
OWLIM: A family of scalable semantic

repositories

Barry Bishop
a
, Atanas Kiryakov

a
, Damyan Ognyanoff

a
, Ivan Peikov

a
, Zdravko Tashev

a
, Ruslan Velkov

a

a
Ontotext AD, 135 Tsarigradsko Chaussee, Sofia 1784, Bulgaria

Abstract. An explosion in the use of RDF for representing information about resources has driven the requirements for Web-

scale server systems that can store and process huge quantities of data, and furthermore provide powerful data access and min-

ing functionalities. This paper describes OWLIM, a family of semantic repositories that provide storage, inference and novel

data-access features delivered in a scalable, resilient, industrial-strength platform.

Keywords: Cluster, database, inference, OWL, priming, ranking, RDF, RDFS, reasoner, rules, semantic repository, semantic-

Web, SPARQL, text-search, triple-store

1. Introduction

This report gives an overview of the OWLIM [22]

family of semantic repositories that are used in both

commercial and research environments.

There is no formal definition of the term ‘semantic

repository’ so for the purposes of this article we use

this term for Database Management Systems

(DBMS) that can be used to store, query and manage

data structured according to the Resource Description

Framework [23] (RDF) standard(s). Compared to

Relational Database Management Systems (RDBMS),

such systems use flexible ontological schemata

where data is processed by an inference-engine ac-

cording to a well-defined semantics.

Section 2 motivates the development of semantic

repositories by giving a brief overview of the emerg-

ing RDF landscape and outlines some desirable prop-

erties of systems that store and process RDF data.

Section 3 introduces the OWLIM family of semantic

repositories and describes many of its features that

make it a world-leading RDF storage, reasoning and

query-answering platform. Section 4 covers some

advanced features of BigOWLIM that go beyond the

RDF/RDFS [9]/OWL [13] language stack and show

how other AI and text-processing related functions

are combined to enable powerful data-mining appli-

cations. Section 5 deals with the performance and

resilience of BigOWLIM systems, providing some

comments regarding recent independent evaluations,

a discussion of BigOWLIM Replication Cluster

technology and some early results concerning ben-

chmarking the scalability of query processing when

using a cluster deployed in the cloud. Section 6 gives

a very brief overview of the development of OWLIM

and its increasing adoption in commercial environ-

ments. Section 7 concludes with a summary of the

information presented and some indications for the

future evolution of the OWLIM family.

2. Background and motivation

The Resource Description Framework (RDF) was

designed as a language for representing information

about resources in the World Wide Web leading to

the concept of the Semantic Web [5]. Due in part to

its simple and flexible data model, it is more widely

used for general purpose knowledge management

and modeling, the most notable being “Linked Da-

ta” [6] a concept outlined by Tim Berners-Lee [4].

The principle idea behind Linked Data is that RDF

graphs are published on the Web and can be navi-

gated in just the same way that a Web browser is

used to browse the current HTML Web. In order for

this to function, publishers should adhere to a number

of principles involving the use of URIs to identify

concepts, the ability to use URIs to get information

about concepts and provide links to other RDF

graphs.

Linking Open Data (LOD) is a W3C Semantic

Web Education and Outreach community project

aiming to extend the Web by publishing open data-

sets as RDF and by creating RDF links between con-

cepts from different data sources. One of the central

datasets of LOD is DBPedia [2] – an RDF extract of

the Wikipedia open encyclopedia – which serves as a

‘hub’ in the LOD graph, because of the many map-

pings between it and the other LOD datasets. Cur-

rently LOD includes more than 40 datasets, contain-

ing some 13 billion statements, joined together with

many millions of link statements.

While the principles of Linked Data allow for an

open and decentralized Web of Data, there are intrin-

sic problems to do with the consumption of such data.

While it is technically possible to execute queries

spanning multiple datasets published via a number of

separate servers, in reality the distributed nature of

the data prevents the evaluation of queries with mul-

tiple joins happening in reasonable time. To com-

pound the problem, the inference required to properly

answer queries according to the intended semantics

adds additional computational overhead.

From this environment we see the emerging re-

quirements for software components that can manage

the volume of data available and provide mechanisms

for the consumption of this data. We call these soft-

ware components ‘Semantic Repositories’ and they

must be able to store huge volumes of RDF data,

perform the necessary inference according to the se-

mantics of the data and provide a powerful query-

answering mechanism that operates in real-time.

The following section introduces the OWLIM

family of semantic repositories and describes in de-

tail the qualities that make them desirable tools for

exploiting the Web of Data.

3. OWLIM semantic repository (RDF database)

OWLIM is a family of semantic repository solu-

tions, that each boast a pure Java, native RDF data-

base implementation. Currently there are two variants

of OWLIM optimized for different operating envi-

ronments: SwiftOWLIM is an in-memory RDF data-

base, inference-engine and query-answering engine.

It uses highly optimized indexes and data structures

to be able to process tens of millions of RDF state-

ments on standard desktop hardware. Partly due to its

in-memory nature, it is the world’s fastest semantic

repository being able to load data at over 50,000

statements per second on a 1,000 USD machine using

non-trivial inference. SwiftOWLIM is free-for-use

and based on the Triple Reasoning and Rule Entail-

ment Engine [37] (TRREE). BigOWLIM is the

commercial version published under a per CPU li-

cense and is positioned as an enterprise-grade data-

base management system that can handle tens of bil-

lions of statements. BigOWLIM uses a number of

storage and query optimizations that allow it to sus-

tain outstanding insert and delete performance even

when managing tens of billions of statements of

linked open data. Query performance with such data-

set sizes is likewise good, with sub-second response

times for query patterns using 5 or so joins. The

reader is encouraged to experiment with some exam-

ple queries using FactForge [14]. While there is no

theoretical limit on the maximum number of state-

ments that can be processed by BigOWLIM, the

practical limit for a machine with 64GB RAM is

around 20 billion statements – any more than this and

the loading performance drops off dramatically.

BigOWLIM incorporates a number of advanced

features and alternative data access methods that

seamlessly integrate with standard query answering

to provide a powerful, hybrid data mining platform.

In the following sections, ‘OWLIM’ will be used

when describing qualities common to both engines.

Both variants of OWLIM are semantic repositories

packaged as a Storage and Inference Layer (SAIL)

for the Sesame openRDF [10] framework. This popu-

lar framework brings compatibility with the common

RDF syntaxes (XML, N3, N-Triples, Turtle, TRIG,

TRIX) and support for the SPARQL [28] and

SeRQL [11] query languages. SwiftOWLIM has no

special query processing engine of its own and relies

on the Sesame framework. However, BigOWLIM

implements its own query model and optimizations.

Furthermore, the Sesame HTTP components and

Web applications allow OWLIM to be used as a

server database system with comprehensive adminis-

tration utilities.

The rest of this section describes various features

of OWLIM related to the management of RDF data.

3.1. Inference Engine

The inferencing strategy in OWLIM is one of total

materialization (apart from the owl:sameAs optimi-

zation discussed in Section 3.3) based on R-

Entailment (as defined by ter Horst [33]) where Data-

log [15] like rules with inequality constraints operate

directly on a single ternary relation that represents all

triples. In addition, free variables in rule heads are

treated as blank nodes (a feature that must be used

with caution in order to avoid an infinite recursive

expansion).

Total materialization involves computing all the

entailed statements at load time. While this introduc-

es additional reasoning cost when loading statements

into a repository, the desirable consequence is that

query evaluation can proceed extremely quickly.

Several standard rule sets are included in all edi-

tions of OWLIM and these include (in more or less

increasing levels of complexity):

empty - no inference;

owl-horst - equivalent to pD* [33], but without

data-type reasoning, i.e. without the literal ge-

neralization and related rules;

rdfs – RDFS semantics using rule entailment [18],

again without data-type reasoning;

owl-max - RDFS plus that part of OWL-Lite that

can be captured in rules (deriving functional

and inverse functional properties, all-different,

subclass by union/enumeration, min/max car-

dinality constraints, etc)

owl2-rl – the OWL2 RL profile (fragment of

OWL2 Full that is amenable for implementa-

tion on rule-engines [27]), but without data-

type reasoning.

The desired semantics are chosen by selecting the

rule set when a repository is first created.

In addition to the standard semantics, user-defined

rule-sets can be used. In this case the user provides

the full pathname to a custom rule file that contains

definitions of axiomatic triples, rules and consistency

checks. For ease of use, the rule files for the standard

rule-sets are included in the distribution and users

can modify or extend these for their specific purposes.

3.2. Consistency checks

Consistency checks are used to ensure that the data

model is in a consistent state and are applied when-

ever an update transaction is committed. The syntax

is similar to that of rules, except that the conse-

quences are optional.

Consistency checks that have no consequences

will indicate a consistency violation whenever their

premises are satisfied. This syntax is suitable for such

activities as ensuring that owl:Nothing has no

members, e.g.

Consistency: cls-nothing2

 x rdf:type owl:Nothing

 or that no pair of individuals have both

owl:sameAs and owl:differentFrom relation-

ships, i.e.

Consistency: eq-diff1

 x owl:sameAs y

 x owl:differentFrom y

Consistency checks that have consequences are

similar to normal rules, except that the entailments

are not added to the data model, rather they are used

to ensure that the inferred statements exist in the re-

pository. If they are not present then a consistency

violation is indicated.

3.3. owl:sameAs optimization

owl:sameAs is an OWL predicate used to declare

that two different URIs denote one and the same

thing. Hence it is often used to align identifiers from

different datasets that refer to the same thing.

For example, consider two URIs that identify Sofia

(that is a part of Bulgaria) and three URIs that iden-

tify Bulgaria, these would be aligned using the fol-

lowing statements:

dbpedia:Sofia owl:sameAs geonames:727011

geonames:727011 geo-ont:parentFeature geonames:732800

dbpedia:Bulgaria owl:sameAs geonames:732800

dbpedia:Bulgaria owl:sameAs opencyc-en:Bulgaria

Because owl:sameAs is a transitive and symmet-

ric relationship, we can treat all identifiers that have

been connected using this predicate as belonging to

the same identity class. This means that if any state-

ment contains a member of any identity class, then

that statement should be replicated during inference

for every other member of the identity class. For the

Sofia-Bulgaria example given above, this leads to the

entailment of ten more statements, i.e.

geonames:727011 owl:sameAs dbpedia:Sofia

geonames:732800 owl:sameAs dbpedia:Bulgaria

geonames:732800 owl:sameAs opencyc-en:Bulgaria

opencyc-en:Bulgaria owl:sameAs dbpedia:Bulgaria

opencyc-en:Bulgaria owl:sameAs geonames:732800

dbpedia:Sofia geo-ont:parentFeature geonames:732800

dbpedia:Sofia geo-ont:parentFeature opencyc-en:Bulgaria

dbpedia:Sofia geo-ont:parentFeature dbpedia:Bulgaria

geonames:727011 geo-ont:parentFeature opencyc-en:Bulgaria

geonames:727011 geo-ont:parentFeature dbpedia:Bulgaria

As can be seen, inference with owl:sameAs has

inflated the initial four statements with a further ten,

a 250% increase even for this trivial example. Fur-

thermore, owl:sameAs is also reflexive and the

OWL semantics dictate that all resources have a

owl:sameAs relationship with themselves, therefore

there should be a further five statements inferred:

dbpedia:Sofia owl:sameAs dbpedia:Sofia

geonames:727011 owl:sameAs geonames:727011

geonames:732800 owl:sameAs geonames:732800

dbpedia:Bulgaria owl:sameAs dbpedia:Bulgaria

opencyc-en:Bulgaria owl:sameAs opencyc-en:Bulgaria

Although this is a simple example, it provides a

good indication about the performance implications

of using owl:sameAs alignment in LOD. Because

owl:sameAs is a transitive, reflexive, and symmet-

ric relationship, given an identity class of N equiva-

lent URIs, N
2
 owl:sameAs statements will be gener-

ated for every combination of pairs of URIs, although

in reality there are not that many examples of very

large owl:sameAs equivalence classes. Thus, al-

though owl:sameAs is useful for interlinking RDF

datasets, its semantics causes considerable inflation

in the number of inferred statements that should be

considered during inference and query evaluation

(either through forward- or through backward-

chaining).

To overcome this problem, BigOWLIM includes

special handling for owl:sameAs, where an entire

equivalence class is indexed using a single node. In

this way, BigOWLIM does not inflate the indices and

at the same time, retains the ability to enumerate all

the required solutions to query requests. Special care

is taken to ensure that this optimisation does not hin-

der the ability to distinguish explicit from implicit

statements.

Equivalence expansion can be switched on and off

when executing queries, so that when desired, only

one URI is used for a particular resource when re-

turning query results. This can make a dramatic dif-

ference to the number of results returned, where

statements differ only by the substitution of equiva-

lent URIs.

3.4. Retraction of assertions

As mentioned above, OWLIM materializes all in-

ferred statements at load time and whenever new

statements are added to the repository. This has the

highly desirable advantage that query answering is

very fast, due to the fact that no further inference

needs to be done. Updates that simply add new

statements are treated in the same way as at load time,

i.e. new statements are fed to the inference engine

that applies the inference rules (making joins across

new statements with existing statements) until no

new inferences are obtained. Since the semantics

(both standard and custom) must be monotonic, in-

sert operations incrementally add to the set of explicit

and inferred statements. However, retracting explicit

statements that are used to infer other statements is

more complicated. In SwiftOWLIM, this is achieved

by simply invalidating all inferred statements and re-

computing the full-closure whenever a delete opera-

tion is committed. This has the advantage of simplici-

ty of implementation, but the disadvantage of poor

update performance and lack of scalability.

BigOWLIM has a specific optimization for han-

dling delete operations that updates the full-closure

incrementally, but does not use additional truth main-

tenance data structures, such as those developed as

part of the Sesame infrastructure. This technique la-

bels statements to be deleted and then uses forward-

chaining to identify those statements that can be in-

ferred from them, followed by backward chaining to

identify those inferred statements that are still sup-

ported by other means.

The result is that delete performance is only

slightly worse than the insertion of new statements.

This allows the repository to handle rapidly changing

data even when answering queries over tens of bil-

lions of statements.

4. Beyond RDF and SPARQL

4.1. RDF Rank

RDF Rank is a technique to measure the relevance

of entities by examining their interconnectedness. A

numerical weighting is computed for every node

(URIs and literals) in the entire RDF graph and

stored in a special index. The weights are floating

point numbers with values between 0 and 1, and are

made available via a special system predicate so that

the popularity of entities can be used to order query

results. At a high level, the approach is similar to the

way in which internet search engines order results,

such as how Google orders results using PageRank.

The algorithm that creates the weights can be con-

figured using SPARQL ASK queries with special

system predicates. Currently, only the maximum

number of iterations and the lower cut-off values can

be altered. The generated weights are shared by all

users of the repository.

RDF Rank is particularly useful when querying

very large datasets, where it can be used to identify

the popular results out of many. For example, the

following query returns the 100 most popular enter-

tainers from a dataset:

PREFIX rank:

 <http://www.ontotext.com/owlim/RDFRank#>

PREFIX opencyc:

 <http://sw.opencyc.org/concept/>

SELECT *

WHERE {

 ?Person rdf:type opencyc:Entertainer .

 ?Person rank:hasRDFRank ?rr . }

ORDER BY DESC(?rr)

LIMIT 100

4.2. Full text search

Full-text search (FTS) concerns retrieving text

documents out of a large collection using keywords

or, more generally, by tokens (represented as se-

quences of characters). Formally, the query

represents an unordered set of tokens and the result is

set of documents, relevant to the query. In a simple

FTS implementation, relevance is Boolean: a docu-

ment is either relevant to the query, when it contains

all the query tokens, or not. More advanced FTS im-

plementations deal with a degree of relevance of the

document to the query, usually judged on some sort

of measure of the frequency of appearance of each of

the tokens in the document normalized versus the

frequency of their appearance in the entire document

collection. Such implementations return an ordered

list of documents, where the most relevant docu-

ments come first.

When compared to a structured query, e.g.

SPARQL, FTS is a different information access me-

thod based on a different query syntax and semantics,

where the results are also displayed in a different

form. FTS and databases usually require different

types of indices too. The ability to combine these two

types of information access methods is very useful

for a wide range of applications. Many relational

DBMS support some sort of FTS (which is integrated

into the SQL syntax) and maintain additional indices

that allow efficient evaluation of FTS constraints.

Typically, relational DBMS allow the user to define a

query, which requires specific tokens to appear in a

specific column of a specific table. In SPARQL there

is no standard way for the specification of FTS con-

straints. In general, there is neither a well defined nor

widely accepted concept for FTS in RDF data. Nev-

ertheless, some semantic repository vendors offer

some sort of FTS in their engines. This section de-

scribes the FTS supported by BigOWLIM.

Two approaches are implemented in BigOWLIM,

a proprietary implementation called ‘Node Search’,

and a Lucene-based implementation called ‘RDF

Search’. Both approaches enable OWLIM to perform

complex queries against character data, each with

their functional differences outlined in Table 1. There

can be considerable differences between the indexing

and search speed of the two FTS implementations.

Performance-conscious users are recommended to

experiment with the performance of both methods

using datasets and queries representative for the in-

tended application.

Node Search uses Boolean-relevance and when in-

dexing only literals is similar to typical FTS imple-

mentations in relational DBMS. However, Node

Search can also index the URIs of all entities, i.e. the

subjects and objects of all statements. This makes it

particularly useful for executing queries when the

exact spelling of an entity’s URI is not known.

Table 1 Comparison of Full-Text Search implementations

 Node Search RDF Search

Query

format

List of tokens List of tokens

(with Lucene

query extensions)

Result

format

Unordered set of

nodes

Ordered list of

URIs

Textual

representa-

tion

For literals: the

string value. For

URIs and B-

nodes: toke-

nized URL

Concatenation of

the text represen-

tations of each

node and its

neighbors

Relevance Boolean, based

on presence of

the query tokens

in the text

Vector-space

model, reflecting

the degree of re-

levance of the text

and the RDF rank

of the URI

Implementa-

tion

Proprietary full-

text indexing

and search im-

plementation

The Lucene en-

gine is integrated

and used for in-

dexing and search

RDF Search allows for the efficient extraction of

RDF resources from huge datasets, where ordering of

the results by relevance is crucial.

Both techniques embed full-text search patterns in-

to standard query formats, i.e. SPARQL or SeRQL,

where statement patterns using special system predi-

cates enable powerful hybrid queries.

To implement RDF Search, BigOWLIM integrates

Lucene [25] – a high-performance, full-featured text

search engine – to index the entire repository, i.e. all

nodes using both URI local names and literals. For

each node in the repository a text document is created

by concatenating its text representation with those of

other nodes reachable through one predicate arc, i.e.

the subjects and objects of all nodes that appear in

statements with the indexed node. The resulting doc-

ument is indexed by Lucene. If a node’s RDF Rank is

available it is stored in Lucene's index as a boosting

factor that will later on influence the selection order.

The facility for integrating a Lucene query with a

normal SPARQL query is achieved with a special

system predicate. The query in Fig. 1 gives an exam-

ple of this. The intention here is to retrieve entity

identifiers and labels, where those labels contain a

token similar to ‘air’ and a token similar to ‘plane’.

PREFIX rdfs: <http://.../rdf-schema#>

PREFIX onto: <http://www.ontotext.com/>

SELECT * WHERE {

 ?entity rdfs:label ?label .

 ?label onto:luceneQuery "air~ AND plane~".}

Fig. 1 An example RDF Search query using Lucene

This combination of ranking RDF molecules to-

gether with full-text search provides a powerful me-

chanism for querying/analyzing datasets even when

the schema is not known. This allows for keyword-

based search over both literals and URIs with the

results ordered by importance/interconnectedness.

FactForge [14] is a demonstrator for this technolo-

gy that includes eight of the central LOD datasets.

This publicly available and free to use Web applica-

tion uses Node Search (for auto-completion of en-

tered tokens), RDF Search for retrieving statements

and RDF Rank for ordering results by relevance. This

combination of technologies provides for powerful,

user-guided data-mining over a large proportion of

the core LOD datasets.

4.3. RDF Priming

RDF Priming is a technique that is used to select a

subset of available statements for use as the input to

query answering. It is based upon the concept of

spreading-activation [12] as developed in the field of

cognitive science.

RDF Priming is a scalable and customizable im-

plementation of the popular connectionist method on

top of RDF graphs. It allows the ‘priming’ of large

datasets with respect to concepts relevant to the con-

text and to the query. It is implemented in the Bi-

gOWLIM engine and controlled using SPARQL

ASK queries.

The priming module is highly configurable, where

the starting nodes, initial activation values, activation

pathways, decay factors, threshold values and num-

ber of cycles can be individually set. Additionally,

the number of worker threads used for computing

and propagating activation values in a priming cycle

can be specified.

The principles can be explained by way of the fol-

lowing example. Consider the following query that

might be executed over DBPedia:

PREFIX dbp: <http://dbpedia.org/property/>

PREFIX dbr: <http://dbpedia.org/resource/>

SELECT * WHERE {

 ?x dbp:class dbr:V8.}

This query will return around 20 results for vari-

ous engine and car types. However, if the agent using

BigOWLIM is operating with a particular interest in

certain concepts and those related to them, say the

Ford Motor company and a particular make of car,

then these two entities could be used to start a prim-

ing cycle that selects statements ‘close’ to these con-

cepts. A sequence of SPARQL ASK queries can be

used to set up the priming parameters, including

some weightings for suitable predicates. The follow-

ing query can be used to specify the two starting

nodes mentioned earlier:

PREFIX onto: <http://www.ontotext.com#>

PREFIX dbr: <http://dbpedia.org/resource/>

ASK { dbr:1955_Ford onto:activateNode

 dbr:Ford_Motor_Company }

After initiating the spreading of activations with

another ASK query, the selected statements will be

used as input to subsequent queries. Re-running the

example query will return a smaller result set con-

taining members of the V8 DBPedia class more

closely related to the Ford Motor company and the

chosen model of car.

It should be noted that RDF Priming is different

from RDF Rank, in that RDF Priming involves se-

lecting a subset of statements by propagating activa-

tion values in multiple hops starting from the speci-

fied entities. RDF Rank on the other hand, simply

counts the number of connections for each node.

A current limitation of the RDF Priming imple-

mentation is that the activation values are maintained

globally, so that it is not possible for two separate

users to set up their own activation values.

4.4. Notifications

Notifications are a publish/subscribe mechanism

for registering and receiving events from a BigOW-

LIM repository whenever new triples matching a

certain graph pattern are inserted or deleted. The user

of the notifications API registers for notifications by

providing a graph pattern involving triple patterns

combined by means of joins and unions at any level.

The order of the triple patterns is not significant.

In general, notifications will be sent for all inserted

and deleted triples that contribute to a solution of the

graph pattern. Furthermore, any inferred statements

affected by inserts and deletes will also be subject to

handling by the notification mechanism, i.e. new

implicit statements will also be notified to clients

when the requested triple pattern matches.

The purpose of the notification service is to enable

the efficient and timely discovery of newly added or

deleted RDF data. Therefore it should be treated as a

mechanism for giving the client a hint that certain

changes have occurred and should not be used as an

asynchronous SPARQL evaluation engine.

The notification mechanism is designed to be used

to trigger reactive behavior in client applications that

need to respond to either inserted or deleted state-

ments in the update stream.

5. Performance, resilience and scalability

There are few widely accepted performance

benchmarks for semantic repositories and all of them

fail to address all aspects of the functioning of a par-

ticular engine. This section discuss a few well-known

benchmarks and some independent evaluations fol-

lowed by a description of the BigOWLIM Replica-

tion Cluster and how this component improves both

resilience and concurrent query processing perfor-

mance.

5.1. Benchmarks

The Berlin SPARQL Benchmark [7] (BSBM)

evaluates the performance of query engines in an e-

commerce use case: searching products and navigat-

ing through related information. Randomized query

mixes (each consisting of 25 queries) are evaluated

continuously through a client application that com-

municates with the repository through a SPARQL

end-point. However, the benchmark does not require

any inference to take place in the repository and is

targeted purely at measuring query-answering per-

formance. Recent evaluation results [8] for some of

the most popular engines show that BigOWLIM has

the best loading performance for the 100 million da-

taset being three times faster than the second best.

BigOWLIM also has the best query performance for

the reduced query mix.

The Lehigh University Benchmark [17] (LUBM)

is a commonly used benchmarking framework for

semantic repositories. It uses a relatively simple

OWL ontology describing a university organization

structure with synthetically generated datasets. The

data generated for each university includes a number

of departments and related individuals together with

relevant descriptions and relations between them.

The framework separately measures loading and

query performance and inference is required in order

to answer queries correctly. However, some impor-

tant aspects of semantic repositories are not measured

in this benchmark, such as update and delete perfor-

mance.

 LUBM(8000) includes data for 8000 universities

and contains about 1.1 Billion explicit statements. It

is a commonly used as a benchmark, because it is

processable by a reasonable cross-section of the best

performing semantic repository products. BigOW-

LIM will load this dataset in 14 hours on a computer

costing less than 2000 US dollars (2.93GHz quad-

core, 12GB memory and three 320GB disks in a

RAID 0 configuration) and will answer all queries

correctly within 46 minutes.

However, BigOWLIM has been measured with

much larger datasets, including LUBM(90000) that

contains over 12 Billion explicit statements (nearly

21 Billion after inference). The loading time of this

dataset with OWL-Horst semantics is approximately

290 hours on a machine with 2 quad-core, 2.5GHz

processors and 64GB memory.

Another independent benchmark in the context of

a commercial image retrieval system [34] compared a

number of the leading semantic repositories. An ex-

cerpt from the conclusion states that “In our tests,

BigOWLIM provides the best average query re-

sponse time and answers the maximum number of

queries for both the datasets ... it is clear to see that

execution speed-wise BigOWLIM outperforms Alle-

groGraph and Sesame for almost all of the dataset

queries.”

5.2. Replication cluster

BigOWLIM can be used in a cluster configuration

where replication is used to improve resilience and

provide scalable query answering.

The query performance of the cluster represents

the sum of the throughputs that can be handled by

each of the instances. In a simple configuration of 3

or 4 worker nodes, hundreds of thousands of query

requests can be answered per hour while at the same

time processing thousands of updates per hour – with

non-trivial inference.

Fig. 2 A typical replication cluster configuration

In a cluster configuration, there are two types of

nodes: Masters and workers. Masters act as the gate-

way to the cluster and all read/write requests go

through these nodes. A cluster can have more than

one master node, but only one is allowed to operate

in read/write mode. The other master nodes operate

in read-only mode, otherwise known as ‘hot-standby’.

They can be used for marshalling read requests and

can take over handling updates if the current

read/write master fails. Worker nodes are standard

BigOWLIM instances exposed by the Sesame HTTP

server – a servlet running in Tomcat or similar. Read

and write requests are passed to the workers from the

master nodes. This simple arrangement allows for a

great deal of flexibility in the design of a cluster to-

pology. The example given in Fig. 2 has two master

nodes and three worker nodes. At any moment in

time, clients of the cluster can send read requests

(queries) to either master node, but updates can only

be handled by the master in read/write mode. If this

master node should fail, the hot standby master can

be brought in to read/write mode and from then on

will handle both read requests and updates, as well as

taking over responsibility for ensuring the synchroni-

zation of all the worker nodes.

Each master node implements a JMX MBean [19]

that is accessible using standard Java instrumentation

tools, such as JConsole [20], and can be used to mon-

itor and control the cluster while it is running. Typi-

cal activities supported include the monitoring of the

health of each node, statistics gathering, adding and

removing worker nodes.

During normal operation, a master node will keep

track of the size of each worker’s read request queue,

such that each read request is sent to the worker with

the shortest read queue. Update requests are handled

differently. First of all, the update is tested against a

single worker node. If the update is successful and

subsequent consistency checks pass then the update

request is considered ‘safe’ and is passed to the rest

of the worker nodes. Master nodes take additional

care to ensure that the states of all worker nodes are

properly synchronized and if an anomaly is detected,

the problem worker node is released from the cluster.

The monitor and control JMX interface can be used

to return worker nodes to the cluster and initiate their

synchronization.

In the event of a failure of a worker node, the per-

formance degradation is graceful with respect to the

number of healthy workers. The cluster can remain

operational with just a single worker node.

5.3. BigOWLIM in the cloud

BigOWLIM Replication Cluster provides a means

to dynamically improve concurrent query processing

capability by increasing the number of worker nodes.

Since worker nodes can be added and removed from

a running cluster using management software, a

cloud environment is a natural choice for deploying a

BigOWLIM cluster, especially since the cluster is

resilient to the failure of individual nodes.

 In order to assess the scalability behavior of Bi-

gOWLIM Replication Cluster in the cloud, Ontotext

conducted a series of experiments using the Amazon

EC2 [1] infrastructure. Since the intention was to

measure concurrent query performance, the BSBM

benchmark was selected with the 100 million state-

ment data set and 1 thousand clients, see Section 5.1.

The cluster configuration comprised 1 master node

(Amazon HM-2XL instance, 34GB RAM, 4 CPU

cores) and between 10 and 100 worker nodes (Ama-

Worker 1

Read/Write
Master

Hot standby
Master

Worker 2 Worker 3

Standard BigOWLIM instances

Dispatches queries
and updates to

workers
(read/write)

Dispatches queries
to workers
(read only)

zon HM-XL instance, 17GB RAM, 2 CPU cores) all

running 64 bit Linux

Unpublished results show that total query perfor-

mance scales almost linearly with the number of

worker nodes, where the query processing throughput

of worker nodes reduces gradually in relation to the

total number of nodes. The 20 node configuration

was shown to be able to process more than 40,000

query mixes per hour, or 1 million SPARQL queries

per hour. The 100 node configuration was able to

process 200,000 query mixes, or 5 million SPARQL

queries per hour.

6. Development and adoption

OWLIM was originally developed as part of the

‘Semantic Knowledge Technologies’ (SEKT) and

Triple Space Communication’ (TRIPCOM) Euro-

pean research projects. It still maintains a presence

in European research as the core storage and infe-

rence layer in the ‘Large Knowledge Collider’

(LarKC) and ‘Service Oriented Architectures for All’

(SOA4All) integrating projects.

As with other semantic technologies, commercial

uptake has been relatively slow. However, BigOW-

LIM is now being used in the life sciences, telecoms

and publishing sectors as a flexible data-integration

platform for massive amounts of heterogeneous data.

BigOWLIM is also being used as part of a project

sponsored by the UK Government National Arc-

hives [28] to bring new methods of search, naviga-

tion and information modeling and in doing so make

the web archive a more valuable and popular re-

source.

One high profile use case was the inclusion of a

BigOWLIM cluster as part of the publishing stack for

the BBC’s World Cup 2010 website [3]. This adop-

tion of semantic technology represents a significant

change in the way that the BBC publishes content in

that the framework for this website does not author

content directly, rather it publishes metadata about

the content according to a rich ontological domain

model using OWL semantics. Queries to this metada-

ta are used to dynamically generate content for play-

ers, groups and teams. The ontology also extends to

describing journalist-authored assets allowing them

to be associated with the central concepts within the

domain model. The peak periods for the site have

seen updates of 100’s per minute and around a mil-

lion SPARQL queries per day.

7. Conclusions and future work

The emerging Web of Data has provided new chal-

lenges for software components that must expose this

data and enable its widespread consumption. The

OWLIM family of semantic repositories is ideally

suited to this task due to its ability to store, reason

and answer queries using the massive datasets in-

volved. In addition to world-leading RDF processing

performance, OWLIM offers a range of advanced

features that seamlessly integrate with existing query

standards and provide a variety of alternative data

access methods.

OWLIM continues to evolve with various new fea-

tures planned for the near future. The next release of

OWLIM will include enhanced support for geo-

spatial data and some of the widely accepted geo-

spatial vocabularies. Specialized indices will be used

to access spatial data and a range of SPARQL exten-

sion functions will allow for expressive queries using

2D and 3D geometry.

The next release will also include interfaces that

support the JENA RDF framework, enabling OW-

LIM to be used with both Sesame and JENA, the two

most widely used Java-based RDF frameworks.

Later releases will include more advanced full-text

search and indexing options based on Lucene, with

the ability to create and use multiple Lucene indices

each parameterized according to the task at hand.

Configuration parameters will allow better control

over what statements to include in the RDF molecule.

The size of the molecule (number of statement ‘hops’

from each node) will be controllable as well the

choice of which statements to include based on the

selected predicates or the selected language tags of

literals.

Later releases will expose the existing support for

the extended RDF model based on triplesets.

The current set of advanced features and world-

leading performance have helped to position OW-

LIM as the semantic repository of choice for all envi-

ronments that manage RDF data, particularly for

Web-scale applications. The future evolution of

OWLIM towards better compatibility and even more

powerful data management features will ensure the

continued uptake of this technology.

The development of OWLIM has been partly sup-

ported by SEKT [31], TAO [35], TripCom [36],

LarKC [24], SOA4ALL [32], and other Framework 6

and 7 European research projects.

References

1. Amazon EC2. Amazon elastic compute cloud, home-

page: http://aws.amazon.com/ec2/

2. Auer, S; Bizer, C; Kobilarov, G; Lehmann, J; Cyganiak,

R; Ives, Z; DBpedia: A Nucleus for a Web of Open Da-

ta, Springer Berlin / Heidelberg (2007), Lecture Notes

in Computer Science, pp. 722-735

3. BBC World Cup 2010, homepage:

http://www.bbc.co.uk/worldcup

4. Berners-Lee, T. (2006). Design Issues: Linked Data.

http://www.w3.org/DesignIssues/LinkedData.html

5. Berners-lee, T; Hendler, J; Lassila, O; (2001) The Se-

mantic Web. Scientific American, May 2001

6. Bizer, C; The Emerging Web of Linked Data, IEEE In-

telligent Systems, pp. 87-92, September/October, 2009

7. Bizer, C; Schultz, A; The Berlin SPARQL Benchmark,

International Journal on Semantic Web & Information

Systems, Vol. 5, Issue 2

8. Bizer, C; Schultz, A; BSBM Results for Virtuoso, Jena

TDB, BigOWLIM (November 2009).

http://www4.wiwiss.fu-berlin.de/bizer/Berlin

SPARQLBenchmark/results/V5/index.html

9. Brickley, D; Guha, R.V; RDF Vocabulary Description

Language 1.0: RDF Schema, W3C (10 Feb 2004)

http://www.w3.org/TR/rdf-schema

10. Broekstra, J; Kampman, A; RDF(S) manipulation, sto-

rage and querying using Sesame, In Demo Proc. of the

3rd Intl. Semantic Web. Conf., Hiroshima, 2004

11. Broekstra, J; Kampman, A; SeRQL: A Second Genera-

tion RDF Query Language. Proceedings of SWAD-

Europe Workshop on Semantic Web Storage and Re-

trieval 2003.

12. Collins, A.M; Loftus, E.F; A spreading-activation

theory of semantic processing (1975) Psychological

Review, 82 (6), pp. 407-428.

13. Dean, M; Schreiber, G. – editors; Bechhofer, S; van

Harmelen, F; Hendler, J; Horrocks, I.; McGuinness, D.

L; Patel-Schneider, P. F.; Stein, L. A. (2004). OWL

Web Ontology Language Reference. W3C Recommen-

dation, 10 Feb. 2004. http://www.w3.org/TR/owl-ref/

14. FactForge, a reason-able view to the web of data, ho-

mepage: http://factforge.net/

15. Gallaire, H; Minker, J; (Eds.): Logic and Data Bases,

Symposium on Logic and Data Bases, Centre d'études

et de recherches de Toulouse, 1977. Advances in Data

Base Theory, Plenum Press, New York, 1978, ISBN 0-

306-40060-X.

16. GeoNames geographical database, homepage:

http://www.geonames.org/

17. Guo Y., Pan Z., Heflin J., LUBM: A benchmark for

OWL knowledge base systems, (2005) Web Semantics,

3 (2-3), pp. 158-182.

18. Hayes, P; (Ed.): RDF Semantics, W3C Recommenda-

tion 10 February 2004. http://www.w3.org/TR/rdf-mt/

19. Java Management Extensions (JMX), homepage:

http://download-llnw.oracle.com/javase/1.5.0/

docs/guide/jmx/

20. Java Monitoring and Management Console (JConsole),

http://java.sun.com/developer/technicalArticles/J2SE/jc

onsole.html

21. Kiryakov, A; Ognyanov, D; Kirov, V. (2004) An On-

tology Representation and Data Integration (ORDI)

Framework. DIP project deliverable D2.2.

http://dip.semanticweb.org

22. Kiryakov, A; Ognyanov, D; Manov, D; OWLIM – a

Pragmatic Semantic Repository for OWL, In Proc. of

Int. Workshop on Scalable Semantic Web Knowledge

Base Systems (SSWS 2005), WISE 2005, 20 Nov, New

York City, USA. Springer-Verlag LNCS series, LNCS

3807, pp.182-192.

23. Klyne, G; Carrol , J. J; (eds). (2004). Resource Descrip-

tion Framework (RDF): Concepts and Abstract Syntax.

W3C Recommendation 10 Feb. 2004.

http://www.w3.org/TR/rdf-concepts/

24. LarKC: The Large Knowledge Collider (LarKC), Eu-

ropean Research Project, homepage:

http://www.larkc.eu/

25. Lucene, a high-performance, full-featured text search

engine library, homepage: http://lucene.apache.org/

26. McBride, B; Jena: A Semantic Web Toolkit, IEEE In-

ternet Computing, v.6 n.6, p.55-59, November 2002

27. Motik, B; Cuenca Grau, B; Horrocks, I; Wu, Z; Fokoue,

A; Lutz, C. (eds.) (2009). OWL 2 Web On-tology Lan-

guage Profiles. W3C Candidate Recommendation 11

June 2009. http://www.w3.org/TR/owl2-profiles/

28. National Archives (UK Government Website):

http://www.nationalarchives.gov.uk/

29. Prud’hommeaux, E; Seaborne, A; SPARQL Query

Language for RDF. Technical report, W3C, 2006.

30. Schmidt, M; Hornung, T; Meier, M; Pinkel, C; Lausen,

G, Semantic Web Information Management,

Springer Berlin Heidelberg 2010, pp. 371-393

31. Semantically Enabled Knowledge Technologies

(SEKT), European Research Project, homepage:

http://www.sekt-project.com/

32. Service Oriented Architectures for All (SOA4All), Eu-

ropean Research Project, homepage:

http://www.soa4all.eu/

33. ter Horst, H. J; Combining RDF and Part of OWL with

Rules: Semantics, Decidability, Complexity. In Proc. of

ISWC 2005, Galway, Ireland, November 6-10, 2005.

LNCS 3729, pp. 668-684

34. Thakker, D; Osman, T; Gohil, S; Lakin, P; A Pragmatic

Approach to Semantic Repositories Benchmarking. In

Proc. of the 7th Extended Semantic Web Conference,

ESWC 2010.

35. Transitioning Applications to Ontologies (TAO), Euro-

pean Research Project, homepage: http://www.tao-

project.eu/

36. Triple Space Communication (TripCom), European

Research Project, homepage: http://www.tripcom.org/

37. TRREE – Triple Reasoning and Rule Entailment En-

gine, homepage: http://ontotext.com/trree/

38. Upper Mapping and Binding Exchange Layer (UM-

BEL), homepage: http://www.umbel.org/

