
5294 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 20, OCTOBER 15, 2014

MIMO Multiway Relaying With Pairwise Data
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Abstract—In this paper, we study achievable degrees of
freedom (DoF) of a multiple-input multiple-output (MIMO)
multiway relay channel (mRC) where users, each equipped
with antennas, exchange messages in a pairwise manner via
a common -antenna relay node. A novel and systematic way of
joint beamforming design at the users and at the relay is proposed
to align signals for efficient implementation of physical-layer
network coding (PNC). It is shown that, when the user number

, the proposed beamforming design can achieve the DoF
capacity of the considered mRC for any setups. For
the scenarios with , we show that the proposed signaling
scheme can be improved by disabling a portion of relay antennas
so as to align signals more efficiently. Our analysis reveals that the
obtained achievable DoF is always piecewise linear, and is bounded
either by the number of user antennas or by the number of
relay antennas . Further, we show that the DoF capacity can be
achieved for and ,
which provides a broader range of the DoF capacity than the
existing results. Asymptotic DoF as is also derived based
on the proposed signaling scheme.

Index Terms—Multiple-input multiple-output (MIMO), mul-
tiway relay channel (mRC), physical-layer network coding (PNC),
signal space alignment.

I. INTRODUCTION

R ECENTLY, an exponential increase in the demands of
wireless service has imposed a significant challenge on

the design of wireless networks. Advanced techniques, such as
physical-layer network coding (PNC), has been developed to
achieve high spectrum efficiency [1], [2]. The simplest model
for PNC is the two-way relay channel (TWRC) where two users
exchange messages with the help of a relay node. With the
well-known two-phase PNC protocol, the relay node receives
a combination of the signals transmitted from the two users in
the first phase, and then broadcasts a network-coded message in
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the second phase. The desired message is then extracted at each
user end by exploiting the knowledge of the self-message. As
compared to conventional one-way relaying where four phases
are required in one round of information exchange, PNC poten-
tially achieves 100% improvement in spectrum efficiency over
TWRCs.
Abundant progresses have been made on the PNC design

for TWRCs; see [3]–[7] and the references therein. In partic-
ular, it was shown in [4] that, with nested lattice coding, the
capacity of the TWRC can be achieved within 1/2 bit. Later,
the authors in [5]–[7] introduced the multiple-input multiple-
output (MIMO) technique into TWRCs. It was revealed that the
space-division based network coding scheme proposed in [7]
achieves the asymptotic capacity of the MIMO TRWC at high
signal-to-noise ratio (SNR) within bit per relay spatial
dimension for an arbitrary antenna configuration.
A natural generalization of the TWRC is the multiway relay

channel (mRC), where multiple users exchange messages with
the help of a single relay. Several mRC models have been
studied in the literature recently. Specifically, the authors in
[10] studied a cellular two-way relaying model where a base
station exchanges private messages with multiple mobile users
via a relay node; the authors in [8], [9] investigated mRCs in
which the users are grouped into pairs and the two users in each
pair exchange information with each other; more generally,
the authors in [11] studied clustered mRCs, in which the users
in the network are grouped into clusters and each user in a
cluster wants to exchange information with the other users
in the same cluster. Approximate capacities of these mRC
models were studied in [11] and [12], while the exact capacity
characterizations still remain open. Also, these initial works on
mRC are limited to the single-antenna setup, i.e., each node in
the network is equipped with one antenna.
The MIMO technique has been introduced into mRCs to

allow spatial multiplexing. In a MIMO mRC, as each user in
general transmits multiple spatial streams, a new challenge
to be addressed is to mitigate the inter-stream interference at
the relay and at the user ends. Degrees of freedom (DoF) is a
critical metric in characterizing the fundamental capacity of a
wireless network [20], [21]. The DoF of the MIMO mRC has
been previously studied in [13]–[19]. For example, the authors
in [14] investigated the DoF capacity of the MIMO Y channel
(a special case of the MIMOmRC with three users) and showed
that the DoF capacity can be achieved when , where
denotes the number of antennas at each user, and denotes the
number of antennas at the relay. The authors in [16] general-
ized the results in [14] by considering a three-user asymmetric
MIMO Y channel with different numbers of antennas at the
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users, and proved that the DoF capacity can be achieved for
arbitrary antenna setups. Recently, as parallel to the work in
this paper, the work in [17] established the DoF capacity of the
four-user symmetric MIMO Y channel for arbitrary antenna
setups. Further, the authors in [18], [19] studied more general
data exchange models in which the users in the network are
grouped into clusters, and each user in a cluster exchanges
information only with the other users in the same cluster. In
particular, the authors in [18] derived sufficient conditions on
the antenna configuration to achieve the DoF capacity of a
clustered mRC with pairwise data exchange, in which each
user in a cluster sends a different message to each of the other
users in the same cluster. Note that the data exchange models
considered in [14] and [15] can be regarded as the one-cluster
case of the model studied in [18]. Moreover, the author in
[19] derived an achievable DoF for a clustered MIMO mRC
with full data exchange, i.e., each user in a cluster delivers a
common message to all the other users in the same cluster.
In this work, we study a symmetric MIMO mRC with pair-

wise data exchange, and derive an achievable DoF for an arbi-
trary setup of the antenna numbers and the user number
. Roughly speaking, the DoF of a network is the number of

independent spatial streams that can be supported by the net-
work. In the MIMO mRC of concern, multiple users are simul-
taneously served by a common relay. To ensure that multiple
spatial streams are still separable at every user end, the number
of relay antennas is usually the bottleneck of the network to
achieve a higher DoF. Therefore, the challenge is how to align
the user and relay signals to efficiently utilize the relay’s signal
space. To this end, we propose a novel and systematic beam-
forming design to achieve efficient signal alignment. Specifi-
cally, we refer to a bunch of spatial streams as a unit, in which
each pair of users who want to exchange information contribute
two spatial streams, one from each user; each spatial stream im-
pinges upon (or is emitted from) the relay’s antenna array at a
certain direction, and these directions form a spatial structure,
referred to as a pattern. The dimension of the space spanned by
the spatial streams in a pattern gives a metric to evaluate the ef-
ficiency of this pattern. Then, the signal alignment problem is
to construct units with the most efficient patterns to occupy the
overall relay’s signal space. An achievable DoF can be obtained
by counting the number of units that can be constructed for any
given antenna setup of .
The main contributions of this work are summarized as fol-

lows:
• We show that, for the consideredMIMOmRCwith ,
the proposed signal alignment scheme achieves the DoF
capacity for an arbitrary setup, which coincides
with the DoF result of [16], and improves the existing DoF
capacity result in [14] by including .

• For the case of , we derive the DoF capacity

of the MIMO mRC for and

. This result is stronger than
the previous result obtained in [18], where the achiev-
ability of the DoF capacity is limited in the ranges of

and .
• For , we also derive an achievable DoF for an
arbitrary setup of antenna numbers satisfying

. Our analysis reveals that
the achievable DoF is piecewise linear and is bounded
either by the number of antennas at each user or by the
number of antennas at the relay. This piecewise linearity
is similar to the DoF capacity obtained for the MIMO
interference channel in [21].

• Finally, we derive an asymptotic achievable DoF when
tends to infinity. We show that the derived achievable total

DoF is upper bounded by for arbitrary
values of and .

The rest of the paper is organized as follows. In Section II,
we present the system model. In Section III, a DoF upper bound
is introduced as the benchmark of the system design. The DoF
capacity of the considered MIMO mRC with three users is pre-
sented in Section IV. In Section V, we generalize the results to
the case of an arbitrary number of users. In Section VI, an im-
proved DoF result is presented by disabling a portion of relay
antennas. Finally, we conclude the paper in Section VII.
Notation: Scalars, vectors, and matrices are denoted by

lowercase regular letters, lowercase bold letters, and uppercase
bold letters, respectively. For a matrix , and denote
the transpose and the Hermitian transpose of , respectively;

and stand for the trace and the inverse of ,
respectively; denotes a block-diagonal
matrix with the -th diagonal block specified by where is
an integer; and denote the column space and
the nullspace of , respectively; denotes an identity
matrix; denotes the dimension of a space ; and

denote the intersection and the direct sum of two spaces
and , respectively; and denote the

dimensional real space and complex space, respectively;
denotes the logarithm with base 2; denotes ;

denotes the distribution of a circularly symmetric
complex Gaussian random variable with mean and variance
; denotes the binomial coefficient indexed

by and .

II. SYSTEM MODEL

A. Channel Model

Consider a discrete memoryless symmetric MIMO mRC
, where users, each equipped with antennas,

exchange messages in a pairwise manner with the help of a
common -antenna relay node, as illustrated in Fig. 1. Full-du-
plex communication is assumed, i.e., all the nodes transmit and
receive signal simultaneously.1 The direct links between users
are ignored due to physical impairments such as shadowing
and path loss of wireless fading channels.
Each round of information exchange is implemented in two

phases with equal time duration . In the first phase (termed
the uplink phase), all the users simultaneously transmit signals
to the relay node. The received signal at the relay node can be
written as

(1)

1All the DoF results obtained in this paper directly hold for the half-duplex
case by including a multiplicative factor of 1/2.
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Fig. 1. An illustration of the MIMO mRC with users operating in pairwise
exchange.

where denotes the channel matrix from user to
the relay; is the transmit signal from user ; simi-
larly, denotes the received signal at the relay node;

is the additive white Gaussian noise (AWGN) ma-
trix at the relay node and the elements are independently drawn
from the distribution of . The transmit signal at
user satisfies the power constraint of

where is themaximum transmission power allowed at user .
In the second phase (termed the downlink phase), the relay

sends the processed signals to all user ends. The received signal
at user is denoted by

(2)

where denotes the channel matrix from the relay
to user ; is the transmit signal at the relay node;

is the AWGN noise matrix at user with the
elements independently drawn from . The transmit
signal satisfies the power constraint of

where is the maximum transmission power allowed at the
relay.
We assume that the elements of the channel matrices and
, , are draw from a continuous distribution, which im-

plies that these channel matrices are of full column or row rank,
whichever is smaller, with probability one. The channel state
information is assumed to be perfectly known at all nodes, fol-
lowing the convention in [13]–[19]. It is worth noting that the
considered MIMO mRC reduces to the MIMO two-way relay
channel (TWRC) when , and to the MIMO Y channel

when . As the DoF capacity of the MIMO TWRC is well
understood, we henceforth focus on the case of .

B. Linear Signaling Scheme

In the considered mRC, each user , , in-
tends to send a private message to user ,

. The message is then encoded as
, where is

an encoding function; denotes the spatial
stream transmitted in unit ; is the number of the units which
can be supported by the network. The goal of this work is to
analyze the achievable DoF of the considered MIMO mRC.
Linear processing is assumed to be applied at the transmitter,
relay, and receiver sides. The transmit signal at user is denoted
as

where denotes the user index; denotes the unit index;

denotes the beamforming
matrix applied at user for the -th unit;

denotes the transmit spatial streams over
channel uses; corresponds to the beamformer of

spatial stream . Note that the maximum number of
spatial streams in a unit is . But this number
can be reduced to , where is the
number of active users in the unit.
During the uplink, the equivalent channel matrix from user

to the relay can be expressed by

(3)
Note that the equivalent channel vectors of unit , i.e.,

, form a spatial structure, referred
to as a pattern.
The transmit signal at the relay node can be written as

(4)

where denotes the linear beamforming matrix used at the
relay. Similar to the uplink, by using linear receive matrix

, the equivalent channel matrix in the downlink is
given by

(5)
Later, we will show that due to symmetry between the uplink
and the downlink, the uplink design straightforwardly carries
over to the downlink. Thus, we mostly focus on the uplink de-
sign in this paper.
In what follows, we will see that by dividing the spatial

streams into a number of units, the signal alignment can be
realized in a unit-by-unit fashion, which facilitates the system
design.
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C. Degrees of Freedom

Let be the information rate carried in , and
be the estimate of at user . We say that

user achieves a sum rate of , if

tends to zero as .
We assume a symmetric mRC with

and . Denote
. Let , , be an achievable rate of

user . The total DoF of the mRC is defined as

Also, we define the DoF per user and the DoF per relay dimen-
sion respectively as

(6)

III. A DOF OUTER BOUND

An outer bound on the total DoF of the MIMO mRC is given
in [18] as

(7a)

or equivalently

(7b)

The above outer bound can be intuitively explained as follows.
On one hand, the total number of independent spatial data
streams supported by the MIMO mRC cannot exceed , as
the relay’s signal space has dimensions and thus the relay
can only decode and forward network-coded messages. On
the other hand, the number of independent spatial data streams
transmitted or received by each user cannot exceed , as each
user only has antennas. The outer bound in (7) will be used
as a benchmark in the following system design.

IV. MIMO MRC WITH

In this section, we focus the DoF of the MIMO mRC with
. We propose a signal alignment scheme to achieve the

DoF capacity of the MIMO mRC with for an arbitrary
antenna setup of .

A. Preliminaries

We give some intuitions of the signal alignment by consid-
ering only one unit. For brevity, we omit the unit index in
this subsection. Recall that and are exchanged in
a pairwise manner for any . For convenience, we refer
to and as the signal pair . Denote by
and the equivalent channels in the uplink and the down-
link, respectively. The system model in (1) and (2) reduces to

(8a)

(8b)

where . The principle of PNC is ap-
plied in relay decoding. Specifically, for each user pair ,
the relay decodes a linear mixture of and as fol-
lows. Denote by the matrix formed by all
the uplink channel vectors except and . Then,
define the projection matrix of pair as

. For each pair
, the relay projects the received signal vector onto the

nullspace of , yielding

(9)

We now move to the relay-to-user phase modeled in
(8b). Similarly to , we denote
as the matrix formed by all the downlink channel vectors
except and . The projection matrix of pair

in the downlink is then defined as

. The relay
sends out with defined in (4) given by

(10)

where is a scaling factor to meet the relay’s power constraint.
In (10), the index starts from since a project matrix

is used to extract the signals and simulta-
neously. The received signal at user is given by

(11)

We note that , , , and are inde-
pendent of each other. Therefore, the equivalent user-to-user
channel coefficient is non-zero
with probability one, provided that and are of at
least rank one. Then, each user receives one linear combina-
tion of the two signals in pair . By subtracting the self-in-
terference, each user can decode the desired messages from the
other two users, which achieves a per-user DoF of ,
or equivalently, a total DoF of can be achieved. From
(11), we see that the symmetry exists between the design of the
uplink and the design of the downlink. Given the design of the
beamformer and the projection matrix , the re-
ceive vector and the projection matrix in the
downlink can be designed similarly, since can
be simply regarded as the transpose of . Therefore,
it suffices to focus on design of the uplink in what follows.
We now describe four patterns involved (with a different
) in achieving the DoF capacity of the MIMO mRC with

. Denote . Let



5298 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 20, OCTOBER 15, 2014

Fig. 2. A geometric illustration of Pattens 1.1 to 1.4. (a) Pattern 1.1 with dim-6
in . (b) Pattern 1.2 with dim-5 in , where is
parallel to . (c) Pattern 1.3 with dim-4 in , where three
planes , and go
through a common line. (d) Patter 1.4 with dim-3 in , where is parallel
to , is parallel to , and is parallel to .

be the vector set obtained by excluding
and from .

1) Pattern 1.1: spans a subspace with dimension 6 (dim-6)
in .

2) Pattern 1.2: spans a subspace with dim-5 in ; for
any pair , spans a subspace of
dim-4.

3) Pattern 1.3: spans a subspace with dim-4 in ; the
intersection of , ,
and is of dim-1, i.e., these three planes
go through a common line, so that spans a subspace of
dim-4.

4) Pattern 1.4: spans a subspace with dim-3 in ; for any
pair , and span a subspace of dim-1.

The above four patterns are geometrically illustrated in
Fig. 2. It can be verified that the projection matrices ,

, for Patterns 1.1–1.4 are of at least rank one for
sure. For example, for Pattern 1.1 is of at least rank two
for sure. Hence the proposed signaling scheme achieves a total
DoF of 6. However, a different pattern spans a subspace with a
different number of dimensions, which yields a different
as shown in Table I. In general, a pattern with a higher is
more efficient in utilizing the relay’s signal space, and hence is
more desirable in the signal alignment design. The requirement
on to realize each specific pattern is given in the last column
of Table I. Note that these requirements will be discussed in
detail in Section IV-C. It is also worth noting that Pattern 1.2
and Pattern 1.3 have the same requirement on , but Pattern
1.3 achieves a higher than Pattern 1.2. Thus, Pattern 1.2
is ruled out by Pattern 1.3 in the proposed signal alignment
scheme.

TABLE I
PATTERNS FOR THE MIMO mRC WITH

Fig. 3. The DoF capacity for the MIMOmRC with against the antenna
ratio .

B. Main Result

We now consider the general case that each user transmits
multiple spatial data streams over a MIMO mRC, i.e., multiple
units co-exist in the relay’s signal space with each unit con-
sisting of spatial streams. Our goal is to construct
units with the most efficient patterns to occupy the relay’s signal
space. The main result is summarized in the following theorem.
Theorem 1: For the MIMO mRC with ,

the DoF capacity per user is given by

.
(12)

The per-user DoF capacity with respect to is shown in
Fig. 3. We see that the per-user DoF of is achieved
for , whichmeans that the DoF is bounded by the number
of antennas at the user ends. On the other hand, when ,
the DoF is bounded by the number of relay antennas. Note that
the DoF capacity of the three-user MIMO Y channel has been
previously derived in [16]. However, we emphasize that the pro-
posed signal alignment technique in our proof (cf., (14)–(16)
and the discussions therein) is very different from the one in
[16]. Also, our proposed technique can be extended for the case
of an arbitrary , which is the major contribution of this paper.
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C. Proof of Theorem 1

We first note that in (12) coincides with the DoF outer
bound in (7) with . Thus, to prove Theorem 1, it suffices
to show the achievability of (12).We startwith a brief description
of the overall transceiver design. We need to jointly design the
transmit beamformers , the receive vectors ,

and the relay projection matrices and to ef-
ficiently utilize the relay’s signal space. As different from (10),
here the relay’s projection matrices and null the
interferencenotonly fromtheotherpairs inunit but also fromthe
other units. Taking as an example, we see that it projects
a vector into the null space of

. Hence the relay beamforming
matrix given in (4) is expressed as

(13)

where denotes the number of the units. Based on that, in
each unit, each user achieves a DoF of two, provided that the
projection matrices and are at least of rank

one. Note that with the transmit beamformer and the re-

ceive vector , the equivalent channel regarding the spatial

stream in the uplink is denoted as ,
and the equivalent channel vector regarding the spatial stream

in the downlink is denoted by . Next
we derive the DoF given in Theorem 1 by dividing the overall
range of into multiple intervals.
1) Case of : In this case, the number of relay an-

tennas is no less than the number of antennas of all the users,
i.e., isofdim- withprobabilityone.This im-
plies that the relay’s signal space has enough dimensions to sup-
port full multiplexing at the user end, i.e., each user transmits
spatial streams. units with Pattern 1.1 (as shown in Fig. 2(a))
can be constructed. The geometric structure in Fig. 2(a) indicates
that each spatial stream in a unit occupies an independent direc-
tion in the relay’s signal space. Then, in total the 6 spatial streams
in a unit span a subspace of dim-6. As the directions of signals
withPattern1.1are randomlydrawnfromtherelay’ssignalspace,
the independenceofdifferent units canbeguaranteedwithproba-
bility one. Clearly, the projectionmatrix is of at least rank
one. Thus, each unit achieves a DoF of 6. Considering all the
units, we obtain that the achievable per-user DoF is .2

2) Case of : From Table I, this case corresponds
to Patterns 1.2 and 1.3. As Pattern 1.3 is more efficient than Pat-
tern 1.23 (i.e., the former achieves a higher than the latter),

2A similar proof of for can be found in [18].
3Pattern 1.2 can be constructed by designing the transmit beamforming vec-

tors in a unit as

or equivalently

which implies that the direction of is parallel to the
direction of following Pattern 1.2 in Fig. 2(b). Thus,
the 6 spatial streams in a unit span a subspace of dim-5.

we focus on the construction of units following Pattern 1.3. De-
note the intersection of and by .
The dimension of is .We choose two vectors

and such that and are two linearly
independent vectors in . By definition, both and

belong to .
Thus, there uniquely exist and
satisfying

(14a)

(14b)

Let and . Together
with (14), we obtain

(15a)

(15b)

Subtracting (15b) by (15a), we further obtain

(15c)

We now show that three signal direction pairs
, ,

form a unit with Pattern 1.3 as shown in Fig. 2(c).
From (15a), we see that two signal pairs (1,3) and (2,3) span
a subspace of dim-3, which implies that the plane spanned by
signal pair (1,3) and the plane spanned by signal pair (2,3) go
through a common line. Further, from (15b) and (15c), we see
that the plane spanned by signal pair of (1,2) also goes through
this common line, which implies that
span a subspace of dim-4. Based on that, the dimension
of

is of dim-1. Similarly, from
(15b) and (15c), the intersection of nullspace of any two of
the three pairs in unit and the subspace spanned by signals
in unit is of dim-1. Therefore, a linear combination of the
signals for each signal pair can be decoded at the relay without
interference.
We now describe how to construct multiple linearly

independent units following Pattern 1.3. Let the columns of
be a basis of .

Partition as with

. Then, , , and in (14a),
are respectively chosen as the -th column of

, , and . Further, , , and
in (14b) are respectively chosen as the -th column
of , , and . From (14), we see that

is of dim-4, and

(16)
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by noting and .
Thus, each unit spans a subspace of dim-4. From
Lemma 3 in Appendix A, we see that the dimension of

is .
Therefore, we can construct linearly inde-
pendent units following Pattern 1.3.4

Suppose , or equivalently, . All
units span a subspace of

dimensions. The remaining dimensions are
used to construct units with Pattern 1.1. Thus, the
achievable per-user DoF is given by

(17)

Recall that the directions of signals with Pattern 1.1 are ran-
domly drawn from the relay’s signal space, the independence
of the units with Pattern 1.3 and the units with Pattern 1.1
can be guaranteed with probability one. If the overall relay’s
signal space is occupied by units with Pattern 1.3, the max-
imum achievable per-user DoF is . Therefore, the
achievable per-user DoF is given by .
3) Case of : In this case, is large enough to

construct units with Pattern 1.4. The intersection of
and is of . Let be a vector
in the intersection of and . There exist

satisfying

which implies that the two spatial streams of pair in a unit
span a subspace of dim-1, i.e., two spatial streams of a pair are
aligned in one direction as illustrated in Fig. 2(d). Then, in total
the 6 spatial streams in a unit occupy a subspace of dim-3. In this
way, we can construct units with Pattern 1.4, in total
spanning a subspace of dim- . According to Lemma
4 in Appendix A, we obtain that are linearly inde-
pendent with probability one. Further, due to the randomness of
, the independence of are guaran-

teed with probability one. Again, the remaining
dimensions can be used for constructing units with
Pattern 1.3. Thus an achievable per-user DoF is given by

When the overall relay’s signal space is occupied by the units
with Pattern 1.4, a per-user DoF of is achieved.
Therefore, the maximum achievable per-user DoF is given by

.5

The above obtained DoF coincides with the DoF upper bound
in (7b), and therefore, this achievable DoF is exactly the DoF ca-
pacity of the channel, which concludes the proof of Theorem 1.

4Here we assume that is an integer. Otherwise, we use symbol ex-
tension [20] to ensure that the dimension of the above intersection is dividable
by two; see Appendix B for details. Note that the symbol extension is used to
achieved a fractional DoF throughout of the rest of this paper without further
explicit notification.
5A similar proof of for can be found in [14], [18].

TABLE II
PATTERNS FOR THE MIMO mRC WITH

V. MIMO MRC WITH

In this section, we generalize Theorem 1 to the case of an
arbitrary number of users. We start with the case of .

A. Preliminaries

Again, we start with some intuitions of the signal alignment
by assuming that each user transmits one independent spatial
stream to each of the other users in a unit. The relay’s beam-
forming matrix is still given by (10).
The following patterns are involved in deriving the achiev-

able DoF to be presented later. Also we omit the unit index for
brevity in this subsection. Denote

with , and is
the vector set obtained by excluding and from .
Let and

be the vector set obtained by excluding
and from .

1) Pattern 2.1: spans a subspace with dim-12 in .
2) Pattern 2.2: spans a subspace with dim-9 in ; for any
pair , spans a subspace with
dim-8.

3) Pattern 2.3: For each , spans a subspace of dim-4 in
following Pattern 1.3.

4) Pattern 2.4: spans a subspace with dim-6 in ; for
any pair , and span a subspace with
dim-1.

It can be readily shown that the projection matrix cor-
responding to Patterns 2.1 to 2.4 are of at least rank one with
probability one. Thus, Patterns 2.1, 2.2, and 2.4 achieve a total
DoF of 12, while Pattern 2.3 achieves a total DoF of 24. Cor-
responding antenna requirement for each pattern is given in
Table II, which will be discussed in details in the Section V-C.
It is worth mentioning that for a same requirement on , some
other patterns may possibly be constructed. However, they are
ruled out due to a relatively low , i.e., less efficiency in
utilizing the relay’s signal space. Again, the downlink patterns
are omitted due to the uplink/downlink symmetry.

B. Main Result

Proposition 1: For the MIMOmRC with ,
the per-user DoF capacity of is achieved when
, and the per-user DoF capacity of is achievedwhen
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Fig. 4. An achievable per-user DoF for the MIMO mRC with against
the antenna ratio .

. For , an achievable per-user DoF is given
by

.

The achievable per-user DoF for MIMO mRC with is
illustrated in Fig. 4. We observe that, different from the case
of , the DoF bound given in Section III can only be
achieved in the ranges of and ; for

, there is a certain DoF gap between the achievable
DoF and the capacity outer bound.

C. Proof of Proposition 1

To prove Proposition 1, we consider four cases detailed
below.
1) Case of : In this case, since , the relay’s

signal space has enough dimensions to support full multiplexing
at the users, which implies that each user can transmit inde-
pendent spatial streams, or equivalently, units with Pattern
2.1 can be constructed. Therefore, a per-user DoF of can be
achieved.
2) Case of : As shown in Table II, this case

corresponds to Pattern 2.2. As , the nullspace of
is of dim- . Let the columns

of be a basis of .
Partition as . From
Lemma 3, is
of dim- for sure. Arbitrarily choose three

columns of , denoted by ,

, and

, we have

(18a)

(18b)

(18c)

Let , ,
and . Subtracting (18a) by (18b)
and (18c), we have

(19)

We now show that each unit spans a subspace of dim-9 corre-
sponding to Pattern 2.2. Eqs. (18) and (19) imply that one di-
mension is saved for the subspace spanned by the signals re-
lated to one user. The signal alignment shown in (18) and (19)
is similar to the one used by Pattern 1.3 shown in (15). Then,

span a subspace of dim-9, while

span a subspace of dim-8. Hence, we al-
ways have a nullspace of dim-1 to obtian the linear combina-
tion of the signals in each pair at the relay. In this way, we can
construct units with Pattern 2.2, occupying a subspace
of dim- in the relay’s signal space. The remaining

dimensions of relay’s signal space are used to
construct units with Pattern 2.1. Thus, an achiev-
able per-user DoF is given by

If the overall relay’s signal space is occupied by the units with
Pattern 2.3, the maximum achievable per-user DoF of
is achieved. Therefore, the achievable per-user DoF is given

by for .
3) Case of : In this case, is large enough

to construct the units with Pattern 2.3 shown in Table II. We
form the following four three-user groups: ,

, , and , and align
the signals within each three-user group. For each group, the
signal alignment is conducted as Patten 1.3 for , where 6
spatial streams occupy a relay’s signal subspace of dim-4. Simi-
larly to Pattern 1.3, units with Pattern 2.3 are constructed
and span a subspace of dimensions.
Considering the units from four groups, we have
units which span a subspace of dim- . The inde-
pendence of units can be proven by using the result given in
Lemma 5 in Appendix A. The remaining
dimensions of the relay’s signal space are used to construct
the units with Pattern 2.2, the achievable per-user DoF can be
expressed as

If the overall relay’s signal space is occupied by the units with
Pattern 2.3, we achieve the maximum per-user DoF of

. Hence, the achievable per-user DoF is denoted
by .
4) Case of : In this case, as , the

signals in each pair can be aligned in one direction to occupy
a subspace of dim-1. In total, units with Pattern 2.4
can be constructed, which span a subspace of dim- .
Similarly, the remaining dimensions of the
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relay’s signal space are used to construct the units with Pattern
2.3. The achievable per-user DoF can be expressed as

If the whole relay’s signal space is occupied by the units with
Pattern 2.4, we have the maximum per-user DoF of .
The achievable per-user DoF is given by ,
which is equivalent to

.

This completes the proof of Proposition 1.

D. Achievable DoF for a General

We now generalize the achievable DoF result to an arbitrary
. Denote

(20)

Proposition 2: For the MIMO mRC , the
per-user DoF capacity of is achieved when

and the per-user DoF capacity of

is achieved when .

Further, for the remaining range of , an achievable per-user
DoF is given by

(21)

where .6

Proof: For the case of , it is easy to obtain that
, which is also the DoF capacity. On the other

hand, for , the achievable DoF is equal to the one
achieved at as the number of relay antennas is the
bottleneck. Thus, we only focus on the range of in
the following proof. Moreover, we partition the range of

into intervals of with , and discuss the

signal alignment design for with an arbitrary .

Note that, implies which indicates that
only the spatial streams from users can be aligned together.
Based on that, the most efficient way of signal alignment is to
split all the users into different -user groups and perform signal
alignment in each group. In this way, we have number of
different -user groups. Further, each user is included in
number of different -user groups. Denote the channel matrices
for an arbitrarily chosen -user group as ,
the nullspace of is of dim-
with probability one. Similarly to Pattern 2.3, an efficient way
to align signals in one unit is let the spatial streams related to
one user be aligned together (without loss of generality, we term

6The result given in (21) is applicable for a larger range than

since it includes a union of intervals as

.

this pattern as Pattern ). The beamformers in unit can be
designed to satisfy the conditions given in (22a)–(22c)

(22a)

(22b)
...

(22c)

(22d)

where

.

Subtracting (22a) by equations from (22b) to (22c), we obtain
the equation given in (22d). Based on (22), we see that total
dimensions can be saved for the subspace spanned by the sig-
nals in unit . In total, we can construct units with Pattern
in each group and the achievable per-user DoF in one unit is
. Thus, the achievable per-user DoF is . Note that

the linear independence of the subspaces spanned by the units
with Pattern can be proven using the result in Lemma 5 in
Appendix A. Moreover, for each -user group, one unit spans a
subspace of dimensions. Consid-
ering all number of groups, all the units span a subspace of

dimensions. The remaining dimen-
sions of relay’s signal space are used to construct the units with
Pattern . Then, the achievable per-user DoF can be ex-
pressed as

(23)

When the relay’s signal space is wholly occupied by units with
Pattern , we achieve a maximum achievable per-user DoF of

. Thus, an achievable per-user DoF is obtained as (21).
When , we have only one group, which leads to

and . Note that for , we cannot
do any signal alignment, and defined in (23) should
be equal to and , respectively. Substitute them

into (21), we have , which is the
DoF capacity.
When , we have and

. Substitute , , , and

into (21), we obtain , which
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Fig. 5. A total achievable DoF of the MIMO mRC with against the
antenna ratio .

implies that the per-user DoF capacity of can also

be achieved for .
Similarly, we can also verify that the per-user DoF capacity of
can be achieved in by letting .

Then, we complete the proof Proposition 2.
When the number of the users tends to infinity, the fol-

lowing asymptotic DoF can be obtained from Proposition 2.7

Corollary 1: For the MIMO mRC with
, the total DoF of is achieved when

and is achieved as . For , the
achievable total DoF contains discontinuities at

. Specifically, when , a total DoF of

is achieved.
Remark 1: When , the number of spatial streams

tends infinity. The total achievable DoF is then
bounded by the number of relay antennas , which fur-
ther implies that only a portion of users can realize data
exchange. The overall achievable total DoF with respect
to is illustrated in Fig. 5. From Corollary 1, we see
that for each antenna setup , the total achievable
DoF jumps from to . It is interesting to verify that
the discontinuous points are went
through by the line , while the discontinuous

points are enveloped by the curve

. In this case, the achievable total DoF is nicely
bounded by these two curves as shown in Fig. 5. Therefore,
without loss of generality, we refer to as an upper bound
of the total achievable DoF and refer to as a lower
bound of the total achievable DoF.

VI. IMPROVED ACHIEVABLE DOF USING RELAY
ANTENNA DEACTIVATION

In the previous sections, we have shown that the proposed
beamforming design achieves the DoF capacity for the MIMO
mRC with . However, a certain gap occurs in the range

7When , tends to 0. Thus, we consider the total achievable
DoF here.

of when . In this section,
we show that the obtained achievable DoF in Proposition 2 can
be enhanced by the technique of relay antenna deactivation, i.e.,
to leave a portion of relay antennas disabled in the uplink and
downlink transmissions. We emphasize that the antenna deacti-
vation technique in general cannot improve the DoF of the con-
sidered relay channel. The improvement presented below comes
from the non-optimality of the signal alignment technique uti-
lized in Section V.
To proceed, we first give the following property which can be

directly obtained from Proposition 2.
Property 1: For a MIMO mRC with an antenna configura-

tion of , the obtained achievable DoF in Proposition 2
can always be represented by where is a co-
efficient determined solely by .
Property 1 implies that when the antenna configuration of a

MIMO mRC varies from to where is
an arbitrary coefficient, the obtained achievable DoF by Propo-
sition 2 changes from to . Then, we have
the following lemma.
Lemma 1: For the MIMO mRC , assume

that a certain DoF of is achievable at
where and are certain constant

integers, and is a coefficient. Then
is achievable for any by disabling a fraction
of all the relay antennas.

Proof: Consider an antenna setup of with
. As , we can reduce the number of active relay

antennas to by disabling a fraction of all the
relay antennas.8 Then, we have . Based on Property
1, a DoF of can be achieved. This
completes the proof of Lemma 1.
Lemma 1 implies that for each achievable DoF (normalized

by ) obtained in Proposition 2 at , we obtain a line
segment containing new achievable DoF (normalized
by ) in the range of . Take Fig. 6 as an example.
Consider that the point is achievable.9

Then, based on Lemma 1, we obtain that all the points on the
line segment connecting and

, i.e., with , are achievable.
We next improve the results in Proposition 2 using Lemma 1.

To simplify the notation in (21), we denote

(24)

Note that is the achievable DoF when the overall relay’s
signal space is occupied jointly by units following Pattern
(see (22)) and Pattern , whereas is the achievable

8Here, we assume that is an integer. Otherwise, the technique of symbol
extension should be used to ensure that the number of disabled relay antennas
is an integer.
9Here, we say that a point is achievable if a DoF of
(normalized by ) is achieved at .



5304 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 20, OCTOBER 15, 2014

Fig. 6. The improved achievable per-user DoF for MIMO mRC with
against the antenna ratio .

DoF when the overall relay’s signal space is occupied by Pattern
. Particularly, for , we have , implying

that the overall relay’s signal space is occupied by only one
pattern, i.e., Pattern . In what follows, we refer to the point

( is the normalized achievable DoF)
as a corner point. For , is a corner
point as illustrated in Fig. 4. Next, by applying Lemma 1, we
use the corner point to improve the
achievable DoF in the interval of in Proposition
2, as presented in the following lemma.
Lemma 2: For , the improved achiev-

able per-user DoF is given by in the range of

.
Lemma 2 implies that the results in Proposition 2 can be im-

proved in the interval of with
by disabling a protion of relay antennas. Take as an

example, as illustrated in Fig. 6. We see that, in the range of
, i.e., , the original achievable DoF

is improved for , and the normalized improved

achievable DoF is on the line segment of
.
Based on Lemma 2, we have the following theorem.
Theorem 2: For the MIMO mRC , the

per-user DoF capacity of is achieved when
and the per-user DoF capacity of

is achieved when .

For , an achievable per-user
DoF is given by

where , are defined in (20), , and
is an integer.

Corollary 2: For the MIMO mRC with ,
the per-user DoF capacity of is achieved when

, and the per-user DoF capacity of
is achieved when . For , an achievable
per-user DoF is given by

.
(25)

Corollary 2 is obtained from Theorem 2 by letting ,
with the DoF curve illustrated in Fig. 6. It is interesting to see
that the obtained achievable DoF curve is piecewise linear, de-
pending on the number of user antennas and the number
of relay antennas alternately. This result is similar to the
DoF capacity of the interference channel obtained in [21]. The
piecewise linearity implies antenna redundancy. Specifically,
for , the derived achievable DoF is
bounded by the number of user antennas, implying antenna re-
dundancy at the relay; for , the derived
achievable DoF is bounded by the number of relay antennas,
which implies that the antenna redundancy occurs at the user
side.
It is worth noting that the author in [17] (which is parallel to

and independent of the work in this paper) derived the DoF for
the MIMO Y channel with . The result in [17] slightly
outperforms the achievable DoF in Corollary 2 in the interval
of . This implies that the proposed scheme in this
paper is in general suboptimal for . As the signal align-
ment technique in [17] is limited to the case of , the
DoF capacity of the MIMO Y channel with an arbitrary still
remains a challenging open problem worthy of future research
endeavor.
When the user number , we obtain an asymptotic

DoF given in the following corollary.
Corollary 3: For the MIMO mRC with
, the total DoF of is achieved when

and is achieved as . For , the
achievable total DoF is piecewise linear with respect to either
or . Specifically, for , we have

for , and for

.
The DoF curve for Corollary 3 is illustrated in Fig. 7. We

see that the normalized achievable DoF for is
enveloped by the curve of . Further, the range
of is partitioned into an infinite number of intervals,

namely, for . A new

pattern arises for efficient signal alignment when moves
to a new interval. Similarly, the achievable DoF in the ranges
of and implies
antenna redundancy at the user side and at the relay side,
respectively.
Remark 2: Before leaving this section, we provide some fur-

ther comments on the antenna deactivation technique used in
Lemma 1. In general, disabling a portion of relay antennas will
reduce the DoF capacity of the considered channel. However,
in some cases, the obtained achievable DoF by relay antenna
disablement coincides with the DoF capacity of the channel.
For example, for as shown in Fig. 6, our result for

is in fact the DoF capacity of the considered
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Fig. 7. The improved total achievable DoF for the MIMO mRC with
against the antenna ratio .

relay channel; see [17]. An intuitive explanation is that for
, the number of antennas at each user end is the perfor-

mance bottleneck of the channel, which implies antenna redun-
dancy at the relay. That means, disabling a certain portion of
relay antennas does not incur any DoF penalty in this case.

VII. CONCLUSION

In this paper, we studied an achievable DoF of the MIMO
mRC for an arbitrary number of users with any antenna setups.
A novel and systematic way of beamforming design was pro-
posed to realize different kind of signal space alignments, which
were then used to implement PNC. It was shown that the pro-
posed signal alignment scheme achieves the DoF capacity of
the MIMO mRC with . For the case of , we
showed that our proposed signal alignment scheme achieves the
DoF capacity of the MIMO mRC for and

. This result has a broader range of
compared to the existing achievability of the DoF capacity in
[18]. The asymptotic achievable DoF when the number of users
tending to infinity was also analyzed. The derived achievable
DoF in this work can in general serve as a lower bound of the
DoF capacity of the considered MIMO mRC. Future research
interests include the optimal precoding design of the MIMO
mRC in finite SNR and the extension of our DoF analysis to
more complicated scenarios, such as clustered MIMO mRCs.

APPENDIX A
SOME USEFUL LEMMAS

Let , for , be indepen-
dent random matrices with . Assume .
Denote , and let the columns of

be a basis of . Further, we repre-
sent as , where .

Denote . We
have the following result.
Lemma 3: The rank of matrix is

with probability one.
Proof: We first assume , or

equivalently, . Let be
an arbitrary vector in , where .
Then, we obtain . Thus,

belongs to . As spans ,
there exists such that
, or equivalently, , for . From the random-

ness of , is of rank with probability
one. By assumption of , we ob-
tain . Thus, the left inverse of exists
with probability one. Then, implies ,
for , or equivalently, . Since can be
any vector in , the nullspace of is of rank

with high probability. By using the rank-nul-
lity theorem of linear algebra, we conclude that is of rank

with proba-
bility one.What remains is the case of .
Note that, when , is of di-
mension with probability one. Further increasing cannot
increase the dimension of (as only has rows),
which concludes the proof.
Lemma 4: The subspace of , i.e., the

intersection of and , has a dimension of
with probability one.

Proof: This result has been proven in Lemma 1 of [14]. We
omit the details here for brevity.
For , denote by distinct in-

dexes chosen from with . Let
. We say that is different from

for any if there is at least one in not con-
tained in . In total, we have different choices

of . Let the columns of be a
basis of with for , and

. Then
Lemma 5: is a subspace of dimension of

with probability one.
Proof: We first focus on the case of
. Denote

and . By noting
, we have . To prove

Lemma 5, it suffices to show that is
of full column rank. For notation convenience, we focus on the
case of and . The proof can be readily extended to
the case of an arbitrary and .
For , in total, we have 4 different choices of

. Let
,
. Then we have ,

for ,2,3,4. Also, we have by noting
the channel randomness and the fact of
(implied by ). Consider an
vector , for ,2,3,4. By definition of , we
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have and . Thus, there
exist unique , and such that

or equivalently

(26)

where and

. Similarly, for , we have

(27)

where and

. To prove that is of full column
rank, it suffices to show that these is no non-zero , for

,2,3,4 and ,2, such that

(28)

Equivalently, by combining (26) and (27), we need to show that
there is no non-zero satisfying

(29)

where for , and with
, .

Noting that , for , 2, 3,4, are independent random
matrices and , we obtain that

is of full column rank
with probability one, which implies that no non-zero exists
to meet (29).
What remains is the case of . In this

case, spans the overall signal space of dim-
for sure, which concludes the proof.

APPENDIX B
AN EXAMPLE OF SYMBOL EXTENSION

Consider a MIMO mRC with , , and .
From the discussions in Section IV-C, as , we need
to construct units following Patterns 1.1 and 1.3 to occupy the
overall relay’s signal space. The number of independent units
with Pattern 1.3 can be constructed is given by ,
which is not an integer. We use the symbol extension technique
to avoid the construction of a fractional number of units as fol-
lows. Considering two channel uses of (1), we rewrite the re-
ceived signal at the relay node as

(30)

where and

with and . Then
the number of units with Pattern 1.3 is equal to
and the proposed beamforming design in Section IV-C can be
applied directly. Note that the two in can be either the
same (implying the channel is invariant) or different from each
other (implying the channel is time-varying).
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