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Preface

This book presents the fundamental concepts of probabilistic graphical models,
or probabilistic networks as they are called in this book. Probabilistic networks
have become an increasingly popular paradigm for reasoning under uncertainty,
addressing such tasks as diagnosis, prediction, decision making, classification,
and data mining.

The book is intended to comprise an introductory part of a forthcoming
monograph on practical aspects of probabilistic network models, aiming at pro-
viding a complete and comprehensive guide for practitioners that wish to con-
struct decision support systems based on probabilistic networks. We think,
however, that this introductory part in itself can serve as a valuable text for
students and practitioners in the field.

We present the basic graph-theoretic terminology, the basic (Bayesian) prob-
ability theory, the key concepts of (conditional) dependence and independence,
the different varieties of probabilistic networks, as well as methods for making
inference in these kinds of models.

For a quick overview, the different kinds of probabilistic network models
considered in the book can be characterized very briefly as follows:

Discrete Bayesian networks represent factorizations of joint probability dis-
tributions over finite sets of discrete random variables. The variables are
represented by the nodes of the network, and the links of the network
represent the properties of (conditional) dependences and independences
among the variables as dictated by the distribution. For each variable is
specified a set of local probability distributions conditional on the config-
uration of its conditioning (parent) variables.

Linear conditional Gaussian (CG) Bayesian networks represent factor-
izations of joint probability distributions over finite sets of random vari-
ables where some are discrete and some are continuous. Each continuous
variable is assumed to follow a linear Gaussian distribution conditional on
the configuration of its discrete parent variables.

Discrete influence diagrams represent sequential decision scenarios for a sin-

gle decision maker and are (discrete) Bayesian networks augmented with
(discrete) decision variables and (discrete) utility functions. An influence
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iv PREFACE

diagram is capable of computing expected utilities of various decision op-
tions given the information known at the time of the decision.

Linear-quadratic CG influence diagrams combine linear CG Bayesian net-
works, discrete influence diagrams, and quadratic utility functions into a
single framework supporting decision making under uncertainty with both
continuous and discrete variables.

Limited-memory influence diagrams relax two fundamental assumptions
of influence diagrams: The no-forgetting assumption implying perfect re-
call of past observations and decisions, and the assumption of a total
order on the decisions. LIMIDs allow us to model more types of decision
problems than the ordinary influence diagrams.

Object-oriented probabilistic networks are hierarchically specified proba-
bilistic networks (i.e., one of the above), allowing the knowledge engineer
to work on different levels of abstraction, as well as exploiting the usual
concepts of encapsulation and inheritance known from object-oriented pro-
gramming paradigms.

The book provides numerous examples, hopefully helping the reader to gain
a good understanding of the various concepts, some of which are known to be
hard to understand at a first encounter.

Even though probabilistic networks provide an intuitive language for con-
structing knowledge-based models for reasoning under uncertainty, knowledge
engineers can often benefit from a deeper understanding of the principles under-
lying these models. For example, knowing the rules for reading statements of
dependence and independence encoded in the structure of a network may prove
very valuable in evaluating if the network correctly models the dependence and
independence properties of the problem domain. This, in turn, may be crucial
to achieving, for example, correct posterior probability distributions from the
model. Also, having a basic understanding of the relations between the struc-
ture of a network and the complexity of inference may prove useful in the model
construction phase, avoiding structures that are likely to result in problems of
poor performance of the final decision support system.

The book will present such basic concepts, principles, and methods underly-
ing probabilistic models, which practitioners need to acquaint themselves with.

In Chapter 1, we describe the fundamental concepts of the graphical lan-
guage used to construct probabilistic networks as well as the rules for reading
statements of (conditional) dependence and independence encoded in network
structures.

Chapter 2 presents the uncertainty calculus used in probabilistic networks to
represent the numerical counterpart of the graphical structure, namely classical
(Bayesian) probability calculus. We shall see how a basic axiom of probabil-
ity calculus leads to recursive factorizations of joint probability distributions
into products of conditional probability distributions, and how such factoriza-
tions along with local statements of conditional independence naturally can be
expressed in graphical terms.
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In Chapter 3 we shall see how putting the basic notions of Chapters 1 and 2
together we get the notion of discrete Bayesian networks. Also, we shall acquaint
the reader with a range of derived types of network models, including conditional
Gaussian models where discrete and continuous variables co-exist, influence dia-
grams that are Bayesian networks augmented with decision variables and utility
functions, limited-memory influence diagrams that allow the knowledge engi-
neer to reduce model complexity through assumptions about limited memory
of past events, and object-oriented models that allow the knowledge engineer
to construct hierarchical models consisting of reusable submodels. Finally, in
Chapter 4 we explain the principles underlying inference in these different kinds
of probabilistic networks.

Aalborg, 10 May 2005

Uffe B. Kjeerulff, Aalborg University
Anders L. Madsen, HUGIN FEzxpert A/S






Chapter 1

Networks

Probabilistic networks are graphical models of (causal) interactions among a set
of variables, where the variables are represented as nodes (also known as ver-
tices) of a graph and the interactions (direct dependences) as directed links (also
known as arcs and edges) between the nodes. Any pair of unconnected/non-
adjacent nodes of such a graph indicates (conditional) independence between
the variables represented by these nodes under particular circumstances that
can easily be read from the graph. Hence, probabilistic networks capture a set
of (conditional) dependence and independence properties associated with the
variables represented in the network.

Graphs have proven themselves a very intuitive language for representing
such dependence and independence statements, and thus provide an excellent
language for communicating and discussing dependence and independence rela-
tions among problem-domain variables. A large and important class of assump-
tions about dependence and independence relations expressed in factorized rep-
resentations of joint probability distributions can be represented very compactly
in a class of graphs known as acyclic, directed graphs (DAGs).

Chain graphs are a generalization of DAGs, capable of representing a broader
class of dependence and independence assumptions (Frydenberg 1989, Wermuth
& Lauritzen 1990). The added expressive power comes, however, at the cost of
a significant increase in the semantic complexity, making specification of joint
probability factors much less intuitive. Thus, despite their expressive power,
chain graph models have gained very little popularity as practical models for
decision support systems, and we shall therefore focus exclusively on models
that factorize according to DAGs.

As indicated above, probabilistic networks is a class of probabilistic models
that have gotten their name from the fact that the joint probability distribu-
tions represented by these models can be naturally described in graphical terms,
where the nodes of a graph (or network) represent variables over which a joint
probability distribution is defined and the presence and absence of links repre-
sent dependence and independence properties among the variables.
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Probabilistic networks can be seen as compact representations of “fuzzy”
cause-effect rules that, contrary to ordinary (logical) rule based systems, are
capable of performing deductive and abductive reasoning as well as intercausal
reasoning. Deductive reasoning (sometimes referred to as causal reasoning)
follows the direction of the causal links between variables of a model; e.g.,
knowing that a person has caught a cold we can conclude (with high probability)
that the person has fever and a runny nose (see Figure 1.1). Abductive reasoning

intercausal
reasoning

CCold) <> (Allergy

. diagnostic
reasoning

causal
reasoning

Figure 1.1: Causal networks support not only causal and diagnostic reasoning
(also known as deductive and abductive reasoning, respectively) but
also intercausal reasoning (explaining away): Observing Fever makes
us believe that Cold is the cause of RunnyNose, thereby reducing
significantly our belief that Allergy is the cause of RunnyNose.

(sometimes referred to as diagnostic reasoning) goes against the direction of the
causal links; e.g., observing that a person has a runny nose provides supporting
evidence for either cold or allergy being the correct diagnosis.

The property, however, that sets inference in probabilistic networks apart
from other automatic reasoning paradigms is its ability to make intercausal rea-
soning: Getting evidence that supports solely a single hypothesis (or a subset of
hypotheses) automatically leads to decreasing belief in the unsupported, com-
peting hypotheses. This property is often referred to as the explaining away
effect. For example, in Figure 1.1, there are two competing causes of runny
nose. Observing fever, however, provides strong evidence that cold is the cause
of the problem, while our belief in allergy being the cause decreases substan-
tially (i.e., it is explained away by the observation of fever). The ability of
probabilistic networks to automatically perform such intercausal inference is a
key contribution to their reasoning power.

Often the graphical aspect of a probabilistic network is referred to as its
qualitative aspect, and the probabilistic, numerical part as its quantitative as-
pect. This chapter is devoted to the qualitative aspect of probabilistic networks,
which is characterized by DAGs where the nodes represent random variables,
decision variables, or utility functions, and where the links represent direct de-
pendences, informational constraints, or they indicate the domains of utility
functions. The appearances differ for the different kinds of nodes (see Page 8),
whereas the appearance of the links do not (see Figure 1.2).



Bayesian networks contain only random variables, and the links represent
direct dependences (often, but not necessarily, causal relationships) among the
variables. The causal network in Figure 1.1 shows the qualitative part of a
Bayesian network.

Influence diagrams can be considered as Bayesian networks augmented with
decision variables and utility functions, and provide a language for sequential
decision problems for a single decision maker, where there is a fixed order among
the decisions. Figure 1.2 shows an influence diagram, which is the causal network
in Figure 1.1 augmented with two decision variables (the rectangular shaped
nodes) and two utility functions (the diamond shaped nodes). First, given

Figure 1.2: An influence diagram representing a sequential decision problem:
First the decision maker should decide whether or not to measure
the body temperature (MeasTemp) and then, based on the outcome
of the measurement (if any), decide which drug to take (if any).
The diagram is derived from the causal network in Figure 1.1 by
augmenting it with decision variables and utility functions.

the runny-nose symptom, the decision maker must decide whether or not to
measure the body temperature (MeasTemp has states no and yes). There is a
utility function associated with this decision, represented by the node labeled
Uy, which could encode, for example, the cost of measuring the temperature
(in terms of time, inconvenience, etc), given the presence or absence of fever.
If measured, the body temperature will then be known to the decision maker
(represented by the random variable Temp) prior to making the decision on
which drug to take, represented by the variable TakeDrug. This decision variable
could, for example, have the states aspirin, antihistamine, and noDrugs. The
utility (Up) of taking a particular drug depends on the actual drug (if any) and
the true cause of the symptom(s).

In Chapter 3, we describe the semantics of probabilistic network structures
in much more detail, and introduce yet another kind of node that represents
network instances and another kind of link that represents bindings between
real nodes and place-holder nodes of network instances.
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In Section 1.1 we introduce some basic graph notation that shall be used
throughout the book. Section 1.2 discusses the notion of variables, which is the
key entity of probabilistic networks. Another key concept is that of “evidence”,
which we shall touch upon in Section 1.3. Maintaining a causal perspective in
the model construction process can prove very valuable, as mentioned briefly
in Section 1.5. Sections 1.4 and 1.6 are devoted to an in-depth treatment on
the principles and rules for flow of information in DAGs. We carefully ex-
plain the properties of the three basic types of connections in a DAG (i.e.,
serial, diverging, and converging connections) through examples, and show how
these combine directly into the d-separation criterion and how they support
intercausal (explaining away) reasoning. We also present an alternative to the
d-separation criterion known as the directed global Markov property, which in
many cases proves to be a more efficient method for reading off dependence and
independence statements of a DAG.

1.1 Graphs

A graph is a pair § = (V,E), where V is a finite set of distinct nodes and
E CV x Vis aset of links. An ordered pair (u,v) € E denotes a directed link
from node u to node v, and u is said to be a parent of v and v a child of w.
The set of parents and children of a node v shall be denoted by pa(v) and ch(v),
respectively.

As we shall see later, depending on what they represent, nodes are displayed
as labelled circles, ovals, or polygons, directed links as arrows, and undirected
links as lines. Figure 1.3a shows a graph with 8 nodes and 8 links (all directed),
where, for example, the node labeled E has two parents labeled T and L.! The
labels of the nodes are referring to (i) the names of the nodes, (ii) the names
of the variables represented by the nodes, or (iii) descriptive labels associated
with the variables represented by the nodes. 2

We often use the intuitive notation u - v to denote (u,v) € E (or just
u — v if G is understood). If (u,v) € E and (v,u) € E, the link between u and
v is an undirected link, denoted by {u,v} € Eor u < v (or just u—v). We shall
use the notation u ~ v to denote that w — v, v — u, or u — v. Nodes u and v

are said to be connected in G if u g v. If u — v and w — v, then these links are
said to meet head-to-head at v.

If E does not contain undirected links, then G is a directed graph and if E
does not contain directed links, then it is an undirected graph. As mentioned
above, we shall not deal with mixed cases of both directed and undirected links.

A path (vq,...,vy) is a sequence of distinct nodes such that vi ~ vi;q for
each 1 = 1,...,n — 1; the length of the path is n — 1. The path is a directed
path if vi — viyy for each i =1,...,n—1; v; is then an ancestor of v; and vj

a descendant of vi for each j > 1. The set of ancestors and descendants of v are

IThis is the structure of the Bayesian network discussed in Example 29 on page 58.
2See Section 1.2 for the naming conventions used for nodes and variables.
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(a) (b)

Figure 1.3: (a) A acyclic, directed graph (DAG). (b) Moralized graph.

denoted an(v) and de(v), respectively. The set nd(v) = V\ de(v) U{v} are called
the non-descendants of v. The ancestral set An(U) C V of aset U C V of a
graph G = (V, E) is the set of nodes U U J,, ¢, an(u).

A path (vq,...,vy) from vy to vy of an undirected graph, § = (V,E), is
blocked by a set S C V if {vy,...,vn_1} NS # (. There is a similar concept
for paths of acyclic, directed graphs (see below), but the definition is somewhat
more complicated (see Proposition 4 on page 21).

A graph § = (V,E) is connected if for any pair {u,v} C V there is a path
(u,...,v) in G. A connected graph § = (V,E) is a polytree (also known as a
singly connected graph) if for any pair {u,v} C V there is a unique path (u,...,v)
in §. A directed polytree with only a single orphan node is called a (rooted)
tree.

A cycle is a path, (vi,...,vy), of length greater than two with the exception
that vi = vy; a directed cycle is defined in the obvious way. A directed graph
with no directed cycles is called an acyclic, directed graph or simply a DAG;
see Figure 1.3a for an example. The undirected graph obtained from a DAG, G,
by replacing all its directed links with undirected ones is known as the skeleton
of G.

Let § = (V,E) be a DAG. The undirected graph, §™ = (V,E™), where
E™ = {{u,v} | u and v are connected or have a common child in G},

is called the moral graph of G. That is, G™ is obtained from G by first adding
undirected links between pairs of unconnected nodes that share a common child,
and then replacing all directed links with undirected links; see Figure 1.3b for
an example.
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1.2 Graphical Models

On a structural (or qualitative) level, probabilistic network models are graphs
with the nodes representing variables and utility functions, and the links repre-
senting different kinds of relations among the variables and utility functions.

1.2.1 Variables

A wariable represents an exhaustive set of mutually exclusive events, referred
to as the domain of the variable. These events are also often called states,
levels, values, choices, options, etc. The domain of a variable can be discrete or
continuous; discrete domains are always finite.

Example 1 The following list are examples of domains of variables:

{F, T}

{red, green, blue}
{1,3,5,7}
{-1.7,0, 2.32, 5}
{< 0, 0-5, > 5}

| — o005 00[

{] — o0;01, 10;5], 15; 101}

where F and T stands for “false” and “true”, respectively. The penultimate
domain in the above list represents a domain for a continuous variable; the
remaining ones represent domains for discrete variables. ]

Throughout this book we shall use capital letters (possibly indexed) to de-
note variables or sets of variables and lower case letters (possibly indexed)
to denote particular values of variables. Thus, X = x may either denote
the fact that variable X attains the value x or the fact that the set of vari-
ables X = (Xj,...,Xy) attains the (vector) of values x = (x1,...,%n). By
dom(X) = (x1,...,%|x|) we shall denote the domain of X, where |[X|| = |[dom(X)|
is the number of possible distinct values of X. If X = (Xy,...,Xy), then dom(X)
is the Cartesian product (or product space) over the domains of the variables
in X. Formally,

dom(X) = dom(Xj7) x --- x dom(Xy),

and thus [|X|| = T, IIXill. For two (sets of) variables X and Y we shall write
either dom(X U Y) or dom(X,Y) to denote dom(X) x dom(Y). If z € dom(Z),
then by zx we shall denote the projection of z to dom(X), where X N Z # (0.

Example 2 Assume that dom(X) = {F, T} and dom(Y) = {red, green, blue}.
Then dom(X,Y) = {(F,red), (F,green), (F,blue), (T,red), (T, green), (T, blue)}.
For z = (F, blue) we get zx = F and zy = blue. ]
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Chance Variables and Decision Variables

There are basically two categories of variables, namely variables representing
random events and variables representing choices under the control of some,
typically human, agent. Consequently, the first category of variables is often
referred to as random variables and the second category as decision variables.
Note that a random variable can depend functionally on other variables in which
case it is sometimes referred to as a deterministic (random) variable. Sometimes
it is important to distinguish between truly random variables and deterministic
variables, but unless this distinction is important we shall treat them uniformly,
and refer to them simply as “random variables”, or just “variables”.

The problem of identifying those entities of a domain that qualify as variables
is not necessarily trivial. Also, it can be non-trivial tasks to identify the “right”
set of variables as well as appropriate sets of states for these variables. A more
detailed discussion of these questions are, however, outside the scope of this
introductory text.

1.2.2 Nodes vs. Variables

The notions of variables and nodes are often used interchangeably in models
containing neither decision variables nor utility functions (e.g., Bayesian net-
works). For models that contain decision variables and utility functions it is
convenient to distinguish between variables and nodes, as a node does not nec-
essarily represent a variable. In this book we shall therefore maintain that
distinction.

As indicated above, we shall use lower-case letters u,v,w (or sometimes
«, B,7v, etc.) to denote nodes, and upper case letters U, V,W to denote sets of
nodes. Node names shall sometimes be used in the subscripts of variable names
to identify the variables corresponding to nodes. For example, if v is a node
representing a variable, then we denote that variable by X,. If v represents a
utility function, then Xy, () denotes the domain of the function, which is a set
of chance and/or decision variables.

1.2.3 Taxonomy of Nodes/Variables

For convenience, we shall use the following terminology for classifying variables
and/or nodes of probabilistic networks.

First, as discussed above, there are three main classes of nodes in probabilis-
tic networks, namely nodes representing chance variables, nodes representing
decision variables, and nodes representing utility functions. We define the cat-
egory of a node to represent this dimension of the taxonomy.

Second, chance and decision variables as well as utility functions can be
discrete or continuous. This dimension of the taxonomy shall be characterized
by the kind of the variable or node.

Finally, for discrete chance and decision variables, we shall distinguish be-
tween labeled, Boolean, numbered, and interval variables. For example, re-
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ferring to Example 1 on page 6, the first domain is the domain of a Boolean
variable, the second and the fifth domains are domains of labeled variables, the
third and the fourth domains are domains of numbered variables, and the last
domain is the domain of an interval variable. This dimension of the taxonomy
is referred to as the subtype of discrete variables, and is useful for providing
mathematical expressions of specifications of conditional probability tables and
utility tables.

Figure 1.4 summarizes the node/variable taxonomy.

Labeled
Diserote —— Boolean
iscrete ——
Numbered
\
Chance Interval
Continuous
Labeled
Diserote — Boolean
Node ISCrete ——— Numbered
Decision Interval
Continuous
Discrete
K /
Utility Continuous

Figure 1.4: The taxonomy for nodes/variables. Note that the subtype dimension
only applies for discrete chance and decision variables.

1.2.4 Node Symbols

Throughout this book we shall use ovals to indicate discrete chance variables,
rectangles to indicate discrete decision variables, and diamonds to indicate dis-
crete utility functions. Continuous variables and utility functions are indicated
with double borders. See Table 1.1 for an overview.

Category | Kind Symbol
Chance Discrete O
Continuous )
Decision | Discrete [
Continuous =
Utility Discrete <>
Continuous >

Table 1.1: Node symbols.
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1.2.5 Summary of Notation

Table 1.2 summarizes the notation used for nodes (upper part), variables (middle
part), and utility functions (lower part).

S,U,V,W | sets of nodes

A% set of nodes of a model
Va the subset of V that represent discrete variables
\%: the subset of V that represent continuous variables
u,v,w,... | nodes
«,3,v,... | nodes
X,Yi, Zx | variables or sets of variables
Xw subset of variables corresponding to set of nodes W
X the set of variables of a model; note that X = Xy

Xw subset of X, where W C V
Xu, Xo variables corresponding to nodes u and «, respectively
X,Yi,zx | configurations/states of (sets of) variables

Xy projection of configuration x to dom(Y), XNY # )
Xc the set of chance variables of a model
Xp the set of decision variables of a model
Xa the subset of discrete variables of X
Xr the subset of continuous variables of X
u the set of utility functions of a model
Vu the subset of V representing utility functions
u(X) utility function u € U with the of variables X as domain

Table 1.2: Notation used for nodes, variables, and utility functions.

1.3 Evidence

A key inference task with a probabilistic network is computation of posterior
probabilities of the form P(x|e), where, in general, ¢ is evidence (i.e., infor-
mation) received from external sources about the (possible) states/values of a
subset of the variables of the network. For a set of discrete evidence variables,
X, the evidence appears in the form of a likelihood distribution over the states
of X; also often called an evidence function (or potential 3) for X. An evidence
function, €x, for X is a function €x : dom(X) — R™. For a set of continuous
evidence variables, Y, the evidence appears in the form of a vector of real val-
ues, one for each variable in Y. Thus, the evidence function, €y, is a function
gy Y - R.

3See Section 2.3 on page 34.



10 CHAPTER 1. NETWORKS

Example 3 If dom(X) = (x1,x2,%3), then Ex = (1,0, 0) is an evidence function
indicating that X = x7 with certainty. If Ex = (1,2,0), then with certainty
X # x3 and X = x; is twice as likely as X = x;. ]

An evidence function that assigns a zero probability to all but one state is
often said to provide hard evidence; otherwise, it is said to provide soft evidence.
We shall often leave out the ‘hard’ or ‘soft’ qualifier, and simply talk about
evidence if the distinction is immaterial. Hard evidence on a variable X is also
often referred to as instantiation of X or that X has been observed. Note that, as
soft evidence is a more general kind of evidence, hard evidence can be considered
a special kind of soft evidence.

We shall attach the label (€] to nodes representing variables with hard evi-
dence. For example, hard evidence on variable X (like Ex = (1,0,0) in Exam-
ple 3 on the page before) is indicated as shown in Figure 1.5(a) and soft evidence
(like Ex = (1,2,0) in Example 3 on the preceding page) is indicated as shown

in Figure 1.5(b).
e
a)

( (b)

Figure 1.5: (a) Hard evidence on X. (b) Soft (or hard) evidence on X.

1.4 Flow of Information in Causal Networks

The DAG of a Bayesian network model is a compact graphical representation
of the dependence and independence properties of the joint probability distri-
bution represented by the model. In this section we shall study the rules for
flow of information in DAGs, where each link represents a causal mechanism;
for example, Flu — Fever represents the fact that Flu is a cause of Fever. Col-
lectively, these rules define a criterion for reading off the properties of relevance
and irrelevance encoded in such causal networks.*

As a basis for our considerations we shall consider the following small ficti-
tious example.

Example 4 (Burglary or Earthquake (Pearl 1988)) Mr. Holmes is work-
ing in his office when he receives a phone call from his neighbor Dr. Watson,
who tells Mr. Holmes that his alarm has gone off. Convinced that a burglar has
broken into his house, Holmes rushes to his car and heads for home. On his way
home, he listens to the radio, and in the news it is reported that there has been

4We often use the terms relevance and irrelevance to refer to pure graphical statements
corresponding to, respectively, (probabilistic) dependence and independence among variables.
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a small earthquake in the area. Knowing that earthquakes have a tendency to
make burglar alarms go off, he returns to his work.

The causal network in Figure 1.6 shows the five relevant variables (all of
which are Boolean; i.e., they have states F and T) and the entailed causal
relationships. Notice that all of the links are causal: Burglary and earthquake
can cause the alarm to go off, earthquake can cause a report on earthquake in
the radio news, and the alarm can cause Dr. Watson to call Mr. Holmes. ]

Burglary Earthquake

Figure 1.6: Causal network corresponding to the “Burglary or Earthquake”
story of Example 4 on the preceding page.

The fact that a DAG is a compact representation of dependence/relevance
and independence/irrelevance statements can be acknowledged from the DAG
in Figure 1.6. Table 1.3 on the next page lists a subset of these statements where
each statement takes the form “variables A and B are (in)dependent given that
the values of some other variables, C, are known”, where the set C is minimal
in the sense that removal of any element from C would violate the statement.
If we include also non-minimal C-sets, the total number of dependence and
independence statements will be 53, clearly illustrating the fact that even small
probabilistic network models encode a very large number of such statements.
Moderate sized networks may encode thousands or even millions of dependence
and independence statements.

To learn how to read such statements from a DAG it is convenient to consider
each possible basic kind of connection in a DAG. To illustrate these, consider
the DAG in Figure 1.6. We see three different kinds of connections:

e Serial connections:

— Burglary — Alarm — WatsonCalls

— Earthquake — Alarm — WatsonCalls
e Diverging connections:

— Alarm « Earthquake — RadioNews
e (Converging connections:

— Burglary — Alarm « Earthquake.
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A B C A and B are independent given C

Burglary Earthquake | WatsonCalls No
Burglary Earthquake Alarm No
Burglary WatsonCalls No
Burglary RadioNews | WatsonCalls No
Burglary RadioNews Alarm No
Earthquake | WatsonCalls No
Alarm RadioNews No
RadioNews | WatsonCalls No
Burglary Earthquake Yes
Burglary | WatsonCalls Alarm Yes
Burglary RadioNews Yes
Earthquake | WatsonCalls Alarm Yes
Alarm RadioNews Earthquake Yes
RadioNews | WatsonCalls | Earthquake Yes
RadioNews | WatsonCalls Alarm Yes

Table 1.3: 15 of the total of 53 dependence and independence statements en-
coded in the DAG of Figure 1.6. Each of the listed statements is
minimal in the sense that removal of any element from the set C
would violate the statement that A and B are (in)dependent given C.

In the following sub-sections we analyze each of these three possible kinds of
connections in terms of their ability to transmit information given evidence and
given no evidence on the middle variable, and we shall derive a general rule for
reading statements of dependence and independence from a DAG. Also, we shall
see that it is the converging connection that provides the ability of probabilistic
networks to perform intercausal reasoning (explaining away).

1.4.1 Serial Connections

Let us consider the serial connection (causal chain) depicted in Figure 1.7, re-
ferring to Example 4 on page 10.

Figure 1.7: Serial connection (causal chain) with no hard evidence on Alarm. Ev-
idence on Burglary will affect our belief about the state of WatsonCalls
and vice versa.
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We need to consider two cases, namely with and without hard evidence (see
Section 1.3 on page 9) on the middle variable (Alarm).

First, assume we do not have definite knowledge about the state of Alarm.
Then evidence about Burglary will make us update our belief about the state
of Alarm; which in turn will make us update our belief about the state of
WatsonCalls. The opposite is also true: If we receive information about the
state of WatsonCalls, that will influence our belief about the state of Alarm,
which in turn will influence our belief about Burglary.

So, in conclusion, as long as we do not know the state of Alarm for sure,
information about either Burglary or WatsonCalls will influence our belief on the
state of the other variable. If, for example, receiving the information (from
some other source) that either his own or Dr. Watson’s alarm had gone off, Mr.
Holmes would still revise his belief about Burglary upon receiving the phone call
from Dr. Watson. This is illustrated in Figure 1.7 on the facing page by the two
dashed arrows, signifying that evidence may be transmitted through a serial
connection as long as we do not have definite knowledge about the state of the
middle variable.

Figure 1.8: Serial connection (causal chain) with hard evidence on Alarm. Ev-
idence on Burglary will have no affect on our belief about the state
of WatsonCalls and vice versa.

Next, assume we do have definite knowledge about the state of Alarm (see
Figure 1.8). Now, given that we have hard evidence on Alarm any information
about the state of Burglary will not make us change our belief about WatsonCalls
(provided Alarm is the only cause of WatsonCalls; i.e., that the model is correct).
Also, information about WatsonCalls will have no influence on our belief about
Burglary when the state of Alarm is known for sure.

In conclusion, when the state of the middle variable of a serial connection
is known for sure (i.e., we have hard evidence on it), then flow of information
between the other two variables cannot take place through this connection. This
is illustrated in Figure 1.8 by the two dashed arrows ending at the observed
variable, indicating that flow of information is blocked.

Note that soft evidence on the middle variable is insufficient to block the
flow of information over a serial connection. Assume, for example, that we have
gotten unreliable information (i.e., soft evidence) that Mr. Holmes’ alarm has
gone off; i.e., we are not absolutely certain that the alarm has actually gone off.
In that case, information about Burglary (WatsonCalls) will potentially make
us revise our belief about the state of Alarm, and hence influence our belief on
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WatsonCalls (Burglary). Thus, soft evidence on the middle variable is not enough
to block the flow of information over a serial connection.

The general rule for flow of information in serial connections can thus be
stated as follows:

Proposition 1 (Serial connection) Information may flow through a serial
connection X — Y — Z unless the state of Y is known.

1.4.2 Diverging Connections

Consider the diverging connection depicted in Figure 1.9, referring to Exam-
ple 4 on page 10.

Earthquake

Figure 1.9: Diverging connection with no evidence on Earthquake. Evidence on
Alarm will affect our belief about the state of RadioNews and vice
versa.

Again, we consider the cases with and without hard evidence on the middle
variable (Earthquake).

First, assume we do not know the state of Earthquake for sure. Then re-
ceiving information about Alarm will influence our belief about Earthquake, as
earthquake is a possible explanation for alarm. The updated belief about the
state of Earthquake will in turn make us update our belief about the state of
RadioNews. The opposite case (i.e., receiving information about RadioNews)
will lead to a similar conclusion. So, we get a result that is similar to the result
for serial connections, namely that information can be transmitted through a
diverging connection if we do not have definite knowledge about the state of the
middle variable. This result is illustrated in Figure 1.9.

Next, assume the state of Earthquake is known for sure (i.e., we have received
hard evidence on that variable). Now, if information is received about the state
of the either Alarm or RadioNews, then this information is not going to change
our belief about the state of Earthquake, and consequently we are not going to
update our belief about the other, yet unobserved, variable. Again, this result
is similar to the case for serial connections, and is illustrated in Figure 1.10 on
the facing page.

Again, note that soft evidence on the middle variable is not enough to block
the flow of information. Thus, the general rule for flow of information in diverg-
ing connections can be stated as follows:



1.4. FLOW OF INFORMATION IN CAUSAL NETWORKS 15

Earthquake

Figure 1.10: Diverging connection with hard evidence on Earthquake. Evidence
on Alarm will not affect our belief about the state of RadioNews and
vice versa.

Proposition 2 (Diverging connection) Information may flow through a di-
verging connection X « Y — Z unless the state of Y is known.

1.4.3 Converging Connections

Consider the converging connection depicted in Figure 1.11, referring to Exam-
ple 4 on page 10.

Figure 1.11: Converging connection with no evidence on Alarm or any of its
descendants. Information about Burglary will not affect our belief
about the state of Earthquake and vice versa.

First, if no evidence is available about the state of Alarm, then information
about the state of Burglary will not provide any derived information about the
state of Earthquake. In other words, burglary is not an indicator of earthquake,
and vice versa (again, of course, assuming correctness of the model). Thus,
contrary to serial and diverging connections, a converging connection will not
transmit information if no evidence is available for the middle variable. This
fact is illustrated in Figure 1.11.

Second, if evidence is available on Alarm, then information about the state
of Burglary will provide an explanation for the evidence that was received about
the state of Alarm, and thus either confirm or dismiss Earthquake as the cause
of the evidence received for Alarm. The opposite, of course, also holds true.
Again, contrary to serial and diverging connections, converging connections al-
low transmission of information whenever evidence about the middle variable is
available. This fact is illustrated in Figure 1.12 on the following page.
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Figure 1.12: Converging connection with (possibly soft) evidence on Alarm or
any of its descendants. Information about Burglary will affect our
belief about the state of Earthquake and vice versa.

The rule illustrated in Figure 1.11 on the page before tells us that if nothing
is known about a common effect of two (or more) causes, then the causes are in-
dependent; i.e., receiving information about one of them will have no impact on
the belief about the other(s). However, as soon as some evidence is available on
a common effect the causes become dependent. If, for example, Mr. Holmes re-
ceives a phone call from Dr. Watson, telling him that his burglar alarm has gone
off, burglary and earthquake become competing explanations for this effect, and
receiving information about the possible state of one of them obviously either
confirms or dismisses the other one as the cause of the (possible) alarm. Note
that even if the information received from Dr. Watson might not be totally re-
liable (amounting to receiving soft evidence on Alarm), Burglary and Earthquake
still become dependent.

The general rule for flow of information in converging connections can then
be stated as:

Proposition 3 (Converging connection) Information may flow through a
converging connection X — Y « Z if evidence on Y or one of its descendants is
available.

intercausal Inference (Explaining Away)

The property of converging connections, X — Y « Z, that information about
the state of X (Z) provides an explanation for an observed effect on Y, and hence
confirms or dismisses Z (X) as the cause of the effect, is often referred to as the
“explaining away” effect or as “intercausal inference”. For example, getting
a radio report on earthquake provides strong evidence that the earthquake is
responsible for a burglar alarm, and hence explaining away a burglary as the
cause of the alarm.

The ability to perform intercausal inference is unique for graphical models,
and is one of the key differences between automatic reasoning systems based on
probabilistic networks and systems based on, for example, production rules. In
a rule based system we would need dedicated rules for taking care of intercausal
reasoning.
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1.4.4 Summary

The analyzes in Sections 1.4.1-1.4.3 show that in terms of flow of information
the serial and the diverging connections are identical, whereas the converging
connection acts opposite to the former two (see Table 1.4). More specifically, it

No evidence Soft evidence Hard evidence

Serial open open closed
Diverging open open closed
Converging closed open open

Table 1.4: Flow of information in serial, diverging, and converging connections
as a function of the type of evidence available on the middle variable.

takes hard evidence to close serial and diverging connections; otherwise, they al-
low flow of information. On the other hand, to close a converging connection no
evidence (soft nor hard) must be available neither for the middle variable of the
connection nor any of its descendants; otherwise, it allows flow of information.

1.5 Causality

Causality plays an important role in the process of constructing probabilistic
network models. There are a number of reasons why proper modeling of causal
relations is important or helpful, although it is not strictly necessary to have the
directed links of a model follow a causal interpretation. We shall only very briefly
touch upon the issue of causality, and stress a few important points about causal
modeling. The reader is referred to the literature for an in-depth treatment of
the subject (Pearl 2000, Spirtes, Glymour & Scheines 2000, Lauritzen 2001).

A variable X is said to be a direct cause of Y if setting the value of X by
force, the value of Y may change and there is no other variable Z that is a direct
cause of Y such that X is a direct cause of Z.

As an example, consider the variables Flu and Fever. Common sense tells us
that flu is a cause of fever, not the other way around (see Figure 1.13). This

causal
relation

non-causal
relation

D G

Figure 1.13: Influenza causes fever, not the other way around.

fact can be verified from the thought experiments of forcefully setting the states
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of Flu and Fever: Killing fever with an aspirin or by taking a cold shower will
have no effect on the state of Flu, whereas eliminating a flu would make the
body temperature go back to normal (assuming flu is the only effective cause of
fever).

To correctly represent the dependence and independence relations that exist
among a set of variables of a problem domain it is very useful to have the causal
relations among the variables be represented in terms of directed links from
causes to effects. That is, if X is a direct cause of Y, we should make sure to
add a directed link from X to Y. If done the other way around (i.e., Y — X), we
may end up with a model that do not properly represent the dependence and
independence relations of the problem domain.

It is a common modeling mistake to let arrows point from effect to cause,
leading to faulty statements of (conditional) dependence and independence and,
consequently, faulty inference. For example, in the “Burglary or Earthquake”
example (page 10), one might put a directed link from WatsonCalls to Alarm
because the fact that Dr. Watson makes a phone call to Mr. Holmes “points
to” the fact that Mr. Holmes’ alarm has gone off, etc. Experience shows that
this kind of reasoning is very common when people are building their first prob-
abilistic networks, and is probably due to a mental flow-of-information model,
where evidence acts as the ‘input’ and the derived conclusions as the ‘output’.

Using this faulty modeling approach, the “Burglary or Earthquake” model
in Figure 1.6 on page 11 would have all its links reversed (see Figure 1.14). In
Section 1.4, we shall present methods for deriving statements about dependences
and independences in causal networks, from which the model in Figure 1.14 leads
to the conclusions that Burglary and Earthquake are dependent when nothing is
known about Alarm, and that Alarm and RadioNews are dependent whenever
evidence about Earthquake is available. Neither of these conclusions are, of
course, true, and will make the model make wrong inferences.

Earthquake

Figure 1.14: Wrong model for the “Burglary or Earthquake” story of Exam-
ple 4 on page 10, where the links are directed from effects to causes,
leading to faulty statements of (conditional) dependence and inde-
pendence.

Although one does not have to construct models where the links can be in-
terpreted as causal relations, as the above example shows, it makes the model
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much more intuitive and eases the process of getting the dependence and inde-
pendence relations right.

Another reason why respecting a causal modeling approach is important is
that it significantly eases the process of eliciting the conditional probabilities of
the model. If Y — X does not reflect a causal relationship, it can potentially
be difficult to specify the conditional probability of X = x given Y = y. For
example, it might be difficult for Mr. Holmes to specify the probability that
a burglar has broken into his house given that he knows the alarm has gone
off, as the alarm might have gone off for other reasons. Thus, specifying the
probability that the alarm goes off given its possible causes might be easier and
more natural, providing a sort of complete description of a local phenomenon.

In Example 28 on page 56, we shall briefly return to the issue of the impor-
tance of correctly modeling the causal relationships in probabilistic networks.

1.6 Two Equivalent Irrelevance Criteria

Propositions 1-3 comprise the components needed to formulate a general rule
for reading off the statements of relevance and irrelevance relations for two (sets
of) variables, possibly given a third variable (or set of variables). This general
rule is known as the d-separation criterion and is due to Pearl (1988).

In Chapter 2 we show that for any joint probability distribution that fac-
torizes according to a DAG, G, independence statements involving variables Xy,
and X,, are equivalent to similar statements about d-separation of nodes u and
vin G.5

Thus, the d-separation criterion may be used to answer queries of the kind
“are X and Y independent given Z” (in a probabilistic sense) or, more generally,
queries of the kind “is information about X irrelevant for our belief about the
state of Y given information about Z”, where X and Y are individual variables
and Z is either the empty set of variables or an individual variable.

The d-separation criterion may also be used with sets of variables, although
this may be cumbersome. On the other hand, answering such queries is very
efficient using the directed global Markov property (Lauritzen, Dawid, Larsen &
Leimer 1990), which is a criterion that is equivalent to the d-separation criterion.

As statements of (conditional) d-separation/d-connection and (conditional)
dependence/independence play a key role in probabilistic networks, some short-
hand notation is convenient. We shall use the standard notations shown in
Table 1.5 on the next page.b

Notice that statements of (conditional) d-separation or d-connection are al-
ways with respect to some DAG. When the DAG is obvious from the context,
we shall often avoid the subscript of the d-separation symbol (L). Similarly,

5See Chapter 2 for definitions of probabilistic independence and structural factorization of
DAGs.
6 A precise semantics of the symbol “1L” shall be given in Chapter 2.
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Notation Meaning

ulgv u € Vand v eV are d-separated in graph § = (V,E).

Each u € U and each v € V are d-separated in graph G.

UlsV We simply say that U and V are d-separated in G

uLv U and V are d-separated (graph understood from context).
UL V|W | Uand V are d-separated given (hard) evidence on W.
UL VIW | Uand V are d-connected given (hard) evidence on W.

X and Y are (marginally) independent with respect to prob-

X ALp Y ability distribution P.
X and Y are (marginally) independent (probability distri-
Xuy .
bution understood from context).
X 1 Y|Z X and Y are conditionally independent given (hard) evi-
dence on Z.
X 1L Y|Z X and Y are conditionally dependent given (hard) evidence

on Z.

Table 1.5: Standard notations for (i) statements of (conditional) d-separation/d-
connection between sets of nodes U and V, possibly given a third set
W, and (ii) (conditional) dependence/independence between (sets of)
variables X and Y possibly given a third set Z.

when the probability distribution is obvious from the context, we shall often
avoid the subscript of the independence symbol (LL).

Example 5 (Burglary or Earthquake, page 10) Some of the d-separation
and d-connection properties observed in the “Burglary or Earthquake” example
are:

(1) Burglary L Earthquake

(2) Burglary X Earthquake | Alarm

(3) Burglary L RadioNews

(4) Burglary L WatsonCalls | Alarm ]

Also, notice that d-separation and d-connection (and independence and de-
pendence, respectively) depends on the information available; i.e., it depends
on what you know (and do not know). Also, note that, d-separation and d-
connection (and independence and dependence) relations are always symmetric
(e, ulv=v Lluand Xy 1L X, =X, 1L Xy).
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1.6.1 d-Separation Criterion

Propositions 1-3 can be summarized into a rule known as d-separation (Pearl
1988):

Proposition 4 (d-Separation) A path m= (u,...,v) in a DAG, § = (V,E),
1s said to be blocked by S C 'V if 7 contains a node w such that either

e w € S and the links of T do not meet head-to-head at w, or
e w&S, de(w)NS =0, and the links of 7 meet head-to-head at w.

For three (not necessarily disjoint) subsets A,B,S of V, A and B are said to be
d-separated if all paths between A and B are blocked by S.

We can make Proposition 4 operational through a focus on nodes or through
a focus on connections. Let § = (V,E) be a DAG of a causal network and let
H: C S CV be subsets of nodes representing, respectively, variables with hard
evidence and variables with soft evidence on them.” Assume that we wish to
answer the question: “Are nodes vy and v, d-separated in § under evidence
scenario S;7”.

Now, using a nodes approach to d-separation, we can answer the question
as follows:

If for any path (vq,...,vn) between v and v, and for eachi=2,...n—1
either

e v; € H, and the connection v{_1 ~Vv; ~ Vi1 is serial or diverging,
or
e ({vilUde(vi))NS, = 0 and vi_1 — vi — Vit1,

then vi and v,, are d-separated given S;; otherwise, they are d-connected
given S..

Often, however, people find it more intuitive to think in terms of flow of
information, in which case a connections (or flow-of-information) approach to
d-separation might be more natural:

If for some path (vq,...,v,) between v and v, and for eachi=2,...n—1
the connection vi_1 ~ vi ~ viy1 allows flow of information from v;_7 to
Vit1, then v; and v,, are d-connected; otherwise, they are d-separated.

Note that, when using a flow-of-information approach, one should be careful
not to use a reasoning scheme like “Since information can flow from u to v and
information can flow from v to w, then information can flow from u to w”, as
this kind of reasoning is not supported by the above approach. The problem is
that links might meet head-to-head at v, disallowing flow of information between
the parents of v, unless evidence is available for v or one of v’s descendants. So,
each pair of consecutive connections investigated must overlap by two nodes.

"Recall the definition of evidence on page 9.
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Example 6 (d-Separation) Consider the problem of figuring out whether
variables C and G are d-separated in the DAG in Figure 1.15; that is, are
C and G independent when no evidence about any of the other variables is
available? Using the flow-of-information approach, we first find that there is
a diverging connection C +— A — D allowing flow of information from C to
D via A. Second, there is a serial connection A — D — G allowing flow of
information from A to G via D. So, information can thus be transmitted from
C to G via A and D, meaning that C and G are not d-separated (i.e., they are
d-connected).

C and E, on the other hand, are d-separated, since each path from C to E
contains a converging connection, and since no evidence is available, each such
connection will not allow flow of information. Given evidence on one or more of
the variables in the set {D, F, G, H}, C and E will, however, become d-connected.
For example, evidence on H will allow the converging connection D — G + E to
transmit information from D to E via G, as H is a child of G. Then information
may be transmitted from C to E via the diverging connection C «+— A — D and
the converging connection D — G « E. ]

(1) C and G are d-connected

e e (2) C and E are d-separated
G Q e (3) C and E are d-connected given evidence

on G

e @ (4) A and G are d-separated given evidence
on D and E

G (5) A and G are d-connected given evidence
on D

Figure 1.15: Sample DAG with a few sample dependence (d-connected) and
independence (d-separated) statements.

1.6.2 Directed Global Markov Criterion

The directed global Markov property (Lauritzen et al. 1990) provides a criterion
that is equivalent to that of the d-separation criterion, but which in some cases
may prove more efficient in terms of requiring less inspections of possible paths
between the involved nodes of the graphs.

Proposition 5 (Directed Global Markov Property) Let § = (V,E) be a
DAG and A, B, S be disjoint sets of V. Then each pair of nodes (x € A, 3 € B)
are d-separated by S whenever each path from « to 3 is blocked by nodes in S
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i the graph

(9An(AuBu5))m .

Although the criterion might look somewhat complicated at a first glance,
it is actually quite easy to apply. The criterion says that A Lg B|S if all paths
from A to B passes at least one node in S in the moral graph of the sub-DAG
induced by the ancestral set of AUBUS.

Example 7 (Directed Global Markov Property) Consider the DAG, § =
(V,E), in Figure 1.16(a), and let the subsets A,B,S C V be given as shown
in Figure 1.16(b), where the set, S, of evidence variables is indicated by the
filled circles. That is, we ask if A Lg B|S. Using Proposition 5 on the preceding
page, we first remove each node not belonging to the ancestral set An(AUBUS).
This gives us the DAG in Figure 1.16(c). Second, we moralize the resulting sub-
DAG, which gives us the undirected graph in Figure 1.16(d). Then, to answer
the query, we consult this graph to see if there is a path from a node in A to a
node in B that does not contain a node in S. Since this is indeed the case, we
conclude that A /g BIS. ]

(a): §
): San(AUBUS) (San(auBuS)

Figure 1.16: (a) A DAG, G. (b) G with subsets A, B, and S indicated, where
the variables in S are assumed to be observed. (c¢) The subgraph
induced by the ancestral set of AUBUS. (d) The moral graph of
the DAG of part (c).
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1.7 Summary

This chapter has shown how acyclic, directed graphs provide a powerful lan-
guage for expressing and reasoning about causal relations among variables. In
particular, we saw how such graphical models provide an inherent mechanism
for realizing deductive (causal), abductive (diagnostic), as well as intercausal
(explaining away) reasoning. As mentioned above, the ability to perform inter-
causal reasoning is unique for graphical models, and is one of the key differences
between automatic reasoning systems based on probabilistic networks and sys-
tems based on, for example, production rules.

Part of the explanation for the qualitative reasoning power of graphical mod-
els lies in the fact that a DAG is a very compact representation of dependence
and independence statements among a set of variables. As we saw in Section 1.4,
even models containing only a few variables can contain numerous statements
of dependence and independence.

Despite their compactness, DAGs are also very intuitive maps of causal and
correlational interactions, and thus provide a powerful language for formulating,
communicating, and discussing qualitative (causal) interaction models both in
problem domains where causal or correlational mechanisms are (at least partly)
known and in domains where such mechanisms are unknown but can be revealed
through learning of model structure from data.

Having discussed the foundation of the qualitative aspect of probabilistic
networks, in Chapter 2 we shall present the calculus of uncertainty that com-
prises the quantitative aspect of probabilistic networks.



Chapter 2

Probabilities

As mentioned in Chapter 1, probabilistic networks have a qualitative aspect
and a corresponding quantitative aspect, where the qualitative aspect is given
by a graphical structure in the form of an acyclic, directed graph (DAG) that
represents the (conditional) dependence and independence properties of a joint
probability distribution defined over a set of variables that are indexed by the
nodes of the DAG.

The fact that the structure of a probabilistic network can be characterized as
a DAG derives from basic axioms of probability calculus leading to recursive fac-
torization of a joint probability distribution into a product of lower-dimensional
conditional probability distributions. First, any joint probability distribution
can be decomposed (or factorized) into a product of conditional distributions of
different dimensionality, where the dimensionality of the largest distribution is
identical to the dimensionality of the joint distribution. Second, statements of
local conditional independences manifest themselves as reductions of dimension-
alities of some of the conditional probability distributions. Collectively, these
two facts give rise to a DAG structure.

In fact, a joint probability distribution, P, can be decomposed recursively in
this fashion if and only if there is a DAG that correctly represents the (condi-
tional) dependence and independence properties of P. This means that a set of
conditional probability distributions specified according to a DAG, § = (V,E),
(i.e., a distribution P(A|pa(A)) for each A € V) define a joint probability dis-
tribution.

Therefore, a probabilistic network model can be specified either through
direct specification of a joint probability distribution, or through a DAG (typ-
ically) expressing cause-effect relations and a set of corresponding conditional
probability distributions. Obviously, a model is almost always specified in the
latter fashion.

This chapter presents some basic axioms of probability calculus from which
the famous Bayes’ rule follows as well as the chain rule for decomposing a joint
probability distribution into a product of conditional distributions. We shall also

25
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present the fundamental operations needed to perform inference in probabilistic
networks.

Although probabilistic networks can define factorizations of probability dis-
tributions over discrete variables, probability density functions over continuous
variables, and mixture distributions, for simplicity of exposition, we shall re-
strict the presentation in this chapter to the pure discrete case. The results,
however, extend naturally to the continuous and the mixed cases.

In Section 2.1 we present some basic concepts and axioms of Bayesian prob-
ability theory, and in Section 2.2 we introduce probability distributions over
variables and show how these can be represented graphically. In Section 2.3 we
discuss the notion of (probability) potentials, which can be considered gener-
alizations of probability distributions that is useful when making inference in
probabilistic networks, and we present the basic operations for manipulation
of potentials (i.e., the fundamental arithmetic operations needed to make in-
ference in the networks). In Section 2.4 we present and discuss Bayes’ rule of
probability calculus, and in Section 2.5 we briefly mention the concept of Bayes’
factors, which can be useful for comparing the relative support for competing
hypotheses. In Section 2.6 we define the notion of probabilistic independence
and makes the connection to the notion of d-separation in DAGs. Using the
fundamental rule of probability calculus (from which Bayes’ rule follows) and
the connection between probabilistic independence and d-separation, we show
in Section 2.7 how a joint probability distribution, P, can be factorized into a
product of lower-dimensional (conditional) distributions when P respects the in-
dependence properties encoded in a DAG. Finally, in Section 2.8 we summarize
the results presented in this chapter.

2.1 Basics

The uncertainty calculus used in probabilistic networks is based on probability
theory. Thus, the notions of probability and, in particular, conditional probabil-
ity plays a key role. In this section we shall introduce some basic concepts and
axioms of Bayesian probability theory. These include the notions of probability,
events, and three basic axioms of probability theory.

2.1.1 Definition of Probability

Let us start out by defining informally what we mean by “probability”. Apart
from introducing the notion of probability, this will also provide some intuition
behind the three basic axioms presented in Section 2.1.4.

Consider a (discrete) universe, U, of elements, and let X C U. Denote by
X = U\ X the complement of X. Figure 2.1 on the facing page illustrates
U, where we imagine the area that X covers is proportional to the number of
elements that it contains.

The chance that an element sampled randomly from U belongs to X defines
the probability that the element belongs to X, and is denoted by P(X). Note
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>

X

Figure 2.1: Universe of elements, U = X U X.

that P(X) can informally be regarded as the relative area occupied by X in U.
That is, P(X) is a number between 0 and 1.
Suppose now that U =X UY UXUY; see Figure 2.2. The probability that

XuY

Figure 2.2: The probability that a random element from U belongs to either X
or Y is defined as P(XUY) =P(X) + P(Y) —P(XNY).

a random element from U belongs to XUY is defined as
P(XUY)=P(X)+P(Y)-P(XNY).

Again, we can interpret P(XUY) as the relative area covered jointly by X and Y.
So, if X and Y are disjoint (i.e., XNY = @), then P(XUY) = P(X) + P(Y). The
conjunctive form P(XNY) (or P(XAY)) is often written as P(X,Y).

Consider Figure 2.3 and assume that we know that a random element from
U belongs to Y. The probability that it also belongs to X is then calculated as
the ratio P(XNY)/P(Y). Again, to acknowledge this definition, it may help to
consider P(X NY) and P(Y) as relative areas of U. We shall use the notation
P(X]Y) to denote this ratio, where “|” reads “given that we know” or simply
“given”. Thus, we have

(XNY) PX)Y)

P
P = e

where P(X|Y) reads “the conditional probability of X given Y”.

2.1.2 Events

The language of probabilities consists of statements (propositions) about prob-
abilities of events. As an example, consider the event, a, that a sample from
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&2

Figure 2.3: The conditional probability that a random element from U belongs
to X given that we know that it belongs to Y amounts to the ratio
between P(XNY) and P(Y).

a universe U = X U X happens to belong to X. The probability of event a
is denoted P(a). In general, an event can be considered as an outcome of an
experiment (e.g., a coin flip), a particular observation of a value of a variable
(or set of variables), etc. As a probabilistic network define a probability dis-
tribution over a set of variables, V| in our context an event is a configuration,
x € dom(X), (i.e., a vector of values) of a subset of variables X C V.

Example 8 (Burglary or Earthquake, page 10) Assume that our state of
knowledge include the facts that W = yes and R = yes. This evidence is given
by the event ¢ = (W = yes, R = yes), and the probability P(¢) denotes the
probability of this particular piece of evidence, namely that both W = yes and
R = yes are known. ]

2.1.3 Conditional Probability

The basic concept in the Bayesian treatment of uncertainty is that of conditional
probability: Given event b, the conditional probability of event a is x, written
as

P(alb) = x.

This means that if event b is true and everything else known is irrelevant for
event a, then the probability of event a is x.

)

Example 9 (Burglary or Earthquake, page 10) Assume that Mr. Holmes
alarm sounds in eight of every ten cases when there is an earthquake but no
burglary. This fact would then be expressed as the conditional probability
P(A =yes|B =no,E =yes) = 0.8. ]

2.1.4 Axioms

The following three axioms provide the basis for Bayesian probability calculus,
and summarizes the considerations of Section 2.1.1.
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Axiom 1 For any event, a, 0 < P(a) < 1, with P(a) =1 if and only if a occurs
with certainty.

Axiom 2 For any two mutually exclusive events a and b the probability that
either a or b occur is

P(a or b)=P(aVb) =P(a)+ P(b).

In general, if events ay,...,an are pairwise exclusive, then

P (U ai) =Plar) +---+Plan) = Zp(ai)-

i

Axiom 3 For any two events a and b the probability that both a and b occur
18

P(a and b) =P(a/Ab) =P(a,b) =P(b|a)P(a) = P(a|b)P(b).
P(a,b) is called the joint probability of the events a and b.

Axiom 1 simply says that a probability is a non-negative real number less
than or equal to 1, and that it equals 1 if and only if the associated event has
happened for sure.

Axiom 2 says that if two events cannot co-occur, then the probability that
either one of them occurs equals the sum of the probabilities of their individual
occurrences.

Axiom 3 is sometimes referred to as the fundamental rule of probability
calculus. The axiom says that the probability of the co-occurrence of two events,
a and b can be computed as the product of the probability of event a (b)
occurring conditional on the fact that event b (a) has already occurred and the
probability of event b (a) occurring.

Example 10 Consider the events “The cast of the die gives a 1” and “The cast
of the die gives a 6”. Obviously, these events are mutually exclusive, and the
probability that one of them is true equals the sum of the probabilities that the
first event is true and that the second event is true. Thus, intuitively, Axiom 2
makes sense. ]

Note that if a set of events, {aj, ..., an}, is an exhaustive set of outcomes of
some experiment (e.g., cast of a die), then ) ; P(a;) = 1.1

Example 11 (Balls in An Urn) Assume we have an urn with 2 red, 3 green,
and 5 blue balls. The probabilities of picking a red, a green, or a blue ball are

2
P(red) = — = 0.2, P(green) = i =0.3, P(blue) = %

10 10 =0.5.

1See also the Rule of Total Probability on page 31.
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By Axiom 2 we get the probability of picking either a green or a blue ball:
P(green or blue) = P(green) + P(blue) = 0.8.

Similarly, the probability of picking either a red, a green, or a blue ball is 1.
Without replacement, the probabilities of the different possible colors of the
second ball depends on the color of the first ball. If we first pick a red ball (and
keep it), then the probabilities of picking a red, a green, or a blue ball as the
next one are, respectively,

2-1 1
P(2nd-is-red | 1st-was-red) = To-1" o
P(2nd-is-green|1st rd)—i—§
-is-green|1st-was-red) = ;o= =5,
P(2nd-is-blue| Ist-was-red) = —>— = >
-is-blue|1st-was-red) = 17— = 5.
By Axiom 3 we get the probability that the 1st ball is red and the 2nd is red:
P(1st-was-red, 2nd-is-red) = P(2nd-is-red|1st-was-red)P(1st-was-red)
I
9 5 45

Similarly, the probabilities that the 1st ball is red and the 2nd is green/blue are

P(1st-was-red, 2nd-is-green) = P(2nd-is-green|1st-was-red)P(1st-was-red)
I
= 357
P(1st-was-red, 2nd-is-blue) = P(2nd-is-blue|lst-was-red)P(1st-was-red)
5 1 1
= 95
respectively. |

2.2 Probability Distributions for Variables

Probabilistic networks are defined over a (finite) set of variables, each of which
represents a finite set of exhaustive and mutually exclusive states (or events);
see Section 1.2 on page 6. Thus, (conditional) probability distributions for
variables (i.e., over exhaustive sets of mutually exclusive events) play a central
role in probabilistic networks.

If X is a (random) variable with domain dom(X) = (x1,...,%x)|), then P(X)
denotes a probability distribution (i.e., a vector of probabilities summing to 1),
where

P(X) = (P(X = X1 ), e ,P(X = XHXH)) .

If no confusion is possible, we shall often use P(x) as short for P(X = x), etc.
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If the probability distribution for a variable Y is given conditional on a
variable (or set of variables) X, then we shall use the notation P(Y|X). That is,
for each possible value (state), x € dom(X), we have a probability distribution
P(Y|X = x); again, if no confusion is possible, we shall often write P(Y]|x).

Example 12 (Balls in An Urn, page 29) Let X; represent the following ex-
haustive set of mutually exclusive events:

dom(X7) = {“Ist ball is red”, “1st ball is green”, “Ist ball is blue”}.

If we define X7 to denote the random variable “The color of the 1st ball drawn
from the urn”, then we may define dom(X7) = {red, green, blue}. Similarly, if we
define X, to denote the random variable “The color of the 2nd ball drawn from
the urn”, then dom(Xz) = dom(Xj). From Example 11 on page 29 we get

2 3 5
P(X1)* (-Iov-lo)-lo)v

135
P(X2|Xy =red) = <§,§,§)

P(X2|X7) can be described in terms of a table of three (conditional) distribu-
tions:

X1 =red X; =green X; =blue
1 2 2
X2 = red - - -
2T 9 9 9
P(X2[Xq) = N 3 2 3
2 = green § § §
5 5 4
X2 = bl — e i
R B 9 9
Note that the probabilities in each column sum to 1. ]

2.2.1 Rule of Total Probability

Let P(X,Y) be a joint probability distribution for two variables X and Y with
dom(X) ={x1,...,xm} and dom(Y) ={y1,...,yn}. Using the fact that dom(X)
and dom(Y) are exhaustive sets of mutually exclusive states of X and Y, respec-
tively, Axiom 2 on page 29 gives us the rule of total probability:

n
Vi:P(xi) =Plxi,y1) + -+ P(xi,un) = ) P(xi,u5). (2.1)
j=1

Using (2.1), we can calculate P(X) from P(X,Y):

n n
Z X]»U; )Zme)yJ
j=1 j=1
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In a more compact notation, we may write

n

P(X) =) P(X,u5),

j=1

or even shorter as
P(X) =) P(X,Y), (2.2)
Y
denoting the fact that we sum over all indices of Y. We shall henceforth refer
to the operation in (2.2) as marginalization or projection.? Also, we sometimes

refer to this operation as marginalizing out Y of P(X,Y) or eliminating Y from
P(X,Y).

Example 13 (Balls in An Urn, page 29) Using Axiom 3 on page 29 for
each combination of states of X; and X, of Example 12 on the preceding page,
we can compute

P(X; =red,X; =red) = P(X; =red)P(X; =red|X; = red)

ol =

2
10
i
45”7
etc. That is, we get P(X7,X2) by combining P(X7) and P(X2|X7):

X1 =red X;=green X; =blue
1 1 1
Xz = red E E §
P(X1,X2) = X 1 1 1
2 — green E E g
1 1 2
X2 = blue 9 c 5

(Note that the numbers in the table sum to 1.) Now, through marginalization
we get

P(X2) = PX;=red, X3)+P(X; = green,Xz) + P(X7 = blue, X3)
1 1 1 1
45 15 9 5
1 1 1 3
S| T e | T 0
1 1 2 1
9 6 9 2

That is, the probability of getting a red, a green, and a blue ball in the second
draw are, respectively, 0.2, 0.3, and 0.5, given that we know nothing about the

2See Section 2.3.3 on page 36 for more on marginalization.
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color of the first ball. That is, P(X2) = P(X;) = (0.2,0.3,0.5), whereas, for
example, P(X2|X; = red) = (0.1111,0.3333,0.5556); i.e., once the color of the
first ball is known, our belief about the color of the second changes. ]

2.2.2 Graphical Representation

The conditional probability distributions of probabilistic networks are of the
form

P(XTY),

where X is a single variable and Y is a (possibly empty) set of variables. X and
Y are sometimes called the head and the tail, respectively, of P(X|Y). If Y = ()
(i.e., the empty set), P(X]Y) is often called a marginal probability distribution
and is then written as P(X). This relation between X and Y ={Y7,...,Yn} can
be represented graphically as the DAG illustrated in Figure 2.4, where the child
node is labelled “X” and the parent nodes are labelled “Y;”, “Y,”, etc.

Figure 2.4: Graphical representation of P(X|Y7,...,Yn).

Example 14 (Burglary or Earthquake, page 10) Consider the variables B
(Burglary), E (Earthquake), and A (Alarm), where B and E are possible causes of
A. A natural way of specifying the probabilistic relations between these three
variables, would be through a conditional probability distribution for A given
B and E. Thus, for each combination of outcomes (states) of B and E, we need
to specify a probability distribution over the states of A:

B =no B =yes
P(AIB.E) E=no E=yes E=no E =yes
" A=no | 099 0.1 0.1 0.01
A =vyes | 0.01 0.9 0.9 0.99

This conditional probability table (CPT) expresses the probability (whether
obtained as an objective frequency or a subjective belief) of an alarm if either
a burglary or an earthquake has taken place (but not both) to be 0.9, etc.

The CPT is reflected by the converging connection in Figure 1.6 on page 11.
In general, any conditional probability distribution P(X, | Xy, ,..., Xy, ) will give
rise to n(n—1)/2 converging connections, as each pair of parent nodes, (ui,u;),
introduces a converging connection along with the child node, v. ]
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2.3 Probability Potentials

In working with probabilistic networks the notion of “potentials” often appears
to be convenient. Formally, a probability potential is a non-negative function
defined over the product space over the domains of a set of variables. We shall
use Greek letters (¢, 1, etc.) to denote potentials, and sometimes use subscripts
to identify their domain (e.g., ¢x denotes a potential defined on dom(X)) or to
indicate that a potential ¢x is a marginal potential of ¢.

2.3.1 Normalization

A (probability) potential, ¢x defined on dom(X), is turned into a probability
distribution, P(X), through the operation known as normalization. We shall use
the notation n(¢dx) to denote normalization of ¢x, where 1(dx) is defined as

(2.3)

Hence, P(X) = n(¢dx). The conditional probability distribution P(X|Y) can be
obtained from the joint distribution P(X,Y) through conditional normalization
with respect to X:

P(X,Y) P(X,Y)

(P YD) & =St = g =PV

In general,
~  PX) P(X)

2 xwx P(X) T PIX) T PXA XX, (2.4)

where X’ is a subset of the set of variables X. In particular,
n(P(X)) =mp(P(X)) = P(X),

whenever P(X) is a probability distribution over X. This also holds true for
conditional distributions:

nx (P(X))

Ny (P(X]Y)) = P(X]Y),

since
D PX|Y) =1y, (2.5)
X

where 1y denotes a vector of 1s over dom(Y). A uniform potential, e.g. 1y, is
called a vacuous potential. Intuitively, a vacuous potential can be thought of as
a non-informative (or superfluous) potential.

We shall be using the notion of potentials extensively in Chapter 4, but for
now we shall just give a couple of simple examples illustrating the usefulness of
this notion.

3Note that the two interpretations are consistent. See Section 2.3.3 on page 36 for details
on marginalization.
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Example 15 Let P(A,B) = P(A)P(B|A) be a factorization of the joint distri-
bution for the Boolean variables A and B, and assume that P(A) and P(B|A)
are given by the potentials ¢ and 1, respectively, where

|A=F A=T
¢=(21) and Y= B=F 5 7
B=T 3 1
Then
|A=F A=T
21 5 7
P(A) =n(d) = 33 and P(BJA)=na(p)= B=F B s
B=T| 3 3

and thus P(A,B) = n(¢) * na(P).* Note that, in general, n(Pp) * na(P) #
1n(¢d x ), although in this particular case equality holds, since the vector of
normalization constants, Y 51 = (8,8), in na(P) is uniform. ]

2.3.2 Evidence Potentials

As indicated in Section 1.3 on page 9, evidence functions are actually potentials.
To compute the joint posterior distribution resulting from incorporating a set
of observations in the form of evidence functions, we simply extend the set
of probability function constituents (possibly in the form of potentials) with
corresponding evidence potentials, multiply, and normalize the product.

Before any evidence has been taken into account the probability distribution
P(X’) for a subset X’ C X of variables is referred to as the prior probability
distribution for X’. The conditional probability distribution P(X’|¢e), where &
denotes evidence, is referred to as the posterior probability distribution for X’
given ¢. Given an evidence potential E¢ on a subset E C X (expressing ¢€), the
posterior joint distribution is obtained as

P(X' e) = ) P(X)x&,

X\X/
and the posterior conditional distribution is achieved through normalization

P(X'le) =n(P(X’, ).

Example 16 (Example 15 continued) Assume that we observe B = T, repre-
sented by the evidence potential Eg = (0,1). Then the posterior joint distribu-
tion is given by

P(A,Ble) =n(da * ¢p = Ep).

4See Section 2.3.3 on the following page for a definition of combination of potentials.
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More explicitly, we have
| A=F A=T
P(A,Ble)=n| B=F | 0 0 ,
B=T 6 1

and we get P(A\a):(g,%). ]

2.3.3 Potential Calculus

To perform inference in probabilistic networks we only need a few simple oper-
ations, namely multiplication (combination), division, addition, and marginal-
ization (projection). These are all defined very straightforwardly as follows.
Let ¢ and VP be potentials defined on dom(X) and dom(Y), respectively, and
let z € dom(X UY) be an arbitrary element (configuration).
We define ¢ x1 as

(b *)(z) = dlzx)(zy), (2.6)

where zx and zy are projections of z to dom(X) and dom(Y), respectively.’?
Addition is defined analogously. We need to take special care to avoid division
by zero, but otherwise division is defined in the obvious way:

0 if p(zx) =0
(b/)(z) = blzx)/blzy) ifblzy) #0 (2.7)
undefined otherwise.

As we shall see later, for all relevant operations involved in inference in prob-
abilistic networks, ¢(zx) = 0 implies P(zy) = 0 upon division of ¢ by P, and
thus, defining 0/0 = 0, the division operator is always defined.

Let X’ C X and let ¢x be a potential defined on dom(X). Then ¢x =
ZX\X/ ¢ x denotes the marginalization (or projection) of ¢px to dom(X’) and is
defined as

dx(x) =Y dxlzx), (2.8)
z€dom (X\X’)
where z,x’ is the element in dom(X) for which (z,x’)x\x» = z and (z,x")x/ =
x’. Figure 2.5 illustrates the process, where all values of ¢x corresponding to
configurations with X’ = x’ are added together to yield the value of dx/(x’).

Example 17 Let X ={A,B} and Y = {B, C, D}, where A, B, C, D are all binary
variables with dom(A) = {a7, az}, etc. Let ¢x and ¢y be potentials defined
over dom(X) and dom(Y), respectively, where

C1 C2
d d d d
and (bY _ 1 2 1 2 .
b; | 0.11 0.14 0.06 0.09
b, | 0.23 0.07 0.18 0.12

5As defined in Section 1.2 on page 6.
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$x
dx-

Figure 2.5: Marginalization (or projection) of ¢x(zi,x’) to dom(X’) for all z; €
dom(X\ X'): dx/(x) = dx(z1,x) + - + dx(zn,x).

From (2.6) we get Y = ¢x * ¢y to be

dy dz d; dz

(0.011,0.099) (0.014,0.126) (0.006,0.054) (0.009,0.081) ’
(0.092,0.138) (0.028,0.042) (0.072,0.108) (0.048,0.072)

‘ ¢ c2

Y= b,

bs

where ($x * dvy)(ar, by, cr,dr) = dx(ar, bi)dy(br,c1,d1) =0.1-0.11 =0.011,
(bx * dy)(az,b1,c1,d7) = dx(az, br)dy(br,c1,d1) =0.2-0.11 = 0.099, etc.

Now, if Z = {A, D}, then from (2.8) we get the marginal of 1 with respect
to Z to be

d] dZ

Yz = ay |[0.011+0.092+0.006 +0.072 0.014 + 0.028 + 0.009 + 0.048
az | 0.09940.138 4 0.054 +0.108 0.126 4 0.042 + 0.081 4 0.072

dy d;

= a;|0.181 0.099
az | 0.399 0.321

where, using the above notation, we have V7 (a7, d;) = ¥((by,c1), (ar,dq)) +
P((ba,c1), (ar,d1))+U((b1,c2), (ar,dq))+P((b2,c2), (a1,dr))=0.011+0.092+
0.006+0.072 = 0.181, etc. Note that { (and hence also 1) is a probability dis-
tribution (i.e., }_, WP(x) =1), since ¢px is a conditional probability distribution
for A given B and ¢v is a joint probability distribution for {B,C, D}. ]



38 CHAPTER 2. PROBABILITIES

Distributive Law

Let ¢ and ¢ be potentials defined on dom(X) = {x1,...,xm} and dom(Y) =
{y1,...,Yn}, where XNY = (. Using the distributive law, we then get

> D (b)) > > ()

X\X’ Y\Y’ x€dom(X\X’) yedom(Y\Y’)
= o1 )blyr) + --~+¢(X1)1b( n) o+
Gxm)P(yr) + -+ dlxm)P(y )
= (1) [W(yr) + +1b (yn)] +
( )

G xm) [ Yyr) + - +Plyn ]

= I 10O I WS 1(V)
xEdom (X\X") yedom(Y\Y’)

= D) ¢ v (2.9)
X\X/  Y\Y’

where X’ C X, Y/ CY,and ) &> P is short for 3 (¢ * (3 y)). Thus, if
we wish to compute the marginal distribution (¢ *{)x/yy’ and XNY = (), then
using the distributive law may help a lot in terms of reducing the computational
complexity.

Example 18 Let ¢, P, and & be potentials defined on dom(A, B, C), dom(B, D),
and dom(C, D, E), respectively, and let Eg be an evidence potential defined on
dom(E), where the variables A,...,E are all binary. Assume that we wish
to compute P(A]e), where ¢ denotes the evidence provided through Eg. A
brute-force approach would be simply to combine all potentials, marginalize
out variables B, ..., E, and normalize:

P(Ale) = (%ZZZ *lp*a*sE))

Combining potentials & and ¢ requires 8 multiplications. Next, combining 1\
and & * &g requires 16 multiplications, and, finally, combining ¢ and \ % & * E¢
requires 32 multiplications. Marginalizing out E, D, C, and B, respectively,
require 16, 8, 4, and 2 additions.

Alternatively, we could take advantage of the distributive law to compute
the same thing:

LERII W RORINETS]

First, combining & and Eg requires 8 multiplications. Then, marginalizing out
E requires 4 additions. Multiplying the resulting potential by { requires 8
multiplications, and marginalizing out D requires 4 additions. Next, multiplying
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the resulting potential by ¢ requires 8 multiplications, and finally, marginalizing
out C and B requires 4 and 2 additions, respectively.

Summing up the number of arithmetic operations used in the two compu-
tations we find that the brute-force approach takes 56 multiplications and 30
additions, whereas the one exploiting the distributive law takes only 24 mul-
tiplications and 14 additions, less than half of what the brute-force approach
requires. (On top of these numbers we should also count the number of op-
erations needed to normalize the final marginal, but that is the same in both
cases.)

In terms of the amount of temporary working storage required, the brute-
force approach requires 32 units of storage to hold a table of the joint distribution
over {A,B,C,D,E}, whereas the approach that exploits the distributive law
only requires 8 units of storage to hold the current potential (i.e., first & = E
with domain {C, D, E}, second P } ¢ (& * Eg) with domain {B, C, D}, and finally
&Y pW (& Eg) with domain {A, B, C}).

Note that the ordering (B, C,D,E) is just one out of 4! = 24 different se-
quences in which we might marginalize out these four variables, and to each
ordering is associated a certain number of arithmetic operations required to
compute P(Al¢g). ]

The single most important key to efficient inference in probabilistic networks
is the ability to take advantage of the distributive law (i.e., to find optimal (or
near optimal) sequences in which the variables are marginalized out). We shall
return to this issue in Chapter 4.

2.3.4 Barren Variables

Variables of a graphical model that have no observed descendants, are never
observed itself, and for which we do not wish to compute their posterior prob-
abilities are called barren variables, as they provide no information relevant for
the inference process. In fact, they provide “information” in the form of vacuous
potentials (cf. (2.5) on page 34), and may hence be removed from the model.

Example 19 Consider a model P(X,Y,Z) = P(X)P(Y|X)P(Z]Y) over the vari-
ables X, Y, and Z. Following the discussion in Section 2.2.2 on page 33, this
model can be represented graphically as indicated in Figure 2.6a. Let &y and
€z be evidence potentials for Y and Z, respectively, but where €7 is always



40 CHAPTER 2. PROBABILITIES

vacuous. Then the posterior probability distribution for X can be calculated as

P(X|e) = n(ZP(YIX)*EYZP(ZIY)*SZ>
Y

Z
n (Z P(Y|X)*8YZP(Z|Y)>
Y Z
= n(ZP(Y|X)*8y*1y>
Y

= (Z P(Y]X) = 8y> :

Y

where ), P(Z|Y) = 1y follows from (2.5) on page 34 and ¢ denotes the evidence.
This means that the term P(Z|Y) can be neglected in the inference process, and
the model can be simplified to the one shown in Figure 2.6b, as variable Z is
barren. ]

1 1
1

(a) (b)
Figure 2.6: (a) Model for P(X,Y, Z). (b) Equivalent model when Z is barren.

‘We shall return to the issue of barren variables in more detail in Section 4.1.1
on page 92.

2.4 Fundamental Rule and Bayes’ Rule

Generalizing Axiom 3 on page 29 to arbitrary (random) variables X and Y we
get the fundamental rule of probability calculus:

P(X,Y) = P(X|Y)P(Y) = P(Y[X)P(X). (2.10)
Bayes’ rule follows immediately:

(X[YIP(Y)

P(YIX) = P PX) (2.11)
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Using Axiom 3 on page 29 and the rule of total probability, (2.11) can be
rewritten like

PXIY)P(Y)
(XIY =y)P(Y=y1) + -+ P(X|Y =yn)P(Y = yv)
That is, the denominator in (2.11) can be derived from the numerator in (2.11).

Since, furthermore, the denominator is obviously the same for all states of Y,
we often write Bayes’ rule as

P(Y|X) o< P(X]Y)P(Y), (2.12)

read as “P(Y]|X) is proportional to P(X|Y)P(Y)”. Note that the proportionality
factor P(X)~! is in fact a vector of proportionality constants, one for each state
of X, determined in a normalization operation.

Division by zero in (2.11) is not a problem as we define 0/0 = 0, since for

P(xi) =) Plxily;)P(y;)
j

PIYIX) = 5

to be zero at least one of P(xi|y;) and P(yj) must be zero for each j, and if this
is the case then both the numerator term, P(x;|y;)P(y;), and the denominator
term, P(xi), of (2.11) will be zero.

Example 20 (Burglary or Earthquake, page 10) Let P(E) = (0.99,0.01),
P(B) = (0.9,0.1), and let the conditional probability table (CPT) for P(A|B,E)
be given as in Example 14 on page 33. Then we can use Bayes’ rule to compute,
P(B|A), the conditional probability distribution for burglary (B) given alarm
(A):
P(B|A) x Z P(A|B,E)P(B)P(E) = P(A,B).
E

First, we compute the joint distribution for A, B, and E:

P(A,B,E) = P(A|B,E)P(B)P(E)
B =no B = yes
B E=no E=yes E=no E=yes
A =no | 0.88209 0.0009 0.0099 0.00001
A =yes | 0.00891 0.0081 0.0891 0.00099

Next, we marginalize out E of P(A, B, E) to obtain
| B=no B=yes

0.88299 0.00991
0.01701  0.09009

P(A,B)=) P(A,BE)= A=no
E A = yes

Finally, we normalize P(A,B) with respect to A, and get
|A=no A =yes

0.9889  0.1588
0.0111  0.8412

P(BJA) =na(P(A,B))= B=no
B = yes
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2.4.1 Interpretation of Bayes’ Rule

Since Bayes’ rule is so central to inference in Bayesian probability calculus, let
us dwell a little on how Bayes’ rule can be used and understood. Assume that
we have two (possibly, sets of) variables X and Y, a model P(X,Y) given in
the factorized form P(X|Y)P(Y), and that we observe X = x. We would then
typically want to compute P(Y|x).

The prior distribution, P(Y), expresses our initial belief about Y, and the
posterior distribution, P(Y|x), expresses our revised belief about Y in light of the
observation X = x. Bayes’ rule tells us how to obtain the posterior distribution
by multiplying the prior P(Y) by the ratio P(x|Y)/P(x). Again, since P(x) is a
constant for each y € dom(Y), we get

P(Y|x) < P(Y)P(x|Y).

The quantity P(x|Y) 2 L(Y|x) is called the likelihood for Y given x. Hence, we
have
P(Y|x) o< P(Y)L(Y|x). (2.13)

In general,
posterior o« prior x likelihood.

In a machine learning context, Bayes’ rule plays an important role. For ex-
ample, consider a prior distribution, P(M), for a random variable M, expressing
a set of possible models. For any value d of another variable D, expressing data,
the quantity P(d|M) — considered as a function of M — is the likelihood func-
tion for M given data d. The posterior distribution for M given the data is
then

P(M|d) x P(M)P(d|M),

which provides a set of goodness-of-fit measures for models M (i.e., we obtain
a conditional probability P(m|d) for each m € dom(M)).

Arc Reversal

Application of Bayes’ rule can also be given a graphical interpretation. Con-
sider, for example, two variables A and B and a model P(A,B) = P(A)P(B|A).
Again, following the discussion in Section 2.2.2 on page 33, this model can be
represented graphically as indicated in Figure 2.7(a). To apply Bayes’ rule on
this model we perform the following calculations: (i) P(A,B) = P(A)P(B|A),
(ii) P(B) = }_, P(A,B), and (iii) P(A|B) = P(A,B)/P(B), whereby we obtain
an equivalent model shown in Figure 2.7(b). Thus, one way of interpreting the
application of Bayes’ rule is through so-called arc reversal. As the typical in-
ference task in probabilistic networks can be described as computing P(X]|e),
inference in probabilistic networks can be thought of as (repetitive) application
of Bayes’ rule or, in other words, as a sequence of arc reversals. Shachter (1990)
has exploited this view of inference in his arc reversal algorithm for inference in
probabilistic networks.
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Figure 2.7: Two equivalent models that can be obtained from each other through
arc reversal.

Example 21 (Arc reversal) Consider the model in Figure 2.8a, and assume
that we wish to calculate the posterior marginal distribution for X given evi-
dence, £z, on Z. Using Shachter’s arc reversal procedure we may proceed as
follows:

P(X|e) = m ZZP P(Y|X)P zmaZ)

ZZP P(Y,Z|X)E ) (2.14)
P(Y, Z|X)

;;P TPV ZIN ZPYZ\X ) (2.15)

2
2
(
(ggp P(Y|X, Z) (Z|X)£Z> (2.16)
(2
(2
(

="

= 1

I
=

= n|Y PXP(ZIX) EZZP Y|X, Z)> (2.17)

P(X)P(Z|X)E ) (2.18)

P(X)P(Z|X)
- P(X)P(Z|X)E 2.1
L s PxPzIX) Z Pzl ) (2.19)

P(XZ)P(Z)EZ> , (2.20)

where we combine P(Y|X) and P(Z[Y) into P(Y,Z|X) (2.14), use Bayes’ rule
to reverse Y — Z (2.15), which induces a new link X — Z (2.16), use the
distributive law (2.17), eliminate barren variable Y (2.18), and finally use Bayes’
rule to reverse X — Z (2.19). Now, if £z represent hard evidence (i.e., Z = z),
(2.20) reduces to

P(X|e) =P(X|Z = z),
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i.e., a simple look-up. ]

%%@% ==

(a) (b) (c) (c)

Figure 2.8: (a) Model for P(X,Y, Z). (b) Equivalent model obtained by reversing
Y — Z. (c) Equivalent model provided Y is barren. (d) Equivalent
model obtained by reversing X — Z.

We shall return to the arc reversal approach to inference in more detail in
Section 4.1.1 on page 94.

2.5 Bayes’ Factor

To calculate the relative support provided by an observation, Y = vy, for two
competing hypotheses, Hp : X = xo and H; : X = x;, the notion of Bayes’
factor is useful:

x1]y)
x1)

B — posterior odds ratio  P(xo|y)/P(
~ prior odds ratio ~ P(x0)/P(

P(xo0,y)/P(x1,4) _ P(xo0,y)/P

P(xo)/P(x1)  P(x1,y)/P

) Plylxo)  Lixoly).
)= Plyha)  Laly) &2

X0

——

X1

that is, the ratio of the likelihoods of the two hypotheses given the observation.
Bayes’ factor is also known as the Bayesian likelihood ratio.
From (2.21) we see that

B > 1 if the observation provides more support for Hy than for Hy,
B < 1 if the observation provides less support for Hy than for Hy, and

B =1 if the observation does not provide useful information for differentiating
between Hy and Hj.

Example 22 (Balls in An Urn, page 29) Let

Ho : The second ball drawn will be green: X, = green
H; : The second ball drawn will be blue: X, = blue
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be two competing hypotheses, and assume that the first ball drawn is blue (i.e.,
X7 = blue). Now, using the numbers calculated in Example 12 on page 31, we
get the Bayes’ factor

B— P(X; = green|X; = blue)/P(X; = blue|X; = blue) %/% 5

P(X; = green)/P(X; = blue) N /3 T

That is, since the posterior odds ratio (3/4) is greater than the prior odds ratio
(3/5), the observation provides more support for Ho than for Hy. Still, however,
the probability that H; is going to be true is greater than the probability that
Hy is going to be true, as P(Hg|X; = blue) = 3/9 and P(H;|X; = blue) =4/9. g

2.6 Independence

A variable X is independent of another variable Y with respect to a probability
distribution P if

P(x|y) = P(x), ¥x € dom(X), Vy € dom(Y). (2.22)

Using the standard notation introduced in Section 1.6 on page 19 we express
this property symbolically as X 1Lp Y, or simply as X 1L Y when P is obvious
from the context. Symmetry of independence (i.e., X 1L Y =Y U X) can be
verified from Bayes’ rule:

P(y[x)P(x)
P(y)

The statement X 1L Y is often referred to as marginal independence between X
and Y.
If X 1LY, then from the fundamental rule (2.10) and (2.22) we get that

P(x) =P(xly) = & Ply) =Plylx).

P(X,Y) =P(X|Y)P(Y) = P(X)P(Y), (2.23)
and, in general, whenever X, ..., X;, are pairwise independent random variables
their joint distribution equals the product of the marginals:

P(X1,...,. Xn) = [ [P(X0). (2.24)
i

A variable X is conditionally independent of Y given Z (with respect to a
probability distribution P) if

P(x|y,z) = P(x|z), Vx € dom(X), Yy € dom(Y), Vz € dom(Z). (2.25)
The conditional independence statement expressed in (2.25) is indicated as X 1L

Y|Z in our standard notation.
Again, from the fundamental rule and (2.25) we get

P(X,Y,Z) = P(X[Y,Z)P(Y,Z)
= PIXIY,Z)P(Y|Z)P(Z)
P(X|Z)P(Y|Z)P(Z).
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Example 23 (Conditional independence) Consider the Burglary or Earth-
quake example from page 10. With P(R|E) given as

|E=no E=yes

0.999 0.01
0.001 0.99

P(RIE) = R=no
R =yes

and P(A,E) = )  P(A, B, E) given as in Example 20 on page 41 we can compute
(A\E R) to be given as
P(A,E,R) (A E) (R\E)

PIAIER] = = BAER ~ T APA DPRIE) (2.26)

‘ R =no R = yes

E=no E=yes E=no E =yes

0.901 0.091 0.901 0.091
0.099  0.9209  0.099  0.909

A =no
A = yes

Obviously, P(A = a|lE = ¢,R = no) = P(A = a|E = e,R = yes) for each
pair (a,e) € {no,yes} x {no,yes} and thus P(A|E,R) = P(A|E), meaning that
A U p R|E, which also appears clearly in (2.26), as

P(A,E,R) =P(R|A,E)P(A,E) = P(R|E)P(A, E),

entailing this conditional independence assumption. ]

2.6.1 Independence and DAGs

Let P be a probability distribution over a set of variables Xy and let § = (V, E)
be a DAG. Then for each A,B,S C V, where ANB = {:

e G is a dependence map (or D-map) of P if
Xa llp Xg|Xs = A Lg B]IS, (227)

e G is an independence map (or I-map) of P if

Xa LpXglXs <= A lgB]|S, (2.28)

e Gis a perfect map of P if it is both a D-map and an I-map of P:
Xa dp Xg|Xs &= A Lg BJS. (2.29)

In other words, G is a D-map of P if any independence statement in P has a
corresponding irrelevance statement in G (see Section 1.6 on page 19). Note that
the empty graph (i.e., E = () is a D-map of any distribution over Xy. § is an
I-map of G if any irrelevance statement in § has a corresponding independence
statement in P. Note that the complete graph (i.e., E =V x V) is an I-map of
any distribution over Xy, .
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Example 24 Let X, Y, and Z be three variables for which X 1Lp Y|Z. Following
the ordering (X,Y,Z) and using the fundamental rule (see (2.10) on page 40)
twice yield

P(X,Y,Z) = P(X|Y,Z)P(Y|Z)P(Z).

Since X L p Y|Z, this can be simplified to
P(X,Y,Z) = P(X|Z)P(Y|Z)P(2). (2.30)
Similarly, following the orderings (X, Z,Y) and (Y, Z, X) we get, respectively,
P(X,Y,Z) = P(X|Z)P(Z|Y)P(Y) (2.31)

and
P(X,Y,Z) =P(Y|Z)P(Z|X)P(X). (2.32)

Factorizations (2.30)-(2.32) have graphical representations as shown in Fig-
ures 2.9a—c (cf. Section 2.2.2 on page 33). ]

$o g

Figure 2.9: Graphical representations of X ILp Y|Z, representing, respectively,
factorizations (2.30)—(2.32).

()

DAGs defined in terms of recursive factorizations of joint probability distri-
butions (for example, as those in Figures 2.9a—c) will always be perfect maps,
unless there are some regularities in the probability distributions that entails
additional independences (e.g., if for the model in (2.30) it holds true that
P(Y|zi) = P(Y|z;) for all i,j (i.e., Y 1Lp Z), then the DAG in Figure 2.9(a) is
not a perfect map of P). In general, however, if the independence statements
are provided as an arbitrary list of statements, it might only be possible to
represent a subset of them in a DAG, rendering the DAG an imperfect map.
That is, the DAG language is not rich enough to simultaneously capture all
sets of independence statements. To illustrate this fact, consider the following
example.

Example 25 Let P be a probability distribution over {X«, Xg, Xy, Xs} that en-
codes the following independence statements:

CID] : X(x J_Lp Xﬁ

CIDZ . Xoc J_Lp X5 HXB)XY}

CID3: Xp 1lp Xy [{Xq, X5},
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and let § = ({«, B,7v, 8}, E) be a DAG.

Let us try to identify the set of links of G such that it becomes a perfect map
of P. First, we can conclude that there must be links between each pair of nodes
except (&, B), (e, d), and (B,7y), as at least one independence statement has been
specified for each of the pairs {Xu, Xp}, {X«, X5}, and {Xp, X}, respectively.
A preliminary skeleton of the possible DAGs therefore appears as shown in
Figure 2.10a.

Recalling the d-separation criterion or the directed global Markov criterion
(see Section 1.6 on page 19) we see that for CID; to hold true there must be
a converging connection at y or . However, a converging connection at e.g. y
implies o« Lg &, violating the possibility of G to be an I-map of P, as o« Lg d #
Xo ALp Xs. To remedy that, we will have to include a link between o and 6.
Now, to ensure o« Lg f3, the links o« — & and 3 — & must meet head-to-head
at & (i.e., must converge at 8). The resulting DAG in Figure 2.10b is an I-map
of P but it is not a D-map of P because X« 1Lp X5 {Xp, Xy} 7% o Lg SI{B, V)
Similarly, the DAG in Figure 2.10c is an I-map of P but not a D-map, as
X[3 dp Xy ‘{Xomxé} 79/’ E‘ J—S YHO(» 6}

We conclude that there does not exist a perfect map of P — one would have
to settle with either the DAG in Figure 2.10b or the one in Figure 2.10c, which
are both I-maps of P but not D-maps. ]

ONORNO
() @( C? ®

) ()

Figure 2.10: (a) Preliminary skeleton for the independence statements of Ex-
ample 25. (b) Perfect map of {CIDq,CID3}. (c) Perfect map of
{CID;, CID;,}.

2.7 Chain Rule

For a probability distribution, P(X), over a set of variables X = {Xy,..., X},
we can use the fundamental rule repetitively to decompose it into a product of
conditional probability distributions:

P(X) = PXi[Xz,...,Xa)P(Xz,..., Xn)
= P(X1[Xz, ..., Xn)P(X2 X3, ..., Xn) -+ P(Xn—1 [P ) P(Xn)

P(Xi [ Xitr,.. o, Xa). (2.33)

I
'::
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Notice that the actual conditional distributions that comprise the factors
of the decomposition are determined by the order in which we select the head
variables of the conditional distributions. Thus, there are n factorial different
factorizations of P(X), and to each factorization corresponds a unique DAG,
but all of these DAGs are equivalent in terms of dependence and independence
properties, as they are all complete graphs, and hence represent no independence
statements.

Example 26 (Chain decomposition and DAGs) Let V ={«, 3,7V, 8} be a
set of nodes, and let P be a probability distribution defined over Xy. Then
P(Xy) factorizes as

P(Xv) = PX«, Xp,Xy,Xs) =P(X«lXp, Xy, Xs)P(Xp, Xy, Xs)
= PX«lXp, Xy, Xs)P(Xp Xy, Xs)P(Xy,Xs)
= PX«lXp, Xy, Xs)P(XplXy,X5)P(Xy [ Xs)P(Xs5) (2.34)
= P(Xp|Xa, Xy, X5)P(Xs X, Xy )P(Xy [ X )P(X) (2.35)

The DAGs corresponding to (2.34) and (2.35) appear in Figures 2.11a and 2.11b,
respectively. |

Figure 2.11: (a) DAG corresponding to decomposition (2.34). (b) DAG corre-
sponding to decomposition (2.35).

Assume that a DAG G is an I-map of P and that the order in which we
select the head variables of the conditional distributions in (2.33) respect a
topological ordering (Xy,,..., Xy, )¢ with respect to G: pa(vi) C {v1,...,vi_1}
for all i = 1,...,n (i.e., the parents of each variable are selected before the
variable itself). That is, the tail variables of the conditional distributions in
(2.33) always include the parents.

SFor notational convenience, we assume (without loss of generality) that vi,...,vn is a
topological ordering.
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It follows easily from the d-separation criterion or the directed Markov cri-
terion (see Section 1.6 on page 19) that for any node v of §, v Lg nd(v)|pa(v).”
Since § is an I-map of P, it follows that X, LLp nd(X,)|Xpa(v). Therefore, each
term P(Xy, [X,,,..., Xy, ) can be reduced to P(X,, [Xpa(v;)). The product (2.33)
then simplifies to the chain rule:

n

P(Xv) = [ P(Xo, I Xpagw))- (2.36)

i=1

Example 27 (Example 26 continued) Assume that the complete set of in-
dependence properties that P satisfies comprises Xg ILp X, [Xy and X, 1lp
Xs{Xg,Xy}. Then the DAG in Figure 2.12 is a perfect map of P. From the
chain rule we can therefore write the joint distribution as

P(Xv) = P(Xa)P(Xp [Xa)P(Xy [Xa)P(Xs | Xp, Xy ),

where the tail variables are exactly the set of parents for each head variable. g

Figure 2.12: Perfect map of a distribution P that encodes the independence
statements Xpg LLp X, | Xy and X LLp Xs[{Xp, Xy}

2.8 Summary

This chapter has provided an introduction to Bayesian probability theory and
made a connection between the notion of irrelevance in DAGs (d-separation) dis-
cussed in Chapter 1 and the concept of probabilistic independence, and shown
that, whenever a joint probability distribution (i.e., a probabilistic model) is
specified in terms of a product of lower-dimensional conditional distributions,
the associated DAG induced by this recursive factorization will be an I-map
(and also often a D-map) of the independence statements entailed by the joint
distribution. This is in fact how a probabilistic graphical model is almost al-
ways specified, namely as descriptions of local (causal) phenomena, where a

"This result is probably easiest to acknowledge from the directed Markov criterion: The
graph (Gan({viund(v)upa(v)))™ obviously excludes all descendants of v forcing all paths to v
to go through pa(v).
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domain expert provides assessments of cause-effect relations and their associ-
ated conditional probability distributions, encountering for the strengths of the
relations.

So, the problem mentioned in Section 2.6.1, where there might not always ex-
ist a perfect map of a probability distribution is seldomly a practical one. In the
rare cases, where a model is not given through a product of lower-dimensional
conditional distributions but rather is described in terms of a list of indepen-
dence statements of some (unknown) joint probability distribution such that
a perfect map does not exist, should one then go for a D-map, an I-map, or
some kind of compromise between the two? Fortunately, there is an easy an-
swer to this question. Since, namely, a probability distribution can always be
represented in a complete DAG and since a model encoding false independence
statements may produce false conclusions, one should always go for a DAG
with the least number of links that is an I-map (i.e., a minimal I-map) of the
distribution.

The Bayesian view of probabilities differentiates itself from the classical fre-
quentist view by considering probabilities as expressing subjective assessments
of belief rather than objective measures of asymptotic frequencies of events. In
a frequentist view of probabilities, for example, the probability that a coin will
land heads up can be established only through trials as the fraction of heads in
the limit of an infinite number of trials. In a Bayesian perspective such a prob-
ability can be established through a subjective assessment, reflecting a personal
degree of belief whether the event will occur.

Collectively, the use of the language of causality on the one hand and sub-
jective assessments of probabilities on the other to express strengths of causal
relations provide a strong paradigm for formulating models for reasoning under
uncertainty. In Chapter 3 we shall discuss the details of such models, and in
addition see how they can be augmented with decision variables and utility func-
tions for explicit representation and solution of sequential decision problems.



52

CHAPTER 2. PROBABILITIES



Chapter 3

Probabilistic Networks

In this chapter we introduce probabilistic networks for reasoning and decision
making under uncertainty.

Many real-life situations can be modeled as a domain of entities represented
as random variables in a probabilistic network. A probabilistic network is a
clever graphical representation of dependence and independence relations be-
tween random variables. A domain of random variables can, for instance, form
the basis of a decision support system to help decision makers identify the most
beneficial decision in a given situation.

A probabilistic network represents and processes probabilistic knowledge.
The representational components of a probabilistic network are a qualitative
and a quantitative component. The qualitative component encodes a set of
(conditional) dependence and independence statements among a set of random
variables, informational precedence, and preference relations. The statements of
(conditional) dependence and independence, information precedence, and pref-
erence relations are visually encoded using a graphical language. The quan-
titative component, on the other hand, specifies the strengths of dependence
relations using probability theory and preference relations using utility theory.

The graphical representation of a probabilistic network describes knowledge
of a problem domain in a precise manner. The graphical representation is in-
tuitive and easy to comprehend, making it an ideal tool for communication of
domain knowledge between experts, users, and systems. For these reasons, the
formalism of probabilistic networks is becoming an increasingly popular domain
knowledge representation for reasoning and decision making under uncertainty.

Since a probabilistic network consists of two components it is customary
to consider its constructions as a two phase process. The construction of the
qualitative component and subsequently the construction of the quantitative
component. The qualitative component defines the structure of the quantita-
tive component. As the first step, the qualitative structure of the model is
constructed using a graphical language. This step consists of identifying vari-
ables and relations between variables. As the second step, the parameters of
the quantitative part as defined by the qualitative part are assessed.

53
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In this book, we consider the subclass of probabilistic networks known as
Bayesian networks and influence diagrams. Bayesian networks and influence
diagrams are ideally suited knowledge representations for use in many situations
involving reasoning and decision making under uncertainty. These models are
often characterized as normative expert systems as they provide model-based
domain descriptions, where the model is reflecting properties of the problem
domain (rather than the domain expert) and probability calculus is used as the
calculus for uncertainty.

A Bayesian network model representation of a problem domain can be used
as the basis for performing inference and analyzes about the domain. Decision
options and utilities associated with these options can be incorporated explicitly
into the model, in which case the model becomes an influence diagram, capable
of computing expected utilities of all decision options given the information
known at the time of decision. Bayesian networks and influence diagrams are
applicable for a very large range of domain areas with inherent uncertainty

Section 3.1 considers Bayesian networks as probabilistic models for reason-
ing under uncertainty. We consider Bayesian network models containing dis-
crete variables only and models containing a mixture of continuous and discrete
variables. Section 3.2 considers influence diagrams as probabilistic networks
for decision making under uncertainty. The influence diagram is a Bayesian
network augmented with decision variables, informational precedence relations,
and preference relations. We consider influence diagram models containing dis-
crete variables only and models containing a mixture of continuous and discrete
variables. In Section 3.3 object-oriented probabilistic networks are considered.
An object-oriented probabilistic network is a flexible framework for building hi-
erarchical knowledge representations using the notions of classes and instances.

3.1 Reasoning Under Uncertainty

A probabilistic interaction model between a set of random variables may be
represented as a joint probability distribution. Considering the case where ran-
dom variables are discrete, it is obvious that the size of the joint probability
distribution will grow exponentially with the number of variables as the joint
distribution must contain one probability for each configuration of the random
variables. Therefore, we need a more compact representation for reasoning
about the state of large and complex systems involving a large number of vari-
ables.

To facilitate an efficient representation of a large and complex domain with
many random variables, the framework of Bayesian networks uses a graphical
representation to encode dependence and independence relations among the ran-
dom variables. The dependence and independence relations induce a compact
representation of the joint probability distribution. By representing the depen-
dence and independence relations of a domain explicitly in a graph, a compact
representation of the dependence and independence relations is obtained.
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3.1.1 Discrete Bayesian Networks

A (discrete) Bayesian network, N = (X, G, P), over variables, X, consists of an
acyclic, directed graph § = (V,E) and a set of conditional probability distri-
butions P. Each node v in G corresponds one-to-one with a discrete random
variable X,, € X with a finite set of mutually exclusive states. The directed
links E C V x V of G specify assumptions of conditional dependence and inde-
pendence between random variables according to the d-separation criterion (see
Definition 4 on page 21).

There is a conditional probability distribution, P(X,|[Xpa(v)) € P, for each
variable X,, € X. The set of variables represented by the parents, pa(v), of v e V
in § = (V,E) are sometimes called the conditioning variables of X, — the
conditioned variable.

Definition 1 (Jensen 2001) A (discrete) Bayesian network N = (X, G, P) con-
sists of

e A DAG G = (V,E) with nodes V ={vq,...,vn} and directed links E.
e A set of discrete random variables, X, represented by the nodes of G.

e A set of conditional probability distributions, P, containing one distribu-
tion, P(X, [Xpa(v)), for each random variable X,, € X.

A Bayesian network encodes a joint probability distribution over a set of
random variables, X, of a problem domain. The set of conditional probability
distributions, P, specifies a multiplicative factorization of the joint probability
distribution over X as represented by the chain rule of Bayesian networks (see
Section 2.7 on page 48):

P(X) = [ [ P(X Xparw)- (3.1)

vev

Even though the joint probability distribution specified by a Bayesian net-
work is defined in terms of conditional independence, a Bayesian network is most
often constructed using the notion of cause-effect relations, see Section 1.5. In
practice, cause-effect relations between entities of a problem domain can be
represented in a Bayesian network using a graph of nodes representing ran-
dom variables and links representing cause-effect relations between the entities.
Usually, the construction of a Bayesian network (or any probabilistic network
for that matter) proceeds according to an iterative procedure where the set of
nodes and their states, and the set of links are updated iteratively as the model
becomes more and more refined.

To solve a Bayesian network N = (X,§,P) is to compute all posterior
marginals given a set of evidence ¢, i.e., P(X|e) for all X € X. If the evi-

dence set is empty, i.e., ¢ = (), then the task is to compute all prior marginals,
i.e., P(X) for all X € X.
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Example 28 (Apple Jack (Madsen & Nielsen 1996)) Consider the small
orchard belonging to Jack Fletcher (let’s call him Apple Jack). One day Apple
Jack discovers that his finest apple tree is loosing its leaves. Apple Jack wants
to know why this is happening. He knows that if the tree is dry (for instance,
caused by a drought) there is no mystery as it is very common for trees to loose
their leaves during a drought. On the other hand, the loss of leaves can be an
indication of a disease.

Figure 3.1: The Apple Jack network.

The qualitative knowledge about the cause-effect relations of this situation
can be modeled by the DAG G shown in Figure 3.1. The graph consists of three
nodes: Sick, Dry, and Looses that represent variables of the same names. Each
variable may be in one of two states: no and yes, i.e., dom(Dry) = dom(Looses) =
dom(Sick) = {no,yes}. The variable Sick tells us that the apple tree is sick by
being in state yes. Otherwise, it will be in state no. The variables Dry and Looses
tell us whether or not the tree is dry and whether or not the tree is loosing its
leaves, respectively.

The graph, G, shown in Figure 3.1 models the cause-effect relations between
variables Sick and Looses as well as between Dry and Looses. This is represented
by the two (causal) links (Sick,Looses) and (Dry,Looses). In this way Sick
and Dry are common causes of the effect Looses.

Let us return to the discussion of causality considered previously in Sec-
tion 1.5. When there is a causal dependence relation going from a variable A to
another variable B, we expect that when A is in a certain state this has an im-
pact on the state of B. One should be careful when modeling causal dependence
relations in a Bayesian network. Sometimes it is not quite obvious in which
direction a link should point. In the Apple Jack example, we say that there is a
causal impact from Sick on Looses, because when a tree is sick this might cause
the tree to loose its leaves. Why can we not say that when the tree looses its
leaves it might be sick and turn the link in the other direction? The reason is
that it is the sickness that causes the tree to loose its leaves and not the lost
leaves that causes the sickness.

Figure 3.1 shows the graphical representation of the Bayesian network model.
This is referred to as the qualitative representation. To have a complete Bayesian
network, we need to specify the quantitative representation. Recall that each
variable has two states no and yes.
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L
D S no yes

no no | 0.98 0.02
no yes | 0.1 0.9
yes no | 0.15 0.85
yes yes | 0.05 0.95

Table 3.1: The conditional probability distribution P(L|D,S).

The quantitative representation of a Bayesian network is the set of condi-
tional probability distributions, P, defined by the structure of §. Table 3.1
shows the conditional probability distribution of Looses given Sick and Dry,
i.e., P(Looses|Dry,Sick). For variables Sick and Dry we assume that P(S) =
(0.9,0.1) and P(D) = (0.9,0.1) (we use D as short for Dry, S as short for Sick,
and L as short for Looses).

Note that all distributions specify the probability of a variable being in a spe-
cific state depending on the configuration of its parent variables, but since Sick
and Dry do not have any parent variables, their distributions are marginal dis-
tributions.

The model may be used to compute all prior marginals and the posterior
distribution of each non-evidence variable given evidence in the form of obser-
vations on a subset of the variables in the model. The priors for D and S equals
the specified marginal distributions, i.e., P(D) = P(S) = (0.9,0.1), while the
prior distribution for L is computed through combination of the distributions
specified for the three variables, followed by marginalization, where variables D
and S are marginalized out. This yields P(L) = (0.82,0.18) (see Example 17 on
page 36 for details on combination and marginalization). Following a simi-
lar procedure, the posteriors of D and S given L = yes can be computed to
be P(D|L = yes) = (0.53,0.47) and P(S|L = yes) = (0.51,0.49). Thus, ac-
cording to the model the tree being sick is the most likely cause of the loss of
leaves. ]

The specification of a conditional probability distribution P(X,|Xya(v)) can
be a labor intensive knowledge acquisition task as the number of parameters
grows exponentially with the size of dom(Xg,(y)), where fa(v) = pa(v) U {v}.
Different techniques can be used to simplify the knowledge acquisition task,
assumptions can be made, or the parameters can be estimated from data.

The complexity of a Bayesian network is defined in terms of the family fa(v)
with the largest state space size || Xga(v)| = |[dom(Xga(v))|. As the state space
size of a family of variables grows exponentially with the size of the family, we
seek to reduce the size of the parent sets to a minimum. Another useful measure
of the complexity of a Bayesian network is the number of cycles and the length
of cycles in its graph.
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Definition 2 A Bayesian network N = (X, G, P) is minimal if and only if, for
every variable X, € X and for every parent Y € Xy,(y), Xy is not independent
of Y given Xpa(v) \ {Y].

Definition 2 says that the parent set Xp,(,) of X, should be limited to the
set of variables with a direct impact on X,,.

Example 29 (Chest Clinic (Lauritzen & Spiegelhalter 1988)) A physi-
cian at a chest clinic wants to diagnose her patients with respect to three dis-
eases based on observations of symptoms and possible causes of the diseases.
The fictitious qualitative medical knowledge is the following.

The physician is trying to diagnose a patient who may be suffering from one
or more of tuberculosis, lung cancer, or bronchitis. Shortness-of-breath (dysp-
noea) may be due to tuberculosis, lung cancer, bronchitis, none of them, or more
than one of them. A recent visit to Asia increases the chances of tuberculosis,
while smoking is known to be a risk factor for both lung cancer and bronchitis.
The results of a single chest X-ray do not discriminate between lung cancer and
tuberculosis, as neither does the presence or absence of dyspnoea.

From the description of the situation it is clear that there are three possi-
ble diseases to consider (lung cancer, tuberculosis, and bronchitis). The three
diseases produce three variables Tuberculosis (T), Cancer (L), and Bronchitis (B)
with states no and yes. These variables are the targets of the reasoning and
may, for this reason, be referred to as hypothesis variables. The diseases may
be manifested in two symptoms (results of the X-ray and shortness-of-breath).
The two symptoms produce two variables X_ray (X), and Dyspnoea (D) with
states no and yes. In addition, there are two causes or risk factors (smoking
and a visit to Asia) to consider. The two risk factors produce variables Asia (A)
and Smoker (S) with states no and yes

Tuberculosis
Tub_or_cancer

Figure 3.2: A graph specifying the independence and dependence relations of
the Asia example.

An acyclic, directed graph, G, encoding the above medical qualitative knowl-
edge is shown in Figure 3.2, where the variable Tub_or_cancer (E) is a mediating
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P(L|S) S=no S=yes P(BI|S) S=no S=vyes

L=no 0.99 0.9 B =no 0.7 0.4
L =yes 0.01 0.1 B =yes 0.3 0.6

P(TIA) | A=no A =yes P(X|E) | E=no E =yes

T=no 0.99 0.95 X =no 0.95 0.02
T = yes 0.01 0.05 X =yes 0.05 0.98

Table 3.2: The conditional probability distributions P(L|S), P(B|S), P(T|A),
and P(X|E).

variable specifying whether or not the patient has tuberculosis or lung cancer
(or both).

Using the structure of §, we may perform an analysis of dependence and
independence properties between variables in order to ensure that the qualitative
structure encodes the domain knowledge correctly. This analysis would be based
on an application of the d-separation criterion.

Figure 3.2 on the facing page only presents the qualitative structure § (and
the variables) of N = (X,§,P). In order to have a fully specified Bayesian
network, it is necessary to specify the quantitative part, P, too.

The quantitative domain knowledge is specified in the following set of (con-
ditional) probability distributions P(A) = (0.99,0.01), P(S) = (0.5,0.5), and
the remaining conditional probability distributions, except P(E|L, T), shown in
Tables 3.2 and 3.3.

The conditional probability table of the random variable E can be generated
from a mathematical expression. From our domain knowledge of the diagnosis
problem we know that E represents the disjunction of L and T. That is, E
represents whether or not the patient has tuberculosis or lung cancer. From this
we can express E as E = TV L. This produces the conditional probability P(E =
yes|L =1, T =t) = 1 whenever 1 or t is yes.

B =no B = yes
E=no E=yes E=no E=yes
D =no 0.9 0.3 0.2 0.1
D =yes 0.3 0.7 0.8 0.9

Table 3.3: The conditional probability distribution P(D|B,E).

Using the Bayesian network model just developed, we may compute the
posterior probability of the three diseases given various subsets of evidence on
the causes and symptoms as shown in Table 3.4 on the next page. ]
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€ ‘ P(B =vyes|e) P(L=yesle) P(T=yes|e)
0 0.45 0.055 0.01
{S = yes} 0.6 0.1 0.01
{S = yes, D = yes} 0.88 0.15 0.015
{S = yes, D = yes, X = yes} 0.71 0.72 0.08

Table 3.4: Posterior distributions of the disease variables given various evidence
scenarios.

3.1.2 Linear Conditional Gaussian Bayesian Networks

Up until now, we have considered Bayesian networks over discrete random vari-
ables only. However, there are many reasons for extending our considerations to
include continuous variables. In this section we will consider Bayesian networks
consisting of both continuous and discrete variables. For reasons to become
clear later, we restrict our attention to the case of linear conditional Gaussian
(also known as Normal) distributions and the case of linear conditional Gaussian
Bayesian networks. We refer to a linear conditional Gaussian Bayesian network
as an LCG Bayesian network.

An LCG Bayesian network N = (X, G, P, F) consists of an acyclic, directed
graph § = (V,E), a set of conditional probability distributions P, and a set
of density functions F. There will be one conditional probability distribution
for each discrete random variable X of X and one density function for each
continuous random variable Y of X.

An LCG Bayesian network specifies a distribution over a mixture of dis-
crete and continuous variables (Lauritzen 1992, Lauritzen & Jensen 2001). The
variables, X, are partitioned into the set of continuous variables, X, and the
set of discrete variables, Xa. Each node of G represents either a discrete ran-
dom variable with a finite set of mutually exclusive and exhaustive states or
a continuous random variable with a linear conditional Gaussian distribution
conditional on the configuration of its discrete parent variables. This implies
an important constraint on the structure of §, namely that a discrete random
variable X, may only have discrete parents, i.e., Xpa(v) € Xa for any X, € Xa.

Any Gaussian distribution function can be specified by its mean and vari-
ance parameter. As mentioned above, we consider the case where a continu-
ous random variable can have a single Gaussian distribution function for each
configuration of its discrete parent variables. If a continuous variable has one
or more continuous variables as parents, the mean may depend linearly on the
state of the continuous parent variables. Continuous parent variables of discrete
variables are disallowed.

A random variable, X, has a continuous distribution if there exists a non-
negative function p, defined on the real line, such that for any interval J:

P(Xe ) = Lp(x)dx,
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where the function p is the probability density function of X (DeGroot 1986).
The probability density function of a Gaussian (or Normal) distributed vari-
able, X, with a mean value, p, and a positive variance, a2, is (i.e., X ~ N(y, o?)
or L(X) = N(y, %))

plx;p,0%) =N(p,0?) =

L [_M]
(2m02) 202 |’

where x € R.
A continuous random variable, X, has a linear conditional Gaussian distri-

bution (or LCG distribution), conditional on the configuration of the parent
variables (Z C X, 1 C XA) if

L(X|Z=2,1=1) =N(A(i) +B(i)'z,C(1)), (3-2)

where A is a table of mean values (one value for each configuration i of the dis-
crete parent variables I), B is a table of regression coefficient vectors (one vector
for each configuration i of I with one regression coefficient for each continuous
parent variable), and C is a table of variances (one for each configuration i of I).
Notice that the mean value A(i) + B(i)Tz of X depends linearly on the values
of the continuous parent variables Z, while the variance is independent of Z.
We allow for the situation where the variance is zero such that deterministic
relations between continuous variables can be represented.

The quantitative part of an LCG Bayesian network consists of a conditional
probability distribution for each X € XA and a conditional Gaussian distribution
for each X € Xr. For each X € X with discrete parents, I, and continuous par-
ents, Z, we need to specify a one-dimensional Gaussian probability distribution
for each configuration i of I as shown in (3.2).

Definition 3 An LCG Bayesian network N = (X, G, P, F) consists of
e A DAG G = (V,E) with nodes V and directed links E.
e A set of random variables, X, represented by the nodes of G.

e A set of conditional probability distributions, P, containing one distribu-
tion, P(X, [ Xpa(v)), for each discrete random variable X,,.

e A set of conditional-linear Gaussian probability density functions, F, con-
taining one density function, p(Y,[Xpa(v)), for each continuous random
variable Y,,.

The joint distribution over all the variables in an LCG Bayesian network has
the form P(Xa = 1) %Ny (1(i), 02 (1)), where Ny (i, 02) denotes a k-dimensional
Gaussian distribution. The chain rule of LCG Bayesian networks is

P(Xa =1) *Nix (1), 0* (@) = [ Plivlipar) * [T pw Xpaiw),

vEVa weVr
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for each configuration i of Xa.
In the graphical representation of an LCG Bayesian network, continuous
variables are represented by double ovals.

Example 30 Figure 3.3 shows an example of the qualitative specification of
an LCG Bayesian network, N, with three variables, i.e., X = {X7,X2, X3},
where Xa = {X7} and Xr = {X3, X3}. Hence, N consists of a continuous random
variable X3 having one discrete random variable X; (binary with states F and T)
and one continuous random variable X; as parents.

ONN O,

Figure 3.3: LCG Bayesian network with X; discrete, and X; and X3 continuous.

To complete the model, we need to specify the relevant conditional proba-
bility distribution and density functions. The quantitative specification could,
for instance, consist of the following linear conditional Gaussian distribution
functions for X3

L(X3|F,x2) = N(-5+4(—2xx2),1.1)
L(X3]T,x2) = N5+ (2xx2),1.2).

The quantitative specification is completed by letting X, have a standard
Normal distribution (i.e., X ~ N(0,1)) and P(X;) = (0.75,0.25).

The qualitative and quantitative specifications complete the specification
of N. The joint distribution induced by N is

P(Xy =F) *p(Xz2,X3) =0.75 N (<_05> ’ (110 5]2» ’

P(X; =T)*p(Xz2,X3) =0.25*% N ((g) ' (1]0 51%>) '

Determining the joint distribution induced by N requires a series of nontriv-
ial computations. We refer the reader to the next chapter for a brief treatment
of inference in LCG Bayesian networks. A detailed treatment of these compu-
tations is beyond the scope of this book.

Example 31 (Adapted from Lauritzen, S. L. (1992)) Consider a banker who
is monitoring her clients in order to limit future loss from each client account.
The task of the banker is to identify clients who may have problems repaying
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their loans by predicting potential future loss originating from each individual
customer based on demographic information and credit limit.

Figure 3.4 shows a simple LCG Bayesian network model for this scenario.
Loss is a linear function of variables Income (I) given variable WillToPay (W).
CreditLimit (C) is a linear function of Income given Housing (H) and MaritalStatus
(M). In addition MaritalStatus is also a causal factor of Housing and WillToPay,
while Profession and Employment are causal factors of Income.

Profession

Housing

MaritalStatus

Figure 3.4: LCG Bayesian network for credit account management.

With the model, the banker may enter observations on each client and com-
pute an expected loss for that client. The model may be extended to include
various risk indicators and controls in order to facilitate a scenario-based anal-
ysis on each client. ]

The reason for restricting our attention to the case of linear conditional
Gaussian distributions is that only for this case is exact probabilistic inference
feasible by local computations. For most other cases it is necessary to resort to
approximate reasoning.

3.2 Decision Making Under Uncertainty

The framework of influence diagrams (Howard & Matheson 1981) is an effec-
tive modeling framework for representation and analysis of (Bayesian) decision
making under uncertainty. Influence diagrams provide a natural representation
for capturing the semantics of decision making with a minimum of clutter and
confusion for the decision maker (Shachter & Peot 1992). Solving a decision
problem amounts to (i) determining an optimal strategy that maximizes the ex-
pected utility for the decision maker and (ii) computing the maximal expected
utility of adhering to this strategy.

An influence diagram is a type of causal model that differs from a Bayesian
network. A Bayesian network is a model for reasoning under uncertainty,
whereas an influence diagram is a probabilistic network for reasoning about
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decision making under uncertainty. An influence diagram is a graphical repre-
sentation of a decision problem involving a sequence of interleaved decisions and
observations. Similar to Bayesian networks, an influence diagram is a compact
and intuitive probabilistic knowledge representation (a probabilistic network).
It consists of a graphical representation describing dependence relations between
entities of a problem domain, points in time where a decision is to be made,
and a precedence ordering specifying the order on decisions and observations.
It also consists of a quantification of the strengths of the dependence relations
and the preferences of the decision maker. As such, an influence diagram can
be considered as a Bayesian network augmented with decision variables, utility
functions specifying the preferences of the decision maker, and a precedence
ordering.

As decision makers we are interested in making the best possible decisions
given our model of the problem domain. Therefore, we associate utilities with
state configurations of the network. These utilities are represented by utility
functions (also known as wvalue functions). Each utility function associates a
utility value with each configuration of its domain variables. The objective of
decision analysis is to identify the decision options that produce the highest
expected utility.

By making decisions, we influence the probabilities of the configurations of
the network. To identify the decision option with the highest expected utility,
we compute the expected utility of each decision alternative. If A is a decision
variable with options aq,..., a;m, His a hypothesis with states hy,...,h,;, and ¢
is a set of observations in the form of evidence, then we can compute the utility
of each outcome of the hypothesis and the expected utility of each action. The
utility of an outcome (ay, h;) is U(ay, h;j) where U(+) is our utility function. The
expected utility of performing action a; is

EU(ai) = ) U(as, hy)P(hyle),
j

where P(-) represents our belief in H given €. The utility function U(-) encodes
the preferences of the decision maker on a numerical scale.

We shall choose the alternative with the highest expected utility; this is
known as the maximum expected utility principle. Choosing the action, which
maximizes the expected utility amounts to selecting an option a* such that

a* = argmax EU(a).
acA

There is an important difference between observations and actions. An ob-
servation of an event is passive in the sense that we assume that an observation
does not effect the state of the world whereas the decision on an action is active
in the sense that an action enforces a certain event. The event enforced by a
decision may or may not be included in the model depending on whether or not
the event is relevant for the reasoning. If the event enforced by an action A
is represented in our model, then A is referred to as an intervening action,
otherwise it is referred to as a non-intervening action.
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3.2.1 Discrete Influence Diagrams

A (discrete) influence diagram N = (X, G, P,U) is a four-tuple consisting of a
set, X, of discrete random variables and discrete decision variables, an acyclic,
directed graph G, a set of conditional probability distributions P, and a set of
utility functions U. The acyclic, directed graph, § = (V,E), contains nodes
representing random variables, decision variables, and utility functions (also
known as value or utility nodes).

Each decision variable, D, represents a specific point in time under the model
of the problem domain where the decision maker has to make a decision. The
decision options or alternatives are the states (dq,...,dn) of D where n = ||D|.
The decision options are mutually exclusive and exhaustive. The usefulness
of each decision option is measured by the local utility functions associated
with D or one of its descendants in §. Each local utility function w(Xpan) € U,
where v € Vy, is a utility node, represents an additive contribution to the total
utility function w(X) in N. Thus, the total utility function is the sum of all the
utility functions in the influence diagram, i.e., w(X) = Zvevu W(Xpa(v))-

Definition 4 A (discrete) influence diagram N = (X, G, P,U) consists of

e A DAG § = (V,E) with nodes, V, and directed links, E, encoding de-
pendence relations and information precedence including a total order on
decisions.

e A set of discrete random variables, X ¢, and discrete decision variables, Xp,
such that X = X¢ U Xp represented by nodes of §G.

e A set of conditional probability distributions, P, containing one distribu-
tion, P(X, [Xpa(v)), for each discrete random variable X,,.

o A set of utility functions, U, containing one utility function, w(Xpa(y)), for
each node v in the subset Vi C V of utility nodes.

An influence diagram supports the representation and solution of sequential
decision problems with multiple local utility functions under the no-forgetting
assumption (i.e., perfect recall is assumed of all observations and decisions made
in the past).

An influence diagram, N = (X, G, P,U), should be constructed such that
one can determine exactly which variables are known prior to making each
decision. If the state of a variable X,, € X¢ will be known at the time of making
a decision D,, € Xp, this will (probably) have an impact on the choice of
alternative at D. An observation on X,, made prior to decision D,, is represented
in N by making v a parent of w in §. If v is a parent of w in § = (V,E) (i.e.,
(v,w) € E, implying X, € Xpa(w)), then it is assumed that X, is observed prior
to making the decision represented by D,,. The link (v,w) is then referred to
as an informational link.

In an influence diagram there must also be a total order on the decision
variables Xp = {D1,...,Dy} € X. That is, there can be only one sequence in
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which the decisions are made. We add informational links to specify a total
order (D1,...,Dy) on Xp ={Dq,...,Du}. There need only be a directed path
from one decision variable to the next one in the decision sequence in order to
enforce a total order on the decisions.

In short, a link, (w,v), into a node representing a random variable, X,,
denotes a possible probabilistic dependence relation of X, on Y,, while a link
from a node representing a variable, X, into a node representing a decision
variable, D, denotes that the state of X is known when decision D is to be
made. A link, (w,v), into a node representing a local utility function, u, denotes
functional dependence of u on X,, € X.

The chain rule of influence diagrams is

EUX) = J] PG IXpan)) D wXpagw))-

XyE€Xc weVy

An influence diagram is a compact representation of a joint expected utility
function.

In the graphical representation of an influence diagram, utility functions are
represented by rhombuses (diamond shaped nodes), whereas decision variables
are represented as rectangles.

Example 32 (Oil Wildcatter (Raiffa 1968)) Consider the fictitious exam-
ple of an Oil Wildcatter about to decide whether or not to drill for oil at a
specific site. The situation of the Oil Wildcatter is the following.

An oil wildcatter must decide either to drill or not to drill. He is uncertain
whether the hole will be dry, wet, or soaking. The wildcatter could take seismic
soundings that will help determine the geological structure of the site. The
soundings will give a closed reflection pattern (indication of much oil), an open
pattern (indication of some oil), or a diffuse pattern (almost no hope of oil).

The qualitative domain knowledge extracted from the above description
can be formulated as the DAG shown in Figure 3.5. The state spaces of the
variables are as follows dom(Drill) = {no,yes}, dom(Qil) = {dry, wet, soaking},
dom(Seismic) = {closed, open, diffuse}, and dom(Test) = {no, yes}.

Figure 3.5: The Oil Wildcatter network.

Figure 3.5 shows how the qualitative knowledge of the example can be com-
pactly specified in the structure of an influence diagram N = (X, G, P, U).
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The quantitative probabilistic knowledge as defined by the structure of §
consists of P(Qil) and P(Seismic|Qil, Test), while the quantitative utility knowl-
edge consists of Uj(Test) and U, (Drill, Qil).

The cost of testing is 10k whereas the cost of drilling is 70k. The utility
of drilling is 0k, 120k, and 270k for a dry, wet, and soaking hole, respectively.
Hence, U (Test) = (0,—10) and U, (Drill = yes, Qil) = (—70,50,200). The test
result Seismic depends on the amount of oil Oil as specified in Table 3.5. The
prior belief of the Oil Wildcatter on the amount of oil at the site is P(Qil) =
(0.5,0.3,0.2).

Seismic
Oil diffuse open closed

dry 0.6 0.3 0.1
wet 0.3 0.4 0.3
soaking 0.1 0.4 0.5

Table 3.5: The conditional probability distribution P(Seismic|Qil, Test = yes).

This produces a completely specified influence diagram representation of the
Oil Wildcatter decision problem. The decision strategy of the Oil Wildcatter
will be considered in Example 34 on page 69. ]

As a consequence of the total order on decisions and the set of informational
links, the set of discrete random variables and decision variables are subjected
to a partial ordering. The random variables are partitioned into disjoint infor-
mation sets Jo, ...,y (i.e., JiNJ; = O for i # j) relative to the decision variables
specifying the precedence order. The partition induces a partial ordering , <, on
the variables X. The set of variables observed between decisions D; and Dj4
precedes Di 1 and succeeds Dj in the ordering

Jo <Dy <71 <--- <Dy <Jn,

where Jg is the set of discrete random variables observed before the first deci-
sion, J; is the set of discrete random variables observed after making decision D;
and before making decision Dy 1, for all i = 1,...,n — 1, and J;; is the set of
discrete random variables never observed or observed after the last decision Dy,
has been made. If the influence diagram is not constructed or used according to
this constraint, the computed expected utilities will (of course) not be correct.

Example 33 The total order on decisions and the informational links of Ex-
ample 32 on the facing page induce the following partial order:

{} < Test < {Seismic} < Drill < {Qil}.

This partial order turns out to be a total order. In general, this is not the case.
The total order specifies the flow of information in the decision problem. No
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observations are made prior to the decision on whether or not to Test. After
testing and before deciding on whether or not to Drill, the oil wildcatter will
make an observation on Seismic, i.e. the test result is available before the Drill
decision. After drilling Oil is observed. ]

To solve an influence diagram N = (X, G, P, U) with decision variables, Xp, is
to identify an optimal strategy, A, over Xp maximizing the expected utility for
the decision maker and to compute the mazimum expected utility MEU( A) of A.
A strategy, A, is an ordered set of decision policies A = (81, ..., 8, ) including one
decision policy for each decision D € Xp. An optimal strategy A = (81,...,8,),
maximizes the expected utility over all possible strategies, i.e., it satisfies

EU(A) > EU(A),

for all strategies A.
The decision history of Dy, denoted H (D), is the set of previous decisions
and their parent variables

i—1

i-2
:}C(Dl) = U({DJ}UXpa(VJ)) :{D1)'-')Dif]}u U j)?
j=1 =0

where vj is denoting the node that represents Dj.
The decision past of Dj, denoted J(Dj), is the set of its parent variables and
the decision history H(Dj)

IDi) = Xpa) UH(Dy)
i1

= Xpaivi) U (J D5} U Xpap;))
i=1

i—1
= {Dy,....,Diq}uJ3.
j=1

Hence, J(Dy) \ H(D;) = Ji_7 are the variables observed between Dj_;
and D;.
The decision future of Dy, denoted F(D;) is the set of its descendant variables

n

Jyu U ({Dj}uxpa(w))

j=i41

F(Dy)

= (Disr,.., DubU

A policy d; is a mapping from the information set J(D;) of D; to the state
space dom(Dj) of Dj such that ; : J(Di) — dom(D;). A policy for decision D
specifies the optimal action for the decision maker for all possible observations
made prior to making decision D.
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It is only necessary to consider &; as a function from relevant observations
on J(Di) to dom(Dy), i.e., observations with an unblocked path to a utility
descendant of Dj. Relevance of an observation with respect to a decision is
defined in Section 3.2.3 on page 78.

Example 34 After solving the influence diagram, we obtain an optimal strat-
egy A= {STest,SD,m}. Hence, the optimal strategy A (we show how to identify
the optimal strategy for this example in Example 54 on page 107) consists of a
policy STest for Test and a policy SDH“ for Drill given Test and Seismic

6Test = Yyes

yes Seismic = closed, Test = no
yes Seismic = open, Test = no
o .. es Seismic = diffuse, Test = no
dprin(Seismic, Test) = y T ’
yes Seismic = closed, Test = yes

yes Seismic = open, Test = yes

no Seismic = diffuse, Test = yes

The policy for Test says that we should always test, while the policy for Drill
says that we should not drill only when the test produces a diffuse pattern
indicating almost no hope of oil. ]

An intervening decision D of an influence diagram is a decision that may
impact the value of another variable X represented in the model. In order
for D to potentially impact the value of X, X must be a descendant of D in G.
This can be realized by considering the d-separation criterion (consider the
information blocking properties of the converging connection) and the set of
evidence available when making the decision D. Consider, for instance, the
influence diagram shown in Figure 3.5. The decision Test is an intervening
decision as it impacts the value of Seismic. It cannot, however, impact the value
of Qil as Qil is a non-descendant of Test and we have no down-stream evidence
when making the decision on Test. Since decision D may only have a potential
impact on its descendants, the usefulness of D can only be measured by the
utility descendants of D.

A total ordering on the decision variables is usually assumed. This assump-
tion can, however, be relaxed. Nielsen & Jensen (1999) describe when decision
problems with only a partial ordering on the decision variables are well-defined.
In addition, the limited memory influence diagram (Lauritzen & Nilsson 2001)
and the unconstrained influence diagram (Vomlelovd & Jensen 2002) support
the use of unordered decision variables.

Example 35 (Apple Jack) We consider once again the problems of Apple
Jack from Example 28 on page 56. A Bayesian network for reasoning about the
causes of the apple tree loosing its leaves was shown in Figure 3.1 on page 56.
We continue the example by assuming that Apple Jack wants to decide
whether or not to invest resources in giving the tree some treatment against a
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possible disease. Since this involves a decision through time, we have to extend
the Bayesian network to capture the impact of the treatment on the development
of the disease. We first add three variables similar to those already in the
network. The new variables Sick™, Dry*, and Looses™ correspond to the original
variables, except that they represent the situation at the time of harvest. These
variables have been added in Figure 3.6.

Dry >( Dry*

Sick >@S

Figure 3.6: We model the system at two different points in time (before and
after a decision) by replicating the structure.

The additional variables have the same states as the original variables: Sick™,
Dry*, and Looses™ all have states no and yes. In the extended model, we expect
a causal influence from the original Sick variable on the Sick™ variable and from
the original Dry variable on the Dry* variable. The reason is the following. If,
for example, we expect the tree to be sick now, then this is also very likely to
be the case in the future and especially at the time of harvest. Of course, the
strength of the influence depends on how far out in the future we look. Perhaps
one could also have a causal influence from Looses on Looses™, but we have
chosen not to model such a possible dependence relation in this model.

Dry >( Dry”
CLooss>
Sick >(_Sick”

Figure 3.7: Addition of a decision variable for treatment to the Bayesian network
in Figure 3.6.

Apple Jack may try to heal the tree with a treatment to get rid of the possible
disease. If he expects that the loss of leaves is caused by drought, he might save
his money and just wait for rain. The action of giving the tree a treatment is
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Sick*

Treat Sick | no yes
no no 0.98 0.02
no yes | 0.01 0.99

yes no 0.92 0.01
yes yes 0.8 0.2

Table 3.6: The conditional probability distribution P(Sick™ | Treat, Sick).

now added as a decision variable to the Bayesian network, which will then no
longer be a Bayesian network. Instead it becomes the influence diagram shown
in Figure 3.7 on the facing page.

The treat decision variable has the states no and yes. There is a causal
link (Treat, Sick™) from the decision Treat to Sick™ as we expect the treatment to
have a causal impact on the future health of the tree. There is an informational
link from Looses to Treat as we expect Apple Jack to observe whether or not
the apple tree is loosing its leaves prior to making the decision on treatment.

We need to specify the utility functions enabling us to compute the expected
utility of the decision options. This is done by adding utility functions to the
influence diagram. Each utility function will represent a term of an additively
decomposing utility function and each term will contribute to the total utility.
The utility functions are shown in Figure 3.8.

Dry >( Dry*

Figure 3.8: A complete qualitative representation of the influence diagram used
for decision making in Apple Jack’s orchard.

The utility function C specifies the cost of the treatment while utility func-
tion H specifies the gain of the harvest. The latter depends on the state of Sick™,
indicating that the production of apples depends on the health of the tree.

Figure 3.8 shows the complete qualitative representation of the influence di-
agram N = (X,G,P,U). To complete the quantitative representation as well,
we need to specify the conditional probability distributions, P, and utility func-
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Dry*
Dry | no yes
no | 095 0.05
yes | 0.4 0.6

Table 3.7: The conditional probability distribution P(Dry™|Dry).

Looses™
Dry* Sick® | no  yes

no no 0.98 0.02
no yes 0.1 0.9
yes no 0.15 0.85
yes yes 0.05 0.95

Table 3.8: The conditional probability distribution P(Looses™|Dry™, Sick™).

tions, U, of N. Recall that a decision variable does not have any distribution.
The appropriate probability distributions are specified in Tables 3.6 — 3.8.

If we have a healthy tree (Sick® is in state no), then Apple Jack will get an
income of EUR 200, while if the tree is sick (Sick™ is in state yes) his income
is only EUR 30, i.e., H(Sick™) = (200,30). To treat the tree, he has to spend
EUR 80, i.e., C(Treat) = (0,—80).

Oy [T

O
Goo——GuDO—D

Figure 3.9: A simplified influence diagram for the decision problem of Apple
Jack.

Since Dry* and Looses™ are not relevant for the decision on whether or not
to treat and since we do not care about their distribution, we remove them
from our model producing the final model shown in Figure 3.9. Variables Dry*
and Looses™ are in fact barren variables, see Section 2.3.4 on page 39. In an
influence diagram a variable is a barren variable when none of its descendants
are utility nodes and none of its descendants are ever observed.

The purpose of our influence diagram is to be able to determine the optimal
strategy for Apple Jack. After solving N, we obtain the following policy (&tyeat :
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Looses — dom(Treat)) for Treat

no Looses =no

6Treat(l—ooses) =
yes Looses = yes

Hence, we should only treat the tree when it looses its leaves. In Section 4.2,

we describe how to solve an influence diagram. ]

Notice that since a policy is a mapping from all possible observations to
decision options, it is sufficient to solve an influence diagram once. Hence, the
computed strategy can be used by the decision maker each time she or he is
faced with the decision problem.

Implications of Perfect Recall

As mentioned above, using influence diagrams to represent decision problems we
assume perfect recall. This assumption states that at the time of any decision,
the decision maker remembers all past decisions and all previously known in-
formation (as enforced by the informational links). This implies that a decision
variable and all of its parent variables are informational parents of all subse-
quent decision variables. Due to this assumption it is not necessary to include
no-forgetting links in the DAG of the influence diagram as they — if missing —
will implicitly be assumed present.

Figure 3.10: An influence diagram representing the sequence of deci-
sions D1 y Dz, D3, Dy.
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Example 36 (Jensen, Jensen & Dittmer 1994) Let N be the influence diagram
in Figure 3.10 on the page before. This influence diagram represents a decision
problem involving four decisions Dy, D, D3, and D4 in that order.

From the structure of N, the following partial ordering on the random and
decision variables can be read

{B}<D; <{E,F} <Dy <{} < D3 <{G} < D4 <{A,C,D,H, L], K,L}.

This partial ordering specifies the flow of information in the decision problem
represented by N. Thus, the initial (relevant) information available to the deci-
sion maker is an observation of B. After making a decision on Dy, the decision
maker observes E and F. After the observations of E and F a decision on D3 is
made, and so on.

Notice that no-forgetting links have been left out, e.g., there are no links
from B to D3, D3, or D4. These links are included in Figure 3.11. The difference
in complexity of reading the graph is apparent.

Figure 3.11: The influence diagram of Figure 3.10 on the preceding page with
no-forgetting links.

As this example shows a rather informative analysis can be performed by
reading only the structure of the graph of N. ]

3.2.2 Linear-Quadratic CG Influence Diagrams

Linear-quadratic conditional Gaussian influence diagrams combine linear-condi-
tional Gaussian Bayesian networks, discrete influence diagrams, and quadratic
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utility functions into a single framework supporting decision making under un-
certainty with both continuous and discrete variables (Madsen & Jensen 2005).

Definition 5 An LQCG influence diagram N = (X, G, P, F, U) consists of

e A DAG § = (V,E) with nodes, V, and directed links, E, encoding de-
pendence relations and information precedence including a total order on
decisions.

e A set of random variables, X, and decision variables, Xp, such that X =
Xc UXp represented by nodes of G.

e A set of conditional probability distributions, P, containing one distribu-
tion, P(X, [ Xpa(v)), for each discrete random variable X,,.

e A set of linear-conditional Gaussian probability density functions, F, con-
taining one density function, p(Yy, [Xpa(w)), for each continuous random
variable Y,,.

e A set of linear-quadratic utility functions, U, containing one utility func-
tion, W(Xpa(v)), for each node v in the subset Vy C V of utility nodes.

We refer to a linear-quadratic conditional Gaussian influence diagram as an
LQCG influence diagram. The chain rule of LQCG influence diagrams is

EU(Xa =1,Xr) = P(Xa=1) %N (i), o*({1) * ) ulXpa(z)
zeVy
= 1 Plivlipa) = T PluwlXpamw) * D ulXparz)),
veEVA weVr zeVy

for each configuration i of Xa.

In the graphical representation of an LQCG influence diagram, continuous
utility functions are represented by double rhombuses and continuous decision
variables as double rectangles.

An LQCG influence diagram is a compact representation of a joint expected
utility function over continuous and discrete variables, where continuous vari-
ables are assumed to follow a linear Gaussian distribution conditional on a subset
of discrete variables while utility functions are assumed to be linear-quadratic
in the continuous variables (and constant in the discrete). This may seem as
a severe assumption which could be limiting to the usefulness of the LQCG
influence diagram. The assumption seems to indicate that all local utility func-
tions specified in an LQCG influence diagram should be linear-quadratic in the
continuous variables. This is not the case, however, as the following examples
show. We will consider the assumption in more detail in Section 4.2 on solving
decision models.

Example 37 (Guessing Game (Madsen & Jensen 2005)) Figure 3.12 on
the next page illustrates an LQCG influence diagram, N, representation of a
simple guessing game with two decisions.
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ol «—(Go)—Chea

Figure 3.12: An LQCG influence diagram for a simple guessing game.

The first decision, represented by the discrete decision variable Play with
states reward and play, is to either accept an immediate reward or to play a game
where you will receive a payoff determined by how good you are at guessing the
height of a person, represented by the continuous random variable Height, based
on knowledge about the sex of the person, represented by the discrete random
variable Sex with states female and male. The second decision, represented by
the real-valued decision variable Guess, is your guess on the height of the person
given knowledge about the sex of the person.

The payoff is a constant (higher than the reward) minus the distance of
your guess from the true height of the person measured as height minus guess
squared.

To quantify N, we need to specify a prior probability distribution for Sex,
a conditional Gaussian distribution for Height and a utility function over Play,
Guess, and Height. Assume the prior distribution on Sex is P(Sex) = (0.5,0.5)
whereas the distribution for Height is

L(Height|female) = N(170,400)
L(Height|male) = N(180,100).
We assume the average height of a female to be 170 cm with a standard deviation

of 20 cm and average height of a male to be 180 cm with a standard deviation
of 10 cm. The utility function over Play, Guess, Height is

u(play,d,,h) = 150 — (h—d,)?
u(reward,d,h) = 100.

We assume the immediate reward is 100. After solving N, we obtain an optimal
strategy A = {6P|ay» dGuess)

6F’Iay - play
OGuess(play, female) = 170
6Guess(play, male) = 180.

The optimal strategy is to guess that the height of a female person is 170 cm
and the height of a male person is 180 cm.
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In this example the policy for Guess reduces to a constant for each configu-
ration of its parent variables. In the general case, the policy for a continuous
decision variable is a multi-linear function in its continuous parent variables
given the discrete parent variables. ]

As another example of an LQCG influence diagram consider a revised exten-
sion of the Oil Wildcatter problem of Raiffa (1968) (Example 32 on page 66).
The revised Oil Wildcatter problem, which is further revised here, is due to Cobb
& Shenoy (2004).

Example 38 (Oil Wildcatter (Madsen & Jensen 2005)) The network of
the revised version of the Oil Wildcatter problem is shown in Figure 3.13. First,
the decision maker makes a decision on whether or not to perform a test Test
of the geological structure of the site under consideration. When performed,
this test will produce a test result, Seismic depending on the amount of oil Oil.
Next, a decision Drill on whether or not to drill is made. There is a cost Cost
associated with drilling, while the revenue is a function of oil volume Volume

and oil price Price.
Gesmic>—3{D]

& @G> G

Figure 3.13: A revised version of the Oil Wildcatter problem.

We assume the continuous random variables (i.e., cost of drilling, oil price,
and oil volume) to follow (conditional) Gaussian distributions. The utility func-
tion can be stated in thousands of EURs as U;(Test = yes) = —10, U, (Cost =
¢, Drill = yes) = —c, Uz (Volume = v, Price = p, Drill = yes) = v x p, and zero for
the no drill and no test situations.

If the hole is dry, then no oil is extracted: L(Volume|Oil = dry) = N(0,0). If
the hole is wet, then some oil is extracted: L(Volume|Qil = wet) = N(6,1). If the
hole is soaking with oil, then a lot of oil is extracted: L(Volume|Qil = soaking) =
N(13.5,4). The unit is a thousand barrels. The cost of drilling follows a Gaussian
distribution L(Cost|Drill = yes) = N(70,100). We assume that the price of
oil Price also follows a Gaussian distribution L(Price) = N(20,4).

Notice that the continuous utility functions U, and Ujs are not linear-
quadratic in their continuous domain variables. ]
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3.2.3 Limited Memory Influence Diagrams

The framework of influence diagrams offers compact and intuitive models for
reasoning about decision making under uncertainty. Two of the fundamental as-
sumptions of the influence diagram representation are the no-forgetting assump-
tion implying perfect recall of the past and the assumption of a total order on
the decisions. The limited memory influence diagram framework (LIMID) (Lau-
ritzen & Nilsson 2001) relaxes both of these fundamental assumptions.

Relaxing the no-forgetting and the total order (on decisions) assumptions
largely increases the class of multistage decision problems that can be modeled.
LIMIDs allow us to model more types of decision problems than the ordinary
influence diagrams.

The graphical difference between the LIMID representation and the ordinary
influence diagram representation is that the latter representation (as presented
in this book) assumes some informational links to be implicitly present in the
graph. This assumption is not made in the LIMID representation. For this
reason it is necessary to explicitly represent all information available to the
decision maker at each decision.

The definition of a limited memory influence diagram is as follows.

Definition 6 A LIMID N = (X, G, P, U) consists of
e A DAG G = (V,E) with nodes V and directed links E encoding dependence

relations and information precedence.

e A set of random variables, X¢, and discrete decision variables, Xp, such
that X = X¢ U Xp represented by nodes of G.

e A set of conditional probability distributions, P, containing one distribu-
tion, P(Xy | Xpa(v)), for each discrete random variable X,,.

o A set of utility functions, U, containing one utility function, w(Xpa(y)), for
each node v in the subset Vi C V of utility nodes.

Using the LIMID representation it is possible to model multistage decision
problems with unordered sequences of decisions and decision problems in which
perfect recall cannot be assumed or may not be appropriate. This makes the
LIMID framework a good candidate for modeling large and complex domains
using appropriate assumption of forgetfulness of the decision maker. Notice that
all decision problems that can be represented as an ordinary influence diagram
can also be represented as a LIMID.

Example 39 Figure 3.14 on the facing page shows an example of a LIMID
representation N = (X, G, P, U) of a decision scenario with two unordered de-
cisions. Prior to decision D; observations on the values of A and C are made,
while prior to decision D; an observation on the value of E is made. Notice
that the observations on A and C made prior to decision D; are not available
at decision Dj and vice versa for the observation on E. ]
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Figure 3.14: A LIMID representation of a decision scenario with two unordered
decisions.

Example 40 (Breeding Pigs (Lauritzen & Nilsson 2001)) A pig farmer
is growing pigs for a period of four months and subsequently selling them. Dur-
ing this period the pigs may or may not develop a certain disease. If a pig has
the disease at the time it must be sold for slaughtering, its expected market
price is EUR 40. If it is disease free, its expected market price as a breeding
animal is EUR 135.

Once a month, a veterinarian inspects each pig and makes a test for presence
of the disease. If a pig is ill, the test will indicate this with probability 0.80,
and if the pig is healthy, the test will indicate this with probability 0.90. At
each monthly visit, the doctor may or may not treat a pig for the disease by
injecting a certain drug. The cost of an injection is EUR 13.

Figure 3.15: Three test-and-treat cycles are performed prior to selling a pig.

A pig has the disease in the first month with probability 0.10. A healthy
pig develops the disease in the following month with probability 0.20 without
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injection, whereas a healthy and treated pig develops the disease with probabil-
ity 0.10, so the injection has some preventive effect. An untreated pig that is
unhealthy will remain so in the following month with probability 0.90, whereas
the similar probability is 0.50 for an unhealthy pig that is treated. Thus, spon-
taneous cure is possible, but treatment is beneficial on average.

The qualitative structure of the LIMID representation of this decision prob-
lem is shown in Figure 3.15 on the page before. Notice that we make the
assumption that the test result R; is only available for decision D;. This implies
that the test result is not taken into account for future decisions as it is either
forgotten or ignored. ]

The above example could be modeled as a standard influence diagram, but
if more test-and-treat cycles must be performed, the state space size of the past
renders decision making intractable. Therefore, it is appropriate to make the
decision on whether or not to treat based on the current test result (and not
considering past test results and possible treatments) — in this case, individual
records for the pigs need not be kept. In short, the example illustrates a situation
where instead of keeping track of all past observations and decisions, some of
these are deliberately ignored (in order to maintain tractability of the task of
computing policies).

3.3 Object-Oriented Probabilistic Networks

As large and complex systems are often composed of collections of identical or
similar components, models of such systems will naturally contain repetitive
patterns. A complex system will typically be composed of a large number of
similar or even identical components. This composition of the system should
be reflected in models of the system to support model construction, mainte-
nance, and reconfiguration. For instance, a diagnosis model for diagnosing car
start problems could reflect the natural decomposition of a car into its engine,
electrical system, fuel system, etc.

To support this approach to model development, the framework of object-
oriented probabilistic networks has been developed, see e.g. (Koller & Pfeffer
1997, Laskey & Mahoney 1997, Neil, Fenton & Nielsen 2000). Object-orientation
may be defined in the following way

object-orientation = objects + inheritance,

where objects are instances of classes and inheritance defines a relationship
between classes. Thus, we need to introduce the notion of objects and classes.
In this section, we introduce the notion of object-oriented probabilistic networks
(OOPNs).

The basic OOPN mechanisms described below support a type of object-
oriented specification of probabilistic networks, which makes it simple to reuse
models, to encapsulate sub-models (providing a means for hierarchical model
specification), and to perform model construction in a top-down fashion, a
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bottom-up fashion, or a mixture of the two (allowing repeated changes of level
of abstraction).

An object-oriented modeling paradigm provides support for working with
different levels of abstraction in constructing network models. Repeated changes
of focus are partly due to the fact that humans naturally think about systems in
terms of hierarchies of abstractions and partly due to lack of ability to mentally
capture all details of a complex system simultaneously. Specifying a model in
a hierarchical fashion often makes the model less cluttered, and thus provides
a better means of communicating ideas among knowledge engineers, domain
experts, and users.

In the OOPN paradigm we present, an instance or object has a set of vari-
ables and related functions (i.e., probability distributions, probability densities,
utility functions, and precedence constraints). This implies that in addition to
the usual types of nodes, the graph of an OOPN model may contain nodes rep-
resenting instances of other networks encapsulated in the model. A node that
does not represent an instance of a network class is said to represent a basic
variable.

An instance represents an instantiation of a network class within another
network class. A network class is a blueprint for an instance. As such, a net-
work class is a named and self-contained description of a probabilistic network,
characterized by its name, interface, and hidden part. As instances can be
nested, an object-oriented network can be viewed as a hierarchical description
of a problem domain. In this way, an instance M is the instantiation (or realiza-
tion) of a network class Cyp within another network class Cy, see Figure 3.16.

77N
t Ci
N_

Figure 3.16: M is an instance of a network class Cy¢ within another network
class Cy.

77N 77N
1 Ci 1t Cy
\N_/ M \N_7

An instance connects to other variables via some of its (basic) variables.
These variables are known as its interface variables. As we wish to support
information hiding, the interface variables usually only constitute a subset of
the variables in the network class.

Let us be more precise. A network class C is a DAG over three pairwise
disjoint sets of nodes 7(C), H(C), O(C) where Z(C) are the input nodes, H(C)
are the hidden nodes, and O(C) are the output nodes of C. The set Z(C)u®(C)
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is the interface of C. Interface nodes may represent either decision or random
variables, whereas hidden nodes may be instances of network classes, decision
variables, random variables, and utility functions.

Definition 7 An OOPN network class C = (N, 7, @) consists of
e A probabilistic network N over variables X with DAG §.

e A set of basic variables 7 C X specified as input variables and a set of
basic variables @® C X specified as output variables such that 7N @® = 0
and H =X\ (ZUO).

In the graphical representation of an OOPN instances are represented as
rectangles with arc-shaped corners whereas input variables are represented as
dashed ovals and output variables are represented as bold ovals. If the interface
variables of a network instance are not shown, then the instance is collapsed.
Otherwise it is expanded.

Since an OOPN implements information hiding through encapsulation, we
need to be clear on scope rules. First, we define the notations of simple and
qualified names. If X is a variable of a network instance N, then X is the simple
name of the variable, whereas N.X is the qualified name (also known as the long
name) of the variable. The scope S(X) of a variable X (i.e., a basic variable or
an instance) is defined as the part of a model in which the declaration of X can
be referred to by its simple name.

The (internal) scope S(C) of a network class C is the set of variables and
instances which can be referred to by their simple names inside C. For in-
stance, the internal scope of the network Cy in Figure 3.16 on the page before
is S(Cy) ={Cq, C3, C2,M}. The scope of an instance M of a network class Cyy,
i.e., class(M) = Cyy, is defined in a similar manner.

The interface variables Z(C)U®(C) of C are used to enlarge the visibility of
basic variables in the instantiations of C. The visibility of a variable X can be
enlarged by specifying it as either an input or an output variable of its class.

An input variable X of an instance M is a placeholder for a variable (the
parent of X) in the encapsulating class of M. Therefore, an input variable has
at most one parent. An output variable X of an instance M, on the other hand,
enlarges the visibility of X to include the encapsulating network class of M.

Notice that the scope of a variable is distinct from visibility of the variable. In
Figure 3.16 on the preceding page, the scope of output variable C3 is M whereas
its visibility is enlarged to include N by defining it as an output variable of M.

An input variable I of an instance M of network class C is bound if it has a
parent X in the network class encapsulating M. Each input random variable I of
a class C is assigned a default prior probability distribution P(I), which becomes
the probability distribution of the variable I in all instances of C where I is an
unbound input variable. A link into a node representing an input variable may
be referred to as a binding link.

Let M be an instance of network class C. Each input variable I € 7(C) has no
parent in C, no children outside C, and the corresponding variable of M has at
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most one parent in the encapsulating class of M. Each output variable O € @(C)
may only have parents in Z(C) U H(C). The children and parents of H € 7(C)
are subsets of the variables of C.

Example 41 Figure 3.16 on page 81 shows a class instance M of a network
class Cy¢ instantiated within another network class Cy. Network class Coy
has input variable Cy, hidden variables C3 and M, and output variable C,.
The network class Cy¢ has input variables C; and C,, output variable C3, and
unknown hidden variables. The input variable C; of instance M is bound to C;
of Cn whereas C; is unbound.

Since C1 € Z(Cy) is bound to C; € (M), the visibility of C; € Z(Cx) is
extended to include the internal scope of M. Hence, when we refer to C; €
Z(Cy¢) inside Cy¢, we are in fact referring to C; € Z(Cyx) as C; € Z(Cx)
in instance M is a placeholder for C; € Z(Cy) (i-e., you may think of C; €
7Z(Cx) as the formal parameter of Cy¢ and Cy € Z(Cy) as the actual parameter
of M). ]

Since an input variable I € 7(M) of an instance M is a placeholder for a
variable Y in the internal scope of the encapsulating instance of M, type checking
becomes important when the variable Y is bound to I. The variable I enlarges
the visibility of Y to include the internal scope of M and it should therefore be
equivalent to Y. We define two variables Y and X to be equivalent as follows.

Definition 8 Two variables X and Y are equivalent if and only if they are of
the same kind, category, and subtype with the same state labels in the case of
discrete variables.

This approach to type checking is referred as strong type checking.

If a model contains a lot of repetitive structure, its construction may be
tiresome and the resulting model may even be rather cluttered. Both issues
are solved when using object-oriented models. Another key feature of object-
oriented models is modularity. Modularity allows knowledge engineers to work
on different parts of the model independently once an appropriate interface has
been defined. The following example will illustrate this point.

Example 42 (Apple Jack’s Garden) Let us assume that Apple Jack from
Example 28 on page 56 has a garden of three apple trees (including his finest
apple tree). He may want to reason about the sickness of each tree given ob-
servations on whether or not some of the trees in the garden are loosing their
leaves.

Figure 3.17 shows the Apple Tree network class. The prior of each tree
being sick will be the same while the dryness of a tree is caused by a drought.
The drought is an input variable of the Apple Tree network class. If there
is a drought this will impact the dryness of all trees. The prior on drought
is P(Drought) = (0.9,0.1) while the conditional distribution of Dry conditional
on Drought is shown in Table 3.9 on the next page.
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AT T T ~
¢ Drought )
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Figure 3.17: The Apple Tree network class.

Dry
Drought | no yes
no 0.85 0.15
yes 0.35 0.65

Table 3.9: The conditional probability distribution P(Drought|Dry).

Figure 3.18 shows the network class of the Apple Garden. The input vari-
able Drought of each of the instances of the Apple Tree network class is bound
to the Drought variable in the Apple Garden network class. This enlarges the
visibility of the Drought variable (in the Apple Garden network class) to the
internal scope defined by each instance.

The two instances Tree; and Tree, are collapsed (i.e., not showing the inter-
face variables) while the instance Trees is expanded (i.e., not collapsed) illus-
trating the interface of the network class.

Drought
A4 S pp—
[Tree1 ] [Treez] (: Drought :)

SN—_——_ =

Figure 3.18: The Apple Garden network consisting of three instantiations of the
Apple Tree network.

The Drought variable could be an input variable of the Apple Garden network
class as well as it is determined by other complex factors. For the sake of
simplicity of the example, we have made it a hidden variable of the Apple
Garden network class. ]
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As mentioned above, a default prior distribution P(X) is assigned to each
input variable X € Z(C) of the class C = (N, 0, 7). Assigning a default potential
to each input variable X implies that any network class is a valid probabilistic
network model.

3.3.1 Chain Rule

It should be clear from the above discussion that each OOPN encodes either
a probability distribution or an expected utility function. For simplicity we
will discuss only the chain rule for object-oriented (discrete) Bayesian networks.
The chain rule of an object-oriented Bayesian network reflects the hierarchical
structure of the model.

An instance M of network class C encapsulates a conditional probability dis-
tribution over its random variables given its unbound input nodes. For further
simplicity, let C = (N, Z, ) be a network class over basic discrete random vari-
ables only (i.e., no instances, no decisions, and no utilities) with N = (X, G, P)
where X € X is the only input variable, i.e., X € 7 and |Z| = 1. Since X has a
default prior distribution, N is a valid model representing the joint probability
distribution

PO =PX) TT PV Xpaw))-
Y, #£X

In general, an instance M is a representation of the conditional probability
distribution P(® | 7/) where 7’ C T is the subset of bound input variables of M

Pol7)= T] P ] POVulXpar))-

XeZ\1’ Yy €T

3.3.2 Unfolded OOPNs

An object-oriented network N has an equivalent flat or unfolded network model
representation M. The unfolded network model of an object-oriented network N
is obtained by recursively unfolding the instance nodes of N. The unfolded
network representation of a network class is important as it is the structure
used for inference.

The joint distribution of an object-oriented Bayesian network model is equiv-
alent to the joint distribution of its unfolded network model

PX) = J] PXelXpaw),
Xy EXow

where M = (X, G, P) is the unfolded network.

3.3.3 Instance Trees

An object-oriented model is a hierarchical model representation. The instance
tree T of an object-oriented model N is a tree over the set of instances of classes
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in N. Two nodes v; and v; in T (with v; closer to the root of T than v;) are
connected by an undirected link if and only if the instance represented by v;
contains the instance represented by v;. The root of an instance tree is the top
level network class not instantiated in any other network class within the model.
Notice that an instance tree is unique.

In addition to the notion of default potentials there is the notion of the
default instance. Let C be a network class with instance tree T. Each non-root
node v of T represents an instance of a class C, whereas the root node r of T
represents an instance of the unique class C,, which has not been instantiated
in any class. This instance is referred to as the default instance of C;.

Example 43 Figure 3.19 shows the instance tree of a network class N where
the root is the default instance of N.

Figure 3.19: An instance tree.

Each node v of T represents an instance M and the children of v in T repre-
sents instances in M. ]

3.3.4 Inheritance

Another important concept of the OOPN framework is inheritance. For sim-
plicity, we define inheritance as the ability of an instance to take its interface
definition from another instance. Let C; be a network class with input vari-
ables I(Cy) and output variables O(Cq), i.e., C; = (N1,Z7,01). A network
class C2 = (N3, 72, @2) may be specified as a subclass of Cq if and only if 7; C 7>
and @71 C 2. Hence, subclasses may enlarge the interface.

3.4 Summary

In this chapter we have introduced probabilistic networks for reasoning and deci-
sion making under uncertainty. A probabilistic network represents and processes
probabilistic knowledge. The qualitative component of a probabilistic network
encodes a set of (conditional) dependence and independence statements among
a set of random variables, informational precedence, and preference relations
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whereas its quantitative component. The quantitative component specifies the
strengths of dependence relations using probability theory and preference rela-
tions using utility theory.

We have introduced discrete Bayesian network and LCG Bayesian network
models for reasoning under uncertainty. A discrete Bayesian network supports
the use of discrete random variables whereas a LCG Bayesian network supports
the use of a mixture of continuous and discrete random variables. The con-
tinuous variables are constrained to be linear-conditional Gaussian variables.
The chapter contains a number of examples that illustrates the use of Bayesian
networks for reasoning under uncertainty.

Discrete influence diagrams, LQCG influence diagrams, and limited memory
influence diagrams were introduced as models for reasoning and decision making
under uncertainty. An influence diagram is a Bayesian network augmented with
decision variables, informational precedence relations, and preference relations.
A discrete influence diagram supports the use of discrete random and decision
variables with an additively decomposing utility function. An LQCG influence
diagram supports the use of a mixture of continuous and discrete variables. The
continuous random variables are constrained to be linear-conditional Gaussian
variables while the utility function is constrained to be linear-quadratic. A lim-
ited memory influence diagram is an extension of the discrete influence diagram
where the assumptions of no-forgetting and a total order on the decisions are
relaxed. This allows us to model a large set of decision problems that cannot
be modeled using the traditional influence diagram representation. The chapter
contains a number of examples that illustrates the use of influence diagrams for
decision making under uncertainty.

Finally, we have introduced OOPNs. The basic OOPN mechanisms intro-
duced support a type of object-oriented specification of probabilistic networks,
which makes it simple to reuse models, to encapsulate sub-models, and to per-
form model construction at different levels of abstraction. The chapter contains
a number of examples that illustrates the use of the basic OOPN mechanisms
in the model development process.

In Chapter 4 we discuss techniques for solving probabilistic networks.
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Chapter 4

Solving Probabilistic
Networks

We build knowledge bases in order to formulate our knowledge about a certain
problem domain in a structured way. The purpose of the knowledge base is
to support our reasoning about events and decisions in a domain with inherent
uncertainty. The fundamental idea of solving a probabilistic network is to exploit
the structure of the knowledge base to reason efficiently about the events and
decisions of the domain taking the inherent uncertainty into account.

An expert system consists of a knowledge base and an inference engine. The
inference engine is used to solve queries against the knowledge base. In the case
of probabilistic networks, we have a clear distinction between the knowledge
base and the inference engine. The knowledge base is the Bayesian network or
influence diagram, whereas the inference engine is a set of generic methods that
applies the knowledge formulated in the knowledge base on task-specific data
sets, known as evidence, to compute solutions to queries against the knowledge
base. The knowledge base alone is of limited use if it cannot be applied to
update our belief about the state of the world or to identify (optimal) decisions
in the light of new knowledge.

As we saw in the previous chapter, the knowledge bases we consider are
probabilistic networks. A probabilistic network may be an efficient representa-
tion of a joint probability distribution or a joint expected utility function. In
the former case the model is a Bayesian network, while in the latter case it is
an influence diagram.

In this chapter we consider the process of solving probabilistic networks.
As the exact nature of solving a query against a probabilistic network depends
on the type of model, the solution process of Bayesian networks and influence
diagrams are considered separately in the following sections.

Section 4.1 considers probabilistic inference in Bayesian networks as the
task of computing posterior beliefs in the light of evidence. A number of differ-
ent approaches to inference are considered. We consider variable elimination,

89
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query-based inference, arc-reversal, and message passing in junction trees. The
inference process in discrete Bayesian networks is treated in detail, while the
inference process in LCG Bayesian networks is outlined. In Section 4.2 we con-
sider the task of solving decision models. Solving a decision model assumes to
computing maximum expected utilities. We derive a generic method for solving
influence diagrams and LIMIDs.

4.1 Probabilistic Inference

We build Bayesian network models in order to support efficient reasoning under
uncertainty in a given domain. Reasoning under uncertainty is the task of
computing our updated beliefs in (unobserved) events given observations on
other events, i.e., evidence.

4.1.1 Inference in Discrete Bayesian Networks

One particular type of probabilistic inference task in Bayesian networks is the
task of computing the posterior marginal of an unobserved variable Y given a
(possibly empty) set of evidence ¢, i.e., P(Y]e). Let N = (X, G, P) be a Bayesian
network over the set of discrete random variables X = {Xy,..., X}, and assume
that ¢ = (). Exploiting the chain rule for Bayesian networks (see e.g. (3.1) on
page 55), for variable Y € X, we may compute

P(Y) = > P

XexX\{Y}

Z H P(XV|Xpa(v))- (41)

XeX\{Y} XyeX

This is the prior marginal distribution P(Y) of Y. The prior marginal of all
variables may be computed by repetition for each variable.

Example 44 Given the example of Apple Jack (Example 28 on page 56), we
may consider the task of computing the prior marginal distribution P(L) over
the events that the tree does loose its leaves and that the tree does not loose its
leaves. The distribution P(L) may be computed as

P(L)=) > P(S)P(L|S,D)P(D).
S D

Using the quantification of the model specified as part of Example 28, we
arrive at the prior distribution P(L) = (0.82,0.18). Hence, a priori, there is
an 18% probability that the tree will loose its leaves. ]

The above approach does not incorporate evidence into the inference task.
In addition, it is a very inefficient approach for non-trivial Bayesian networks
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because the joint distribution P(X) over X is constructed as an intermediate
step and because a lot of calculations are repeated.

As we will see, it is possible to develop a more efficient approach to probabilis-
tic inference by exploiting the independence relations induced by the structure
of the DAG and the evidence, and by minimizing the repetition of calculations.
Having said that, let us turn to the general case of computing the posterior
marginal P(X]e) of a variable, X, given evidence €.

Let € ={e1,...,&m} be a non-empty set of evidence over variables X(¢). For
a (non-observed) variable X; € X of N, the task is to compute the posterior
probability distribution P(Xj|e). This can be done by exploiting the chain rule
factorization of the joint probability distribution induced by N:

P(e|X;)P(X;)  P(Xj,¢)
P(e) - Ple)
X P(X]‘,E)

> P(Xe)

YeU\{X;}

Z H P(Xi[ Xpa(vi))Ee

YEUN[X;} Xi€X

= Z H P(Xi‘xpa(vi)) H Ex

YeU\{X;} XieX XeX(e)

P(X;le)

for each X; ¢ X(e), where Ex is the evidence function for X € X(e) and v; is the
node representing X;. Notice that

LX;le) =PlelX) = > [P Xpaw) JT €x (4.2)
)

YeX\{Xj} i# XeX(e

is the likelihood function of X;j given €. Since P(Xj) may be obtained by inference
over the empty set of evidence, we can — using Bayes’ rule — compute

P(Xjle) o L(Xjle)P(X;).

The proportionality factor is the normalization constant o« = P(e), which is
easily computed from P(X, e) by summation over X as o = } o P(X, ¢).

Example 45 One evening when Apple Jack is making his usual after-dinner
walk in the garden, he observes his finest apple tree to be loosing its leaves.
Given that he knows that this may be an indication of the tree being sick, he
starts wondering whether or not the tree is sick.

Apple Jack is interested in the probability of the tree being sick given the
observation on the tree loosing its leaves

P(S,¢)
P(e)
2 s> pPI(S)P(LIS,D)P(D)EL
P(e)
o (0.0927,0.0905),

P(Sle) =
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where &1 = (0,1) is the evidence function reflecting the tree loosing its leaves.
The normalization constant is « = P(e) = P(S = nole) + P(S = yesle) =
0.0927 + 0.0905 = 0.1832. This produces the posterior distribution P(S|e) =
(0.506,0.494) over the tree loosing its leaves. Hence, there is an increased prob-
ability that the tree is sick when it has been observed to loose its leaves. The
prior distribution on the tree being sick is P(S) = (0.9,0.1). I

In general, probabilistic inference is an NP-hard task (Cooper 1990). Even
approximate probabilistic inference is NP-hard (Dagum & Luby 1993). For
certain classes of Bayesian network models the complexity of probabilistic in-
ference is polynomial or even linear in the number of variables in the network.
The complexity is polynomial when the graph of the Bayesian network is a poly-
tree (Kim & Pearl 1983, Pear]l 1988) (a directed graph § is called a polytree, if
its underlying undirected graph is singly connected), while it is linear when the
graph of the Bayesian network is a tree.

The most critical problem related to the efficiency of the inference process
is that of finding the optimal order in which to perform the computations. The
inference task is, in principle, solved by performing a sequence of multiplications
and additions.

Query-Based Inference

One approach to inference is to consider the inference task as the task of com-
puting the posterior distribution of a set of variables. This is referred to as
query based inference. We define the notion of a query, Q, against a Bayesian
network model N as follows.

Definition 9 (Query) Let N = (X, G,P) be a Bayesian network model. A
query Q is a three-tuple Q = (N, T, ¢) where T C X is the target set and ¢ is
the evidence set.

The solution of a query, Q, is the posterior distribution over the target, i.e.,
P(Tle). A variable X is a target variable if X € T. Notice that computing
all posterior marginals of a Bayesian network N = (X, §,P) corresponds to
solving |X| queries, i.e., Q = (N,{X}, ¢) for each X € X.

Prior to solving the query Q, the graph G of N may be pruned to include only
variables relevant for the query. One class of variables which may be pruned
from the graph without any computation is the class of barren variables, see
Section 2.3.4 on page 39 for an example. Here we give a formal definition of a
barren variable.

Definition 10 (Barren Variable) Let N = (X, G, P) be a Bayesian network
and let Q = (N, T C X, ¢) be a query against N. A variable X is a barren variable
with respect to Q, if X € T, X & ¢, and all descendants, de(X), of X are barren.

When a variable X is classified as a barren variable, it is always relative
to a target and given a set of evidence. A barren variable does not add any
information to the inference process. It is computationally irrelevant to Q.
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Once all barren variables with respect to Q have been pruned from the
graph G, the inference task can be solved by variable elimination as described
in the previous section.

In addition to the concept of a barren variable, there is the concept of a
nuisance variable.

Definition 11 (Nuisance Variable) Let N = (X,G,P) be a Bayesian net-
work and let Q = (N, T C X, ¢) be a query against N. A non-barren variable X
is a nuisance variable with respect to Q, if X € T, X & ¢, and X is not on a path
between any pair of variables Y € T and Z € ¢.

Notice that a nuisance variable is computationally relevant for a query Q,
but it is not on a path between any pair of evidence and query variables. Given
a query and a set of evidence variables, the contribution from a nuisance vari-
able does not depend on the observed values of the evidence variables. Hence, if
a query is to be solved with respect to multiple instantiations over the evidence
variables, then the nuisance variables (and barren variables) may be eliminated
in a preprocessing step to obtain the relevant network (Lin & Druzdzel 1997).
The relevant network consists of target variables, evidence variables, and vari-
ables on paths between target and evidence variables only.

Example 46 Returning to the Chest Clinic example (Example 29 on page 58),
we may consider the task of computing the probability of each disease given the
observations that the patient is a smoker and has a positive X-ray result. That
is, we need to compute P(Y|e) for Y € {T,L, B} and ¢ = {S = yes, X = yes}.

(b)
Figure 4.1: The relevant networks for computing (a) P(T|e) and P(L|¢), and
(b) P(Ble).

The variables {A, T} are nuisance variables with respect to posteriors for B
and L. The variable D is a barren variable with respect to the posteriors for B, T,
and L, whereas B is a barren variable with respect to the posteriors for T and L.
Figure 4.1 shows the relevant networks for (a) computing P(T|e) and P(L]e),
and for (b) computing P(B|e). ]
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The approach to inference outlined above may be referred to as a direct
approach. Arc-reversal is a specific type of direct approach to inference (Olmsted
1983, Shachter 1986).

Arc Reversal

In Section 2.4.1 on page 42 we illustrated how application of Bayes’ rule can be
given a graphical interpretation as arc reversal. We mentioned that Olmsted
(1983) and Shachter (1986) have exploited this view of inference in their arc
reversal algorithms for inference in probabilistic networks. Here we consider the
process in more detail.

Let § be the DAG of a Bayesian network N = (X,G,P) and assume a
query Q = (N,{Z},0) against N. The inference task is to compute P(Z) by
eliminating all variables X \ {Z}.

The inference process on G has a natural graphical interpretation as a se-
quence of arc reversals and barren variable eliminations. The fundamental idea
is to adjust the structure of G such that all variables except Z are pruned as
barren variables while maintaining the underlying properties of the joint proba-
bility distributions over the remaining variables. The structure of G is adjusted
through a sequence of arc reversal operations.

Assume X,, is the next variable to be eliminated as a barren variable. Let X,,
have parents Xp,aw) = Xi U Xj and X, have parents X,av) = {Xw} U X;j U Xy
where Xi N X5 = Xy N Xy = X5 N Xy = 0 such that X; = Xpa(w) \Xpa(v) are
the parents specific for X,,, Xj = Xpaw) N Xpa(v) are the common parents,
and Xx = Xpa(v) \ Xga(w) are the parents specific for X,.

The reversal of arc (w,v) proceeds by setting X,a(w) = Xi U Xj U Xy U{X,}
and Xpav) = Xi U Xj U Xy as well as performing the computations specified
below, see Figure 4.2 for a graphical representation

POy 1X0, X5, Xi) = 3 P (X [ X, X5)P (X [ Xow, X5, Xic) (4.3)
Xw

P(XW |X1aX])P(XV‘XW»X]an)

P(XW‘X\),Xi,Xj,Xk) = P(X |X X, Xk)
A% 1) R}

(4.4)

The operation of reversing an arc changes the structure of § without changing
the underlying joint probability distribution over X induced by N.

@‘

Figure 4.2: An illustration of reversal of the arc (w,v).
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Once the arc (w,v) has been reversed, the variable X,, is a barren variable
relative to the other variables (given the empty set of evidence), and can be
pruned from G without further computations.

The basic idea of the inference process known as arc reversal is to perform a
sequence of arc reversals and barren variable eliminations on the DAG G until
a desired marginal or conditional is obtained. In this process a valid Bayesian
network structure is maintained throughout the inference process.

Example 47 We may compute the prior probability distribution P(L) in the
Apple Jack example (see Example 28 on page 56) using a sequence of arc rever-
sals and barren variable eliminations as indicated in Figure 4.3.

WP % %

(a) (b) (c) (d) (e)
Figure 4.3: Computing P(L) by arc reversal.

Notice that the arc reversal method does not have worse complexity than
variable elimination. ]

Arc reversal is not a local computation algorithm in the sense that when
reversing an arc (w,Vv), it is necessary to test for existence of a directed path
from w to v not containing (w,v). If such a path exists, then the arc (w,v)
cannot be reversed until one or more other arcs have been reversed as revers-
ing (w,v) would otherwise create a directed path.

Graphical Representation of Inference

We may define the task of solving a Bayesian network model N = (X, G, P) as the
problem of computing the posterior marginal P(X|e) given a set of evidence &
for all variables X € X.

When defining the task of probabilistic inference as the task of computing
the posterior marginals P(X|e) for all X given evidence ¢, the most common
approach is to use a secondary computational structure. Performing inference
in a secondary computational structure aims at reusing calculations solving all
queries simultaneously.

From (4.1) on page 90 we should notice the direct correspondence between
the acyclic, directed graph G and the factorization of the joint probability distri-
bution P(X) over X. The domain of each factor in the factorization corresponds
to a node and its parents. The head of the factor is the child node whereas the
tail consists of the parents. Furthermore, if we drop the distinction between
head and tail we see that the domain of each factor corresponds to a cligue (a
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clique is a maximal complete subgraph) of g™ — the moralization of G. This
is exploited to build a secondary structure for performing inference.

Assume we are in the process of computing P(X;). Let Y be the first random
variable to eliminate. The elimination process proceeds by local computation
in order to maintain efficiency (i.e., we exploit the distributive law to maintain
the factorization of the joint probability distribution — see Section 2.3.3 on
page 38). The set of probability potentials P can be divided into two disjoint
subsets with respect to Y. Let Py C P be the subset of probability potentials
including Y in the domain

Py ={P € P|Y € dom(P)},

where dom(P) denotes the domain of P (i.e., the set of variables over which it
is defined). Then P\ Py is the set of probability potentials not including Y in
their domain. Let ¢y be the probability potential obtained by eliminating Y
(by summation) from the combination of all probability potentials in Py. Us-
ing ¢y as well as a generalized version of the distributive law, we may rewrite
Equation 4.1 on page 90 as

PX0) = Y T PXelXpar)

XeX\{Xi} XveX

= 2 Il ell«

XeX\{Xi} peP\Py P'€Py

= 2 L e I ¢

XeX\{Xi,Y} P\ Py Y ¢’ePy

= ) ov J] o (4.5)

XeX\{Xs,Y} GeP\Py

Equation 4.5 specifies a decomposition of the joint probability distribution
over X \ {Y}. The decomposition has the form of Equation 4.1. The decom-
position is the product over the elements of P\ Py U{dpy}. In addition, we
have performed the elimination over Y by local computations only involving
potentials of which Y is a domain variable. We say that the set

PN\ Py U{dy}

is a reduction of P where Y has been eliminated. The elimination of the next
variable to be eliminated may proceed in the same manner on P \ Py U {dy}.
The order in which variables are eliminated is the elimination order.

An example of this process may be depicted graphically as shown in Fig-
ure 4.4 on the facing page where we assume dom(¢dy) = {X7,X2}. The arrows
in the figure are used to illustrate the flow of computations.

The elimination of Y from ¢(Xj,X3,Y) creates a potential over ¢(Xy,X3)
which is included in the elimination of the next variable X; to be eliminated.
In this way the process continues until the desired marginals are obtained. Let
us consider an even more concrete example.
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G [X XXX X% ]

Figure 4.4: A graphical illustration of the process of eliminating Y
from ¢(X7,X2,Y) and X; from ¢(X7,X32,X3,Xs), where the ovals
represent the domain of a potential before elimination, and rectan-
gles represent the domain of a potential after elimination.

Example 48 (Burglary or Earthquake on page 10) The Bayesian network
shown in Figure 1.6 on page 11, is repeated in Figure 4.5.

OBRO
»  ®
W)

Figure 4.5: The Burglary or Earthquake network.

The prior marginal on A may be computed by elimination of {B, E, R, W} as
follows

P(A)=) P(E)Y P(B)P(A[B,E)Y P(RIE)) P(WIA). (4.6)
E B R w

Figure 4.6: A graphical illustration of the process of computing P(A) in (4.6),
where the ovals represent the domain of a potential before elim-
ination, and rectangles represent the domain of a potential after
elimination.

Figure 4.6 shows a graphical representation of the computations and poten-
tials created the during process of computing P(A).
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Similarly, the prior marginal distribution over W may be computed by elim-
ination of {A, B, E, R} as follows

P(W)=) P(W|A)Y P(E)) P(B)P(A|B,E)Y P(RIE).  (47)
A E B R

Figure 4.7 shows a graphical representation of the computations and poten-
tials created during the process of computing of P(W).

@

Figure 4.7: A graphical illustration of the process of computing P(W) in (4.7),
where the ovals represent the domain of a potential before elim-
ination, and rectangles represent the domain of a potential after
elimination.

Notice the similarity between the potentials created in the process of com-
puting P(A) and P(W). There is a significant overlap between the potentials
created and therefore the calculations performed. This is no coincidence. ]

Junction Trees

The task of probabilistic inference may be solved efficiently by local procedures
operating on a secondary computational structure known as the junction tree
(also known as a join tree and a Markov tree) representation of a Bayesian
network (Jensen & Jensen 1994, Jensen et al. 1994).

The junction tree representation is efficient when solving the inference task
for multiple sets of different evidence and target variables. A junction tree
representation T of a Bayesian network N = (X, G, P) is a pair T = (€, 8) where €
is the set of cliques and 8§ is the set of separators. The cliques € are the nodes
of T whereas the separators § annotate the links of the tree. Each clique C € €
represents a maximal complete subset of pairwise connected variables of X, i.e.,
C C X, of an undirected graph.! The link between two neighboring cliques Cy
and Cj is annotated with the intersection S = C; N Cj, where S € 8.

Example 49 (Chest Clinic) Figure 3.2 on page 58 shows the DAG G of the
Chest Clinic network N = (X, G, P).

1The undirected graph is constructed from the moral graph G™ of G by adding undirected
edges until the graph is triangulated. A graph is triangulated if every cycle of length greater
than three has a chord.
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Figure 4.8: A junction tree representation J for the Chest Clinic network.

Figure 4.8 shows a junction tree representation T = (€, 8) of the Chest Clinic
network. The junction tree consists of cliques

€ ={A,T,L{B,D,E}{B,E,L},{B,L,S},{E, L, T}{E,X}}

and separators
8 ={{B, E},{B, LL,{E},{E, L}, {T}}.

The structure of T is determined from the structure of G. ]

The process of creating a junction tree representation of a DAG is beyond
the scope of this book. Instead we refer the interested reader to the literature,
see e.g. Cowell, Dawid, Lauritzen & Spiegelhalter (1999).

The junction tree serves as an excellent control structure for organizing the
computations performed during probabilistic inference. Messages are passed
between cliques of the junction tree in two sweeps such that a single message is
passed between each pair of neighboring cliques in each sweep. This process is
referred to as a propagation of information.

Once the junction tree T = (€, 8) has been constructed, a probability poten-
tial is associated with each clique C € € and each separator S € § between two
adjacent cliques C; and C; where S = C; N Cj, see Figure 4.9 on the following
page.

Inference involves the following steps:

(1) Each item of evidence must be incorporated into the junction tree poten-
tials. For each item of evidence, an evidence function is multiplied onto
an appropriate clique potential.
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Figure 4.9: When C; has absorbed information from its other neighbors, C; can
absorb from Cj.

(2) Some clique R € € of T is selected. This clique is referred to as the root
of the propagation.

(3) Then messages are passed toward the selected root. The messages are
passed through the separators of the junction tree (i.e., along the links of
the tree). These messages cause the potentials of the receiving cliques and
separators to be updated. This phase is known as COLLECTINFORMATION.

(4) Now messages are passed in the opposite direction (i.e., from the root
toward the leaves of the junction tree). This phase is known as Dis-
TRIBUTEINFORMATION.

(5) At this point, the junction tree is said to be in equilibrium: The proba-
bility P(X|e) can be computed from any clique or separator containing X
— the result will be independent of the chosen clique or separator.

Prior to the initial round of message passing, for each variable X, € X
we assign the conditional probability distribution P(X,[Xpa(v)) to a clique C
such that X, () € C. Once all conditional probability distributions have been
assigned to cliques, the distributions assigned to each clique are combined to
form the initial clique potential.

Example 50 Consider again the junction tree of the Chest Clinic network
shown in Figure 4.8 on the page before. Each conditional probability distri-
bution P € P is associated with a clique of T such that dom(P) C C for C € C.
Notice that the association of distributions with cliques is unique in this exam-

ple. |

The basic inference algorithm is as follows. Each separator holds a sin-
gle potential over the separator variables, which initially is a unity potential.
During propagation of information the separator and clique potentials are up-
dated. Consider two adjacent cliques C; and C; as shown in Figure 4.9. When
a message is passed from Cj to Cji either during COLLECTINFORMATION or
DISTRIBUTEINFORMATION, C; absorbs information from Cj. Absorption of in-
formation involves performing the following calculations:
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(1) Calculate the updated separator potential:

o5 =Y dc,.

C;\S
(2) Update the clique potential of Cj:

b3
¢s’

bc, = dc,

(3) Associate the updated potential with the separator:
$s = bs.

After a full round of message passing the potential associated with any clique
(separator) is the joint probability distribution (up to the same normalization
constant) of the variables in the clique (separator) and the evidence. This
algorithm is known as the Hugin algorithm. Details on the inference process can
be found in the literature (Lauritzen & Spiegelhalter 1988, Andersen, Olesen,
Jensen & Jensen 1989, Jensen, Lauritzen & Olesen 1990, Dawid 1992, Jensen
et al. 1994, Lauritzen & Jensen 2001).

Figure 4.10: A junction tree representation T of the Bayesian network depicted
in Figure 4.5 on page 97.

Example 51 Figure 4.10 shows a junction tree representation T = (€, 8) of the
Bayesian network depicted in Figure 4.5 on page 97 with cliques:

¢ ={{A,B,EL{E,R},{A, W}

and separators:
8 ={{E},{A}}.

Notice the similarity between Figure 4.10 and Figures 4.6 and 4.7. The nodes
of Figures 4.6 and 4.7 are clusters (i.e., subsets of variables) whereas the nodes
of Figure 4.10 are cliques (i.e., maximal subsets of pairwise connected variables)
of undirected graphs.
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(B)—(8)
%

Figure 4.11: The undirected graph corresponding to Figures 4.6, 4.7 and 4.10.

> 1= Lo

Lo T[]

Figure 4.12: Message passing in 7.

The undirected graph corresponding to a junction tree is obtained by adding
undirected edges between each pair of variables contained in the same clique or
cluster. Figure 4.11 is the undirected graph corresponding to Figures 4.6, 4.7
and 4.10.

Figure 4.12 shows how messages are passed over 7 relative to the root ABE.

Underlying any approach to inference is the junction tree representation,
although its presence may be implicit. Figure 4.6 shows the cluster tree rep-
resentation underlying the computation of P(A) whereas Figure 4.7 shows the
cluster tree representation underlying the computation of P(W). Figures 4.6
and 4.7 are not junction trees, but cluster trees. The cliques of a junction tree
are maximal complete subsets of pairwise connected variables, whereas clusters
are not necessarily maximal. ]

The quality of the junction tree T = (C,8) determines the efficiency of in-
ference. A common score or criterion to use when considering the optimal-
ity of a junction tree is the maximum state space size over all cliques in 7,
i.e., maxcee ||C||. Another similar score is the sum over all cliques in T, i.e.,
2 cee €Il

All types of probabilistic networks considered in this book may be solved
by message passing in a junction tree representation. However, we will restrict
ourselves from a detailed treatment of this topic for all models presented as it
is beyond the scope of this book.
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The approach to inference outlined above may be referred to as an indirect
approach.

4.1.2 Inference in LCG Bayesian Networks

Let N = (X,G,P,F) be an LCG Bayesian network with continuous random
variables, X, and discrete random variables, X, such that X = Xr U Xa.
To solve the probabilistic inference task on N is to compute the marginal for
each X € X. Since N is an LCG Bayesian network the task of performing
inference becomes more subtle than in the case of a pure discrete Bayesian
network.

The prior distribution, P(X), of a discrete variable X € X is equal to the
distribution of X in the discrete network N’ = (Xa,?P) obtained by removing
all continuous variables from the model (all continuous variables are barren
variables with respect to the joint over the discrete variables). The prior density
of a continuous variable Y, on the other hand, will, in general, be a mixture
of Gaussian distributions where the mixing factors are joint probabilities over
configurations of discrete variables I C XA. For each configuration i of I with
non-zero probability, i.e., p(i) > 0, the joint distribution of I and X has the form

P(I=1) * N(u(i), 0*(1)).
This implies that the marginal of X € Xr is

LX)= ) P *N(u(i),o*(i)).

P (I=i)>0

For each configuration i of I with P(i) = 0 the mean p(i) and variance o?(i)
may be random numbers. Hence, the marginal density function for a continuous
variable X € Xr is, in general, a mixture of Gaussian distributions

=
2
I
M=
R
5
N
:
Ko

i=0

where each component f; is a one-dimensional Gaussian density function in X
and each coefficient «; is the probability of a configuration of discrete variables.
This implies that the marginal density function of X € X is not necessarily an
LCG distribution with the indicated mean p and variance 2. That is, the result
of a marginalization of an LCG distribution over continuous variables is an LCG
distribution whereas the result of a marginalization of an LCG distribution over
discrete variables, in general, is not. The first type of marginal is referred to
as a strong marginal, whereas the latter is referred to as a weak marginal. The
marginal is strong as we compute the mean p and the variance o2, and we know
the distribution is an LCG distribution.

Probabilistic inference is the task of updating our belief about the state of
the world in light of evidence. Evidence on discrete variables, be it hard or soft
evidence, is treated as in the case of discrete Bayesian networks. Evidence on
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a continuous variable, on the other hand, is restricted to be hard evidence, i.e.,
instantiations.

In the general case where evidence ¢ is available, the marginal for a dis-
crete variable X € X is a probability distribution P(X]|e) conditional on the
evidence €, whereas the marginal for a continuous variable X € Xr is a density

function f(x|e) conditional on € with a mean p and a variance o2.

Example 52 Example 30 on page 62 shows an example of a simple LCG
Bayesian network. Computing the prior probability density in X3 amounts

to eliminating the variables X; and X;. With the quantification specified in
Example 30 this produces the following mixture

L(X3) = 0.75 % N (—5,5.1) +0.25 + N (5,5.2)

with mean pu = —2.5 and variance o? = 23.88. Notice that the density for X3
is not the density for the Gaussian distribution with mean u = —2.5 and vari-
ance 02 = 23.88. The density function is shown in Figure 4.13.

0.14 . ‘ ‘
(X3)

0.12 |- / i
0.1+ -

0.08 |- 4

0.06 i

0.04 - i

0.02 - / \ 4
1 1 1 L

-15 -10 -5 0 5 10 15

Figure 4.13: The density function for X3.

The prior probability density for X, and the prior probability distribution
for Xy are trivial to compute as {X;, X3} are barren with respect to the prior
for X7 and similarly {X7, X3} are barren with respect to the prior for Xj. [

The above examples illustrates that the class of LCG distributions is not
closed under the operation of discrete variable elimination. The weak marginal
distribution N(, 02) may, however, be used as an approximation of the true
marginal. The weak marginal is the closest non-mixture to the true marginal in
terms of the Kullback-Leibler distance (Lauritzen 1996).

Example 53 Counsider again the LCG Bayesian network N from Example 30 on
page 62. Figure 4.13 shows the density function for X3. Figure 4.14 shows both
the density function f(X3) and the weak marginal g(X3) for X3. It is obvious
that the weak marginal is only an approximation of the exact density function. g
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Figure 4.14: The density function f(X3) for X3 and its weak marginal g(X3).

Since the LCG distribution is not closed under the operation of discrete
variable elimination and since the operation of discrete variable elimination is
not defined when continuous variables are in the domain of the potential to
be marginalized, it is required that continuous variables are eliminated before
discrete variables. For this reason, when marginalizing over both continuous
and discrete variables, we first marginalize over the continuous variables and
then over the discrete variables (Lauritzen 1992).

This implies that the (exact) solution method for inference in LCG Bayesian
networks induce the partial order XA < Xr on the elimination order. Hence, the
continuous variables X should be eliminated before the discrete variables Xa.
A variable elimination order, which is restricted to induce a certain (partial)
order, is referred to as a strong elimination order. Hence, we use a strong elim-
ination order to solve LCG Bayesian network by variable elimination. For this
reason, inference in an LCG Bayesian network may be more resource intensive
than inference in corresponding Bayesian network with the same structure, but
consisting only of continuous random variables. Notice that due to independence
relations induced by the structure of § = (V,E) of an LCG Bayesian network
and the structure of the evidence ¢, it may in some situations be possible to
eliminate discrete variables before continuous variables.

In the special case where the ancestors of v € V are all representing contin-
uous variables (i.e., an(v) C V) for X,, € X, the posterior marginal for X, is a
strong marginal. Otherwise, it is a weak marginal. If the posterior for X, is a
weak marginal, the density function of X,, is an unknown mixture of Gaussians,
which needs to be computed as part of probabilistic inference.

The normalization constant & computed as part of probabilistic inference is
proportional to the density at the observed values of the continuous variables.
The proportionality constant is P(e(A)|e(T")), where ¢(A) is the evidence on
discrete variables and ¢(T") is the evidence on continuous variables. In general,
« is scale-dependent and does not make much sense. For instance, the value
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of o will dependent on whether height is measured in meters or centimeters.
If € only contains discrete variables, then « is the probability of ¢.

The presence of both continuous and discrete variables make the operations
required for performing probabilistic inference in LCG Bayesian networks more
complicated than those required for performing probabilistic inference in dis-
crete Bayesian networks. For a detailed treatment on inference in LCG Bayesian
networks, see for example Lauritzen (1992) and Lauritzen & Jensen (2001).

4.2 Solving Decision Models

We build decision models in order to support efficient reasoning and decision
making under uncertainty in a given problem domain. Reasoning under uncer-
tainty is the task of computing our updated beliefs in (unobserved) events given
observations on other events whereas decision making under uncertainty is the
task of identifying the (optimal) decision strategy for the decision maker given
observations.

4.2.1 Solving Discrete Influence Diagrams

Inference in an influence diagram N = (X, G, P, U) is to determine an optimal
strategy A= {31 R ,gn} for the decision maker and compute the maximum
expected utility of adhering to A.

The influence diagram is a compact representation of a joint expected utility
function due to the chain rule

EUX) = [T PO IXpan)) ) wlXpagw)-

XvE€Xc weVy

Applying the Y -max-) -rule (Jensen 1996) on the joint expected utility
function, we may solve N by eliminating variables in the reverse order of the
information precedence order <. That is, the precedence relation < induce a
partial order on the elimination of variables in X. This implies that we use
a strong variable elimination order to solve an influence diagram by variable
elimination.

Starting with the last decision Dy, the )} -max-) -rule says that we should
average over the unknown random variables J,,, maximize over the decision D,
average over the random variables J,,_1; known to the decision maker at Dy
(but not known to the analyst), maximize over Dy,_1, and so on. The principle
is to average over the unknown random variables, maximize over the decision
variable, and finally average over the observed random variables.

The intuition behind the application of the > -max-) -rule in reverse order
of decisions is as follows. When we consider the last decision Dy, its past is fully
observed and the only unobserved variables are the variables never observed
or observed after Dy, i.e., J,. Hence, after averaging over J,,, we can select a
maximizing argument of the utility function u(J(Dy, ), Dy) for each configura-
tion of J(Dy,) as an optimal decision at D. Notice that we select a maximizing
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argument for each configuration of the past. In principle, this eliminates J
and Dy, from the decision problem and we may consider Dy, as the last deci-
sion. This implies that when we solve for D,,_1 we assume the decision maker
to act optimally for Dy,.

Notice that the variables are observed at the time of decision, but not (neces-
sarily) at the time of analysis. Whether a random variable is known or unknown
is defined from the point of view of the decision maker, and not the analyst. In
this way we may solve N by computing the maximum expected utility MEU(A)
of the optimal strategy A as

MEU(A) = Zr%axz%ax--~ Z%aXZEU(X)
Jo T T g M da
= Zmax max - - - max
Jo

D D D
1 T, 2 g n

H P(Xv|Xpa(v)) Z u(Xpa(w))- (48)

XvEXc Un Xy

As part of the process, prior to the elimination of each decision D, we
record the maximizing arguments of D over the utility potential P (D,JI(D))
from which D is eliminated for each configuration of J(D). From {(D,J(D)) we
define the (probabilistic) policy function (D |J(D)) for D as

1 if d = arg maxg P(d’, 1),
0 otherwise,

5(d|I(D) =1i) = {

where we assume the maximizing argument arg maxg-\(d’,1i) to be unique. If
it is not unique, then any maximizing argument may be chosen.

Example 54 (Oil Wildcatter) To solve the decision problem of the Oil Wild-
catter of Example 32 on page 66 is to identify the optimal decision policies for
the test and drill decisions. From the joint expected utility function, EU(X),
over variables X of N = (X, G, P,U), we may compute the maximum expected
utility, MEU(A), of the optimal strategy, A= {SD(S,T),/ST()}, and in the pro-
cess determine the optimal strategy as follows

MEU(A) = mTaX; mgx% P(O)P(S|O, T)(C(T) + U(D, 0)).

Table 4.1 shows the expected utility function over D, S, T from which the
decision policy 3p(S,T) is identified as the maximizing argument of D for each
configuration of S and T. The oil wildcatter should drill for oil unless he per-
formed the test and obtained a diffuse pattern.

Table 4.2 shows the expected utility function over T from which the decision
policy 37() is identified as the maximizing argument of T. Hence, the test should
always be performed.

The decision policies d7() and dp(S,T) are already known from Exam-

ple 34 on page 69. The maximum expected utility for the decision problem
is 22.5. ]
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D § T

no c no
yes ¢l no
no op no
yes op no
no di no
yes di no 7
no c yes| =24
yes cl yes | 18.6
no op vye | —35
yes op yes 8
no di yes | —4.1
yes di yes | —16.6

O NO NNOo

Table 4.1: The joint expected utility function EU(D, S, T).

T
no 21
yes | 22.5

Table 4.2: The expected utility function EU(T).

Solving an influence diagram by performing the variable eliminations accord-
ing to (4.8) will be highly inefficient even for simple influence diagrams. Instead
we will — as in the case of Bayesian networks — apply a generalized version of
the distributive law to increase computational efficiency.

For notational convenience, the generalized marginalization operator [~ was
introduced by Jensen et al. (1994). The marginalization operator works differ-
ently for marginalization of random variables and decision variables:

I\/]péZp and M p £ maxp,
X X D b

where X is a random variable while D is a decision variable. We will use the gen-
eralized marginalization operator to explain the process of solving an influence
diagram, see (Madsen & Jensen 1999) for details.

Using a generalized version of the distributive law, the solution of an in-
fluence diagram may proceed as follows. Let Y be the first random variable to
eliminate. The set of utility potentials U can be divided into two disjoint subsets
with respect to Y. Let Uy C U be the subset of utility potentials including Y in
the domain

Uy ={u e U|Y € dom(u)}.

Then U \ Uy is the set of utility potentials not including Y in the domain.
Similarly, let Py C P be the subset of probability distributions including Y in
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the domain
Py ={P € P|Y € dom(P)}.

Then P\ Py is the set of probability potentials not including Y in the domain.
The elimination process proceeds by local computation in order to maintain
efficiency (i.e., we exploit the distributive law to maintain the factorization of
the joint expected utility function). Let ¢y be the probability potential obtained
by eliminating Y from the combination of all probability potentials in Py and
let Py be the utility potential obtained by eliminating Y from the combination
of all probability and utility potentials in Py U Uy such that

ov=PM ] ¢

Y ¢$ePy

by = M by Z P. (4.9)
Y

Pbely

The two potentials ¢y and Py will be used to enforce the factorization of the
joint expected utility function over X \ {Y}. The factorization may be achieved
by rewriting (4.8) using ¢y and Py as well as applying the distributive law

MEUA) =M (TTo X )

XeX ¢eP Peu

I e T e)( 2 v v)]

XeX $eP\Py $'ePy PelU\Uy Pp'elly
- M LCID o) (I e)( 2 e 2 )
XeXN{Y}E YpeP\Py Y d'ePy YeU\Uy P'eUy
= M ( 11 ¢)(( > w)dwwyﬂ (4.10)
XeX\{Y}E YpeP\Py PpeU\Uy
= ™M ( 11 d))d)v( > ¢+%>} (4.11)
L \pep\py Y

XeX\{Y} PeU\Uy

(4.11) specifies a decomposition of the joint expected utility function over X\
{Y}, and decomposition has the form of (4.8). The decomposition is the product
of the summation over the elements of U\ Uy U {%} and the product over the
elements of P\ Py U{by}. In addition, we have performed the elimination of Y
by local computations only involving potentials with Y as a domain variable.
We say that the sets

7\Py ULy and Wy {3

by
are a value preserving reduction of P and U where Y has been eliminated. The
elimination of the next variable may proceed in the same manner on U \ Uy U

{3} and P\ Py U{dy}.
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The division operation in (4.11) is introduced because the combination of
probability potentials and utility potentials is non-associative. Thus, either the
division should be performed or the probability potentials have to be distributed
over the terms of the utility function as in (4.10).

Example 55 (Oil Wildcatter) Utilizing the local computation approach ex-
plained above we may solve the Oil Wildcatter problem as follows

EU(A) = mameaxZP P(S|O, T)(C(T) + U(D,0))
= max +ZP maXZ S|O T) u(o, 0)).

The division by P(S) is necessary in order to obtain the correct conditional
expected utility for D. This division does not effect the policy.

The benefit of the local computation approach is more profound on large
and more complex influence diagrams. ]

4.2.2 Solving LQCG Influence Diagrams

Inference in an LQCG influence diagram N = (X, G, P, F,U) is similar to in-
ference in a discrete influence diagram. The task is to determine an optimal
strategy, A ={81,...,8,), for the decision maker and compute the maximum
expected utility of adhering to A.

The influence diagram is a compact representation of a joint expected utility
function due to the chain rule

UXa=1,%r) = [ PAlipaw)) * [T pUwXpam)) * D ulXpa(z)-

VEVA weVr zeVy

The solution process for LQCG influence diagrams follows the same approach
as the solution process for discrete influence diagrams. The solution process pro-
ceeds by applying an extension of the ) -max-) -rule (Madsen & Jensen 2005).
The extension is that we need to eliminate the continuous random variables Xr
by integration as opposed to summation. We refer the interested reader to the
literature for details on the solution process (Kenley 1986, Shachter & Kenley
1989, Poland 1994, Madsen & Jensen 2005).

The optimal strategy A= {81 Yoo ,8n} will consist of decision policies for
both discrete and continuous decision variables. The decision policy for a dis-
crete decision variable D; € XA NXp is a mapping from the configuration of its
past J(D;) to dom(Dy), whereas the decision policy for a continuous decision
variable D; € XrNXp is a multi-linear function in its continuous past J(D;)NXr
conditional on its discrete past J(Di) N Xa.

Example 56 (Marketing Budget (Madsen & Jensen 2005)) Consider a
company manager has to decide on a unit price, Price, to charge for a certain
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Figure 4.15: Optimization of price given marketing budget size.

item she wants to sell. The number of items sold, Units, is a function of the
price and marketing budget, Budget, whereas the cost of production, Cost, is a
function of the number of items sold. This scenario can be modeled using the
LQCG influence diagram shown in Figure 4.15. Prior to making the decision
on price she will be allocated a marketing budget.

The decision problem may be quantified as follows where the unit of utility
is thousands of EURs. The distributions of items sold and production cost are

L(Units|Budget = b,Price =p) = N(20+0.2%xb—0.1%p,25)
L(Cost|Units =u) = N(400+ 10 % u,2500)

The distribution of marketing budget is
L(Budget) = N(100,400).

The cost function is
U, (Cost =c¢) = —c¢

and the revenue function is
U; (Price = p,Units = u) = ux p.

Figure 4.16 on the next page shows the expected utility function as a function
of M and P. The optimal decision policy dp(m) for P is a linear function in M:
5p(m) =105+ m.

4.2.3 Relevance Reasoning

As mentioned in the previous section, a policy & for D is a mapping from past
observations and decisions to the possible decision options at D. When modeling
a large and complex decision problem involving a sequence of decisions, the past
observations and decisions of a decision may involve a large set of variables. At
the same time, it may be that only a small subset of these are essential for
the decision. Informally speaking, an observation (or decision) is essential (also
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Figure 4.16: Expected utility as a function of price and marketing budget.

known as requisite) for a decision, if the outcome of the observation may impact
the choice of decision option.

Assume we are able to identify and remove non-requisite parents of each
decision. This makes a policy for decision D a function from the requisite
past RP(D) to the decision options such that 6 : RP(D) — dom(D). It is not
a trivial task to determine the requisite past of a decision D, i.e., the variables
observed prior to D, whose values have an impact on the choice of decision
option for D (Shachter 1998, Lauritzen & Nilsson 2001, Nielsen 2001).

Definition 12 (Requisite Observation) Let N = (X,§ = (V,E),P,U) be
an influence diagram. The observation on variable Y, € J(D;) is requisite for
decision Dj in N if and only if v £ Vu Nde(vi)|(Vy(p,) \ {v}), where v; is the
node representing D;.

The solution algorithm will identify some of the non-requisite parents for
each decision, but there is no guarantee that all non-requisite parents will be
identified and ignored. The implicit identification of non-requisite parents is
due to conditional independence properties of the graph.

Similar to the concept of a requisite observation is the concept of a relevant
variable. The set of variables relevant for a decision, D, is the set of variables
observed and the set of decisions made after decision D, which may impact the
expected utility of D.
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Definition 13 (Relevant Variable) Let N = (X,§ = (V,E),P,U) be an in-
fluence diagram. A variable Y, € F(D;) is relevant for decision Dj; if and only
if v Lo Vunde(vi)|(Vgp,) \ {v}), where v is the node representing Dj.

Using the concepts of relevant variables and requisite observations it is possi-
ble to decompose the structure of an influence diagram N = (X, § = (V,E), P, U)
into a sub-models consisting only of requisite parents and relevant variables for
each decision in N.

Figure 4.17: The DAG induced by the subset of requisite observations and rel-
evant variables for Dgy.

Example 57 (Nielsen 2001) Consider the influence diagram shown in Fig-
ure 3.10 on page 73. Traversing the decision variables in reverse order, we
may for each decision variable construct the sub-model consisting of relevant
variables and requisite parents only.

Figure 4.18: The DAG induced by the subset of requisite observations and rel-
evant variables for D3.

We consider the decisions in reverse order starting with D4. The reasoning
proceeds by searching for non-requisite parents of D4. By inspection of the
diagram it becomes clear that G blocks the flow of information from observations
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made prior to D4 to the only utility descendant Uz of D4. Hence, all other
parents are non-requisite. Similarly, we identify the set of relevant variables.
Figure 4.17 on the page before shows the DAG induced by the subset of requisite
observations and relevant variables for Dy.

Similarly, Figure 4.18 and Figure 4.19 show the DAGs induced by the subsets
of requisite observations and relevant variables for D3 and D, respectively.

Figure 4.19: The DAG induced by the subset of requisite observations and rel-
evant variables for D,.

The DAG induced by the subset of requisite observations and relevant vari-
ables for D is equal to the DAG shown in Figure 3.10 on page 73. ]

Decomposing an influence diagram into its sub-models of requisite observa-
tions and relevant variables for each decision is very useful for model validation.

4.2.4 Solving LIMIDs

The LIMID representation relaxes the two fundamental assumptions of the influ-
ence diagram representation. The assumptions are the total order on decisions
and the perfect recall of past decisions and observations. These two assump-
tions are fundamental to the solution algorithm for influence diagrams described
above. Due to the relaxation of these two assumptions, the solution process of
LIMIDs becomes more complex than the solution process of influence diagrams.

Let N = (X, G, P, U) be a LIMID representation of a decision problem. The
Single Policy Updating (SPU) algorithm is an iterative procedure for identifying
(locally) optimal decision policies for the decisions of N. The basic idea is to
start an iterative process from some initial strategy where the policy at each
decision is updated while keeping the remaining policies fixed until convergence.
For different reasons the starting point is often the uniform strategy where all
options are equally likely to be chosen by the decision maker.

As mentioned in the Chapter 3, a decision policy dp, is a mapping from
the decision past of D;i to the state space dom(D;i) of D; such that ép, :
J(D;) — dom(Dy). This implies that we may use the probabilistic policy func-
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tion 8} (Di|J(D1)) of ép, (J(Dy)) introduced in Section 4.2.1 on page 106

1 if di =6p. (),
gDy =) = ¢ 1 F &= ool
0 otherwise.

This encoding will play a central role in the process of solving a LIMID.

Let N = (X,5G,P,U) be a LIMID model with chance and decision vari-
ables X¢ and Xp, respectively. A strategy A = {6p : D € Xp} for N induces
a joint probability distribution Pa(X) over X as it specifies a probability distri-
bution for each decision variable:

PaX) = J] PXoXpaiw) JT 8 (4.12)

XvEXc DieXp

The aim of solving N is to identify a strategy, A, maximizing the expected utility

EUA) = Y PAUX) = [T POGIXpaw) [ 80w

XeX Xy€X D;ieXp uel

The SPU algorithm starts with some initial strategy and iteratively updates
a single policy until convergence has occurred. Convergence has occurred when
no single policy modification can increase the expected utility of the strategy.
As mentioned above, a common initial strategy is the uniform strategy A =
{E/, .. ,EI} consisting of uniform policies al, .. ,E/ where 5_/1(‘1) = HD1—1H for
each d € dom(D;) and each D; € Xp.

Assume A is the current strategy and Dj is the next decision to be considered
for a policy update, then SPU proceeds by performing the following steps

Retract Retract the policy &) from A to obtain A_; = A\ {8}} (i.e., A_iis a
strategy for all decisions except Dj).

Update Identify a new policy §; for Dy by computing

§ = arg max EU(A_; U{3}}).

Replace Set A=A _; U (8.

SPU may consider the decisions in an arbitrary order. However, if the
graph § specifies a partial order on a subset of decisions Di; < --- < Dy, <
-+ < Dy, , then these decisions are processed in reverse order, c.f. the solution
process of ordinary influence diagrams.

Example 58 (Solving Breeding Pigs) To solve the breeding pigs decision prob-
lem of Example 40 on page 79 is to identify a strategy consisting of one policy
for each decision on whether or not to treat each pig for the disease. Using the
SPU algorithm described above we may solve the decision problem by iteratively
updating each single policy until convergence has occurred.
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The uniform strategy will serve as the initial strategy. Hence, we assign a
uniform policy 8; to each decision Dj. As there is a total temporal order on the
decisions, we consider them in reverse temporal order.

The SPU algorithm updates the policy of each decision iteratively until
convergence. Once convergence has occurred, we have obtained the strat-
egy A ={bp,,dD,, 0D, ), where

55 (Ry) = no R; = unhealthy
B no Ry = healthy

5. (Ry) = yes R, = unhealthy
EE no Ry = healthy

5. (Rs) = yes Rz = unhealthy
Pl = no Rs = healthy

The strategy is to treat a pig when the test indicates that the pig is unhealthy.
Notice that each policy is only a function of the most recent test result. This
implies that previous results and decisions are ignored. ]

Probability of Future Decisions

Equation 4.12 on the page before specifies a factorization of the joint probability
distribution Po over X encoded by a strategy A. This factorization may be
interpreted as a Bayesian network model. With this interpretation we are able to
compute the probability of future events under the assumption that the decision
maker adheres to the strategy A. This property also holds for ordinary influence
diagrams.

Example 59 (Breeding Pigs) In Example 58 we identified a strategy A =
{6p,,0D,, 0D, for the breeding pigs problem. Having identified a strategy, the
farmer may be interested in knowing the probability of a pig being healthy when
it is sold for slaughtering. This probability may be computed using ( 4.12 on
the preceding page).

The probability of the pig being healthy under strategy A is PA(Hs =T) =
67.58 whereas the probability of the pig being healthy under the uniform strat-
egy A is Px(Hs = T) = 70.55. The uniform strategy has a lower maximum
expected utility though. 1

Minimal LIMIDs

LIMIDs relax the assumption of perfect recall of the decision maker. This
implies that the structure of a LIMID defines what information is available to the
decision maker at each decision. In addition to specifying what information is
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available to the decision maker, we may perform an analysis of which information
is relevant to each decision.

It is not always obvious which informational links to include in a LIMID with
graph § = (V,E). Sometimes a link (v,w) € E from X,, € X¢ to D,, € Xp may
be removed from the graph § without affecting the policies and the expected
utility of the computed policies. When this is the case, we say that the link (v, w)
(and the parent X, given by the link) is non-requisite for D,,,.

Removing all non-requisite informational links from a LIMID N = (X, § =
(V,E),P,U) produces the minimal reduction N™" = (X, G = (V,E*), P, U) of N.
Any LIMID N has a unique minimal reduction N™ obtained by iterative re-
moval of informational links from non-requisite parents into decisions.

Since removing a non-requisite parent X from decision D; may make another
previously requisite parent Y € Xj,,(v,) @ non-requisite parent, it is necessary to
iteratively process the parent set of each decision until no non-requisite parents
are identified. If N is an ordinary influence diagram, it is sufficient to perform
a single pass over the decisions starting with the last decision first. The reason
is that we have a total order on the decisions and all decisions are extremal (see
Definition 14).

Optimal Strategies

In order to characterize the conditions under which SPU is guaranteed to find
an optimal solution we need to define the notion of an extremal decision.

Definition 14 (Extremal Decision) Let N = (X,G,P,U) be a LIMID. A
decision variable Dj is extremal if and only if

(Vunde(Dy)) Lg | fa(D;) |fa(Ds).
et

That is, a decision variable is extremal if all other decisions and their parents
are d-separated from the utility descendants of D; given the family of D;.

A LIMID is soluble if all decisions are extremal. If D; is extremal in N, then
it has an optimal policy. If all policies in A are optimal, then A is an optimal
strategy.

Example 60 (Breeding Pigs) The Breeding Pigs network In Figure 3.15 on
page 79 is not soluble as all decisions are non-extremal. This implies that the
local optimal strategy identified is not necessarily a globally optimal strategy.
Similarly, Figure 3.14 of Example 39 on page 78 shows an example of a non-
soluble LIMID N = (X,§ = (V,E),P,U). On the other hand, the LIMID N =
(X, = (V,E\{(D4,D)}),P,U) is soluble as both D; and Dj are extremal. g

Notice that since any ordinary influence diagram may be represented as
a limited memory influence diagram, the SPU solution process may be used
to solve influence diagrams, see e.g. Madsen & Nilsson (2001). Any ordinary
influence diagram is a special case of a limited memory influence diagram. The
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LIMID representation of an ordinary influence diagram will produce an optimal
strategy.
See Lauritzen & Nilsson (2001) for more details on the solution process.

4.3 Solving OOPNs

For the purpose of inference, an object-oriented model is unfolded. The unfolded
network is subsequently transformed into the computational structure used for
inference. This implies that to solve an object-oriented model is equivalent to
solving its unfolded network. Hence, from this point of view of inference there
is no difference between an object-oriented network and a flat network.

4.4 Summary

In this chapter we have considered the process of solving probabilistic networks.
As the exact nature of solving a query against a probabilistic network depends
on the type of model, the solution processes of Bayesian networks and influence
diagrams have been considered separately.

We build Bayesian network models in order to support efficient reasoning
under uncertainty in a given domain. Reasoning under uncertainty is the task
of computing our updated beliefs in (unobserved) events given observations on
other events, i.e., evidence.

We have considered the task of computing the posterior marginal of each
unobserved variable, Y, given a (possibly empty) set of evidence ¢, i.e., P(Y|e).
The solution process we have focused on computes the posterior marginal for all
unobserved variables using a two-phase message passing process on a junction
tree structure.

We build decision models in order to support efficient reasoning and deci-
sion making under uncertainty in a given problem domain. Reasoning under
uncertainty is the task of computing our updated beliefs in (unobserved) events
given observations on other events whereas decision making under uncertainty
is the task of identifying the (optimal) decision strategy for the decision maker
given observations.

We have derived a method for solving influence diagrams by variable elimina-
tion. In the process of eliminating variables we are able to identify the decision
policy for each decision. The resulting set of policies is the optimal strategy for
the influence diagram.

The LIMID representation relaxes the two fundamental assumptions of the
influence diagram representation. The assumptions are the total order on de-
cisions and the perfect recall of past decisions and observations. These two
assumptions are fundamental to the solution algorithm for influence diagrams
described above. Due to the relaxation of these two assumptions, the solution
process of LIMIDs becomes more complex than the solution process of influence
diagrams.
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We have described how the single policy updating algorithm iteratively iden-
tifies a set of locally optimal decision policies. A decision policy is globally
optimal when the decision is extremal.

Finally, an OOPN is solved by solving its equivalent unfolded network.
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of Symbols and

Abbreviations

arg

BN
CG
LCG
LIMID
LQCG
CPT

OOBN
OOPN

=90 00 00

E.g., argmax,ca EU(a) denotes the argument of max (i.e., the a)
that maximizes EU(a)

Bayesian network

Conditional Gaussian

Linear conditional Gaussian

Limited-memory influence diagram

Linear-quadratic conditional Gaussian

Conditional probability table

Influence diagram

Object-oriented Bayesian network

Object-oriented probabilistic network

Discrete chance node, representing a discrete random variable

Continuous chance node, representing a continuous random vari-
able

Discrete decision node, representing a discrete decision variable

Continuous decision node, representing a continuous decision vari-
able

Discrete utility node, representing a discrete utility function
Continuous utility node, representing a continuous utility function
Defined as

Equivalent to
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o«  Proportional to
I|-1] Domain size (i.e., || X|| = [dom(X)])
1l Independent
U, Independent with respect to distribution p
4 Dependent
U, Dependent with respect to distribution p
1 d-separated
1lg  d-separated in graph G
L d-connected
ALg  d-connected in graph §
8  Separator set
&  Evidence potential
¢ Evidence
n  Normalization operator
~  Connected
—  Connected by directed link

—  Connected by undirected link

¥ Connected in graph §
5, Connected by directed link in graph §
S Connected by undirected link in graph G
+  Not connected

3/ Not connected in graph §
(u,...,v) Path from utov
dom  Domain (of variable or set of variables)
| “given” (e.g., “a|b” means “a given b”)
pa  Parents of

fa  Family of
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ch
an
An
de
nd

EU
MEU

Q X N v = b

wv,w,...

(X‘?B’Y)"'

Children of

Ancestors of

Ancestral set of

Descendants of

Non-descendants of

Boolean value “false”

Boolean value “true”

Decision past

Decision future

Expected utility

Maximum expected utility
Normal (Gaussian) distribution
k-dimensional Normal distribution
Law of (e.g., £(X) = N(u, 02), also denoted X ~ N(p, 62))
The set of all real numbers

Scope

Input variables

Private (hidden) variables

Output variables

Evidence variables (i.e., subset of X for which their values are
known)

Evidence function for X(¢)

Sets of nodes

Set of nodes of a model

The subset of V that represent discrete variables
The subset of V that represent continuous variables
Nodes

Nodes



128 LIST OF SYMBOLS

X,Yi,Zx  Variables or sets of variables
Xw  Subset of variables corresponding to set of nodes W
X  The set of variables of a model; note that X = Xy
Xw  Subset of X, where W CV
Xu, X«  Variables corresponding to nodes u and «, respectively
X,Yi,zk  Configurations/states of (sets of) variables
xy  Projection of configuration x to dom(Y), XNY #(
Xc  The set of chance variables of a model
Xp  The set of decision variables of a model
Xa  The subset of discrete variables of X
Xr  The subset of continuous variables of X
U  The set of utility functions of a model
Vu  The subset of V representing utility functions

u(X)  Utility function u € U with the of variables X as domain
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> -max-) -rule, see influence diagram

~, 4

-1, 6

— , see link, directed
3, , see link, directed
g

-2 see link, undirected

—, see link, undirected

abductive reasoning, see reasoning,
abductive

acyclic directed graph, see graph,
acyclic directed

An, see ancestral set

an, see ancestor

ancestor, 4

ancestral set, 5

Apple Jack, 56, 69

arc, see link

arc reversal, 42

example, 43
Asia, 58
axioms, see probability, axioms

Balls in An Urn, 30
Bayes’ factor, 44
probability distribution for vari-
ables, 31
rule of total probability, 32
barren variable, see variable, barren
Bayes’ factor, 44
Bayes’ rule, 40
interpretation of, 42
Bayesian network
direct inference approach, 94
discrete, 55, 55—59
indirect inference approach, 102
linear CG, 61, 60-64
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query, 92

query based inference, 92
Burglary or Earthquake, 11, 20

Bayes’ rule, 41

conditional independence, 45

conditional probability, 28

conditional probability table, 33

events, 28

category, see variable, category
causal network, 12—-18
converging connection in, 16—
18
diverging connection in, 15-16,
18
flow of information in, 12-18
serial connection in, 14-15, 18
types of connections in, 13
causal reasoning, see reasoning, causal
causality, 10-12, 56
ch, see child
chain graph, see graph, chain
chain rule, 48
Bayesian networks, 50, 55
influence diagrams, 66
LCG Bayesian networks, 61
LQCG influence diagrams, 75
object-oriented Bayesian network
models, 85
Chest Clinic, see Asia
junction tree, 98
child, 4
chord, 98
clique, 96
combination, see probability poten-
tial, combination
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conditional independence, see inde-
pendence, conditional
conditional probability, 28
converging connection, see causal net-
work, converging connection
in
cycle, 5
directed, 5

D-map, 46
d-separation, 18, 20, 49
example, 20
DAG, see graph, acyclic directed
de, see descendant
decision future, 68
decision history, 68
decision past, 68
decision problem
well-defined, 69
decision variable, 64
informational parents, 73
decision variables
partial order, 67
total order, 69
deductive reasoning, see reasoning,
deductive
default prior probability distribution,
83
dependence and independence
conditional, 19-20
descendant, 4
diagnostic reasoning, see reasoning,
diagnostic
directed acyclic graph, see graph,
acyclic directed
directed cycle, see cycle, directed
directed global Markov property, 19,
21, 49
example, 21
directed graph, see graph, directed
distributive law, see probability cal-
culus, distributive law of
diverging connection, see causal net-
work, diverging connection
in

INDEX

division, see probability potential,
division
by zero, 36, 41
dom, see variable, domain

edge, see link
elimination order, 96
strong, 105, 106
equivalent variables, see variable, equiv-
alence
event, 28
evidence, 9-10
hard, 9
likelihood, see evidence, soft
potential, 35
soft, 9
expected utility, 64
Expert system, 89
explaining away, 2, 18

factorization
recursive, see probability dis-
tribution, recursive factor-
ization of
flat network, 85
fundamental rule, 29, 40

generalized marginalization operator,
108

graph
acyclic directed, 5
chain, 1
connected, 5
directed, 4
instances, 81
moral, 5
moralization, 96
skeleton, 5
undirected, 4

head, 33

head,tail, 95
head-to-head, 4, 16, 20
Hugin algorithm, 101
hypothesis variables, 58

I-map, 46
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independence, 45
conditional, 19-20, 45
represented in DAGs, 46
inference engine, 89
influence diagram, 63
> -max-p -rule, 106
discrete, 65, 64-74
information sets, 67
limited memory, 78, 77-80
minimal reduction, 117
soluble, 117
linear-quadratic CG, 74, 74-77
> -max-) -rule, 110
maximum expected utility, 68
no-forgetting links, 73
policy, 68
policy function, 107
strategy, 68
optimal, 68
informational link, see link, infor-
mational
inheritance, 86
instance, 81
intercausal reasoning, see explain-
ing away
interface variables, 81
intervening action, 64
intervening decision, 69

joint probability distribution, see prob-
ability distribution
junction tree, 98
COLLECTINFORMATION, 100
DISTRIBUTEINFORMATION, 100
propagation, 99
root, 100

kind, see variable, kind

LCG Bayesian network, see Bayesian
network, linear CG

LCG distribution, see linear condi-
tional Gaussian distribution

likelihood evidence, see evidence, soft

LIMID, see influence diagram, lim-
ited memory
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linear conditional Gaussian distribu-
tion, 61
linear-quadratic conditional Gaussian
influence diagram, see in-
fluence diagram, linear-quadratic
CG
link, 4
directed, 4
informational, 65
undirected, 4
LQCG influence diagram, see influ-
ence diagram, linear-quadratic

CG, 75

marginalization, 32, 37
generalized operator, 108
Markov property, see directed global
Markov property
maximum expected utility principle,
64
MEU
maximum expected utility, 107
minimal reduction, see influence di-
agram, limited memory, min-
imal reduction
moral graph, see graph, moral
multivariate Gaussian distribution,
61
mutually exclusive states, 55, 60

nd, see non-descendants
network class, 81

default instance, 86

internal scope, 82
no-forgetting, 65
node

notation, 9

symbols, 8

vs. variable, 7
non-descendants, 5
non-intervening action, 64
normalization, see probability po-

tential, normalization of

normalization constant, 91
notation, 9
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nuisance variable, see variable, nui-
sance

object, 81
object-oriented probabilistic network,
80-87
instance tree, 86
object-orientation
classes, 80
definition, 80
inheritance, 80
objects, 80
observation
essential, 111
requisite, 112
Oil Wildcatter, 76
OOBN, see object-oriented proba-
bilistic network

pa, see parent
parent, 4
path, 4
blocked in DAG, 20
blocked in undirected graph, 5
directed, 4
perfect map, 46
perfect recall, see no-forgetting
polytree, 5, 92
posterior probability distribution, see
probability distribution, pos-
terior
potential calculus, 36
probability
axioms, 29
probability calculus, 36
chain rule of, 48
distributive law of, 38
fundamental rule of, 29, 40
probability distribution
decomposition, 25
for variables, 30
graphical representation of con-
ditional, 33
marginal, 33
posterior, 36
recursive factorization of, 25

INDEX

probability potential, 34
combination, 36
division, 36
marginalization, see marginal-
ization
normalization of, 34, 36
vacuous, 35
projection, see marginalization
propagation, see junction tree, prop-
agation

reasoning
abductive, 2
causal, 2
deductive, 2
diagnostic, 2
intercausal, see explaining away
recursive factorization, see probabil-
ity distribution, recursive
factorization of
relevant network, 93
relevant variable, 112
rule of total probability, 31

serial connection, see causal network,
serial connection in

Single Policy Updating, 114

singly connected graph, see polytree

skeleton, see graph, skeleton

soluble, see influence diagram, lim-
ited memory, soluble

SPU, see Single Policy Updating

subclass, 87

subtype, see variable, subtype

tail, 33
topological ordering, 49
tree, 5

undirected graph, see graph, undi-
rected

unfolded network, 85

utility function, 64

vacuous potential, see probability po-
tential, vacuous
value function, see utility function



INDEX 133

value nodes, 65

variable, 6-9
barren, 39, 92
basic, 81
binding link, 83
bound, 83
category, 7
conditioned variable, 55
conditioning variables, 55
decision, 7
decision future, 68
decision history, 68
decision past, 68
deterministic, 7
domain, 6
eliminating, 32
elimination, 93, 96
equivalence, 83
extremal decision, 117
independence, see dependence

and independence

kind, 7
marginalizing out, 32
notation, 9
nuisance, 93
policy, 68
qualified name, 82
random, 7
scope, 82
simple name, 82
strong marginal, 103
strong type checking, 83
subtype, 8
target, 92
taxonomy, 8
vs. node, 7
weak marginal, 103



