S-ADMs (or end nodes) involved in all the

circles, which does not necessarily guarantee that D used by Algorithm III will be minimized.

5. CONCLUSION

In this paper, we have proposed a suite of six algorithms that are useful for traffic grooming and

wavelength assignment under uniform and non-uniform traffic in both unidirectional and bidirec-

tional SONET/WDM rings. Algorithms I, IV and V are used to construct a minimal number of

circles for uniform traffic in unidirectional rings, bidirectional rings with even N , and bidirectional

rings with oddN , respectively. Algorithm VI is used to construct a near minimum number of circles

for non-uniform traffic. After the circles are constructed, Algorithm III uses a heuristic to groom

up tom circles onto each wavelength, where m is the grooming factor. The number of wavelengths

needed is minimum if the traffic is uniform and is near minimum otherwise. All the algorithms pro-

posed, except Algorithm II which is used to determine a lower bound on the number of S-ADMs

needed for uniform traffic, have a worse-case computational time complexity that is polynomial

of N . The results obtained show that the proposed algorithms perform very well in reducing the

number of S-ADMs (as well as minimizing the number of wavelengths).
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