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Abstract

In high-speed SONET rings with point-to-point WDM links, the cost of SONET Add-Drop
Multiplexers (SSADMs) can be dominantly high. However, by grooming traffic (i.e. multiplexing
lower rate streams) appropriately and using wavelength ADMs (WADMSs), the number of SADMs
used can be dramatically reduced. In this paper, we propose optimal or near-optimal agorithms
for traffic grooming and wavel ength assignment to reduce both the number of wavelengths and the
number of SADMs. The algorithms proposed are generic in that they can be applied to both uni-
directiona and bidirectional rings having an arbitrary number of nodes under both uniform and
non-uniform (i.e. arbitrary) traffic with an arbitrary grooming factor. Several lower bounds on the
number of wavelengths and SSADMs required for a given traffic pattern are derived, and used to
determine the optimality of the proposed algorithms. Our study shows that these lower bounds can
be closely approached in most cases or even achieved in some cases using the proposed al gorithms.
In addition, even when using a minimum number of wavelengths, the savingsin SADMs due to
traffic grooming (and the use of WADMS) are significant, especialy for large networks.
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1. INTRODUCTION

Synchronous Optical Network (SONET) rings are widely used in today’s network infrastructures.
Each SONET ring is constructed by using fibers to connect SONET Add Drop Multiplexers (here-
after called SSADM for simplicity). Typicaly, for each working fiber, there is a protection fiber
and hence, two and four fibers are usually used to construct unidirectiona and bidirectional rings,
respectively. One of the critical operations of the SADMs is traffic grooming. Specifically, each
S-ADM can multiplex multiple lower rate streams to form a higher rate stream, or demultiplex a
higher rate stream to several lower rate ones. For example, four OC-12 streams can form one OC-48
stream, in which case the grooming factor is 4.

Ina SONET ring with point-to-point WDM links, each having W wavelengths, every node has
W S-ADMSs, one for each wavelength, and the total number of SADMsis N - W, where N isthe
number of nodes. When the number of wavelengthsislarge (e.g. W > 32) and each wavelength
operates at OC-48 (or higher), the dominant system cost isno longer the cost of thefibers but that of
S-ADMs. Fortunately, a node may not need to add/drop streams on every wavelength, especially
if we can groom the traffic destined to the node onto only one or a few wavelengths (instead of
spreading it over all wavelengths). By employing wavelength routing at each node, that is, using a
wavelength ADM (WADM) capable of dropping (and adding) only the wavelengths carrying traf-
fic destined to (and originated from) a node, the number of SADMs needed can be dramatically
reduced. For example, Figure 1 shows a node with two different configurations, one at left using
3 SSADMs with point-to-point WDM links, and the other at right using only one SSADM plus a
WADM (assuming that only A\; carries streams that need to be added/dropped at this node). Let
D be the number of SSADMs required when using WADM s and traffic grooming, then the saving
percentage on the number of SSADMs can be defined as S = XV_D
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Figure 1. Reducing the number of SADMs.

In this paper, we consider cost-effective designs of SONET/WDM ringsfor agiven (static) traf-
fic pattern, where the traffic from one node to another may require afraction of the bandwidth pro-
vided by one wavelength. We assume that at each node, a WADM and as many SSADMS as nec-
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essary may be used. Our objective isto minimize the number of wavelengths per link (1) and the
total number of SADMSs (D) required to support the given traffic pattern by grooming (or multi-
plexing) traffic between different source-destination node pairs at each node whenever needed (in
addition to assigning wavelengths appropriately). Note that, one may not always be able to mini-
mizeboth W and D at the sametime. Examplesin which they cannot be minimized simultaneously
are provided in [3] and [5].

The basic idea of our approach is as follows. Let the traffic from one node to another be ex-
pressed as a number of connections each requiring a base bandwidth (e.g. OC-3) whichis - (e.g.
M = 16) of the bandwidth of a wavelength (e.g. OC-48). Heuristic algorithms based on the
scheduling agorithms proposed in [6, 8, 9] are first used to construct as many circles as needed
to include all the connections, where each circle consists of non-overlapping connections. Asto be
described later, acircle may befull or partial, and in afull circle, the number of SADMsneeded is
egual to the number of end nodesinvolved, i.e. nodes that are either sources or destinations of the
connections forming the circle. After the circles (say C' in total) are constructed, another heuristic
algorithm is used to groom up to M circles onto each of W' = [%1 wavelengths while trying to
overlap as many end nodes belonging to different circles as possible so asto result in asmall D.

Note that wavelength assignment is normally a part of the traffic grooming problem. Using
our approach, however, wavelength assignment has largely been accomplished in the circle con-
struction phase. 1n other words, our approach can effectively separate wavel ength assignment from
traffic grooming, and thus help simplify both problems and obtain efficient solutions. For instance,
once the circles are constructed, it has been determined that the connectionsin each circle will be
assigned the same wavel ength; the number of wavelengthsto be used, 1V, has al so been determined
(and possibly minimized). If D needs not to be minimized, one may simply groom arbitrary M cir-
cles onto an available wavelength; Otherwise, these circles can be groomed in a more judicious
way.

Another mgjor difference between this work and the work done previously isthe general ity of
our approach in that the proposed traffic grooming and wavelength assignment algorithms can be
applied to either unidirectional or bidirectional SONET/WDM rings with an arbitrary network size
N and an arbitrary grooming factor. More specificaly, [3] considered wavelength assignment for
agiven set of lightpathsin SONET/WDM rings to reduce D and/or W but did not consider traf-
fic grooming. [5] proposed heuristicsfor grooming uniform traffic in unidirectional SONET/WDM
rings. Traffic grooming for uniformtrafficin bidirectional SONET/WDM ringshaving an odd num-
ber of nodesisdiscussed in[7] without specifying the algorithm(s) or heuristic(s) employed. In[4],



analytic results (such as D and W required) were presented for several specific optical WDM ring
designs under uniform traffic (although a framework alowing non-uniform was aso discussed).
The SONET/WDM rings considered in this paper differ from all the designs considered in [4]. To
our best knowledge, thisis aso the first paper to report quantitative results for non-uniform traffic
grooming.

The rest of the paper is organized as follows. Section 2 deals with uniform traffic, in which
optimal circle construction algorithms (i.e. those resulting in a minimum number of circles) are
presented for both unidirectional and bidirectional SONET/WDM rings. In addition, for the cases
with and without traffic grooming, respectively, lower bounds on the number of SADMSs required
are determined and a circle grooming algorithm is proposed. The latter is also applicable to non-
uniform traffic, which istreated in Section 3. Numerical results are presented and discussed in Sec-
tion 4. Finally, Section 5 concludes the paper.

2. UNIFORM TRAFFIC

In the rest of the paper, we will let B be the bandwidth of one wavelength (e.g. OC-48) and R,
the base bandwidth of a connection (e.g. OC-3), where B = M - R, for someinteger M > 1. To
facilitate our presentation, we number the N nodesinaringfrom0to NV —1, and use (7, s) to denote
a connection from node i to another node (say ;) that is s hops away (along a shortest path from i
toj = (i + s) mod N). Hereafter, such aconnection will be said to have a stride (or hop count) of

S.

Inaddition, let R; ; denotethetotal bandwidth required by thetraffic from node i toanode s hops
away, where R, ; = H, - R, for someinteger H, ; > 0. Since each connection has abase bandwidth
of Ry, the number of connectionsto be established from i to j is H; ,. Notethat, if H,; ;, > M, these
connections have to be groomed onto different wavelengths. Evenif H; ; < M, these connections
may still be groomed onto different wavelengthsin order to minimize W and/or D.

Inuniformtraffic, R; ; isthesamefor every i and s, andthuswemay let R = R; ;and H = H; ;.
If R = B (or H = M), itisnatura to bundleal H connections from one node to another into a
super-connection which is then assigned one wavelength. Doing so eliminates the need to groom
traffic between different pairs of nodes while fully utilizing the bandwidth of each wavelength. 1t
also effectively increases the base bandwidth by H (= M) times. That is, we may define the ef-
fective base bandwidth (of a super-connection) to be r;,, where r, = H - R,. Accordingly, we can
express B and R intermsof r,as B = m -r, and R = h - r,, wherem = h = 1. In short, having
M = H can betreated as equivalent to havingm = h = 1.
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In general, onemay bundle GC D (M, H) (where GC D standsfor the greatest common divider)
connections from one node to another into a super-connection, and then groom m = %
super-connections onto one wavel ength. Since the effective base bandwidth of a super-connection
isr, = GCD(M, H) x Ry, we may express R ash - r,, where h = W For example, let
B = 2.488 Gbps (OC-48) and R, = 155.52 Mbps (OC-3). If R = 7 x 155.52 Mbps, we have
M = 16 and H = 7, and no bundling can be performed since GC'D(16,7) = 1 (and hence, we
maysetm = M =16,h = H = 7Tandr, = R;). However, if R = 4 x 155.52 Mbps (i.e. OC-
12), GC'D(16,4) = 4 connections can be bundled into one super-connection, effectively making
m=4andh =1 (sincer, = 4R,). If R = 10 x 155.52 Mbps, GC' D(16, 10) = 2 connections can
be bundled, effectively makingm = 8 and h = 5 (sincer, = 2R;). Findly, if R = 64 x 155.52
Mbps (i.e, OC-192), GC'D(16,64) = 16 connections can be bundled, effectively makingm = 1

and h =4 (sincer, = 16 R, = B).

In what follows, we assume that bundling is performed whenever possible, and use the term
“connection” to refer to “ super-connection” as well if bundling does occur. Accordingly, we will
focus only on the values of m and h, and define m to be the grooming factor. Notethat m and h are
integers (and GC'D(m, h) = 1) even though neither £ nor £ needs to be an integer. In addition,
when m = 1, no traffic grooming is needed, and hence each connection will be established as a
lightpath. On the other hand, traffic grooming isneeded when m > 1, whichisonly possibleif R <
B (thatis, H < M), or R > B but Risnotamultipleof B (thatis, H > M but GCD(H, M) <
M). We will study how to construct circles using connections and groom circles in unidirectional
ringsfirst.

2.1. Unidirectional rings
2.1.1. Notraffic grooming (m = 1)

In thissubsection, we start with the simplest case where thetraffic from one node to another requires
the full bandwidth of awavelength (i.e. R = B). Asaresult, n = h = 1. In such a case, each
node needs to establish one connection to every other node for atotal of N(N — 1) connections
fromall N nodes.

Note that the minimum number of wavel engths needed to establish all these connections, i.e. the
lower bound on W, is Wy 5 = YT-1 [8]. Since there are at least 2 SSADMs on each wavelength
carrying (at least) one connection, onefor the source and the other for the destination of the connec-
tion, the minimum number of SADMs, i.e. thelower boundon D, isD;p =2- W,z = N(N—1).



These two lower bounds can be achieved by using the following Algorithm | (note that the algo-
rithm merely constructs circles since no circle grooming will be needed).

Algorithm I: Construct circlesin unidirectional ringsfor uniform traffic

fori =0,1,---,N —2
fors=1,2,---,N—1—1
combine (¢,s) and (i + s, N — s) inonecircle

Specifically, the algorithm combines two connections which have common end nodes (e.g. one
from i to 5 and the other from j to ¢) and thus complementary strides, s and N — s, to form a full
circle. Thetotal number of circlesformedis C = SN 2(N — 1 —i) = w = Wpp. Oncethe
circles are formed, wavel engths can be assigned arbitrarily (one wavelength to each circle). Given
that each circle needs 2 SSADMSs, one for each end node involved in the circle, the total number
of SADMsisequa to Dy . In general, whenever there is no traffic grooming, the number of S
ADMs needed on each full circle is equal to the number of connections in the circle, and thusis
minimized.

Notethat the casewherem = 1 but A > 1 isthe same except that each node will need ~ connec-
tionsto every other node, and the total number of connectionswill be »- N(N —1). Accordingly, h
setsof C circleswill be constructed, and both W and D (aswell asW;, 3 and Dy, z) will beincreased

by A times. In short, both W and D will be minimized aslongasm = 1.

2.1.2. With traffic grooming (m > 1)

We now consider unidirectional rings under uniform traffic where either R < B, or R > B but
R isnot amultiple of B. In either case, m > 1. In order to increase bandwidth utilization (and
minimize V), we need to groom multiple (up to m if necessary) circles onto each wavelength. We
will consider two caseswhere h = 1 and h > 1, respectively. If h = 1, only one set of circles
which can be constructed using Algorithm | as described earlier needsto be groomed. If A > 1, A
such sets of C' circles need to be groomed. Since Algorithm | results in the minimum number of
circles, if we groom asmany circles as possible (up to m circles) onto each wavel ength, the number
of wavelengths needed, 1, will be minimized. By carefully selecting the m circlesto be groomed
onto the same wavel ength, the number of SADMs can also be reduced.

In the following, we will first consider the case where h = 1 and describe an algorithm to de-
termine a lower bound on the number of SADMSs required, D; 3. We then propose an efficient
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algorithm to groom circlesfor either h =1 or h > 1.
A lower bound on D (Dyg) when h =1

L et the number of circles constructed using Algorithm | (or AlgorithmsIV and V to be described
later) be denoted by C. Itisclear that W,z = [%1. Assume that the number of circles groomed
onto wavelength \,, is m,, (where m,, may be different for different A\, and 1 < w < W), we
have X_, m,, = C. Let the minimum number of SSADMs needed on )\, be denoted by d(m.,)
(notethat d(m.,,) is aso the number of end nodesinvolved on \,,). Since the maximum number of
circles that can be constructed using Algorithm | among »n end nodes is @ or (g) in order to
have m,, circleson \,,, we need to have (d(’;’“’) > m,,. On the other hand, in order for d(m,,) to
be the minimum number of SADMs on \,,, we also need to have (d(m;>’1) < m,,. Based on this
observation, we can obtain a unique value of d(m.,,) for any given m,,. For example, let m,, = 11.
Since (S): 15 > 11 but (g): 10 < 11, we have d(m,,) = 6, meaning that at least 6 SADMs
are needed in order to groom 11 circles onto a wavelength. Similarly, d(1) = 2,d(2) = 3, ---,
d(16) = 7, and so on. Accordingly, given the values of all m,’s, where w = 1,2,--- W, the
minimum number of SADMs required is at least tempDyp = S\, d(m,,). Hereafter, we will
call the set of values of m,,’sasolution and denoteit by {m,, }. Inaddition, wewill call the solution
which results in the minimum tempD;, 5 (among al possible solutions) the theoretically optimal

solution, and set D,z to be equal to the corresponding minimum tempDy,g.

We now propose the following Algorithm I to find the theoretically optimal solution (and
Dy, g) without searching for all possible solutions. Thebasicideaisasfollows. Without loss of gen-
erality, wemay assumethat 1 < m; < my < --- < my < m sincethewavelength assignment can
be arbitrary. In Algorithm I1, function F'indM () is called recursively to determine m,, in awave-
length index descending order. That is, it finds myy first, my,_; second and so on. Accordingly, for
a given wavelength index w, at the time m,,, isto be determined, al m;’'swithw +1 < k£ < W
have been determined, and the number of circles groomed so far is tempC = ;" ., my. In
addition, since at least one circle needs to be groomed onto wavelengths having index from 1 to
(w — 1), the number of circles that could possibly be groomed onto wavelength A, is a most
C'—tempC—(w—1). Furthermore, according to the assumption described earlier, m,, < m,,;,and
hence, we havem,, < min{m,1,C — tempC — w+ 1}. Onthe other hand, sincethe C' — tempC
circleswhich have not groomed so far will be allocated onto w wavelengths among which A, will
be allocated the largest number of circles, we have m,,, > (%1 . Inthisway, we have limited
the possible values of each m,, and in turn, the number of solutions to be examined by the ago-
rithm. For each solution {m,, } examined by the algorithm, the corresponding number of SADMs



required (tempDy,g) is calculated and the best solution with the lowest temp Dy, g found so far is
recorded. At the end of the algorithm, the theoretically optimal solution {m,, } and D;,z can thus
be obtained.

Algorithm I1: Determine a lower bound on the number of SADMsfor uniform traffic

main() {
Dy = N - M;/Imay setittoany large value
FindM (W); /lstart with Ay,
Il Dy, and the corresponding {m,, } are obtained

}

FindM (integer w) {
if (w=W){
termnpC = 0; [/ tempC' isthe number of circles groomed so far
U = m; /I U isan upper bound on the number of circleson A,
}
dee{//w<W
tempC = SV, 41 s
U= My+1;

}

if (w > 1) { // aslong asthisisnot the last wavelength
Mnae = min{U,C — tempC — w + 1},
for My = [Citemp(j}a {Cftemp(?} + 1a U aMmam

w w

FindM (w — 1);

}

else { // groom all remaining circles onto the last wavelength
m1 = C — tempC,
tempDrp = Y1y d(my);
if (D > tempDyp){
Dyp =tempDyp;
save the solution {my }
}
}
}

Circle grooming (and wavelength assignment)

After thecirclesare constructed using Algorithm | (or other a gorithmsto be described | ater), the
following Algorithm 111 can be applied to groom multiple (up to m) circles onto each wavel ength
such that the resulting D can be ascloseto D}, 3 as possible.



Algorithm I11: Groom circles onto W wavelengths

//determine the number of circles to be groomed onto each wavelength
if (using Method A)
invokes Algorithm Il to find the theoretically optimal solution {m,, };
if (using Method B) { //distribute circles as evenly as possible
Cy = 0; /I the number of circles groomed so far,
forw=WWwW-—-1,---,1{
w =[S,
My = [C;/Cg 15
Og = Og T My,

¥
}
/luse a heuristic to groom a pre-determined number of cirlces onto each wavelength
find the number of SADMsin each circle;
D =0;
forw=Ww—-1,---,1{
find the circle which has the maximum number of SADMs (i.e. end nodes involved)
over al existing circles, and groom it onto A,,;
fork=1,2,---,my — 1{// groom other m,, — 1 circlesonto A,
L: find acircle which, if groomed onto A,,, results in a minimum number of
additional SSADM s (or maximum overlapping among the end nodes);
groom thiscircle onto A,;

}

D = D + number of SADMson \,;

Notethat for agiven number of circles, C', Algorithm 111 will groomthesecirclesonto W = (%1
wavelengths. Since we can construct a minimum number of circles under uniform traffic in either
unidirectional or bidirectional rings (to be discussed later), this means that the algorithm will use a
minimum number of wavelengths.

Basicaly, Algorithm 111 worksasfollows. It first determinesasolution {m,, } using either of the
following two methods. Method A isto use Algorithm I which identifies the theoretically optimal
solution. However, Algorithm Il may be time consuming when C' and W arelarge. In fact, among
all the agorithms (to be) described in this paper, Algorithm Il is the only one whose worse-case
computational time complexity isexponential to N. Analternativeisto use Method B, which tends
todistributeall thecirclesasuniformly as possibleamong W wavelengths. More specifically, when
determining the value of m,,, assume that there are X circles left to be groomed. Since at least
w' = [ additional wavelengths (including A,,) will be needed, we may groom m,, = [ 2] circles



onto \,. Notethat using Method B, weaso havel < m; < my < --- < my < m. After the
solution {m,, } is determined, the rest of Algorithm I11 uses a heuristic to decide which m,, circles
are groomed onto wavelength \,,. Notethat, given the heuristic nature of the algorithm, evenif we
use Method A and groom the same number of circles as that specified by the theoretically optimal
solution onto each wavelength, the total number of SADMs used by Algorithm 111 may still be
larger than Dy, g determined by Algorithm 1.

It is clear that Algorithm 111 aso applies to the case where h > 1. More specifically, when
h > 1, al Algorithm 11 needs to do differently isto groom A times more circles (since each circle
has h identical copies). Aslong asadditional circles need to be groomed onto awavelength, acircle
identical to the one just groomed will be chosen by the agorithm since in this way, no additional
S-ADMS will be needed (see the pseudo code starting at the line labeled with ). Of course, the
valuesof D and W will be different when compared to the case where i = 1. In particular, unlike
the casefor m = 1, D will not simply increase by A times due to traffic grooming although we will
gill have W = W5 = [247.

Since Algorithm 111 merely groomsthe circles, and does not depend on the traffic pattern or the
way thecirclesare constructed, it isapplicabl e to both unidirectional and bidirectional rings, aswell
as to both uniform traffic and non-uniform traffic. We will present algorithms to construct circles
for bidirectional rings and for non-uniform traffic next.

2.2. Bidirectional rings

In this section, we consider uniform traffic in bidirectional rings (where shortest path routing is
assumed). Based on our previous discussion on unidirectional rings, wewill only consider the case
where h = 1 since the casewhere h > 1 issimilar.

2.2.1. Notraffic grooming (m = 1)

Asfor the case of unidirectional rings, we start by assuming that the traffic from one node to another
requires the full bandwidth of awavelength, and accordingly, m = h = 1, and the total number of
connectionsto be established is N (N — 1). In[2] (which discussed the case where NV isodd only)
and[1,6,9], itisgiven that the minimum number of wavelengthsrequired in abidirectiona ringis:

WLB -

N’1 for odd N
{ (1)

8
227 foreven N

In order to establish these connections using a minimum number of wavel engths, the basic idea
of the scheduling algorithms proposed in [6] can be used. Specifically, for aneven N, thefollowing
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N/2+i+s

N/2+i N/2+i

(@ 1l<=s<=N/4 (b) s=N/2

Figure 2. Construct circlesin bidirectiona ringswhen N iseven.

Algorithm IV combines 4 clockwise connections having two complementary strides s and % —sto
form afull clockwise circle as shown by the solid linesin Figure 2 (a), and assigns one wavel ength
tothecircle (Figure 2 (b) illustrates the special case where s = ﬁ) The total number of clockwise
circles constructed by Algorithm IV is2 x (| 22| +1) + Z[ 22| (if N =4n) or (| X2 +1) +
N[22 (if N = 4n+2), whichisequal to [ ] (thesameastheml nimum number of wavelengths
needed given by Eq. 1).

Note that, counter-clockwise connections can be established in the same way as shown by the
dashed linesin Figure 2. In general, since uniform traffic can be distributed among the two direc-
tions(i.e. clockwise and counterwise) in asymmetrical way based on shortest-path routing, we will
only focus on those connections (and circles) that are clockwise in the following discussion.

Algorithm I'V: Construct clockwise circlesin bidirectional ringsfor uniform traffic (even N)

fori=0,1, -, [ 22] //s:%
combine (i, %) and (5§ +4,5) inonecircle
fori=0,1, -, [22] Il's =% (thisisaspecial casewhenN_4n)
combine (i, &), (& + i, %), (5 +4, &) and (23X + 4, &) inone circle
fori=0,1,---, & -1
fors=1,2,--- [ 2]
combine (i, s), (i + s, 5 —s), (§ +4,s) and (§ +i+ 5,5 — s) inonecircle

Similarly, when N is odd, the following Algorithm V combines either 3 or 4 connections to
form afull circle as shown in Figure 3, in which the case where s = i is shown in solid lines and
the case where s = ¢ — 1 isshown in dashed lines. The total number of circles constructed in
Algorithm V is Y M (i + 1) = N28*1 (see [9]), which is aso equal to the minimum number of

10



wavel engths needed. In addition, in both Algorithms1V and V, YX2~Y connections are established

2
on each directionin full circles, and thus the number of SSADMs used (D) is minimized to X1

given that there is no need for traffic grooming.

Algorithm V: Construct clockwise circlesin bidirectional ringsfor uniform traffic (odd N)

ny = %:

no=n;+1= %;

fori =0,1,2,---,n; — 1{ Il the starting node of each circle
fors=d,6—1,---,1{ /I the value of one stride

congtruct acircleinvolving nodesi,i +ny; — s,no +iandi — s,i.e.
containing connections (i,n; — s), (n1 +i —s,s + 1), (ny +4,n; —s) and (i — s, s)
}
I/ the following isfor a specia case where s = 0
congtruct acircleinvolving nodes i, i + ny and no + i, i.e.
containing connections (i,n1), (n1 +¢,1) and (ng + i,m1)

n+2
n, n, n, n,
or or
nitl n+l

(a) i=0,s=0 (b) i=1,s1 (c) s=iand s=i-1

Figure 3. Constructing circles to establish all clockwise connectionswhen N is odd.

Note that, when m = 1, a bidirectional SONET/WDM ring employing our proposed traffic
grooming and wavelength assignment algorithms behaves as a fully-optical ring, which is consid-
ered in [4]. In other words, when there is no traffic grooming, our resultson W and D agree with
those obtained for the fully-optical ring in [4]. However, in the case to be discussed next, where
m > 1 and h < m (i.e. when the traffic from one node to another requires a fraction of the band-
width of one wavelength), the bidirectional SONET/WDM ring will require fewer D and W than
the fully-optical ring (and other designs considered in [4]).
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2.2.2. With traffic grooming (m > 1)

Similar to the case for unidirectional rings, after the circles are constructed using Algorithm IV or
V in bidirectional rings, Algorithm 111 can be used to groom up to m circles onto every wavelength
(according to the solution {m,, } obtained using either Method A or Method B as described in Sec-
tion 2.1.2).

However, since Algorithm 1V or V isnow used to construct circlesinstead of Algorithm |, there
are usually more end nodes involved in acircle. Accordingly, d(m,,) needsto be calculated differ-
ently. Specifically, the maximum number of circlesinvolving » nodesis now given by:

2’1 for odd n
Cmy=1{ & 007 @
(%] forevenn

and thus, the following condition will be used to determine d(m,,) for agiven m,,:

Old(my) — 1] < my < Cld(my)] €)

Notethat, ad(m,,) determined here can be less than the actual number of end nodes (SSADMs)
required on each wavelength. Thisis because, for example, when N is even, the number of end
nodes (or connections) involvedin each circle constructed using Algorithm 1V iseither 2 or 4. If two
circlesaregroomedon \,, (i.e. m,, = 2), wehaved(m,, = 2) = 4 according to the above equation,
which is applicable if each of the two circles contains two nodes. However, when each of the two
circles contains four nodes, the minimal number of SADMs needed could be 8. Accordingly, the
lower bound on the required number of SADMs determined by Algorithm Il based on d(m,,)’s
will be loose for bidirectional rings.

3. NON-UNIFORM TRAFFIC

In non-uniformtraffic, the bandwidth required by thetraffic from node i to another node s hopsaway
may vary with: and s. Let H' bethe greatest common divider (GCD) of all non-zero H; ;. Asinthe
case for uniform traffic, we may bundle GC'D(H', M) connectionsinto one super-connection, and
thus treat the case as having m = % and h; ; = m is the number of connections
to be established from node 7 to another node s hops away. In this section, we propose a heuristic
agorithm to construct circlesfor agiven traffic matrix {A; , }, which can then be groomed by using

Algorithm [11 described earlier.

Recall from the algorithms described so far for uniform traffic that the following rules seem to
be useful in minimizing the number of wavelengths and the number of SADMs: in unidirectional

12



rings, if two connections with complementary strides exist, they will be combined in one circle;
Similarly, in bidirectional rings, up to four connections with complementary strides will be com-
binedin onecircle. For non-uniformtraffic, itisnatural tofirst follow these ruleswhen constructing
circles. Denote by (', the maximum number of circles constructed in thisway. Then, we can apply
the following heuristic algorithm, Algorithm V1, to continue the construction of circles until all
connections have been included. This algorithm can be applied to both unidirectional and bidirec-
tional rings. Notethat the circles constructed using Algorithm VI may not befull. Inapartia circle,
there are one or more “ gaps’ which can not befit in by any remaining connection to be established,
resulting in some bandwidth waste.

In Algorithm V1, we construct circles using the connections having the longest stride in the traf-
ficmatrix {h; ;} first. Thisisbecause connectionswith shorter stridesare morelikely to beabletofit
into the gaps generated by the connectionswith longer strides. Intuitively, afewer gaps help reduce
not only the number of wavel engths (due to a better bandwidth utilization), but also the number of
S-ADMs. Accordingly, the algorithm attempts to fit each connection into existing circles without
generating an additional gap. If the connection being considered share at |east one end node (source
or destination) with other connections already contained in the circle, it will be added into the cir-
cle (unless there is no room, or in other words, the new connection will overlap with an existing
one). If fitting a connection into any existing circle will generate an additional gap, we will call
this connection a*gap maker”, and put it into a GapMaker list which isinitially empty. After al
the connections in the traffic matrix has been either included in some existing circles, or put into
the GapM aker list, we start to process the GapMaker list by using its connections to construct (ad-
ditional) circles. Notethat, it ispossiblethat some connections from the GapMaker list will now fit
into some existing circles without creating an additional gap. For example, as shown in Figure 4,
connections ¢ and b are “gap makers’, and will initially be put into the GapMaker list. If later on,
connection z is added on circle 1 because it is not a “gap maker”, connection a can be added to
circle 1 aswell and removed from the GapM aker list.

o--%-0

LO o—2 o o ) cirdlel

€ o o b o O—) circle2
Minimizing W

LO O—) circle1

0 O—) circle2

o2 o—b o circle3

Minimizing D

Figure4. Anillustration of the two optionsin Algorithm IV.
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Algorithm VI: Construct circles for non-uniform traffic

Cy = 1; /] Cy isthe number of circles constructed by this algorithm so far
sg = N — 1 for unidirectiona ringsor sy = % for bidirectional rings; //the maximum stride
for s = sg,s0 — 1,--+,1 { // consider connections with longer strides first
fori =0,1,---,N —1{// onenode at atime
while (h; s > 0){
forc=1,2,---,Cy { Il try al circles if necessary
try to fit connection (i, s) into circle ¢ without creating an additional gap;
if (succeed) {
hi,s = hi,s -1
break from the inner “for” loop; // no need to try the remaining circles
} /1 elsefail and then try the next circle

}
if (fail because (i, s) would overlap with some connections in any existing circle) {
do {
generate anew circlefor (i,s); h;s = his—1; Cy = Cy +1,
} while (h; ¢ > 0);
}
if (fail because fitting (7, s) in any existing circle would generate an additiona gap) {
do {
put (¢, s) into the GapMaker list (to be processed later); h; s = h;s — 1,
} while (h; ¢ > 0);
}

}
}
} 1 al h; s have been included either in the circles or in the GapMaker list

if (the objective isto minimize the number of wavelengths) {
for each connection in the GapMaker list {
try to fit into existing circles;
if (fail) { // because it overlaps with existing connections
generate anew circle for the connection; Cy = Cs + 1;
}
remove the connection from the GapM aker list;
}
}

if (the objective isto minimize the number of SADMS) {
for each connection in the GapMaker list {
try to fit into existing circles without creating an additional gap;
if (fail) { // because it either overlaps with existing connections
// or it creates an additional gap
generate anew circle for the connection; Cy = Cs + 1;

}

remove the connection from the GapM aker list;
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If there are still some connections left in the GapMaker list that cannot be fit into any existing
circle without creating an additional gap, we have two options. one is to minimize the number of
wavelengths (/) used, and the other is to minimize the number of SADMs (D) used. If W isto
be minimized, each connection will be fit into an existing circle as long as there is enough band-
width, even though an additional gap may be created. In other words, a new circle is created for
aconnection only if there is no room for the connection in any existing circle. On the other hand,
if D isto be minimized, anew circle will be generated for a connection that cannot be fit into any
existing circle without creating an additional gap. Figure 4 illustrates the difference between the
two options, assuming that connection = does not exist. As can be seen, the first option resultsin
one fewer wavelengths (2) and one more SSADMs (8) than the second option (when there is no
grooming).

Thetotal number of circlesconstructedisC' = C;+C,. Asmentioned earlier, Algorithm 11 can
then be used to groomtheseccirclesonto IV = [ £ wavelengths. To see how effective our approach
isinminimizing W, wemay, for agiven traffic matrix { h; , }, determinethetraffic load on each and

every link. Let the maximum traffic load over al linksbe R,,,,, wecanthenuse W; 5 = R"J__z),” asa

lower bound on the number of wavelengths required. Note that, for unidirectional rings, one may

N-1 N-1

calculate another lower bound on T as 2i=s %5‘

hi,s's

(for bidirectional rings, asimilar formula
may be used). However, thislower bound is not astight asthe former and hencewill not beused. In
addition, with non-uniform traffic, we will not compare the number of SSADMs used by Algorithm
[11 with any lower bound on D because even alower bound such as 2 - W, g would be too loose to
be meaningful, especially when m > 1. To obtain atight lower bound on D in such a case would
require exhaustive search for all possible combinations.

4. NUMERICAL RESULTS

In thissection, we present numerical resultson W, D, and their corresponding lower bounds (when-
ever applicable). For non-uniform traffic requiring the use of Algorithm V1 to construct circles, the
results reported here are obtained with the objective to minimize W unless otherwise specified.

By default, we assume 4 < N < 20. Figure 5 shows the number of wavelengths required
and the corresponding lower bound for both uniform traffic and non-uniform traffic when thereis
no traffic grooming (m = 1). For uniform traffic, only the case where h = 1 is shown since if
h > 1, one may simplify multiply both W and W,z by h, as discussed earlier. For non-uniform
traffic, we assumethat h, , isevenly distributed between 0 and h,,,,, = max{h; ,} with an average
of h' = hmT Two cases, in which b’ = 2.5 and 5, respectively, are shown in Figure 5. As can
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be seen, W, 5 isachieved for uniform traffic, and closely approached for non-uniform traffic. Note
that without traffic grooming, W = C'. Hence, evenwith traffic grooming (i.e. m > 1), both W and
W5 will be % of their values shown in the figure according to previous discussion on Algorithm
[11, implying that they will be identical or at least very close to each other.
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Figure 5. Wavelength requirement in SONET/WDM rings with no traffic grooming.
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Figure 6. The number of SADMs needed in SONET/WDM ringsfor uniform traffic when ~ = 1.

Figure 6 compares the number of SADMSs used by Algorithm I11 with the D; 5 obtained by
Algorithm 11 for uniform traffic with and without traffic grooming (i.e. m = 1,2.4,8 and 16)
and h = 1. Recall that we have two different methods to determine the number of circles to be
groomed onto each circle, but since our results show that these two methods give almost the same
performance, we will not distinguish themin thissection. Asshowninthefigure, D = D; 5z when
m = 1,and D iscloseto D; z whenm < 8 inunidirectional rings. Themainreasonfor D > D, p
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when m > 1 isthat Dz obtained using Algorithm Il may not be tight (i.e. achievable) in some
cases, especidly in bidirectional ringswith even N, as discussed in Section 2.2.2.

1200 T T T T T T T 600
1100 + D (m = 1, non-uniform, h'=2.5) * el 550 + D (m = 1, non-uniform, h'=2.5)
D (m=1, uniform,h=3) —— D (m=1, uniform,h=3) ——
1000 + D (m=4, non-uniform, ' =25)  x b 500 |- D (m = 4, non-uniform, h'=2.5)
900 | D (m =4, uniform, h=3) - i ] a50 L D (m =4, uniform, h=3)

Number of SADMs (D)
Number of SADMs (D)
w
8

L L L L L L L SR L L L L L L
4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20

Number of Nodes (N) Number of Nodes (N)
(a) Unidirectional Ring (b) Bidirectional Ring

Figure 7. Number of SADMs needed in SONET/WDM rings for uniform traffic (h = 3) and for
non-uniform traffic (b’ = 2.5).

Figure 7 shows the number of S ADMs needed when » = 3 for uniform traffic and when
h' = 2.5 for non-uniform traffic. As can be seen, for uniform traffic, as m increases from 1 to
4, D isreduced by about 60% when h = 3 (compared to about 50% when h» = 1 in Figure 6) for
unidirectional as well as bidirectiona rings. In addition, when m = 1, the number of SADMs
needed when h = 3 isexactly 3 timesof that needed when h = 1. However, if m = 4, the number
of SADMs needed when i = 3 is only about 2 times of that needed when i = 1. Thisis because
with 3 copiesfor each connection, the traffic can be groomed more efficiently. 1n addition, one can
see from the results that, for non-uniform traffic with 4’ = 2.5, the number of SADMsrequired is
close to that for uniform traffic when h = 3 (thisis because non-uniform traffic usually cannot be
groomed as efficiently as uniform traffic). Note that if we compare the resultsin Figure 7 (b) with
those in Figure 10 (b) where ' = 5 (to be discussed later), we may conclude that for non-uniform
traffic, D asoincreaseslinearly with ' when m = 1, but sub-linearly when m > 1.

Figures 8 and 9 show the saving percentage (.S) on the number of SSADMs dueto the proposed
traffic grooming algorithms, which is calculated as S = *3752=2, for uniform (where i, = 1) and
non-uniformtraffic (where h' = 2.5), respectively. Notethat when m increases, the saving percent-
age decreases for afixed N because when more circles need to be groomed onto each wavelength,
more SSADMs are involved. As NN increases, the saving percentage increases and then saturates
gradually. The saving percentage can be as high as 90% in unidirectional ringsand 81% in bidirec-

tiona ringswhenm = 1 and N = 20. Evenwhen m = 16, the saving percentageis still significant
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when N = 20 (e.g. about 60% for uniform traffic and 67% for non-uniform traffic in unidirectional
rings. The respective percentages in bidirectional rings are 30% and 40%).

Saving Percentagein SADMs (S)

Saving Percentagein SADMs (S)

S(m=38)
S(m=16)

"
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(a) Unidirectional Ring
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Figure 8. Saving percentage in SADMs for uniform traffic (b = 1).
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Figure 9. Saving percentage in SADMs for non-uniform traffic (b’ = 2.5).

Recall that when using Algorithm VI to construct circles for non-uniform traffic, we can min-
imize either W or D. The values of W and D obtained by using these two options, respectively,
are shown in Figure 10 for bidirectional rings (the case for unidirectional ringsis similar). Ascan
be seen, when the first option (minimizing 1) is adopted, the resulting 1V is nearly the same as
W15, and when the second option (minimizing D) is adopted, a few more wavelengths than W, 5
are usually required (see Figure 10 (a)). On the other hand, the two options result in aimost the
same D (see Figure 10 (b)). Thisis because when the objective isto minimize W, the number of

circles constructed, C, will be near minimum, which in turn resultsin anear minimum W = [¢]
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Figure 10. The effect of minimizing W and D for non-uniform traffic in bidirectional rings (A’ =
2.5).

and helpsreduce D used by Algorithm 111 aswell. However, when the objectiveisto minimize D,
Algorithm V1 only triesto minimizethetotal number of SADMs (or end nodes) involvedin all the
circles, which does not necessarily guarantee that D used by Algorithm [11 will be minimized.

5. CONCLUSION

In this paper, we have proposed a suite of six algorithms that are useful for traffic grooming and
wavel ength assignment under uniform and non-uniform traffic in both unidirectional and bidirec-
tional SONET/WDM rings. Algorithms |1, 1V and V are used to construct a minimal number of
circlesfor uniform traffic in unidirectional rings, bidirectional ringswith even /V, and bidirectional
ringswithodd N, respectively. Algorithm V1 isused to construct anear minimum number of circles
for non-uniform traffic. After the circles are constructed, Algorithm I11 uses a heuristic to groom
up to m circles onto each wavelength, where m isthe grooming factor. The number of wavelengths
needed isminimum if thetraffic isuniform and is near minimum otherwise. All the algorithms pro-
posed, except Algorithm Il which is used to determine alower bound on the number of SADMs
needed for uniform traffic, have a worse-case computational time complexity that is polynomial
of N. The results obtained show that the proposed algorithms perform very well in reducing the
number of SSADMs (as well as minimizing the number of wavelengths).
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