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a b s t r a c t

In this work, we present a general nonlinear model predictive control (NMPC) framework for low-density
polyethylene (LDPE) tubular reactors. The framework is based on a first-principles dynamic model able to
capture complex phenomena arising in these units. We first demonstrate the potential of using NMPC to
simultaneously regulate and optimize the process economics in the presence of persistent disturbances
such as fouling. We then couple the NMPC controller with a compatible moving horizon estimator (MHE)
to provide output feedback. Finally, we discuss computational limitations arising in this framework and
eywords:
olyethylene
MPC
HE

arge-scale
onlinear programming
conomics

make use of recently proposed advanced-step MHE and NMPC strategies to provide nearly instantaneous
feedback.

© 2009 Elsevier Ltd. All rights reserved.
ouling

. Motivation and background information

The decision-making hierarchy in many continuous chemical
rocesses has been traditionally based on detailed first-principles
teady-state models for economic optimization and empirical data-
riven dynamic models for multivariable control (Marlin & Hrymak,
996). Recently, it has been recognized that this model inconsis-
ency can lead to infeasibility issues and performance deterioration
Engell, 2007; Yip & Marlin, 2004). In addition, the disturbances
ffecting the economics of many chemical processes occur at
ime scales that cannot be captured adequately by a steady-state
ptimization layer. The incorporation of first-principles dynamic
odels in the decision-making hierarchy opens the possibility

o avoid these limitations and thus achieve unprecedented pro-
ess efficiency. This can be done through economics-oriented
onlinear model predictive control (NMPC) or dynamic real-

ime optimization (D-RTO) schemes (Helbig, Abel, & Marquardt,
000; Kadam et al., 2003). As expected, an important enabler
f these control strategies is the development of efficient opti-
ization strategies able to accommodate computational intensive

∗ Tel.: +1 412 268 2232.
E-mail addresses: vzavala@mcs.anl.gov (V.M. Zavala), lb01@andrew.cmu.edu

L.T. Biegler).
1 Present address: Mathematics and Computer Science Division, Argonne National

aboratory, 9700 S Cass Avenue, Argonne IL 60517, USA.

098-1354/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2009.04.008
dynamic models in on-line environments (Zavala, Laird, & Biegler,
2008).

In this work, we seek to integrate detailed first-principles
dynamic models to optimize the operation of low-density polyethy-
lene (LDPE) tubular reactor processes. LDPE is an important
commodity polymer in today’s economy due to its high flexibility
and relatively low-cost (Knuuttila, Lehtinen, & Nummila-Pakarinen,
2004). LDPE is typically produced in tubular reactors by free-
radical polymerization of ethylene at supercritical conditions
(2000–3000 atm and 150–350 ◦C). A typical tubular reactor and
corresponding temperature profiles for the reactor core and jack-
ets are sketched in Fig. 1. LDPE reactors consist of long pipes
(1–3 km) with small inner diameters (5–10 cm) and thick reactor
walls (2–5 cm) which are divided into several reaction and cooling
zones. These multi-zone configurations give rise to strong multi-
variable interactions along the reactor and thus lead to complex
operating procedures. In addition, the operation is further compli-
cated due to persistent dynamic disturbances such as fouling and
initiator deactivation (Buchelli et al., 2005; Kiparissides et al., 2005;
Luft et al., 1977). These disturbances have a strong impact on the
process economics.

The potential economic benefits and high operational complex-

ity of LDPE reactors have motivated research efforts in many areas.
Extensive experimental studies have been performed in order to
understand the principles governing these systems. This increased
level of understanding has translated into numerous first-principles
models of different fidelity and complexity (Goto et al., 1981; Kim

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:vzavala@mcs.anl.gov
mailto:lb01@andrew.cmu.edu
dx.doi.org/10.1016/j.compchemeng.2009.04.008
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the operator. Another problem that arises with a regulatory con-
trol architecture is that the controllers cannot foresee downstream
(cascaded) interactions arising along the reactor. Because of this,
the control of polymer properties at the reactor outlet can become
cumbersome. It is believed that a centralized NMPC strategy able to
Fig. 1. Schematic representation of multi-zone LDPE tubular reac

Iedema, 2004; Kiparissides, Verros, Pertsinidis, & Goosens, 1996;
iparissides, Verros, & McGregor, 1993; Zabisky, Chan, Gloor, &
amielec, 1992; Brandolin, Lacunza, Ugrin, & Capiati, 1996; Bokis,
001; Häfele, Kienle, Boll, & Schmidt, 2006). The predictive capabil-

ties of these models have also been evaluated and refined through
ystematic parameter estimation techniques (Kiparissides et al.,
005; Zavala & Biegler, 2006). Some of these models have been
sed for off-line tasks such as reactor design and dynamic tran-
ient analysis (Häfele et al., 2006; Pertsinidis, Papadopoulos, &
iparissides, 1996). As a natural step, it is desired to use these
odels to perform on-line tasks such as economic optimization

nd model-based control. Zavala and Biegler (2008), demonstrated
hat significant economic benefits can be realized in LDPE reac-
ors through model-based optimization strategies. In that study, a
teady-state tubular reactor model described by large sets of dif-
erential and algebraic equations (DAEs) was used to evaluate the
erformance limitations of LDPE reactors in the presence of fouling
isturbances. Zavala and Biegler (2008, 2009) demonstrated that
etailed LDPE reactor dynamic models can be accommodated in
n-line environments with the aid of current optimization capabil-

ties to perform tasks such as moving horizon estimation (MHE) and
onlinear model predictive control (NMPC). These dynamic models
re significantly more challenging since they involve computation-
lly intensive partial differential, ordinary differential and algebraic
quations (PDAEs) (Häfele et al., 2006). Here, we extend these
esults and derive a general NMPC framework to optimize the oper-
tion of LDPE reactors. We study the performance of both traditional
MPC designs in which the controller is used for regulation around
fixed target and we study the performance of economics-oriented
esigns in which the controller optimizes the process profitability
nd simultaneously performs regulation tasks. In addition, we dis-
uss computational issues arising in the integration of NMPC and
HE tasks. Here, we will see that the on-line solution of the asso-

iated large-scale PDAE-constrained optimization problems gives
ise to long feedback delays. Motivated by this, we make use of
ecently proposed synchronization or advanced-step strategies for
MPC and MHE based on nonlinear programming (NLP) sensitiv-

ty to overcome these limitations and provide nearly instantaneous
eedback.

The paper is organized as follows: In the next section, we derive
MPC and MHE formulations for LDPE reactors. In Section 3 we

resent a short description of the computational strategies used
o solve the associated PDAE-constrained optimization problems
nd to avoid long feedback delays. In Section 4 we discuss the
erformance of the NMPC framework under diverse scenarios and
emonstrate the computational efficiency of the proposed strate-
p). Typical reactor core and jacket temperature profiles (bottom).

gies. The paper closes with Section 5 in which we present general
conclusions and discuss directions of future work.

2. NMPC and MHE formulations

A typical operational hierarchy in industrial LDPE processes con-
sists of a target-setting layer in which an operator receives the
production schedule of different polymer grades. The operator sets
the temperature profile of the reactor that is known by experience
to give the desired polymer properties (e.g. melt index, density). The
temperature targets are communicated to multiple PID controllers
distributed along the reactor that try to keep the temperature pro-
file at the desired target. The main tasks of the regulatory (PID)
control layer are to reject short-term disturbances and to follow the
temperature profile targets provided by the operator during grade
changes.

As shown in Fig. 2, the PID controllers are normally grouped by
zones in order to regulate the local temperature profile at each zone.
Input variables such as the initiator flow, the jacket inlet temper-
ature, the jacket inlet flow, and the side stream temperatures can
be manipulated independently by each local set of controllers. The
fouling onset is, in particular, a difficult disturbance to reject. As
the reactor fouls, the controllers need to keep the local tempera-
ture profile at target. Because of this, they will tend to compensate
by dropping the initiator flows and, implicitly, the production lev-
els. It is important to emphasize that the controllers do not have
any knowledge of the production levels of the reactor. Their objec-
tive is to keep the temperature profile at target which is set by
Fig. 2. Regulatory control structure of LDPE tubular reactors.
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j=0 i=1

(�(jı, xi)− ϑk+j−N,i
� )

T
R−1

� (�(jı, xi)− ϑk+j−N,i
� )

(2a)
Fig. 3. Centralized NMPC control structure of LDPE tubular reactors.

ake all these complex interactions into account would achieve a
uch better performance; such a strategy is illustrated in Fig. 3.

To formulate the NMPC controller, we consider the scenario in
hich the LDPE process is located at sampling time tk. Using the

urrent state as initial conditions, we would like to use a dynamic
rst-principles model to compute optimal policies for the controls
ver a future horizon t ∈ [tk, tk+N] with sampling times of equal

ength ı = tk+1 − tk that minimize a given performance index. The
MPC problem formulation under consideration is given by,

min
u(jı)

N∑
j=0

Nm∑
i=1

(�(jı, xi)− �̄k+j,i)
T
Q−1

� (�(jı, xi)− �̄k+j,i)

+
N−1∑
j=0

(u(jı)− ūk+j)
T
Q−1

u (u(jı)− ūk+j)

s.t.

(1a)

∂z

∂�
+ �(�, x)

∂z

∂x
+ �(�, x)

∂2z

∂x2
= fz(z(�, x), w(�, x), y(�, x), p(�), u(�))

(1b)

∂w

∂x
= fw(z(�, x), w(�, x), y(�, x), p(�), u(�)) (1c)

= fy(z(�, x), w(�, x), y(�, x), p(�), u(�)) (1d)

(�, x) = �(z(�, x), w(�, x), y(�, x), p(�), u(�)) (1e)

≥ g(z(�, x), w(�, x), y(�, x), p(�), u(�)) (1f)

(0, x) = zk(x) (1g)

0 = ϕ

(
z(�, 0), z(�, xL),

∂z

∂x
(�, 0),

∂z

∂x
(�, xL), w(�, 0), u(�)

)

∈ [0, Nı]. (1h)

o represent the overall dynamic model of the multi-zone reactor in
imple terms, we collapse the PDAEs corresponding to material and
nergy balances, thermodynamics and transport expressions, and
inetic expressions for all zones into a single set of PDAEs (1b)–(1d).
his can be done by grouping the states corresponding to all zones

nto a single variable vector and defining the continuity equations
etween zones as algebraic equations. With this, the boundary con-
itions (1h) need only to be defined at the reactor inlet and outlet
oints given by x = 0 and x = xL , respectively. In addition, we define
he internal time dimension for the NMPC problem � := t − tk that

ses the current time of the process tk as reference point. Sym-
ol z(�, x)∈Rnz is used to represent the differential states in space
nd time. The current state is denoted by zk(x) which is a fixed
uantity. In LDPE reactors, these states correspond to the cooling
ater temperature in the jacket and the reactor wall temperature at
ical Engineering 33 (2009) 1735–1746 1737

all zones. Symbol w(�, x)∈Rnw denotes differential states in space
such as the reacting mixture temperature, the molar flow rates
of gaseous components, the chain moments, among others. These
states arise from a quasi-steady-state assumption of the reactor core
(Kiparissides et al., 2005; Zavala & Biegler, 2009). For instance, sym-
bol y(�, x)∈Rny denotes the algebraic states corresponding to the
rest of the model variables such as the cooling water and reacting
mixture velocities, densities, and heat capacities. Symbol p(�)∈Rnp

denotes time-varying parameters used to account for unmodeled
effects and uncertainty. For instance, these can represent the heat
transfer coefficients (HTCs) of the reactor zones which vary with
time due to fouling. Symbol u(�)∈Rnu denotes the model inputs
corresponding to side-stream inlet temperatures, and flow rates. In
the actual reactor, the inputs can only be fed at the beginning and
end of each reactor zone. Consequently, no explicit dependence on
the internal spatial dimension x is considered.

We define a set of output variables �(�, x)∈Rn� in (1e) that map
all the model states into a set of output variables measured in the
actual LDPE process. The performance index of the NMPC problem
can be a general function of the model states and inputs but in the
above formulation we use a tracking objective in order to simplify
the presentation. This tracking objective implicitly minimizes the
transition time from the current state to the desired target defined
as �̄ . In an actual industrial reactor, the outputs are normally con-
trolled at discrete points in time jı and space xi with corresponding
targets �̄k+j,i. The total number of measurement locations in space is
denoted by Nm. In addition, we impose zero hold constraints on the
inputs (i.e. u(�) := u(jı), � ∈ [jı, (j + 1)ı]). The weighting matrices
for the outputs and inputs are given by Q−1

� and Q−1
u , respec-

tively. The dynamic reactor model contains about 3 PDEs, 20 ODEs,
and 500 AEs. The equations are defined over long axial horizons
(1–2 km) containing all the reactor zones and time horizons of less
than one hour. For a more detailed explanation of the model equa-
tions we refer the reader to Zavala and Biegler (2006, 2009).

From the solution of the NMPC problem, we extract the cur-
rent control actions uk = u∗(ı). The plant then evolves to the next
state zk+1(x) and this is used to compute the next control action.
In the nominal NMPC case, we assume that the model is perfect
and use the predicted states as the actual states of the reactor. In
the presence of model mismatch and uncertainty, it is necessary to
use a MHE estimator to infer the current state based on the avail-
able measurement information. In this work, we make use of the
MHE estimator presented in Zavala and Biegler (2009). To formu-
late the MHE problem, we consider the scenario in which the LDPE
process is currently located at sampling time tk and we have a past
output measurement history {ϑk

� , ϑk−1
� , . . . , ϑk−N

� } and correspond-

ing inputs {ϑk−1
u , ϑk−2

u , . . . , ϑk−N
u } distributed over a time horizon

containing N sampling times. Using this information, we seek to
obtain an estimate of the current true state of the reactor zk(x) and
the parameters pk through the model. We assume that the model
structure is correct and that all the uncertainty related to the real
process can be encapsulated in the model parameters p(�), in the
initial conditions z0(x), and in the measurement errors. Following
this reasoning, the MHE estimation problem becomes,

min
p(�),z0(x),u(�)

(z0(x)− z̄k−N(x))
T
�−1

k−N(z0(x)− z̄k−N(x))

N∑ Nm∑
+
N−1∑
j=0

(u(jı)− ϑk+j−N
u )

T
R−1

u (u(jı)− ϑk+j−N
u )

s.t.
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∂z

∂�
+ �(�, x)

∂z

∂x
+ �(�, x)

∂2z

∂x2
= fz(z(�, x), w(�, x), y(�, x), p(�), u(�))

(2b)

∂w

∂x
= fw(z(�, x), w(�, x), y(�, x), p(�), u(�)) (2c)

= fy(z(�, x), w(�, x), y(�, x), p(�), u(�)) (2d)

(�, x) = �(z(�, x), w(�, x), y(�, x), p(�), u(�)) (2e)

≥ g(z(�, x), w(�, x), y(�, x), p(�), u(�)) (2f)

(0, x) = z0(x) (2g)

0 = ϕ

(
z(�, 0), z(�, xL),

∂z

∂x
(�, 0),

∂z

∂x
(�, xL), w(�, 0), u(�)

)

∈ [0, ıN]. (2h)

n this case, tk−N is used as the zero reference time so that � :=
− tk−N . As before, note that the process output measurements are
nly defined at discrete points in time k and space xi denoted by
k,i
� . In addition, we can simultaneously reconcile the inputs to the
ast measurements ϑk

u in order to eliminate measurement noise
Zavala & Biegler, 2009). The matricesR� ∈Rn�×n� andRu ∈Rnu×nu

re covariance matrices for the expected output and input measure-
ent errors, respectively. The first term in the objective function

s the arrival cost, which summarizes past measurement informa-
ion before tk−N . The internal variable z0(x) represents the unknown
nitial states at time tk−N while z̄k−N(x) denotes the correspond-
ng a priori value with covariance �k−N ∈Rnz×nz . From the solution
f the MHE problem, we extract the estimate of the true state as

˜k(x)← z∗(ıN, x), the current parameters p̃k ← p∗(ıN). We use this
nformation to obtain the current control action uk from the solu-
ion of the NMPC problem. Having this new input measurement
k
u we wait for the corresponding outputs ϑk+1

� measured at tk+1.
e drop the last measurements and incorporate the new ones

o obtain the new measurement histories {ϑk+1
� , ϑk

� , . . . , ϑk+1−N
� }

nd {ϑk
u, ϑk

u, . . . , ϑk+1−N
u }. Accordingly, we update the a priori esti-

ate of the initial state using the previous solution as z̄k−N+1(x)←
∗(ı, x). In some cases, it is also necessary to update the covariance
atrix to �k−N+1 using the covariance of the predicted state z∗(ı, x)

o account for poor estimates of the initial conditions (Rawlings &
akshi, 2006). For strongly observable systems such as LDPE reac-
ors, this update might not be necessary to ensure convergence of
he MHE estimator (Alessandri, Baglietto, & Battistelli, 2008; Zavala

Biegler, 2009). Using the updated information we solve the new
HE problem to obtain the new state estimates. In Fig. 4, we sketch
he interaction between MHE and NMPC and their corresponding
ime horizons.

As can be seen, the MHE and NMPC problems arising in this
pplication are computationally expensive PDAE-constrained opti-
ization problems. This is a critical issue since the feedback delay is

Fig. 4. Schematic representation of MHE and NMPC horizons.
ical Engineering 33 (2009) 1735–1746

proportional to both the solution time of the MHE problem to obtain
the state estimates and the solution time of the NMPC problem to
obtain the control actions. In the following section, we describe the
approach taken to solve these problems. In addition, we present
synchronization strategies to minimize the feedback delay. In par-
ticular, we will exploit the fact that the NMPC problem is parametric
on the initial state and the fact that the MHE problem is paramet-
ric on the measurements. This property can be used to provide
fast approximate solutions constructed around reference solutions
obtained in between sampling times.

3. Computational strategies

We follow a full discretization approach to solve the PDAE-
constrained optimization problems. For the discretization along the
axial dimension we follow a Radau collocation on finite elements
scheme: an average of 10 finite elements for the reaction zones and
2 finite elements for the cooling zones. Three collocation points
are used in each spatial element. Upon spatial discretization, the
PDAE reactor model translates into a DAE model containing around
9000–10,000 DAEs in time. For time discretization, we follow a 1 pt.
Radau collocation scheme (implicit Euler). We use 5–20 time steps
for time discretization.

After discretization, the resulting NLP problems are solved with
IPOPT (Wächter & Biegler, 2006). The NLPs have the general form,

min
x

F(x, 
) (3a)

s.t. c(x, 
) = 0 (3b)

x ≥ 0 (3c)

wherex∈Rnx is variable vector containing all the discretized states,
controls and parameters, and 
∈Rn
 is a fixed data vector that can
be used to represent the moving initial conditions in the NMPC
problem and the measurements in the MHE problem.

In interior-point solvers, the inequality constraints of problem
(3) are handled implicitly by adding barrier terms to the objective
function,

min
x

F(x, 
)−�

nx∑
j=1

ln(x(j)) (4a)

s.t. c(x, 
) = 0 (4b)

where x(j) denotes the j-th component of vector x. Solving (4) for a
decaying sequence of �→ 0 results in an efficient strategy to solve
the original NLP (3). Using an initial barrier parameter �, IPOPT tries
to solve the Karush-Kuhn-Tucker (KKT) conditions of a sequence of
barrier problems (4),

∇xF(x, 
)+∇xc(x, 
)� − � = 0 (5a)

c(x, 
) = 0 (5b)

X ·V e = �e (5c)

whereX = diag(x),V = diag(�) and e∈Rnx is a vector of ones. Note
that the KKT conditions of the barrier problem match those of the
original NLP for � = 0. Symbols �∈Rn� and �∈Rnx are Lagrange
multipliers for the equality constraints and bounds, respectively.

The gradient of the objective function is ∇xF(x, 
)∈Rnx while
∇xc(x, 
)∈Rnx×n� is the constraint Jacobian. To solve this system
of nonlinear equations IPOPT uses an exact Newton method. We
initialize the iteration sequence at point sT

o := [xT
o �T

o �T
o ]. At the

i th iteration, the search direction 
si = si+1 − si is computed by
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inearization of the KKT conditions (5),

Hi Ai −Inx
Ai

T 0 0

Vi 0 Xi

⎤
⎥⎦

⎡
⎢⎣


xi


�i


�i

⎤
⎥⎦ = −

⎡
⎢⎣
∇xF(xi, 
)+Ai�i − �i

c(xi, 
)

XiVie−�e

⎤
⎥⎦ (6)

here Ai := ∇xc(xi, 
). Matrix Hi ∈Rnx×nx is the Hessian of the
agrange functionL = F(xi, 
)+ c(xi, 
)�i − �i

Txi and �i := X−1
i
V.

ymbol Inx denotes the identity matrix. We provide exact Hessian
nd Jacobian information through the modeling platform AMPL
Fourer, Gay, & Kernighan, 1992). After solving a sequence of bar-
ier problems for �→ 0, the solver returns the optimal solution
riplet sT∗ (
) = [xT∗ �T∗ �T∗ ] which is an implicit function of the fixed
ata vector. To reduce the number of iterations required to solve the
eighboring MHE and NMPC problems from one sampling time to
he next, we warm-start the problems using the shifted trajectories
or the states and multipliers and keep the barrier parameter � to
small value (Zavala & Biegler, 2008).

Solving the KKT system (6) is the most computationally inten-
ive step in the solution of the NLP. However, the KKT matrix arising
rom the PDAE-constrained optimization problems is highly sparse
nd presents multiple nested structures that can potentially be
xploited. In IPOPT, after eliminating the bound multipliers from
he KKT system, we apply a symmetric indefinite factorization of
he resulting KKT matrix. The computational complexity of this
trategy is in general very favorable. However, significant fill-in
nd computer memory bottlenecks might arise during the factor-
zation step if the sparsity pattern is not properly exploited. In
rder to factorize the KKT matrix, we use the general-purpose lin-
ar solver MA57 from the Harwell library (Duff, 2004). Recently,
e have explored the impact of different reordering strategies on

he factorization time of the KKT matrix. The default reordering
trategy used in MA57 is an approximate minimum degree (AMD)
rdering algorithm. Another strategy available is a nested dissec-
ion ordering based on the multi-level graph partitioning algorithm
mplemented in Metis (Karypis & Kumar, 1999). For large-scale
roblems such as those arising in PDAE-constrained optimization,
e have observed that nested dissection techniques are signifi-

antly more efficient and permit much faster factorizations (Zavala
Biegler, 2009; Zavala & Biegler, 2008).
In the context of MHE-NMPC, it is important to realize that the

actorization of the KKT matrix limits the ability to provide fast
eedback. This is due to the fact that, in standard MHE and NMPC
trategies, we must wait for the measurement information to start
he solution of the optimization problems (Diehl, Bock, & Schlöder,
005). To avoid these limitations, we make use of the so-called
dvanced-step strategies (Zavala, Laird, & Biegler, 2008; Zavala &
iegler, 2009). The main idea here is to use the model and the
urrent control action uk to predict the future state z̄k+1(x) and
ssociated measurements ϑ̄k+1. Using this information, we solve
eference MHE and NMPC problems simultaneously in between
ampling times and hold the corresponding KKT matrices at the
olutions. Once the true measurements ϑk+1 become available, we
erturb the right-hand side of the KKT system (6) of the MHE prob-

em (2) and execute a fast backsolve to obtain an approximate state
stimate zk+1(x). This strategy is known as advanced-step MHE (as-
HE). We then use the as-MHE state estimate to perturb the KKT
ystem of the NMPC problem (1) to obtain the approximate con-
rol action uk+1. This strategy is known as advanced-step NMPC
as-NMPC). Numerical properties of advanced-step strategies have
een presented in (Zavala & Biegler, 2008). In that work it is demon-
trated that, under mild assumptions, the feedback delay can be
educed by two orders of magnitude without significant losses in
erformance.
ical Engineering 33 (2009) 1735–1746 1739

4. Case studies and results

In this section, we analyze the performance of the proposed
NMPC framework under a particular scenario arising in the opera-
tion of LDPE reactors. The study is based on confidential industrial
data so we normalize all the variables using the values at the initial
point. These values are also used as targets throughout the horizon.
We first discuss the performance of a nominal NMPC controller and
we then discuss the performance of an output feedback MHE-NMPC
controller. Finally, we analyze the computational performance of
the proposed strategies.

4.1. Tracking NMPC

We consider a nominal NMPC controller in which the perfor-
mance index is a tracking objective. In a typical LDPE process, the
controlled outputs are the temperature profile, the polymer melt
index and the polymer density. Here, we assume that the out-
let temperatures of the jackets are not controlled variables but
we impose physical bounds on them (e.g. reasonable tempera-
ture levels for cooling water going back to cooling tower). It is
also important to emphasize that the temperature profile of the
core is normally controlled at discrete positions along the reactor
(i.e. where the thermocouples are present). Nevertheless, having a
first-principles model allows to control or impose constraints on
temperatures at unmeasured positions. In addition, we can con-
trol and/or impose constraints on unmeasured properties such as
the polydispersity or molecular weights. The available manipulated
variables include the input variables of Table 1.

To test the performance of the tracking NMPC controller we con-
sider a typical fouling–defouling scenario arising in the operation
of LDPE reactors. LDPE tubular reactors undergo periods where the
polymer layer is defouled by means of pressure or thermal shocks
(Buchelli et al., 2005). After this, the reactor fouls again. Stabilizing
the reactor under these disturbance cycles is important in order to
avoid reactor runaway and to keep the polymer properties at tar-
get. To simulate the NMPC cleaning-fouling cycle, we ramp the HTCs
for all the reactor zones from their nominal value to +50% and then
back to−20%. Since the controller cannot predict the behavior of the
HTCs, they act as exogenous disturbances (represented in the model
as parameters). This is done in order to test the inherent robustness
properties of the controller. The plant response is obtained by sim-
ulating the reactor model using the current control action and the
true HTCs. Each time step corresponds to 2 min of operation. We use
a prediction horizon of 10 time steps. The closed-loop simulations
are run for a hundred time steps. The objective of the controller in
this scenario is to keep the temperature profile as close as possible
to a given target profile as the reactor fouls and defouls. In addi-
tion, the polymer melt index deviations should be kept close to the
target.

In the top graph of Fig. 5 we present the heat transfer profiles
for zones 2 and 3. Note that in the first period the reactor defouls
so the values of the heat transfer coefficient go up, while in the sec-
ond the reactor fouls and the heat transfer coefficients go down.
Note also that the reactor zones have different cooling capabilities
due to design considerations or uneven fouling along the reactor.
In the middle graph we present the closed-loop response of the
reactor temperature profile. The dark line is the target profile and
the gray lines represent the controller responses. As we can see, the
controller is able to stabilize the system and keep the temperature
profile close to the reference. The impact of the fouling–defouling

disturbances can be appreciated in the bottom graph. Here, we
present the dynamic responses for the wall and jacket tempera-
tures for the first 35 time steps (defouling). The temperature levels
rise significantly (more than 30% from reference value) due to the
decrease of the fouling layer thickness (increasing heat transfer
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Table 1
Summary of available measurements in industrial LDPE reactors.

Measurement Input Output On-Line Sensor Laboratory

Inlet Pressure x x
Jacket Inlet Temperatures x x
Sidestreams Inlet Temperatures x x
Ethylene Sidestream Flow Rates x x
Comonomer Sidestream Flow Rates x x
CTA Sidestream Flow Rates x x
Initiator Flow Rates x x
Temperature Profile x x
Overall Conversion x x
Jacket Outlet Temperatures x x
Melt Index x x x
Weight-Average MW (Mww) x x
N
P
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umber-Average MW (Mwn)
olymer Density
ong-Chain Branching

oefficient). In other words, more heat can be dissipated to the
acket and walls.

In Fig. 6 we present the reactor responses for the polymer melt
ndex and the reactor overall production. In the top graph, we can
bserve that the controller achieves tight control of the melt index.
he melt index variability is less than 0.1% with respect to the ref-
rence value. Although a proper control of the reactor temperature
rofile is important to keep the melt index at target, the controller
lso makes use of the chain-transfer flow rate to help with the con-
rol. In the bottom graph we present the response for the reactor
verall production. In the first transition, note that the normalized
roduction level recovers as the reactor is cleaned or defouled. This
esults from the increase of the closed-loop initiator flows that keep

he temperature profile peaks at target. On the other hand, when
he reactor fouls again, the controller needs to drop the initiator
ows and this in turn results in decreased production levels. It is

mportant to emphasize that the controller objective is to keep the
eactor at the desired temperature profile and not to control the

ig. 5. NMPC controller behavior. Ramping of heat transfer coefficients (top). Controller r
ark line is the reference temperature profile. Responses of wall (gray) and jacket (black)
x x
x x
x x

production levels. In other words, the fluctuating production levels
are an implicit consequence of the control actions.

In Fig. 7 we present the closed-loop responses for some of the
controller inputs. In the top graph we can see the response of the
jacket inlet temperatures for zones 2 and 3. Note that the con-
troller responses do not follow obvious trends. This implies that
there exists a relatively high degree of nonlinearity and coupling
in the system. In particular, the jacket inlet temperatures have a
strong impact on the outlet temperatures of the reaction zones
(where the initiators are totally consumed) and on the tempera-
ture profiles of the cooling zones. In the middle graph we can see
that the initiator flows follow a monotonic trend as we ramp the
HTCs. The controller decreases the amount of initiator during the

fouling periods and increases it during the defouling periods. This
is done in order to compensate for the fluctuating cooling capac-
ity. Since the reactor temperature levels are largely determined by
the heat of reaction, the initiator flows are used to control the local
conversion levels in each zone. In the bottom graph we appreciate

esponse for temperature profile (middle)—gray lines are the responses and dashed
temperatures (bottom).



V.M. Zavala, L.T. Biegler / Computers and Chemical Engineering 33 (2009) 1735–1746 1741

F arget i
(

t
s
i
t
i
s
p
t

4

c
s
L
n
I

ig. 6. NMPC controller behavior. Closed-loop response of outlet melt-index (top), t
bottom).

he closed-loop response of the the side-stream temperatures. The
ide-stream temperatures tend to have the strongest impact on the
nlet temperatures at each zone. In addition to the initiator flows,
he inlet side-stream temperatures play an important role in shap-
ng the temperature profile at each zone. However, in this particular
cenario, the controller does not make use of the side-stream tem-
erature of Zone 3. This illustrates that the controller is implicitly
aking into account interactions between zones.

.2. Economics-oriented NMPC

One would expect that the incorporation of a centralized NMPC

ontroller would result in increased robustness and performance
ince it can better handle the multivariable interactions along the
DPE reactor. However, it is often difficult to appreciate the eco-
omic benefits of incorporating such a sophisticated controller.

n principle, we could appreciate these benefits more easily if we

Fig. 7. NMPC controller behavior. Jacket inlet temperatures (top). In
s dashed line and control profile is solid line. Response of reactor overall production

would use a real-time optimization (RTO) layer in order to compute
steady-state targets (Zavala, & Biegler, 2008) that optimize the pro-
cess profitability and then use the NMPC controller to obtain fast
transitions between targets. However, this approach is difficult to
apply to LDPE processes since they are seldom at steady-state due to
persistent dynamic disturbances such as fouling. In this work, we
propose the incorporation of an economic objective to the NMPC
controller. This economics-oriented controller can be seen as an
all-at-once RTO-NMPC strategy that directly optimizes the process
performance. We refer to this strategy as D-RTO. Such a strategy can
account for the dynamic disturbances that affect the process prof-
itability and can exploit more efficiently the degrees of freedom

available in distributed LDPE reactors (Engell, 2007).

For the design of the D-RTO or economics-oriented NMPC con-
troller, we will incorporate the accumulated production rate as
a measure of process profitability. This is justified by the fact
that, in high-throughput LDPE processes, the operating costs are

itiator flows (middle). Side-streams temperatures (bottom).
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argely affected by production losses associated with fouling. How-
ver, more detailed economic objectives can also be considered.
he objective function of the controller will take the following
orm,

k = −˛e

N∑
j=0

Production(jN)

+˛t

N∑
j=0

Nm∑
i=1

(�(jı, xi)− �̄k+j,i)
T
Q−1

� (�(jı, xi)− �̄k+j,i)

+˛t

N−1∑
j=0

(u(jı)− ūk+j)
T
Q−1

u (u(jı)− ūk+j) (7)

ere, the controller tries to minimize the transition time from the
urrent state to the targets and simultaneously tries to maximize
he reactor production. We have found that a purely economic objec-
ive (first term in (7)) leads to ill-posed optimization formulations
ue to the large number of degrees of freedom and the distributed
ature of LDPE reactors. With a purely economic objective we can-
ot guarantee the uniqueness of the solution (e.g. second order
ptimality conditions do not hold) and this leads to ill-posed search
irections in IPOPT that make the NMPC problems difficult to solve.
hese observations agree with those of (Huesman, Bosgra, and Van
en Hof, 2007) and with those of Skogestad (2000) in the context of
teady-state RTO. In this work, we add a tracking term to regularize
he problem and thus obtain smoother solutions. Notice the addi-
ion of positive weighting factors ˛t and ˛e, which are controller
esign parameters. In the context of LDPE processes, the tuning

actor ˛t reflects how much the controller is allowed to deviate
rom the target temperature profile in order to maximize the pro-
uction rate. In this study, we needed to set ˛t = 10 and ˛e = 1 in
rder obtain unique solutions. Note also that the production term

s a highly complex nonlinear mapping of the model states, given
y the total molar flow of polymer at the reactor exit. Here, we
mphasize the importance of using exact second-order derivative
nformation in the NLP solver to handle these complex objectives
as opposed to traditional Quasi-Newton approximations).

We have tested the D-RTO controller using the same
ouling–defouling scenario analyzed in the previous section. In
ig. 8 we compare the performance of the NMPC (tracking) and
he D-RTO (economic) controllers. In the top graph we see that the
racking controller keeps the reactor temperature profile close to
he given target. On the other hand, in the middle graph we see that
he D-RTO controller responses tend to deviate from the target. In
he bottom graph we see that the adjustment of the temperature
rofile results in a direct increase on the reactor production lev-
ls during both the fouling and the defouling periods. The D-RTO
ontroller recognizes that the given target profile is not the opti-
um profile in terms of reactor productivity and tends to correct it.

his results in an increase in the reactor production rate, as seen in
he bottom graph. Since the controller also manipulates the chain-
ransfer agent flow rate, these changes can be made without having
o sacrifice polymer quality (e.g. melt index).

In general, we can conclude that the main benefit of the D-
TO controller is the ability to find better strategies to distribute
he polymer production across multiple zones. Since this in turn
epends on the time-varying fouling levels at each zone, the
ontroller is an efficient alternative to manage fouling issues.

evertheless, from the bottom graph of Fig. 8 we can also see

hat the D-RTO controller still needs to drop production during
he fouling period in order to remain feasible and stable. This
mplies that the reactor performance is still limited by the fouling
nset.
ical Engineering 33 (2009) 1735–1746

4.3. MHE-NMPC coupling

We now couple the NMPC controller to an MHE estimator to
account for potential plant-model mismatch and estimator errors.
In addition, we discuss computational scale-up issues, and use
advanced-step strategies to overcome feedback delays.

4.3.1. Output feedback performance
We simulate an output feedback controller in the

fouling–defouling scenario described in the previous section.
Again, this is done by ramping the reactor HTCs. Since the LDPE
reactor model cannot predict the fouling disturbance, we use
the MHE estimator to estimate the HTCs pk and the unmeasured
model states z̃k(x) (e.g. wall temperature profile) at each time
step. The objective of the NMPC controller is to use the estimated
reactor state z̃k(x) to drive the reactor outputs to the desired target
by computing the optimal control action uk. In this simulated
scenario, we generate the true plant response zk(x) from the model
with the true HTCs. Since the MHE estimator starts with wrong
initial guesses of the state and the parameters, and since we add
Gaussian measurement noise, it will introduce an estimation error
that acts as an additional disturbance to the controller. In addition,
note that since the fouling phenomenon cannot be predicted, the
estimator can only converge to the true value of the HTCs one
step behind. Once the HTC disturbance vanishes, the estimator
converges to the true values and the NMPC controller recovers its
nominal stability properties.

In the top graph of Fig. 9 we compare the predicted temperature
profile of the NMPC controller at time step 25 and the correspond-
ing profile corrupted with � = 3% Gaussian noise. For a reference
temperature of 100 ◦C this represents a variance of 9 ◦C. In the mid-
dle graph we see that the MHE estimation converges to the true wall
profile in less than 10 time steps despite the noise and the wrong
initial guess. In the bottom graph we see the effect of noise on the
control actions by the NMPC controller. In the top graph of Fig. 10
we illustrate the convergence of the MHE estimator to the jacket
water temperature at a particular point along the reactor. In the
middle graph, we illustrate the convergence of wall temperature
at the same axial position. In the bottom graph we can see that the
NMPC controller is able to stabilize the system despite multiple dis-
turbances, and is able to keep the reactor temperature profile close
to the target. It is important to emphasize that the strong observ-
ability properties of the LDPE reactor result in good robustness
and stability properties of the NMPC controller (Zavala & Biegler,
2009). In particular, the number and location of the temperature
measurements available along the reactor are important for this.

4.3.2. Computational performance
In this section, we discuss computational issues associated with

the proposed MHE and NMPC strategies for LDPE reactors. In order
to motivate the discussion, we present results on the total wall-
clock time required to solve the tracking NMPC and the MHE
problems in the output feedback case study of the previous section.
All calculations were obtained using a quad-core Intel processor
running Linux at 2.4 GHz. The solution times also include some
overhead (around 10–20 s) coming from I/O communication tasks
arising in the implementation and from AMPL, which requires some
time to generate the derivative information before calling the NLP
solver. The prediction and estimation horizons N were set to 10 time
steps (20 min) and sampling times of 2 min were used. The NMPC
problem consists of an NLP with 80,950 constraints and 370 degrees

of freedom. The MHE problem consists of an NLP with 80,300 con-
straints and 648 degrees of freedom. As can be seen in the top graph
of Fig. 11, the overall solution time for the NMPC problem is around
60 s. The NLP solver requires 3–4 iterations to converge the prob-
lems. In the bottom graph we present total solution times for the
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ig. 8. Comparison of NMPC and D-RTO controller responses. Closed-loop response
ontroller responses. Closed-loop response of temperature profile for D-RTO (midd
roduction responses (bottom).

HE estimator. In this case, the estimator is initialized in batch

ode (accumulate measurements until an estimation horizon of N

ime steps is full). Once the estimation horizon is complete, IPOPT
akes around 70 s to solve the problem (3–4 iterations are required).

As part of scale-up results, we have found that a nested dis-
ection reordering strategy in MA57 allows the Newton step (6) to

ig. 9. Performance of coupled MHE-NMPC for output feedback. Predicted temperature pr
onvergence of MHE estimator to true wall profile (middle). Jacket water inlet temperatu
perature profile for NMPC (top) - dashed dark line is target and gray lines are the
ashed dark line is target and gray lines are the controller responses. Reactor overall

have linear scale-up of the solution time as the time horizons of the

NMPC and MHE problems are increased (Zavala & Biegler, 2008).
This is due to the fact that the nested dissection reordering applied
to (6) can identify coarse-grained structures present in the prob-
lems more easily (LDPE multi-zone model, finite element structure,
etc.), while traditional minimum degree ordering strategies tend to

ofile at time step 25 and corresponding profile corrupted with Gaussian noise (top).
re of Zone 2 computed by NMPC controller (bottom).
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Fig. 10. Performance of coupled MHE-NMPC for output feedback. Convergence of MHE estimator to jacket temperature at a particular location of the reactor (top). Convergence
of MHE estimator to wall temperature (middle). Closed-loop responses of NMPC for temperature profile (bottom).

Fig. 11. Solution times for NMPC (top) and MHE problems (bottom) with horizons of N = 10 time steps.

Fig. 12. Comparison of solution times for NMPC problem with tracking and economic objectives.
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Fig. 13. Effect of NLP sensitivity errors on performance o

ocus on fine-grained structures. The NMPC problem with N = 30
ime steps, resulting in an NLP with 242,850 constraints and 1,110
egrees of freedom, is solved in around 2 min. The MHE problem
ith N = 30 time steps results in an NLP with 244,260 constraints

nd 1,878 degrees of freedom that can be solved in around 2.5 min.
n Fig. 12 we illustrate the solution times for NMPC problems with
racking and economic objectives. We can see that if exact deriva-
ive information is used to solve the problems, the solution times
e.g. factorization time and number of iterations) are not altered by
he choice of objective function.

.3.3. Advanced-step strategies
From the previous computational results we can conclude that

full-discretization approach coupled with an sparsity-exploiting
LP solver results in an efficient computational strategy to solve

he NMPC and MHE problems. In particular, we have demonstrated
hat this approach scales well with problem size and number of
egrees of freedom. Nevertheless, it is clear that even if we have a

ast strategy to solve the problems, the solution time will always
ecome a bottleneck as we consider larger and larger applications.
or instance, in the LDPE case study, the time required to solve the
HE problem to obtain the state estimate plus the time required to

olve the NMPC problem to obtain the control actions is more than
minutes. This solution time is in fact longer than the assumed

ampling time. This problem becomes more obvious as we consider
onger time horizons. Here, we demonstrate that these limitations
an be avoided with advanced-step strategies.

We demonstrate the performance of a coupled advanced-step
HE-NMPC strategy on the same output feedback scenario pre-

ented in the previous section. Again, a prediction horizon N of
0 time steps and sampling times of 2 min have been used. Here,

e demonstrate that the approximation errors introduced by NLP

ensitivity do not destabilize the controller. In this scenario, we rec-
gnize that since the plant response differs from that of the NMPC
ontroller prediction and we introduce noise, the as-MHE estimator
ill see a difference between the measured and the predicted out-
nced-step MHE and NMPC strategies in LDPE case study.

puts and will correct on-line using NLP sensitivity. We have found
that the approximation errors are negligible and the as-MHE esti-
mator has almost identical convergence properties to that of the
ideal MHE estimator. In the top graph of Fig. 13, we can see that
the as-MHE estimates are identical to those of the ideal or optimal
MHE estimator. Using the estimated states and HTCs, the as-NMPC
controller then corrects the predicted state on-line. In the middle
graph of Fig. 13 we present the closed-loop response of one of the
jacket water inlet temperatures for the as-NMPC controller and of
its ideal NMPC counterpart. As can be seen, both control actions are
identical. In the bottom graph of this figure we can see that the as-
NMPC controller is able to stabilize the temperature profile around
the target. The sensitivity calculations for both the NMPC and MHE
problems require less that 0.1 CPU seconds. The total background
times required to converge the predicted MHE and NMPC problems
and update the KKT matrices are very similar to those presented in
Fig. 11. On the other hand, note that the advanced-step strategy
allows to solve the background MHE and NMPC problems indepen-
dently. In the case study analyzed, this allows the total background
computation (≤ 70 CPUs) to be less than the sampling time of
2 min. With this, we can conclude that the advanced-step MHE-
NMPC strategies allow us to consider implementations with long
time horizons, reasonable sampling times, and negligible feedback
delays.

5. Conclusions and future work

In this work, we incorporate a detailed LDPE tubular reac-
tor model in a general NMPC framework. Using a particular
fouling–defouling scenario, we demonstrate that a tracking NMPC
controller is able to stabilize the reactor in the face of persistent

fouling disturbances. We also demonstrate that if an economic
objective function is added, the NMPC controller can exploit the
multiple degrees of freedom of the process in order to simultane-
ously optimize the process profitability. We have coupled an MHE
estimator to the NMPC controller to provide output feedback to the
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rocess. We have demonstrated that a full-discretization approach
oupled to a sparsity-exploiting interior point solver results in an
ast strategy to solve both the NMPC and MHE problems. Finally, we
mplement advanced-step NMPC and MHE strategies to avoid feed-
ack delays. We demonstrate that a highly sophisticated dynamic
odel can be accommodated on-line to provide nearly instanta-

eous feedback to the LDPE process with negligible approximation
rrors.

As part of future work, different extensions to the NMPC frame-
ork can be considered. For instance, structural model mismatch

nd gross errors can be handled within the MHE formulation. The
ontroller performance can also be tested in complex grade tran-
ition scenarios in which the entire temperature profile needs to
e moved. More general objective functions can also be considered

n the controller. In particular, energy costs can become relevant in
DPE processes if the side-stream temperatures need to be cooled
own significantly. We also believe that the use of an economics-
riented controller can help identify design bottlenecks and guide
etrofitting tasks. Finally, the fouling problem has been treated
o far as an uncertain disturbance. Instead, the fouling rate could
otentially be manipulated through appropriate control actions
e.g. thermal shocks, pressure shocks). In order to do this, predic-
ive fouling models are required. With this, the NMPC controller can
lso be used as a long-term planner of fouling/defouling operations
hat can be interfaced with a lower-level controller.
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