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ABSTRACT

It iswell-known that flexibility and error resilience are sig-
nificantly improved by employing ascalablebit stream. The
major drawback of multi-layered representations within a
motion compensated (M C) discrete cosinetransform (DCT)
based framework is the increase in bit rate as compared to
a single-layered representation having the same frequency,
spatial and temporal resolution as in the highest layer of
the multi-layered representation. Using rate-distortion (RD)
optimization techniques, we can improve the compression
efficiency of MC-DCT based SNR and spatialy scalable
video coding framework. We first show how RD optimiza-
tion techniques can be applied independently for each |ayer.
We then extend the framework to consider coding decisions
jointly across layers.

1. INTRODUCTION

In scalable video coding systems, representations are avail-
able in a series of relative degrees of resolution. The base
layer of video, representing a given resolution or picture
quality, is encoded independently of other layers while the
subsequent layers of video, representing increased resolu-
tion or enhanced picture quality, are encoded dependently,
with each followinglayer coded with respect to the previous
layers. This provides additiona flexibility in the sense that
the scal able bit stream can be manipul ated at any point after
it has been generated. The capability isdesirablein order to
counter specific limitations and differences, including con-
straints on bit rate, decoder complexity, channel error char-
acteristics and display resolution that, in the case of muilti-
point and broadcast video applications, cannot beforeseen at
the time of encoding. Typically, alayer represents a change
of scale in frequency, spatial, or temporal resolution. An
SNR enhancement layer attemptsto recover the coding loss
between the reconstructed reference layer picture and the
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original picture. A spatial enhancement layer attemptsto re-
cover the coding loss between an upsampled version of the
reconstructed reference layer pictureand ahigher resolution
version of the origina picture.

The mgjor drawback of multi-layered representations
within an MC-DCT framework is the increase in bit rate
as compared to asingle-layered representation having same
frequency, spatial and temporal resolution as in the highest
layered of the multi-layered representation. This increase
in bit rate is due to side information overhead, variable-
length coding inefficiencies, and the differing statistics of
the error signal. Consequently, much of the research in the
area of scalability has focused on non MC-DCT based tech-
niques having inherently scalable properties, e.g. subband
techniques. Unfortunately, thesetechniques generally suffer
frominferior compression efficiency dueto the difficulty of
effectively including motion within subband schemes. Fur-
thermore, the ubiquity of MC-DCT based technology and
the inclusion of syntax extensions to support scalable cod-
ing within newer MC-DCT based video coding standards
[1] suggest that scalability be addressed within the MC-
DCT framework. We employ well-known RD optimization
techniquesto improve compression efficiency, based on La-
grangian minimization [2]

J=D+AR. )

We choosethe L agrangian rate-distortionfunctional asit
provides an elegant framework for determining the optimal
choice of motion vectorsand predi ction modes by weighting
adistortionterm against aresulting rate term for a particular
choiceof coding parameters. Here, D isdefined assomedis-
tortionmeasure, typically the sum of absoluteerror (SAE) or
sum of squared error (SSE). For motion estimation, R, isde-
fined as the sum of the rates for the vertica and horizontal
macroblock (or block) motion vector candidates. For mode
decision, R is defined as the sum of the rates to encode the
target macroblock, including al control, motion, and tex-
tureinformation. The Lagrangian multiplier A istheweight-
ing parameter that governs the rate-distortion tradeoffs. By
considering the various possi ble combinations of permissi-
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Figure 1: Illustration of possible prediction modes for en-
hancement layers.

ble coding parameters, we can select the set that produces
the minimum Lagrangian cost for a particular value of A.

A good review of RD optimized techniques for motion
estimation and coding mode decisions is available in [3].
Briefly, in MC-DCT based video coding systems, RD opti-
mi zed motion estimation sel ects the motion vector that min-
imizes the Lagrangian cost between the target macroblock
(or block) and the macroblock (or block) in the reference
picture displaced by the candidate motion vector. RD opti-
mized mode decision sel ects the coding mode among the

e FORWARD-SKIPPED,
e FORWARD-INTER,

e FORWARD-INTER4V and
e INTRA

modes that minimizes the Lagrangian cost. Here INTER4V
refersto the use of four motion vectorsfor each 16 x 16 pixel
macroblock. Treating motion estimation and mode deci-
sion independently and considering each coding unit (mac-
roblock) independently leads to a locally optimal decision
for the given A and coding unit.

2. RATE-DISTORTION OPTIMIZATION FOR
SCALABLE CODING

Extending our work on RD optimized H.263 coding [1]
from the single layered [4] to the multi-layered framework,
we incorporate the additiona inter-layer coding dependen-
ciespresent in amulti-layered framework into the set of per-
missible coding parameters. Figure 1 illustrates how en-
hancement layer pictures can have macroblocks (or blocks)
forward predicted from atemporally previous enhancement
layer pictureor upward predicted from atemporally simulta-
neousreference layer picture. Thus, for RD optimized mode
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Figure 2: Relationship between enhancement layer La
grangian and quantization parameters for SNR scalability.

decisionintheenhancement layer of an H.263 layered coder,
the possible coding modes that we consider are

¢ FORWARD-SKIPPED,

e FORWARD-INTER,

e FORWARD-INTER4V,

e UPWARD-INTER,

e BI-DIRECTIONAL-INTER,

e BI-DIRECTIONAL-INTER4V and
e INTRA.

Here UPWARD refers to prediction from the macrobl ock
at the same spatia location in the temporally simultaneous
reference layer picture (with an assumed motion vector of
(0,0)), and BI-DIRECTIONAL refers to prediction formed
from the average of the uPWARD and FORWARD predictors.

2.1. Choiceof Lagrangian Parameter

To eliminate the time-consuming task of calculating a
suitablevalue of the Lagrangian parameter A for each frame,
weattempt to model the choiceof A asafunctionof therefer-
ence and enhancement layer quantization parameters, Qpqs.
and Qcniance [1]. Thisalowsthe RD optimized framework
to work easily in conjunction with rate control techniques
that control the average bit rate by adjusting the quantization
parameters. RD optimized mode decision in the enhance-
ment layer then selects the coding mode among the seven
possi bleenhancement layer modes described inthe previous
section.
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Figure 3: Relationship between enhancement layer La
grangian and quantization parameters for spatial scalability.

In Figure 2, we plot the average SNR enhancement
layer quantization parameter Qcnnanc. Obtained by fixing
Aenhance @Nd AlOWING Qcnpance 1O Vary. Results were ob-
tained by gathering data for five different sequences, using
six different values of ()3,45. for each sequence, and ninedif-
ferent values of A., 1. fOr each value of Q5. For fine
enhancement layer quantizers, i.e. lessthan 10, the relation-
ship between the enhancement layer quantization and La
grangian parametersiswell approximated by the second or-
der polynomial

2
Aenhance =0.8x% (%) —0.26 % (%) —1.23.

For coarse enhancement layer quantizers, i.e. greater than
10, the rel ationship between the enhancement layer quanti-
zation and Lagrangian parameters is well approximated by
the linear equation

Aenhance =aX (%) - Ba (3)
where
_ Qbase
o =0.81 x 5 ) +3 (4)
and
B =19.165 x (Q;) — 66. (5)

In Figure 3, we plot the average enhancement layer
guantization parameter obtained from similar experiments
conducted for spatial enhancement layers. For fine enhance-
ment layer quantization parameters, i.e. lessthan 10, there-
| ationship between the enhancement layer quantization and
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Figure 4: SNR Scalability: Rate distortion optimization in
individua layers and in both layers. Average enhancement
layer PSNR vs aggregate bit rate, FOREMAN, QCIF, 10fps.

Lagrangian parameters is well approximated by the second
order polynomia

2
Aenhance = 0.81 x (QTL%) —1.05 x (M)

2
(6)
For coarse enhancement layer quantization, i.e. greater than
10, the rel ationship between the enhancement layer quanti-
zation and Lagrangian parameters is well approximated by
the second order polynomial

2
Aenhance — o x (Qen;ance) i 6 « (Qen;ance)’ (7)

where o and 3 depend on Q;45., as determined by plotting
the empirica valuesagainst Q;;., and are given by

2
a = 0.003 x (QbT) —0.159 x (QbT) +2.780 (8)

and

2
B =0.034x (Q;) —1.630% (Q;) +21.378. (9)

3. RESULTS

The coder employed for the smulationsis based on our
public TMN-3.2.0 coder [5]. While the public coder only
supports one enhancement layer, our modificationsalow us
to generate up to fifteen enhancement layers, the maximum
permissible by the syntax, However, for clarity we restrict
ourselves here to using one enhancement |ayer.



We incorporate Equations (2) - (9) into our coder and
generate two layer bit streams with both the non-RD opti-
mized coder and the RD optimized coder. We also generate
RD optimized singlelayer bit streams with the same resolu-
tion as the second layer of the two layer bit streams.

3.1. SNR Scalability

In Figure 4, we illustrate the rate-distortion performance of
five coders. Four of the coders producetwo layer bit streams
and one coder produces a single layer bit stream. The sin-
gle layer coder uses the same fixed quantization parameter
that isused in the enhancement layer by the scalable coders.
As expected, none of the scalable coders achieve the rate-
distortion performance of the non-scalable coder.

The performance of the non-RD optimized scalable
coder is 1.5 - 1.7 dB lower in PSNR than that of the non-
scaable, i.e. singlelayer, coder. If RD optimizationis per-
formed in the enhancement layer only, the scalable coder in-
curs a 1.6 dB decrease in PSNR as compared to the single
layer coder. For RD optimizationinthebaselayer only, al.4
dB decrease in PSNR (approximately 29 percent increasein
bit rate) isobserved for the scalable coder. If we employ RD
optimization in both the base and enhancement layers, the
scalable coder suffersonly al.2 dB decreasein PSNR. Thus,
while we are still somewhat far from matching the perfor-
mance of asinglelayer coder, RD optimization of both base
and enhancement layersimprovestherate-distortion perfor-
mance of scalable coding by as much as 0.5 dB.

Of interest is the observation that RD optimization in
the base layer alone provides more gains, in terms of rate-
distortion performance, than RD optimization in the en-
hancement layer done. One might conclude that this is
due to the proportion of the totd bit rate taken by the base
layer being greater than that taken by the enhancement layer.
However, further experiments reveadled that this is mainly
dueto RD optimizationin the base layer significantly reduc-
ing the amount of intra-coded macroblocks, which are the
most expensiveintermsof bits. Ontheother hand, intheen-
hancement layer, athough theintramodeis a possible cod-
ing mode, it is rarely used by even the non-RD optimized
coder. Thisbasically eliminates the potential for RD opti-
mi zation in the enhancement layer to producethe significant
savings obtainable by non-intracoding of the macroblocks.

3.2. Spatial Scalability

InFigure5, weillustratethe rate-distortion performance
of six coders. Four of the coders produce two layer bit
streams and two produce single layer bit streams. The same
fixed quantization parameter is employed in both the base
and enhancement layers of thelayered coders. The baselay-
ershave QCI F resol utionwhiletheenhancement layers have
CIF resolution. The single layer coders aso use the same
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Figure5: Spatial Scalability: Ratedistortionoptimizationin
individua layers and in both layers. Average enhancement
layer PSNR vs aggregate bit rate, FOREMAN, QCIF/CIF,
10fps.

fixed quantization parameters, and code the same resolution
as the enhancement layer of the two layer coders, i.e. CIF.

First, we look at the performance of the single layer
coders relative to the layered coders. Notably, the non-RD
optimized single layered coder is outperformed by al lay-
ered coders. As FOREMAN contains high motion, camera
motion, and occlusions, asignificant proportion of P-picture
macroblocks are intra-coded in the non-layered coder, for
CIF resolution pictures. In the layered coder, most of this
intra-codingis performed at the base layer, for QCIF resolu-
tion pictures. Therefore, blocks that are intra-coded by the
single layer coder are, in the enhancement layer pictures of
the layered coder, predicted from the upsampled base layer
pictures. As expected, none of the layered coders achieve
the rate-distortion performance of the RD optimized single
layer coder as RD optimization in the single layer coder
can significantly reduce the number of macroblocks that are
coded asintra.

Next welook at the performance of the different layered
coders relative to the single layer RD optimized coder. The
non-RD optimized layered coder incursa 1.1 - 1.9 dB de-
crease in PSNR. If RD optimization is performed in the en-
hancement layer only, the layered coder incurs a0.8 - 1.35
dB decrease in PSNR. For RD optimizationin the base layer
only, a0.75 - 1.4 dB decrease in PSNR is observed for the
layered coder. If we employ RD optimization in both the
base and enhancement layers, thelayered coder suffersonly
a0.3 - 0.5 dB decrease in PSNR. Thus, while we still can-
not match the performance of an RD optimized single layer
coder, we observethat RD optimization of both base and en-
hancement layers improves the rate-distortion performance
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Figure 6: SNR Scalability: Joint rate-distortion optimiza-
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of scalable coding by as much as 1.4 dB. We aso observe
that RD optimization in the base layer aone provides sim-
ilar gains, in terms of rate-distortion performance, as RD
optimization in the enhancement layer alone. This is be-
cause, while RD optimization in the base layer significantly
reduces the amount of intra-coded macroblocks, which are
the most expensive in terms of bits, RD optimizationin the
enhancement layer operates on pictures having higher spa-
tial resolution. Thisresultsin good improvementsin coding
efficiency for both the base and enhancement layers.

3.3. Joint Optimization

We have observed that the overall improvementin PSNR
isnot simply the sum of the improvementsin the individual
layers. Rather, therate-distortionimprovementsachieved in
the base layer limit somewhat the gains achievable by RD
optimizationin theenhancement layer. Thissuggestsfurther
gainscan be achieved by considering coding mode decisions
for the base and enhancement layersjointly.

Furthermore, we can obtain additional gains by reusing
the motion vector field for all layers having the same spa
tial resolution. We base our motion vector selection on the
enhancement layer images, as sub-optima motion vector
choi ces can be better absorbed by coarser quantizationinthe
base layer.

InFigure6, weillustratethe rate-distortion performance
of three coders. The first is again our RD optimized lay-
ered coder. The second coder employs ajoint optimization
whereby the coding modes for the base and enhancement

layer macrobl ocks are sel ected to minimizethe cost function
Jtotal = Jbase + Jenhance~ (10)

where the component costs are computed as in Equation
10. Thethird coder aso employsjoint optimization as well
as motion vector field reuse, as outlined above. Clearly,
joint optimization provides little improvement over inde-
pendently making coding mode decisions within each layer.
The improvement in PSNR is a most 0.1 dB. Reuse of the
motion vector field provides an additional 0.2 dB.

4. CONCLUSION

We have presented a simple relationship governing the
choiceof Ay nanc. fOr SNR and spatialy scalable MC-DCT
based video coding. Using this relationship, we extend our
RD optimized coder to incorporate scalable coding. In the
case of SNR scalability, for the two layer bit streams, we
obtain a 0.5 dB improvement in PSNR by using RD opti-
mization in both the base and enhancement layers. Employ-
ing joint optimization and reusing the motion vector field in-
creases this improvement to 0.7 dB. In the case of spatial
scalability, for the two layer bit streams, we obtain a 0.6 -
1.4 dB improvement in PSNR by using RD optimizationin
both the base and enhancement layers.
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