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1.  Introduction 

This report gives an overview of the OWLIM [22] 

family of semantic repositories that are used in both 

commercial and research environments. 

There is no formal definition of the term ‘semantic 

repository’ so for the purposes of this article we use 

this term for Database Management Systems 

(DBMS) that can be used to store, query and manage 

data structured according to the Resource Description 

Framework [23] (RDF) standard(s). Compared to 

Relational Database Management Systems (RDBMS), 

such systems use flexible ontological schemata 

where data is processed by an inference-engine ac-

cording to a well-defined semantics. 

Section 2 motivates the development of semantic 

repositories by giving a brief overview of the emerg-

ing RDF landscape and outlines some desirable prop-

erties of systems that store and process RDF data. 

Section 3 introduces the OWLIM family of semantic 

repositories and describes many of its features that 

make it a world-leading RDF storage, reasoning and 

query-answering platform. Section 4 covers some 

advanced features of BigOWLIM that go beyond the 

RDF/RDFS [9]/OWL [13] language stack and show 

how other AI and text-processing related functions 

are combined to enable powerful data-mining appli-

cations. Section 5 deals with the performance and 

resilience of BigOWLIM systems, providing some 

comments regarding recent independent evaluations, 

a discussion of BigOWLIM Replication Cluster 

technology and some early results concerning ben-

chmarking the scalability of query processing when 

using a cluster deployed in the cloud. Section 6 gives 

a very brief overview of the development of OWLIM 

and its increasing adoption in commercial environ-

ments. Section 7 concludes with a summary of the 

information presented and some indications for the 

future evolution of the OWLIM family. 

2. Background and motivation 

The Resource Description Framework (RDF) was 

designed as a language for representing information 

about resources in the World Wide Web leading to 

the concept of the Semantic Web [5]. Due in part to 

its simple and flexible data model, it is more widely 

used for general purpose knowledge management 

and modeling, the most notable being “Linked Da-

ta” [6] a concept outlined by Tim Berners-Lee [4]. 

The principle idea behind Linked Data is that RDF 

graphs are published on the Web and can be navi-

gated in just the same way that a Web browser is 

used to browse the current HTML Web. In order for 

this to function, publishers should adhere to a number 

of principles involving the use of URIs to identify 

concepts, the ability to use URIs to get information 

about concepts and provide links to other RDF 

graphs. 



Linking Open Data (LOD) is a W3C Semantic 

Web Education and Outreach community project 

aiming to extend the Web by publishing open data-

sets as RDF and by creating RDF links between con-

cepts from different data sources. One of the central 

datasets of LOD is DBPedia [2] – an RDF extract of 

the Wikipedia open encyclopedia – which serves as a 

‘hub’ in the LOD graph, because of the many map-

pings between it and the other LOD datasets. Cur-

rently LOD includes more than 40 datasets, contain-

ing some 13 billion statements, joined together with 

many millions of link statements. 

While the principles of Linked Data allow for an 

open and decentralized Web of Data, there are intrin-

sic problems to do with the consumption of such data. 

While it is technically possible to execute queries 

spanning multiple datasets published via a number of 

separate servers, in reality the distributed nature of 

the data prevents the evaluation of queries with mul-

tiple joins happening in reasonable time. To com-

pound the problem, the inference required to properly 

answer queries according to the intended semantics 

adds additional computational overhead. 

From this environment we see the emerging re-

quirements for software components that can manage 

the volume of data available and provide mechanisms 

for the consumption of this data. We call these soft-

ware components ‘Semantic Repositories’ and they 

must be able to store huge volumes of RDF data, 

perform the necessary inference according to the se-

mantics of the data and provide a powerful query-

answering mechanism that operates in real-time. 

The following section introduces the OWLIM 

family of semantic repositories and describes in de-

tail the qualities that make them desirable tools for 

exploiting the Web of Data. 

3. OWLIM semantic repository (RDF database) 

OWLIM is a family of semantic repository solu-

tions, that each boast a pure Java, native RDF data-

base implementation. Currently there are two variants 

of OWLIM optimized for different operating envi-

ronments: SwiftOWLIM is an in-memory RDF data-

base, inference-engine and query-answering engine. 

It uses highly optimized indexes and data structures 

to be able to process tens of millions of RDF state-

ments on standard desktop hardware. Partly due to its 

in-memory nature, it is the world’s fastest semantic 

repository being able to load data at over 50,000 

statements per second on a 1,000 USD machine using 

non-trivial inference. SwiftOWLIM is free-for-use 

and based on the Triple Reasoning and Rule Entail-

ment Engine [37] (TRREE). BigOWLIM is the 

commercial version published under a per CPU li-

cense and is positioned as an enterprise-grade data-

base management system that can handle tens of bil-

lions of statements. BigOWLIM uses a number of 

storage and query optimizations that allow it to sus-

tain outstanding insert and delete performance even 

when managing tens of billions of statements of 

linked open data. Query performance with such data-

set sizes is likewise good, with sub-second response 

times for query patterns using 5 or so joins. The 

reader is encouraged to experiment with some exam-

ple queries using FactForge [14]. While there is no 

theoretical limit on the maximum number of state-

ments that can be processed by BigOWLIM, the 

practical limit for a machine with 64GB RAM is 

around 20 billion statements – any more than this and 

the loading performance drops off dramatically. 

BigOWLIM incorporates a number of advanced 

features and alternative data access methods that 

seamlessly integrate with standard query answering 

to provide a powerful, hybrid data mining platform. 

In the following sections, ‘OWLIM’ will be used 

when describing qualities common to both engines. 

Both variants of OWLIM are semantic repositories 

packaged as a Storage and Inference Layer (SAIL) 

for the Sesame openRDF [10] framework. This popu-

lar framework brings compatibility with the common 

RDF syntaxes (XML, N3, N-Triples, Turtle, TRIG, 

TRIX) and support for the SPARQL [28] and 

SeRQL [11] query languages. SwiftOWLIM has no 

special query processing engine of its own and relies 

on the Sesame framework. However, BigOWLIM 

implements its own query model and optimizations. 

Furthermore, the Sesame HTTP components and 

Web applications allow OWLIM to be used as a 

server database system with comprehensive adminis-

tration utilities. 

The rest of this section describes various features 

of OWLIM related to the management of RDF data. 

3.1.  Inference Engine 

The inferencing strategy in OWLIM is one of total 

materialization (apart from the owl:sameAs optimi-

zation discussed in Section 3.3) based on R-

Entailment (as defined by ter Horst [33]) where Data-

log [15] like rules with inequality constraints operate 

directly on a single ternary relation that represents all 

triples. In addition, free variables in rule heads are 



treated as blank nodes (a feature that must be used 

with caution in order to avoid an infinite recursive 

expansion).  

Total materialization involves computing all the 

entailed statements at load time. While this introduc-

es additional reasoning cost when loading statements 

into a repository, the desirable consequence is that 

query evaluation can proceed extremely quickly. 

Several standard rule sets are included in all edi-

tions of OWLIM and these include (in more or less 

increasing levels of complexity): 

empty - no inference; 

owl-horst - equivalent to pD* [33], but without 

data-type reasoning, i.e. without the literal ge-

neralization and related rules; 

rdfs – RDFS semantics using rule entailment [18], 

again without data-type reasoning; 

owl-max - RDFS plus that part of OWL-Lite that 

can be captured in rules (deriving functional 

and inverse functional properties, all-different, 

subclass by union/enumeration, min/max car-

dinality constraints, etc) 

owl2-rl – the OWL2 RL profile (fragment of 

OWL2 Full that is amenable for implementa-

tion on rule-engines [27]), but without data-

type reasoning. 

The desired semantics are chosen by selecting the 

rule set when a repository is first created. 

In addition to the standard semantics, user-defined 

rule-sets can be used. In this case the user provides 

the full pathname to a custom rule file that contains 

definitions of axiomatic triples, rules and consistency 

checks. For ease of use, the rule files for the standard 

rule-sets are included in the distribution and users 

can modify or extend these for their specific purposes. 

 

3.2. Consistency checks 

Consistency checks are used to ensure that the data 

model is in a consistent state and are applied when-

ever an update transaction is committed. The syntax 

is similar to that of rules, except that the conse-

quences are optional. 

Consistency checks that have no consequences 

will indicate a consistency violation whenever their 

premises are satisfied. This syntax is suitable for such 

activities as ensuring that owl:Nothing has no 

members, e.g. 

 
Consistency: cls-nothing2 

     x rdf:type owl:Nothing 

    ----------------------- 

      

 or that no pair of individuals have both 

owl:sameAs and owl:differentFrom relation-

ships, i.e. 

 
Consistency: eq-diff1 

     x owl:sameAs y 

     x owl:differentFrom y 

    ---------------------- 

 

Consistency checks that have consequences are 

similar to normal rules, except that the entailments 

are not added to the data model, rather they are used 

to ensure that the inferred statements exist in the re-

pository. If they are not present then a consistency 

violation is indicated. 

 

3.3. owl:sameAs optimization 

owl:sameAs is an OWL predicate used to declare 

that two different URIs denote one and the same 

thing. Hence it is often used to align identifiers from 

different datasets that refer to the same thing. 

For example, consider two URIs that identify Sofia 

(that is a part of Bulgaria) and three URIs that iden-

tify Bulgaria, these would be aligned using the fol-

lowing statements: 

 
dbpedia:Sofia owl:sameAs geonames:727011 

geonames:727011 geo-ont:parentFeature geonames:732800 

dbpedia:Bulgaria owl:sameAs geonames:732800 

dbpedia:Bulgaria owl:sameAs opencyc-en:Bulgaria 
 

Because owl:sameAs is a transitive and symmet-

ric relationship, we can treat all identifiers that have 

been connected using this predicate as belonging to 

the same identity class. This means that if any state-

ment contains a member of any identity class, then 

that statement should be replicated during inference 

for every other member of the identity class. For the 

Sofia-Bulgaria example given above, this leads to the 

entailment of ten more statements, i.e. 

 
geonames:727011 owl:sameAs dbpedia:Sofia 

geonames:732800 owl:sameAs dbpedia:Bulgaria 

geonames:732800 owl:sameAs opencyc-en:Bulgaria 

opencyc-en:Bulgaria owl:sameAs dbpedia:Bulgaria 

opencyc-en:Bulgaria owl:sameAs geonames:732800 

dbpedia:Sofia geo-ont:parentFeature geonames:732800 

dbpedia:Sofia geo-ont:parentFeature opencyc-en:Bulgaria 

dbpedia:Sofia geo-ont:parentFeature dbpedia:Bulgaria 

geonames:727011 geo-ont:parentFeature opencyc-en:Bulgaria 

geonames:727011 geo-ont:parentFeature dbpedia:Bulgaria 

 



As can be seen, inference with owl:sameAs has 

inflated the initial four statements with a further ten, 

a 250% increase even for this trivial example. Fur-

thermore, owl:sameAs is also reflexive and the 

OWL semantics dictate that all resources have a 

owl:sameAs relationship with themselves, therefore 

there should be a further five statements inferred: 

 
dbpedia:Sofia owl:sameAs dbpedia:Sofia 

geonames:727011  owl:sameAs geonames:727011 

geonames:732800  owl:sameAs geonames:732800 

dbpedia:Bulgaria owl:sameAs dbpedia:Bulgaria 

opencyc-en:Bulgaria owl:sameAs opencyc-en:Bulgaria 
 

Although this is a simple example, it provides a 

good indication about the performance implications 

of using owl:sameAs alignment in LOD. Because 

owl:sameAs is a transitive, reflexive, and symmet-

ric relationship, given an identity class of N equiva-

lent URIs, N
2
 owl:sameAs statements will be gener-

ated for every combination of pairs of URIs, although 

in reality there are not that many examples of very 

large owl:sameAs equivalence classes. Thus, al-

though owl:sameAs is useful for interlinking RDF 

datasets, its semantics causes considerable inflation 

in the number of inferred statements that should be 

considered during inference and query evaluation 

(either through forward- or through backward-

chaining). 

To overcome this problem, BigOWLIM includes 

special handling for owl:sameAs, where an entire 

equivalence class is indexed using a single node. In 

this way, BigOWLIM does not inflate the indices and 

at the same time, retains the ability to enumerate all 

the required solutions to query requests. Special care 

is taken to ensure that this optimisation does not hin-

der the ability to distinguish explicit from implicit 

statements. 

Equivalence expansion can be switched on and off 

when executing queries, so that when desired, only 

one URI is used for a particular resource when re-

turning query results. This can make a dramatic dif-

ference to the number of results returned, where 

statements differ only by the substitution of equiva-

lent URIs. 

3.4. Retraction of assertions 

As mentioned above, OWLIM materializes all in-

ferred statements at load time and whenever new 

statements are added to the repository. This has the 

highly desirable advantage that query answering is 

very fast, due to the fact that no further inference 

needs to be done. Updates that simply add new 

statements are treated in the same way as at load time, 

i.e. new statements are fed to the inference engine 

that applies the inference rules (making joins across 

new statements with existing statements) until no 

new inferences are obtained. Since the semantics 

(both standard and custom) must be monotonic, in-

sert operations incrementally add to the set of explicit 

and inferred statements. However, retracting explicit 

statements that are used to infer other statements is 

more complicated. In SwiftOWLIM, this is achieved 

by simply invalidating all inferred statements and re-

computing the full-closure whenever a delete opera-

tion is committed. This has the advantage of simplici-

ty of implementation, but the disadvantage of poor 

update performance and lack of scalability. 

BigOWLIM has a specific optimization for han-

dling delete operations that updates the full-closure 

incrementally, but does not use additional truth main-

tenance data structures, such as those developed as 

part of the Sesame infrastructure. This technique la-

bels statements to be deleted and then uses forward-

chaining to identify those statements that can be in-

ferred from them, followed by backward chaining to 

identify those inferred statements that are still sup-

ported by other means. 

The result is that delete performance is only 

slightly worse than the insertion of new statements. 

This allows the repository to handle rapidly changing 

data even when answering queries over tens of bil-

lions of statements. 

4. Beyond RDF and SPARQL 

4.1. RDF Rank 

RDF Rank is a technique to measure the relevance 

of entities by examining their interconnectedness. A 

numerical weighting is computed for every node 

(URIs and literals) in the entire RDF graph and 

stored in a special index. The weights are floating 

point numbers with values between 0 and 1, and are 

made available via a special system predicate so that 

the popularity of entities can be used to order query 

results. At a high level, the approach is similar to the 

way in which internet search engines order results, 

such as how Google orders results using PageRank. 

The algorithm that creates the weights can be con-

figured using SPARQL ASK queries with special 

system predicates. Currently, only the maximum 

number of iterations and the lower cut-off values can 



be altered. The generated weights are shared by all 

users of the repository. 

RDF Rank is particularly useful when querying 

very large datasets, where it can be used to identify 

the popular results out of many. For example, the 

following query returns the 100 most popular enter-

tainers from a dataset: 

 
PREFIX rank: 

    <http://www.ontotext.com/owlim/RDFRank#> 

PREFIX opencyc: 

    <http://sw.opencyc.org/concept/> 

SELECT * 

WHERE { 

    ?Person rdf:type opencyc:Entertainer . 

    ?Person rank:hasRDFRank ?rr . } 

ORDER BY DESC(?rr) 

LIMIT 100 

4.2. Full text search 

Full-text search (FTS) concerns retrieving text 

documents out of a large collection using keywords 

or, more generally, by tokens (represented as se-

quences of characters). Formally, the query 

represents an unordered set of tokens and the result is 

set of documents, relevant to the query. In a simple 

FTS implementation, relevance is Boolean: a docu-

ment is either relevant to the query, when it contains 

all the query tokens, or not. More advanced FTS im-

plementations deal with a degree of relevance of the 

document to the query, usually judged on some sort 

of measure of the frequency of appearance of each of 

the tokens in the document normalized versus the 

frequency of their appearance in the entire document 

collection. Such implementations return an ordered 

list of documents, where the most relevant docu-

ments come first. 

When compared to a structured query, e.g. 

SPARQL, FTS is a different information access me-

thod based on a different query syntax and semantics, 

where the results are also displayed in a different 

form. FTS and databases usually require different 

types of indices too. The ability to combine these two 

types of information access methods is very useful 

for a wide range of applications. Many relational 

DBMS support some sort of FTS (which is integrated 

into the SQL syntax) and maintain additional indices 

that allow efficient evaluation of FTS constraints. 

Typically, relational DBMS allow the user to define a 

query, which requires specific tokens to appear in a 

specific column of a specific table. In SPARQL there 

is no standard way for the specification of FTS con-

straints. In general, there is neither a well defined nor 

widely accepted concept for FTS in RDF data. Nev-

ertheless, some semantic repository vendors offer 

some sort of FTS in their engines. This section de-

scribes the FTS supported by BigOWLIM. 

Two approaches are implemented in BigOWLIM, 

a proprietary implementation called ‘Node Search’, 

and a Lucene-based implementation called ‘RDF 

Search’. Both approaches enable OWLIM to perform 

complex queries against character data, each with 

their functional differences outlined in Table 1. There 

can be considerable differences between the indexing 

and search speed of the two FTS implementations. 

Performance-conscious users are recommended to 

experiment with the performance of both methods 

using datasets and queries representative for the in-

tended application. 

Node Search uses Boolean-relevance and when in-

dexing only literals is similar to typical FTS imple-

mentations in relational DBMS. However, Node 

Search can also index the URIs of all entities, i.e. the 

subjects and objects of all statements. This makes it 

particularly useful for executing queries when the 

exact spelling of an entity’s URI is not known. 

 
Table 1 Comparison of Full-Text Search implementations 

 Node Search RDF Search 

Query 

format 

List of tokens List of tokens 

(with Lucene 

query extensions) 

Result 

format 

Unordered set of 

nodes 

Ordered list of 

URIs 

Textual 

representa-

tion 

For literals: the 

string value. For 

URIs and B-

nodes: toke-

nized URL 

Concatenation of 

the text  represen-

tations of each 

node and its 

neighbors 

Relevance Boolean, based 

on presence of 

the query tokens 

in the text 

Vector-space 

model, reflecting 

the degree of re-

levance of the text 

and the RDF rank 

of the URI 

Implementa-

tion 

Proprietary full-

text indexing 

and search im-

plementation 

The Lucene en-

gine is integrated 

and used for in-

dexing and search 

 

RDF Search allows for the efficient extraction of 

RDF resources from huge datasets, where ordering of 

the results by relevance is crucial. 

Both techniques embed full-text search patterns in-

to standard query formats, i.e. SPARQL or SeRQL, 



where statement patterns using special system predi-

cates enable powerful hybrid queries. 

To implement RDF Search, BigOWLIM integrates 

Lucene [25]  – a high-performance, full-featured text 

search engine – to index  the entire repository, i.e. all 

nodes using both URI local names and literals. For 

each node in the repository a text document is created 

by concatenating its text representation with those of 

other nodes reachable through one predicate arc, i.e. 

the subjects and objects of all nodes that appear in 

statements with the indexed node. The resulting doc-

ument is indexed by Lucene. If a node’s RDF Rank is 

available it is stored in Lucene's index as a boosting 

factor that will later on influence the selection order. 

The facility for integrating a Lucene query with a 

normal SPARQL query is achieved with a special 

system predicate. The query in Fig. 1 gives an exam-

ple of this. The intention here is to retrieve entity 

identifiers and labels, where those labels contain a 

token similar to ‘air’ and a token similar to ‘plane’. 

 
PREFIX rdfs: <http://.../rdf-schema#> 

PREFIX onto: <http://www.ontotext.com/> 

 

SELECT * WHERE { 

 ?entity rdfs:label ?label . 

 ?label onto:luceneQuery "air~ AND plane~".} 

 

Fig. 1 An example RDF Search query using Lucene 

This combination of ranking RDF molecules to-

gether with full-text search provides a powerful me-

chanism for querying/analyzing datasets even when 

the schema is not known. This allows for keyword-

based search over both literals and URIs with the 

results ordered by importance/interconnectedness. 

FactForge [14] is a demonstrator for this technolo-

gy that includes eight of the central LOD datasets. 

This publicly available and free to use Web applica-

tion uses Node Search (for auto-completion of en-

tered tokens), RDF Search for retrieving statements 

and RDF Rank for ordering results by relevance. This 

combination of technologies provides for powerful, 

user-guided data-mining over a large proportion of 

the core LOD datasets. 

4.3. RDF Priming 

RDF Priming is a technique that is used to select a 

subset of available statements for use as the input to 

query answering. It is based upon the concept of 

spreading-activation [12] as developed in the field of 

cognitive science. 

RDF Priming is a scalable and customizable im-

plementation of the popular connectionist method on 

top of RDF graphs. It allows the ‘priming’ of large 

datasets with respect to concepts relevant to the con-

text and to the query. It is implemented in the Bi-

gOWLIM engine and controlled using SPARQL 

ASK queries. 

The priming module is highly configurable, where 

the starting nodes, initial activation values, activation 

pathways, decay factors, threshold values and num-

ber of cycles can be individually set. Additionally, 

the number of worker threads used for computing 

and propagating activation values in a priming cycle 

can be specified. 

The principles can be explained by way of the fol-

lowing example. Consider the following query that 

might be executed over DBPedia: 

 
PREFIX dbp: <http://dbpedia.org/property/> 

PREFIX dbr: <http://dbpedia.org/resource/> 

SELECT * WHERE { 

  ?x dbp:class dbr:V8.} 

 

This query will return around 20 results for vari-

ous engine and car types. However, if the agent using 

BigOWLIM is operating with a particular interest in 

certain concepts and those related to them, say the 

Ford Motor company and a particular make of car, 

then these two entities could be used to start a prim-

ing cycle that selects statements ‘close’ to these con-

cepts. A sequence of SPARQL ASK queries can be 

used to set up the priming parameters, including 

some weightings for suitable predicates. The follow-

ing query can be used to specify the two starting 

nodes mentioned earlier: 

 
PREFIX onto: <http://www.ontotext.com#> 

PREFIX dbr:  <http://dbpedia.org/resource/> 

ASK { dbr:1955_Ford onto:activateNode 

      dbr:Ford_Motor_Company } 

 

After initiating the spreading of activations with 

another ASK query, the selected statements will be 

used as input to subsequent queries. Re-running the 

example query will return a smaller result set con-

taining members of the V8 DBPedia class more 

closely related to the Ford Motor company and the 

chosen model of car. 

It should be noted that RDF Priming is different 

from RDF Rank, in that RDF Priming involves se-

lecting a subset of statements by propagating activa-

tion values in multiple hops starting from the speci-

fied entities. RDF Rank on the other hand, simply 

counts the number of connections for each node. 

A current limitation of the RDF Priming imple-

mentation is that the activation values are maintained 



globally, so that it is not possible for two separate 

users to set up their own activation values. 

4.4. Notifications 

Notifications are a publish/subscribe mechanism 

for registering and receiving events from a BigOW-

LIM repository whenever new triples matching a 

certain graph pattern are inserted or deleted. The user 

of the notifications API registers for notifications by 

providing a graph pattern involving triple patterns 

combined by means of joins and unions at any level. 

The order of the triple patterns is not significant. 

In general, notifications will be sent for all inserted 

and deleted triples that contribute to a solution of the 

graph pattern. Furthermore, any inferred statements 

affected by inserts and deletes will also be subject to 

handling by the notification mechanism, i.e. new 

implicit statements will also be notified to clients 

when the requested triple pattern matches. 

The purpose of the notification service is to enable 

the efficient and timely discovery of newly added or 

deleted RDF data. Therefore it should be treated as a 

mechanism for giving the client a hint that certain 

changes have occurred and should not be used as an 

asynchronous SPARQL evaluation engine. 

The notification mechanism is designed to be used 

to trigger reactive behavior in client applications that 

need to respond to either inserted or deleted state-

ments in the update stream. 

5. Performance, resilience and scalability 

There are few widely accepted performance 

benchmarks for semantic repositories and all of them 

fail to address all aspects of the functioning of a par-

ticular engine. This section discuss a few well-known 

benchmarks and some independent evaluations fol-

lowed by a description of the BigOWLIM Replica-

tion Cluster and how this component improves both 

resilience and concurrent query processing perfor-

mance. 

5.1. Benchmarks 

The Berlin SPARQL Benchmark [7] (BSBM)  

evaluates the performance of query engines in an e-

commerce use case: searching products and navigat-

ing through related information. Randomized query 

mixes (each consisting of 25 queries) are evaluated 

continuously through a client application that com-

municates with the repository through a SPARQL 

end-point. However, the benchmark does not require 

any inference to take place in the repository and is 

targeted purely at measuring query-answering per-

formance. Recent evaluation results [8] for some of 

the most popular engines show that BigOWLIM has 

the best loading performance for the 100 million da-

taset being three times faster than the second best. 

BigOWLIM also has the best query performance for 

the reduced query mix. 

The Lehigh University Benchmark [17] (LUBM) 

is a commonly used benchmarking framework for 

semantic repositories. It uses a relatively simple 

OWL ontology describing a university organization 

structure with synthetically generated datasets. The 

data generated for each university includes a number 

of departments and related individuals together with 

relevant descriptions and relations between them. 

The framework separately measures loading and 

query performance and inference is required in order 

to answer queries correctly. However, some impor-

tant aspects of semantic repositories are not measured 

in this benchmark, such as update and delete perfor-

mance. 

 LUBM(8000) includes data for 8000 universities 

and contains about 1.1 Billion explicit statements. It 

is a commonly used as a benchmark, because it is 

processable by a reasonable cross-section of the best 

performing semantic repository products. BigOW-

LIM will load this dataset in 14 hours on a computer 

costing less than 2000 US dollars (2.93GHz quad-

core, 12GB memory and three 320GB disks in a 

RAID 0 configuration) and will answer all queries 

correctly within 46 minutes. 

However, BigOWLIM has been measured with 

much larger datasets, including LUBM(90000) that 

contains over 12 Billion explicit statements (nearly 

21 Billion after inference). The loading time of this 

dataset with OWL-Horst semantics is approximately 

290 hours on a machine with 2 quad-core, 2.5GHz 

processors and 64GB memory. 

Another independent benchmark in the context of 

a commercial image retrieval system [34] compared a 

number of the leading semantic repositories. An ex-

cerpt from the conclusion states that “In our tests, 

BigOWLIM provides the best average query re-

sponse time and answers the maximum number of 

queries for both the datasets ... it is clear to see that 

execution speed-wise BigOWLIM outperforms Alle-

groGraph and Sesame for almost all of the dataset 

queries.” 



5.2. Replication cluster 

BigOWLIM can be used in a cluster configuration 

where replication is used to improve resilience and 

provide scalable query answering. 

The query performance of the cluster represents 

the sum of the throughputs that can be handled by 

each of the instances. In a simple configuration of 3 

or 4 worker nodes, hundreds of thousands of query 

requests can be answered per hour while at the same 

time processing thousands of updates per hour – with 

non-trivial inference. 

 
Fig. 2 A typical replication cluster configuration 

 

In a cluster configuration, there are two types of 

nodes: Masters and workers. Masters act as the gate-

way to the cluster and all read/write requests go 

through these nodes. A cluster can have more than 

one master node, but only one is allowed to operate 

in read/write mode. The other master nodes operate 

in read-only mode, otherwise known as ‘hot-standby’. 

They can be used for marshalling read requests and 

can take over handling updates if the current 

read/write master fails. Worker nodes are standard 

BigOWLIM instances exposed by the Sesame HTTP 

server – a servlet running in Tomcat or similar. Read 

and write requests are passed to the workers from the 

master nodes. This simple arrangement allows for a 

great deal of flexibility in the design of a cluster to-

pology. The example given in Fig. 2 has two master 

nodes and three worker nodes. At any moment in 

time, clients of the cluster can send read requests 

(queries) to either master node, but updates can only 

be handled by the master in read/write mode. If this 

master node should fail, the hot standby master can 

be brought in to read/write mode and from then on 

will handle both read requests and updates, as well as 

taking over responsibility for ensuring the synchroni-

zation of all the worker nodes. 

Each master node implements a JMX MBean [19] 

that is accessible using standard Java instrumentation 

tools, such as JConsole [20], and can be used to mon-

itor and control the cluster while it is running. Typi-

cal activities supported include the monitoring of the 

health of each node, statistics gathering, adding and 

removing worker nodes. 

During normal operation, a master node will keep 

track of the size of each worker’s read request queue, 

such that each read request is sent to the worker with 

the shortest read queue. Update requests are handled 

differently. First of all, the update is tested against a 

single worker node. If the update is successful and 

subsequent consistency checks pass then the update 

request is considered ‘safe’ and is passed to the rest 

of the worker nodes. Master nodes take additional 

care to ensure that the states of all worker nodes are 

properly synchronized and if an anomaly is detected, 

the problem worker node is released from the cluster. 

The monitor and control JMX interface can be used 

to return worker nodes to the cluster and initiate their 

synchronization. 

In the event of a failure of a worker node, the per-

formance degradation is graceful with respect to the 

number of healthy workers. The cluster can remain 

operational with just a single worker node. 

5.3. BigOWLIM in the cloud 

BigOWLIM Replication Cluster provides a means 

to dynamically improve concurrent query processing 

capability by increasing the number of worker nodes. 

Since worker nodes can be added and removed from 

a running cluster using management software, a 

cloud environment is a natural choice for deploying a 

BigOWLIM cluster, especially since the cluster is 

resilient to the failure of individual nodes. 

 In order to assess the scalability behavior of Bi-

gOWLIM Replication Cluster in the cloud, Ontotext 

conducted a series of experiments using the Amazon 

EC2 [1] infrastructure. Since the intention was to 

measure concurrent query performance, the BSBM 

benchmark was selected with the 100 million state-

ment data set and 1 thousand clients, see Section 5.1. 

The cluster configuration comprised 1 master node 

(Amazon HM-2XL instance, 34GB RAM, 4 CPU 

cores) and between 10 and 100 worker nodes (Ama-

Worker 1 

Read/Write 
Master 

Hot standby  
Master 

Worker 2 Worker 3 

Standard BigOWLIM instances 

Dispatches queries 
and updates to 

workers 
(read/write) 

Dispatches queries 
to workers 
(read only) 



zon HM-XL instance, 17GB RAM, 2 CPU cores) all 

running 64 bit Linux 

Unpublished results show that total query perfor-

mance scales almost linearly with the number of 

worker nodes, where the query processing throughput 

of worker nodes reduces gradually in relation to the 

total number of nodes. The 20 node configuration 

was shown to be able to process more than 40,000 

query mixes per hour, or 1 million SPARQL queries 

per hour. The 100 node configuration was able to 

process 200,000 query mixes, or 5 million SPARQL 

queries per hour. 

6. Development and adoption 

OWLIM was originally developed as part of the 

‘Semantic Knowledge Technologies’ (SEKT) and 

Triple Space Communication’ (TRIPCOM) Euro-

pean  research projects. It still maintains a presence 

in European research as the core storage and infe-

rence layer in the ‘Large Knowledge Collider’ 

(LarKC) and ‘Service Oriented Architectures for All’ 

(SOA4All) integrating projects. 

As with other semantic technologies, commercial 

uptake has been relatively slow. However, BigOW-

LIM is now being used in the life sciences, telecoms 

and publishing sectors as a flexible data-integration 

platform for massive amounts of heterogeneous data. 

BigOWLIM is also being used as part of a project 

sponsored by the UK Government National Arc-

hives [28] to bring new methods of search, naviga-

tion and information modeling and in doing so make 

the web archive a more valuable and popular re-

source. 

One high profile use case was the inclusion of a 

BigOWLIM cluster as part of the publishing stack for 

the BBC’s World Cup 2010 website [3]. This adop-

tion of semantic technology represents a significant 

change in the way that the BBC publishes content in 

that the framework for this website does not author 

content directly, rather it publishes metadata about 

the content according to a rich ontological domain 

model using OWL semantics. Queries to this metada-

ta are used to dynamically generate content for play-

ers, groups and teams. The ontology also extends to 

describing journalist-authored assets allowing them 

to be associated with the central concepts within the 

domain model. The peak periods for the site have 

seen updates of 100’s per minute and around a mil-

lion SPARQL queries per day. 

7. Conclusions and future work 

The emerging Web of Data has provided new chal-

lenges for software components that must expose this 

data and enable its widespread consumption. The 

OWLIM family of semantic repositories is ideally 

suited to this task due to its ability to store, reason 

and answer queries using the massive datasets in-

volved. In addition to world-leading RDF processing 

performance, OWLIM offers a range of advanced 

features that seamlessly integrate with existing query 

standards and provide a variety of alternative data 

access methods. 

OWLIM continues to evolve with various new fea-

tures planned for the near future. The next release of 

OWLIM will include enhanced support for geo-

spatial data and some of the widely accepted geo-

spatial vocabularies. Specialized indices will be used 

to access spatial data and a range of SPARQL exten-

sion functions will allow for expressive queries using 

2D and 3D geometry. 

The next release will also include interfaces that 

support the JENA RDF framework, enabling OW-

LIM to be used with both Sesame and JENA, the two 

most widely used Java-based RDF frameworks. 

Later releases will include more advanced full-text 

search and indexing options based on Lucene, with 

the ability to create and use multiple Lucene indices 

each parameterized according to the task at hand. 

Configuration parameters will allow better control 

over what statements to include in the RDF molecule. 

The size of the molecule (number of statement ‘hops’ 

from each node) will be controllable as well the 

choice of which statements to include based on the 

selected predicates or the selected language tags of 

literals. 

Later releases will expose the existing support for 

the extended RDF model based on triplesets.  

The current set of advanced features and world-

leading performance have helped to position OW-

LIM as the semantic repository of choice for all envi-

ronments that manage RDF data, particularly for 

Web-scale applications. The future evolution of 

OWLIM towards better compatibility and even more 

powerful data management features will ensure the 

continued uptake of this technology. 

The development of OWLIM has been partly sup-

ported by SEKT [31], TAO [35], TripCom [36], 

LarKC [24], SOA4ALL [32], and other Framework 6 

and 7 European research projects. 
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