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probability that a certain failure occurs. An analysis of these and similarproperties requires that some form of information about the stochasticdistribution over the occurrence of relevant events is put into the model.For instance, performance evaluation is often based on modeling a systemas a continuous-time Markov process, in which distributions over delaysbetween actions and over the choice between di�erent actions are speci-�ed. Similarly, reliability can be analyzed quantitatively only if we knowsome probability of the occurrence of events related to a failure. Perfor-mance evaluation and reliability analysis are well-established topics, andit is not the aim to contribute in these areas. Rather, we should try tosee what the process algebraic approach can o�er to these �elds. Processalgebras has contributed to our understanding of{ how to describe (model) communicating systems compositionally,{ how to formulate correctness properties of systems,{ how properties of a system relate to properties of its components, and{ what it means for a description of a system component to be a correctimplementation of another component description.A solution to these problems would be very useful, e.g., in a stepwise de-velopment process. An abstract model can be analyzed by proving prop-erties in some logic (for the non-probabilistic case, see e.g., Chapter 1.4of this handbook). The abstract model can then be re�ned in a sequenceof steps, where correctness is preserved in each step by establishing a pre-order relation between the re�ned system and the re�ning one (techniquesfor the non-probabilistic case are described in Chapter 2.2).In this chapter, we will study the above issues in the context of a simpleyet general model of probabilistic processes. In the non-probabilistic set-ting, labeled transition systems are well-established as a basic semanticmodel for concurrent and distributed systems (e.g. [43, 46]). In the liter-ature, the model of transition systems has been extended to the proba-bilistic case by adding a mechanism for representing probabilistic choice(e.g. [54, 29, 31,41, 44, 47,48, 50]). We will adopt a model of probabilistictransition systems, in which probabilistic and nondeterministic choice areindependent concepts. Non-determinism can be used to represent under-speci�cation, which can then be partly removed in re�nement steps. Forexample, nondeterminism can be used to specify the allowed probabilitiesof failure of a medium, and a re�nement can decrease the set of allowedfailure rates [37]. Non-determinism can also represent incomplete infor-



mation on the parameters of system behavior, such as Milner's \weatherconditions" [43].Our model is essentially a nondeterministic version of Markov decisionprocesses [24] or the probabilistic automata of Rabin [50]. In the area ofprocess algebra, the model has been put forward by Vardi under the termconcurrent Markov chain [55], by Wang and Larsen [57] and by Hanssonand Jonsson as the alternating model [31], and by Segala and Lynch [52,51]. A deterministic version has been proposed as the reactive model byLarsen and Skou [41]. There are several other models of probabilistictransition systems proposed in the literature. A short summary will beprovided in section 3.2.The rest of the chapter will be organized as follows: Section 2 introducesnotation and basic concepts from probability theory. Section 3 presentsProbabilistic Transition Systems (PTS) as a basic model for probabilis-tic processes and summarizes variants of PTS proposed in the literature.Section 4 will consider how operators can be de�ned on probabilisticprocesses. We will, in particular, see how operators for nonprobabilisticprocess algebras can be lifted to the probabilistic case in a uniform waysimilar based on de Simone format. Probabilities are added only by meansof a probabilistic choice construct. We will thereafter, in the followingsections, consider di�erent preorders between probabilistic processes, andhow these preorders interact with the operators for constructing processesi.e. (pre)congruence results. Section 5 is devoted to the development ofprobabilistic versions of bisimulation and simulation. These are preordersbased on relating states or distributions to each other i.e. relations onbranching (or tree) structures. Section 6 presents testing preorders, an-other family of preorders that are de�ned in terms of an operational no-tion of testing, and characterize them in terms of simulations. Section 7presents a basic probabilistic modal logic and show how it relates to andcharacterizes the various behavioural preorders. Also, we give a short ac-count of the important work on extending the successful �eld of modelchecking to probabilistic settings. Section 8 conclude the chapter with abrief discussion on current research in the area.2 PreliminariesIn this section, we introduce some notation and de�nitions from proba-bility theory.



A probability distribution on a countable set S is a function � : S ! [0; 1]such that Ps2S �(s) = 1. More generally, a weighting on a set S is afunction � : S ! R�0 from S to nonnegative real numbers. Note that aprobability distribution on a �nite set S is a weighting � on S such that�(S) = 1. The support of a distribution or weighting � on S, denotedsupport(�) is the set of elements s such that �(s) > 0. For a subsetS 0 � S, we de�ne �(S 0) = Ps2S0 �(s). Let Dist(S) denote the set ofprobability distributions on S. If � is a probability distribution on S and� is a probability distribution on T , then their product � = � � � is aprobability distribution on S � T , de�ned by �(hs; ti) = �(s) � �(t). Forsimplicity, we shall write �(s; T ) for �(fsg�T ) and �(S; t) for �(S�ftg).We will next de�ne a general way, proposed by Jonsson and Larsen [37],to lift a relation between two countable sets to a relation between distri-butions on these sets.De�nition 1. Let �� S � T be a relation between the sets S and T , �be a probability distribution on S and � be a probability distribution on T .We de�ne � �� � i� there is a distribution � 2 Dist(S � T ) on S � Tsuch that{ �(s; T ) = �(s) for each s 2 S,{ �(S; t) = �(t) for each t 2 T and{ �(s; t) = 0 if s 6� t. 2We shall write ��� whenever ���� and it is understood from the context.Intuitively, ���� means that there is a distribution on S � T whose pro-jection onto S is �, whose projection onto T is �, and whose support isin �. The relation ���� thus holds if for each s 2 S, it is possible todistribute the probability �(s) over elements of T that are �-related tos, in such a way that the sum of these distributed probabilities, weightedby �, is the distribution �.There is a simpler way of lifting equivalence relations on countable setsto the distributions on these sets.Theorem 1. Let � be an equivalence relation over the set S. Then ����i� �([s]) = �([s]) for all equivalence classes [s] � S of relation �.Proof. If: Assume that �([s]) = �([s]) for all s 2 S. Let �(s; t) = �(s) ��(t)=�([s]) if s � t and �(s) > 0, and 0 otherwise. Then �(s; S) = �(s) �



�([s])=�([s]) = �(s) as �([s]) = �([s]). Similarly, �(S; t) = �(t). The thirdcondition holds immediately from the de�nition of �.Only If:Assume that ���� and further assume that � is as in De�nition 1.Then �([s]) = Ps2[s] �(s; S) = �([s]; S) = �([s]; [s]) since �(s; t) = 0 fort 62 [s]. Symmetrically, �([s]) = �([s]; [s]). Thus �([s]) = �([s]). 2The lifting operation on relations preserves the characteristic propertiesof preorders and equivalences.Theorem 2. Let � be a relation on the set S. Then � is a preorderimplies that �� is a preorder on Dist(S).Proof. We only show the transitivity of ��. Assume that � � � and � � %.Then there are distributions � and � on S�S satisfying the three condi-tions given in De�nition 1. Now let (s; t) =Ps02S �(s; s0)= �(s0)��(s0; t).We check the three conditions in De�nition 1. First (s; S) = Ps02S�(s; s0) = �(s0) � �(s0; S)=Ps02S(�(s; s0)= �(s0)) � �(s0))=Ps02S�(s; s0) =�(s). Second, (S; t) = Ps02S(�(S; s0)= �(s0) � �(s0; t))=Ps02S ( �(s0)=�(s0) � �(s0; t))=Ps02S �(s0; t)=%(t). For the third condition, note that if(s; t) > 0 then there must be s0 such that �(s; s0) � �(s0; t) > 0. Thisimplies that s � s0 and s0 � t. By the transitivity of �, s � t. 2The above result can be extended to equivalence relations.Theorem 3. Let � be a relation on the set S. Then � is an equivalenceimplies that �� is an equivalence on Dist(S).Proof. Immediate from Theorem 1Equivalences and preorders will be of particular interests in the rest of thischapter. We extend a relation � on the set S to the cartesian productS � S in the usual way. That is, hs; ti � hs0; t0i whenever s � s0 andt � t0. Then �� is preserved by the product operation on probabilitydistributions.Theorem 4. Let � be a preorder (or an equivalence relation) and �; �; �0and �0 be probabilistic distributions on S. Then ���� and �0���0 implythat � � �0���� �0.Proof. By the transitivity of ��, we only need to establish that � � �implies � � %���� %.



Following de�nition 1, we construct a distribution � over (S�S)�(S�S).First note that ����. Thus, there exists a distribution � on S � S suchthat �(s; S) = �(s), �(S; s0) = %(t) and �(s; s0) = 0 for s 6� s0.Now let �(hs; ti; hs0; t0i) = �(s; s0) � %(t) whenever t = t0 and 0 otherwise.Then �(hs; ti; S � S) =Ps0;t02S(�(s; s0) � %(t)) = �(t) �Ps0;t02S �(s; s0) =�(t) �Ps02S �(s; s0) = �(t) � �(s). Thus � holds for the �rst conditionin de�nition 1. Similarly, we can establish the second condition for �.That is �(S � S; hs0; t0i) = �(s0) � %(t0). The third condition is obvi-ous. If hhs; ti; hs0; t0ii 6� then s 6� s0. Thus �(s; t) = 0 and therefore�((s; t); (s0; t0)) = �(s; s0) � %(t) = 0. 23 PROBABILISTIC MODELSWe consider a model of probabilistic transition systems, containing prob-abilistic and nondeterministic choices as independent concepts.3.1 Probabilistic Transition SystemsWe assume a set Act of actions, ranged over by a and b.De�nition 2. A Probabilistic Transition System (PTS) is a tuplehS;�!; �0i, where{ S is a non-empty �nite set of states,{ �! � S � Act�Dist(S) is a �nite transition relation, and{ �0 2 Dist(S) is an initial distribution on S.We shall use s a�! � to denote that hs; a; �i 2�!. We use s a�! todenote that there is a � such that s a�! �, and s 6 a�! to denote that thereis no � such that s a�! �. We say that a state s is terminal (writtens 6�!) if s 6 a�! for all a 2 Act. 2This de�nition occurs with minor variations in [55,57, 31, 38,52, 51, 41].In each state, a probabilistic transition system can perform a number ofpossible actions. Each action leads to a distribution over successor states.In many cases when it is understood from the context, we will identify astate s with the distribution that assigns probability 1 to the state s.



An initial state of a process P = hS;�!; �0i is a state s 2 S such that�0(s) > 0. A state s is reachable in P if there is a sequence s0s1 : : : snwhere s0 is initial, s = sn, and for each 0 � i < n there is a distribution�i+1 such that si ai�! �i+1 and �i+1(si+1) > 0. A distribution � 2 Dist(S)is reachable in P if it is either the initial distribution or if s a�! � forsome a and state s which is reachable in P .We use s a�!; s0 to denote that there is a � such that s a�! � and�(s0) > 0, and s�!; s0 to denote that there is an a such that s a�!; s0.A �nite process is a process hS;�!; �0i with a �nite number of states, inwhich the relation �!; is acyclic.A scheduler will decide which action should be taken in each state andthen makes a probabilistic choice. Thus each scheduler corresponds to aprobabilistic execution of a process. In the following sections, we shallstudy how to compare processes in terms of such executions.3.2 Variants of Probabilistic Transition SystemsThe Reactive Model In [40, 41,54] a simple class of probabilistictransition systems is identi�ed as the reactive models. It is the class ofprobabilistic transition systems where all states s are deterministic inthe sense that for each action a, whenever s a�! �1 and s a�! �2, then�1 = �2. Systems in the reactive models have the same structure asMarkov Decision Processes [24].The Generative Model A de�nition of a generative probabilistic tran-sition system di�ers from the one given above in that each transition isan element in S � Dist(Act � S), i.e., the probability distribution alsoincludes a distribution over the possible actions. If all actions in a distrib-ution are identical, we get the above de�nition of a probabilistic transitionsystem1.Several researchers (e.g., [30, 17] have noticed that it is not trivial tode�ne a symmetric parallel composition operator in the generative model.One source of di�culty is that in a generative model, a probabilistictransition system de�nes in each of its states a probability distribution1 Note that the above notion of generative model still allows some nondeterminism inthe sense that a state may have transitions to several distributions. In [54], statesare allowed at most one transition.



over a set of enabled actions. This view makes sense if the set of enabledactions is o�ered by, e.g., the environment. If two probabilistic transitionsystems are composed in parallel, then each of them de�nes a separateprobability distribution over a set of enabled actions. It is not clear howthe set of "enabled actions" is to be de�ned, nor how the two probabilitydistributions should be composed. Approaches to this problem can befound in, e.g., [17, 15].Another interpretation of a distribution over di�erent actions in the gen-erative model is that the choice is under control of the process itself. Thiscould be the case if the actions are \output" actions, which communicatewith corresponding \input actions" in a process that does not constrainthe choice of the \outputting" process. A natural resulting model is thena probabilistic version of I/O automata, de�ned as Probabilistic I/O au-tomata [56]. Probabilistic I/O automata use continuous time and ratesto de�ne transition probabilities. An model in a discrete-time frameworkthat captures an analogous distinction between input and could, but notthe time-dependent behavior modeled by the rates of Probabilistic I/O-automata, can be obtained from the model in De�nition 2, as follows. Foreach input action, there is an enabled transition from each state. In eachstate, at most one output action may be enabled. The choice betweendi�erent output actions must have been made in the previous transitions.4 OPERATORS OF PROBABILISTIC PROCESSALGEBRASIn this section, we consider how operators can be de�ned in probabilisticprocess algebras. We will present a general framework that allows essen-tially any non-probabilistic process algebra to be extended to a proba-bilistic process algebra by introduction of a probabilistic (internal) choiceoperator. The operators of the given non-probabilistic process algebramay be lifted to operators in the probabilistic process algebra in a com-pletely uniform way, under certain assumptions. Later we will instantiatethe framework to particular process algebras.Terms in the resulting probabilistic algebra will denote probabilistic processes.A set of terms can be used to form a probabilistic transition systems as inDe�nition 2. Some of the terms will correspond to states, and the otherswill correspond to distributions over states.



Terms of the non-probabilistic process algebra are assumed to be formedin the usual way by the constant NIL, and a number of operators, eachwith a certain arity. NIL denotes a state which has no outgoing transi-tions.Also, the meaning of an n-ary operator op of the non-probabilistic processalgebra, is assumed to be de�ned by a �nite set of rules in the so-calledde Simone format [23] (see also Aceto, Fokking and Verhoef, Chapter 1.3in this issue): pi1 a1�! qi1 � � � pik ak�! qikop(p1; � � � ; pn) a�! t (1)where p1; : : : ; pn and qi1 ; : : : ; qik are all distinct process expression vari-ables, a and a1; : : : ; ak are actions, fpi1 ; : : : ; pikg is a subset of fp1; : : : ; png,and t is a linear term2 over the process expression variables fp1; : : : ; pngnfpi1 ; : : : ; pikg [ fqi1 ; : : : ; qikg.In the above rule (1), we say that the ith argument is initally active if iis among i1; : : : ; ik. For an n-ary operator op, the ith argument is said tobe initially active if it is initially active in any of the de�ning rules for op.The probabilistic extension of the process algebra is obtained by an exten-sion of the syntax allowing for distributions to be expressed. We introducea single additional binary operator, internal probabilistic choice �p, pa-rameterized by a real number 0 � p � 1. The term E �p F denotes adistribution which assigns the probability p �E(s)+ (1� p) �F (s) to eachstate s (note that we regard E and F as distributions and E(s) and F (s)are probabilities assigned by E and F on state s respectively). The choiceis internal in the sense that the term denotes a probability distributionover states.Now, terms of the extended process algebra are build using the originaloperators op together with the new additional operator �p. Our guidingprinciple for separating these terms into those denoting states and thosedenoting distributions over states is, that all probabilistic choices shouldbe resolved before any non-deterministic transition is taken. Thus, termsdenoting distributions may be inductively de�ned as either terms of theform E�p F , or terms of the form op(t1; : : : ; tn), where for some initiallyactive position i the ti denotes a distribution. Formally this becomes:De�nition 3. The set of process expressions that denote states is de�nedas the smallest set that satis�es:2 In a linear term each variable occurs at most once.



{ op(t1; � � � ; tn) denotes a state if all terms ti1 ; : : : ; tik in initially activepositions denote states.An arbitrary process expression op(t1; � � � ; tn), in which i1; : : : ; ik are theinitially active positions, and where each tij denotes a distribution [[tij ]]over states, denotes a distribution, which assigns the probability [[ti1 ]](si1)�� � � � [[tik ]](sik) to the state op(t1; : : : ; si1 ; : : : ; sik ; : : : ; tn), where op(t1; : : : ;si1 ; : : : ; sik ; : : : ; tn) is obtained from op(t1; � � � ; tn) by replacing the termsti1 ; : : : ; tik in initially active positions by states si1 ; : : : ; sik.To understand our general framework it may be instructive to considerthe following examples:{ NIL is a process expression, which denotes a state without outgoingtransitions.{ The pre�xing operator is de�ned by the rulea:p a�! pThus the term a:E has no initially active positions, and hence it de-notes a state.{ The nondeterministic choice operator is de�ned by the rulesp a�! p0p+ q a�! p0 q a�! q0p+ q a�! p0Thus, both positions are initially active. Figure 1 illustrates the be-haviour of the term (a�0:3 b)+ (c�0:4 d). Note that this term (due tothe presence of � in active positions) denotes a distribution. In the�gure, we use dotted lines to indicate probabilistic choices from dis-tributions, and �lled lines to indicate action transitions from states.Also, we are omitting trailing occurrences of NIL, writing a for a:NIL.{ The operator for synchronous parallel composition a'la CSP may bede�ned by the following rule3:p a�! p0 q a�! q0pjjq a�! p0jjp0Clearly, both positions are initially active. Figure 2 illustrates thebehaviour of the parallel term (denoting a distribution) (a�0:3b)jj(a+b).



a+ c b+ c b+ da c a b c b d0:420:12 0:18(a�0:3 b) + (c�0:4 d)a+ dd 0:28Fig. 1. Behaviour of (a�0:3 b) + (c�0:4 d).(a�0:3 b)jj(a+ b)ajj(a+ b) bjj(a+ b)0.7 ba0.3Fig. 2. Behaviour of (a�0:3 b)jj(a+ b).As usual, process constants P may be introduced by recursive de�nitions,P def= E, with transitions of P being inferred from its de�nition E.Along similar lines, we can present a probabilistic version of SCCS, whichis similar to the calculus PCCS presented by Giacalone et al [29]. As inSCCS, let (Act;�; 1; ) be the Abelian group of atomic actions. Intuitively,actions of the form � � � represent the simultaneous, atomic occurrenceof the actions � and �. We will often write �� instead of � � �. Theaction 1 is the \idle action", and � is the dual action of �. The action�� � represents a synchronized communication between complementaryactions, and �� � = 1.The syntax of PCCS is given byE ::= nil j X j �:E j E �p F j E� F j EnA j E[f] j recX : E3 We have chosen to illustrate a synchronous parallel operator, as we will need it laterfor introducing testing preorders. However, asynchronous parallel composition as inCCS may be extended in a similar manner.



�:P ��! PP ��! P 0 Q ��! Q0P �Q ���! P 0 �Q0P ��! P 0PnA ��! P 0nA (�; �� 62 A) P ��! P 0P [f ] f(�)�! P 0[f ]Table 1. Inference Rules for PCCS.where A is a subset of Act such that 1 2 A and f : Act 7! Act is agroup morphism. Note the absence of nondeterministic choice in the abovede�nition. The operational semantics of PCCS for action transitions isgiven in Table 1.In [29], the presentation is slightly di�erent in appearance. In the opera-tional semantics, transitions are of the form P �[p]�! P 0 meaning that \Pcan perform the action � with probability p and become process P 0". Inthis representation, P is a distribution over states, which assigns proba-bility p to the set of states that can perform � and become P 0.5 PROBABILISTIC BISIMULATION ANDSIMULATIONIn this section, we will present a series of bisimulation-preorders betweenprobabilistic processes. These are intended to be generalizations of cor-responding preorders on nonprobabilistic processes (see also Cleavelandand Sokolsky, Chapter 2.2 in this issue).5.1 Probabilistic BisimulationA bisimulation can be understood as an equivalence relation, where twoprocesses are equivalent if each process can mimick whatever the other



process can do. We will �rst consider probabilistic bisimulation de�nedas an equivalence over states, not over distributions.De�nition 4. An equivalence relation R over a set of states S is a bisim-ulation if sRt implies that whenever s a�! � for some action a and dis-tribution �, then there is a distribution � such that t a�! � and �R�.2In Figure 3 is an example of two bisimilar processes.
	 R�-inout err0:8 0:2 	 Rq�-inout errerr0:8 0:1 0:1Fig. 3. Two bisimilar processesIn the process to the left, the action in leads to a distribution over twostates. From the left state, the process can perform the action out, mean-ing that the action in has been performed normally. From the right state,only the action err can be performed, meaning that the previous action inwas not successful. In the left process, the probability of an unsuccessfulin action is 0:2. In the right process, the intention is to model two ways,represented by the states to the right, for the action in to be unsuccessful.Each of the states is reached with probability 0:1. In this process, bothof these states are bisimilar, since they can perform equivalent actions,leading to equivalent states. Therefore, also the two start states (fromwhich the action in can be performed) are equivalent, since they bothlead to the successful equivalence class with probability 0:8 and to theunsuccessful equivalence class with probability 0:2).The above de�nition of bisimulation was introduced by Larsen and Skou[41] for reactive systems and it is the most commonly used generalizationof bisimulation to the probabilistic setting.



For models that embody both probabilistic and nondeterministic choice,in the way de�ned in this chapter, it can be argued that the above de�-nition of probabilistic bisimulation is too restrictive. Namely, recall thatwe could let nondeterministic choices be resolved by schedulers, and thatschedulers can be probabilistic. But the above de�nition of bisimulationconsiders only deterministic choices by schedulers. Consider for examplethe two processes of Figure 4.
? j?� �-in inout err0:9 0:1 0:50:5 ? j?�/ w�-in ininout err0:9 0:1 0:50:50:7 0:3Fig. 4. Two probabilistic bisimilar processesNote that ignoring the middle in-transition of the right process, thesetwo processes are identical and the middle in-transition is a convex com-bination of the other two (see de�nition 5). Assuming that schedulers canbe probabilistic, the extra transition can be generated as a probabilisticchoice over the two other transitions. It therefore does not add anything tothe process, meaning that the two processes ought to be equivalent. Thede�nition of probabilistic bisimulation can thus be weakened by includingcombined transitions as follows:De�nition 5. Let t be a state of a probabilistic transition system and leta be an action. We say that t a�! � is a combined transition of t if � isa convex combination of the set � = f�ijt a�! �ig of distributions, thatis, for each �i, there is a nonnegative real number �i such that Pi �i = 1and � =P�i2� �i � �i. 2De�nition 6. An equivalence relation R over S is a probabilistic bisim-ulation if sRt implies that whenever s a�! � for some action a and dis-tribution �, then there is a distribution � such that t a�! � is a combinedtransition with �R�.



We use ' to denote the largest probabilistic bisimulation i.e. the union ofall probabilistic bisimulations over S and Dist(S). 2Now we have a weaker equivalence relation than bisimulation. For ex-ample, consider the two processes shown in Figure 4. Note that the twoprocesses are not bisimilar according to de�nition 4. But they are bisim-ilar according to de�nition 6 because the middle in-transition is a com-bined transition of the other two.This de�nition was introduced by Segala and Lynch [52]. Following theirterminology, we use the term bisimulation for the more restrictive def-inition, and the term probabilistic bisimulation for the de�nition whichconsiders also combined transitions. With the de�nition of probabilisticbisimulation, we can use a combination of two or more transitions to de-note a range of allowed probabilities for the outcome of an action, namelythose that are in the convex closure of the outcomes of the actions actu-ally described. In this way, it is similar to the use of intervals by Jonssonand Larsen [37].5.2 Probabilistic SimulationA simulation can be understood as a relation, which captures the idea thatone of the processes can mimick whatever the other process can perform.In contrast to bisimulation, a simulation need not be symmetric, sincethe mimicking capability is required only of one of the processes.De�nition 7. A preorder R over S is a simulation if sRt implies thatwhenever s a�! � for some action a and distribution �, then there is adistribution � such that t a�! � and �R��. 2As an example, consider again the two processes in Figure 4. The rightprocess simulates the left one since it has more transitions. However, theleft process does not simulate the right one . But as in the case of bisim-ulation, we can allow the matching transition t a�! � to be a combinedtransition. We can then use simulation to let a range of possible outcomesof an action be simulated by an even wider range of possible outcomes.Figure 5 shows a simple example of this. According to previous de�nition,the left process is not simulated by the right process. For example, its �rstin-transitions is not simulated by any of the in transitions of the right



process. However, the in-transition is simulated by the convex combina-tion of the two in-transitions of the right process, resulted by multiplyingthe two distributions by 3=4 and 1=4 respectively.
? j?� �-in inout err0:8 0:2 0:40:6 ? j?� �-in inout err0:9 0:1 0:50:5Fig. 5. Probabilistic simulationIt can thus be argued that a more appropriate de�nition of probabilisticsimulation is the following:De�nition 8. (Probabilistic Simulation) A preorder R over S is a prob-abilistic simulation if sRt implies that whenever s a�! � for some actiona and distribution �, then there is a distribution � such that t a�! � is acombined transition with �R��.We use � to denote the largest simulation i.e. the union of all probabilisticsimulations over S and Dist(S). 2For the nonprobabilistic case, we know that a bisimulation is a symmetricsimulation and vice versa. This is also true in the probabilistic setting.Theorem 5. A probabilistic simulation is symmetric i� it is a probabilis-tic bisimulation.Proof. The result follows from Theorem 1.5.3 Congruence PropertiesThe bisimulation and simulation relations that have been introduced inthis section, can all be checked on �nite-state processes by a standard



iterative procedure that repeatedly re�nes the universal relation until itsatis�es the appropriate de�nition of (bi-)simulation. At each step, thecondition for (bi-)simulation may in general involve checking for inclusionbetween convex polytopes, spanned by di�erent possible outcomes of anondeterministic choice. Decision procedures for checking probabilistic(bi-)simulation can be found in e.g. [3, 4].These relations may be used to reason about probabilistic processes bymeans of algebraic operators in a compositional manner.A process expression may be generated by process constants, process vari-ables and algebraic operators described in section 4. We de�ne a processcontext to be a process expression containing free process variables. Weuse C to denote the set of process contexts. Let C be a process contextthat contains free process variables t1 : : : tm. Let p1 : : : pm be process ex-pressions that denote states or distributions. We write C[p1=t1 : : :pm=tm]for the process expression C in which all ti are substituted with pi. Asdesired, the largest (bi-)simulation relations are all preserved by the al-gebraic operators described in section 4.Theorem 6. Let C be a process context containing free process variablest1 : : : tm. Let p1 : : :pm and q1 : : : qm be process expressions that may denotestates or distributions.{ pi ' qi for all i implies that C[p1=ti � � �pm=tm] ' C[q1=ti � � �qm=tm]{ pi � qi for all i implies that C[p1=ti � � �pm=tm] � C[q1=ti � � �qm=tm]Proof. By the transitivity of � and ', the case when m > 1 can betransformed to the case of m = 1. For example, if p[p1=t1; p2=t2] �p[q1=t1; p2=t2] and p[q1=t1; p2=t2] � p[q1=t1; q2=t2], we have p[p1=t1; p2=t2]� p[q1=t1; q2=t2]. Thus, we consider only process contexts C with a singlevariable t. Let R = fhC[p=t]; C[q=t]i j p ' qg. We will show that R is aprobabilistic bisimulation.First we observe that, whenever � ' �, then C[�=t]RC[�=t]. Now Cwill be of the form op(�1; : : : ; �n; t; p1; : : : ; pk) for some derived opera-tor op, with �1; : : : ; �n, and possibly t, denoting the initially active ar-guments. Assuming t is initially active in C, C[�=t] denotes the distri-bution, which assigns the probability �(q) � �1(q1) � � � � � �n(qn) to thestate op(q1; : : : ; qn; q; p1; : : : ; pk). Similarly, C[�=t] assigns the probability�(q) � �1(q1) � � � � � �n(qn) to the same state. As � ' � it follows thatC[�=t] and C[�=t] assign the same probabilities to equivalence classes of



R, which are sets of the form fD[p=t] j p ' p0g for some state p0. Thus,as claimed, C[�=t] R C[�=t].Now let hC[p=t]; C[q=t]i 2 R and assume that C[p=t] b�! �. We must �nda matching, combined transition for C[q=t]. The transition of C[p=t] willbe of one of the two following forms:i) � = C 0[p=t]ii) � = C 0[�0=t] where t is active in C and p a�! �0 for some aIn case i), the \de Simone"-format allows us to infer that C[q=t] b�!C 0[q=t]. Since p ' q (both as states and singleton distributions), it followsfrom our �rst observation that C 0[p=t]RC 0[q=t].In case ii), it follows that �0 ' �0 for some distribution �0, where q a�! �0is a combined transition (as p ' q). Now, due to the \de Simone"-format,it may be argued that also C[q=t] b�! C 0[�0=t] is a combined transition.From our �rst observation, it follows that C 0[�0=t] R C 0[�0=t].As R is symmetric, this su�ces to demonstrate that R is a probabilisticbisimulation. The case of simulation can be established by similar argu-ment using Theorem 4. 26 TESTING PREORDERSIn the previous section, we have de�ned preorders which are based onrelating states or distributions to each other. For non-probabilistic sys-tems, there is another rich family of preorders, which are based on thecomparison between execution sequences. These preorders can be basedon traces, refusals, ready-sets, behaviors, etc. In this section, we are goingto give a partial answer to the question how these preorders generalize toa setting with probabilistic processes. However, we are not going to de�ne�rst some analogue of e.g., traces. The reason is that such an analoguewould not lead to a compositional preorder, as shown e.g., by Segala [51].Instead, we will use another method for arriving at a weaker composi-tional preorder. We will use the framework of testing, as de�ned by deNicola and Hennessy [22]. The idea of this framework is that processesare compared by their ability to pass a speci�ed set of \tests".We will generalize the framework of may-testing to probabilistic processes,and then characterize the resulting preorder. It will turn out that the re-



sulting preorder will be rather di�erent from the nonprobabilistic traceinclusion. In fact, it will be closer to the nonprobabilistic simulation pre-order (in fact, it reduces to simulation in the nonprobabilistic case), forthe reason that in the framework we will de�ne, the probabilistic choiceswill induce an e�ect which is similar to \copying" of a process state. Inthis section, we give a simpli�ed presentation by limiting tests to be �niteprocesses.6.1 Related WorkTesting-based preorders of probabilistic processes have also been studiedby Christo� [10] and by Cleaveland, Smolka, and Zwarico [15] and byYuen et al. [49, 49,56]. These works consider a pure probabilistic model[54], and therefore their preorders do not capture the notion of re�ne-ment in the sense of being \less nondeterministic". On the other hand,they can be e�ciently checked in the �nite-state case, as demonstratedby Christo� and Christo� [11], using the polynomial-time algorithm forchecking equivalence between probabilistic automata by Tzeng [53]. Thework which is closest to the current one is by Segala [51], who de�ne es-sentially the same testing preorders as in this work. However, Segala doesnot develop an explicit characterization of the testing preorder.6.2 Tests, Testing Systems and PreordersFollowing Wang and Larsen [57], we de�ne tests as �nite trees with acertain subset of the terminal states being \accepting states".De�nition 9. A (probabilistic) test is a tuple hT;�!; �0;Fi, where hhT;�!i; �0iis a �nite tree, and F � T is a set of success-states, each of which is ter-minal. 2A test T is applied to a process P by putting the process P in parallelwith the test T and observing whether the test reaches a success state.We de�ne a testing system as the parallel composition of a process and atest.De�nition 10. Let P = hS;�!; �0i be a process and T = hT;�!; �0;Fibe a test. The composition of P and T , denoted PkT is a so-called test-ing system, de�ned as the process hS;�!; �0ikhhT;�!i; �0i with successstates S �F . 2



Our intention is that a testing system de�nes a probability of reaching asuccess-state. However, since from each state there may be several out-going transitions, such a probability is not uniquely de�ned. We will beinterested in the maximal probabilities of success. These can be de�nedinductively on the structure of the testing system.De�nition 11. Let PkT be a testing system, composed of the processP = hS;�!; �0i and the test T = hT;�!; �0;Fi. For each state skt ofPkT we de�ne its maximal probability of success, denoted tdse and itsminimal probability of success, denoted tbsc, inductively by{ If skt is terminal, then tdse = tbsc = 1 if t is a success-state, elsetdse = tbsc = 0.{ If skt is not terminal, thentdse = maxskt a�! � � �0@Xs0kt0(� � �)(s0kt0) � t0ds0e1Aand tbsc = minskt a�! � � �0@Xs0kt0(� � �)(s0kt0) � t0bs0c1AFor a distribution � on S and a distribution � on T , we de�ne�d�e =Xskt (� � �)(skt) � tdseand �b�c =Xskt (� � �)(skt) � tbscWe de�ne T dPe = �0d�0e. and T bPc = �0b�0c. 2We note that, using the de�nition of �d�e, we can make a simpler de�ni-tion of tdse as tdse = maxskt a�! � � ��d�eWe now de�ne preorders of testing, which abstract from the set of possibleexpected outcomes when testing a process P by a test T :may testing con-siders only maximal possible expected outcome of PkT and must testingconsiders only minimal possible outcome.



De�nition 12. Given two processes P and Q, we de�ne1. P vmay Q if 8T : T dPe � T dQe2. P vmust Q if 8T : T bPc � T bQc 2The intention, for example, behind the de�nition of vmay is that intu-itively, P vmay Q should means that P re�nes Q with respect to \safetyproperties". We can regard the success-states of a test as states de�ningwhen the tester has observed some \bad" or \unacceptable" behavior. Aprocess then re�nes another one if it has a smaller potential for \bad be-havior" with respect to any test. In the de�nition of P vmay Q, this meansthat the maximal probability of observing bad behavior of P should notexceed the maximal probability of observing bad behavior of Q.For example, consider process P and Q in Figure 6. The probability thatP may pass a test is always less or equal to the probability Q may passthe same test; therefore P vmay Q.
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0.2Fig. 6. P vmay Q.A useful property of vmay is that it is compositional in the sense that theyare precongruences with respect to our parallel composition operator.Proposition 1. For arbitrary processes P;Q;R,1. P vmay Q implies P jjR vmay QjjR2. P vmust Q implies P jjR vmust QjjR 2



6.3 Characterization of Testing PreordersIn the following, we show that testing preorders de�ned in De�nition 12can be characterized by variants of probabilistic simulation. When re-stricted to nonprobabilistic processes, probabilistic may-testing preordercoincides with ordinary simulation; whereas probabilistic must-testingpreorder with refusal simulation [36]. We shall only consider may-testing.It may seem a little surprising that a preorder de�ned in terms of testing,which is a \linear-time" activity, is characterized by a simulation relation,which is a \branching-time" relation. The explanation is that the proba-bilistic choices of tests have the e�ect of \copying" the process under testinto a number of copies, and that the testing of each copy is performedindependently [1].Recall that a probabilistic process is essentially a distribution over states.Such a distribution gives rise to a number of possibilities for choosingthe next action and next distribution. We will capture these possibilitiesin a notion of step corresponding to a transition in the non-probabilisticsetting.De�nition 13. Let hS;�!i be a probabilistic transition system. A step isa weighting on Act�Dist(S). We say that a step � is a step of distribution� on S if there is a function h : (Act�Dist(S)) 7! S such that{ s a�! whenever s is in the support of h(ha; �0i), and{ (Ph(ha;�0i)=s �(ha; �0i)) � �(s) for each s 2 S.We say that a step � is an a-step if a0 = a for all ha0; �0i in the supportof �. 2Intuitively, a step represents a combination of next transitions that canbe made by a process. A step from a distribution � is a weighting overpossible outgoing transitions, which is consistent with � in the sense thatit can be obtained by choosing for each state in the support of � a sub-distribution over outgoing transitions. Note that for a given distribution,there may be in�nitely many steps possible. A step is normal if the func-tion h in De�nition 13 can be chosen such that for each nonterminal sin the support of �, there is a ha; �0i 2 � such that h(ha; �0i) = s and�(h(ha; �0i)) = �(ha; �0i).That is, a normal step is obtained by choosing a unique transition fromeach state, satisfying the above condition. Since each state in a distri-



bution in general has several outgoing transitions, there are many (but�nitely many) normal steps from each distribution.We de�ne post on steps bypost(�) = Xha;�0i�(ha; �0i) � �0i.e., post(�) is the weighting obtained by projecting a step onto the \next"distribution in its transitions. The notion of post weighting is analogousto the notions of next state in the non-probabilistic setting. We can nowde�ne the notion of step-simulation between weightings.De�nition 14 (Probabilistic Step-Simulation). Let hS;�!i and hT;�!i be two probabilistic transition systems. A relation � � (Weight(S)�Weight(T )) between weightings on S and weightings on T is a probabilis-tic step-simulation if � � � implies that{ �(S) � �(T ), and{ for each normal step � from � there is a step  from � and a functionh : support(�) 7! Weight(Act � Dist(R)) from pairs ha; �0i in thesupport of � to steps from � such that� h maps each ha; �0i to an a-step from  ,� h(�) �  , i.e., the image of � under h is \covered" by  , and� for each pair ha; �0i in the support of � we have�0 � post(h(ha; �0i))For two probabilistic processes P = hS;�!; �0i and Q = hT;�!; �0i, wesay that P is simulated by Q if there is a probabilistic step-simulation �between hS;�!i and hT;�!i such that �0 � �0. 2Intuitively, a weighting � is simulated by a weighting � if the total \mass"of � is at most that of � (�rst condition), and if each step � from � canbe simulated by a step  from � in the sense that each \next transition"ha; �0i in the support of � can be covered by an a-step from �, such thatthe weighted sum (weighted wrp. to �) of all the weightings h(ha; �0i) iscovered by  , and such that �0 is simulated by the next-state distribu-tion obtained from h(ha; �0i). In Figure 7, we illustrate why process P issimulated by process Q. Note that P vmay Q as shown in Figure 6.The following characterization theorem was stated and proven by Jonssonand Yi in [39].
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0.2Fig. 7. A proof for P �Q.Theorem 7. � vmay � if and only if there is a probabilistic step-simulation� such that � � �. 27 PROBABILISTIC LOGICS7.1 Characterizing PreordersFor non-probabilistic transition systems, several behavioural preordershave been characterized by simple modal logics. That is, the particularpreorder has been shown to be completely captured by inclusion betweenthe sets of logical properties satis�ed by states (see also Brad�eld andStirling, Chapter 1.4 in this issue).Bisimilarity between non-probabilistic transition systems is characterizedby the so-called Hennessy-Milner Logic [33]. In [40{42], this characteri-zation has been extended to probabilistic bisimulation for reactive prob-abilistic systems by identi�cation of a suitable probabilistic extensionof Hennessy-Milner Logic. In [9, 25, 26], a further generalization to non-discrete probabilistic systems (Labelled Markov Processes) is given, andin particular it is shown that probabilistic bisimulation can be charac-terized by a very weak, negation-free modal logic. In addition, and in



contrast to [40{42], the characterization o�ered by [9, 25, 26] requires no�nite branching assumptions.Here, we adapt the probabilistic modal logic, PML, of [40{42] to theprobabilistic model studied in this paper. As for states, the formulas ofthe logic come in two avours: non-deterministic formulas (ranged overby F; Fi; : : :) and probabilistic formulas (ranged over by '; 'i; : : :), givenby the following abstract syntax (where p 2 [0; 1]):F ::= tt j F1 ^ F2 j :F j hai'' ::= tt j '1 ^ '2 j :' j 3pFThe interpretation is relative to a probabilistic transition system, hS;�!; �0i. More precisely, the semantics of a formula F (respectively ') is a setof non-deterministic states [[F ]] (respectively of probabilistic states [[']]),de�ned inductively as follows:i) [[tt]] = S ii) [[F1 ^ F2]] = [[F1]] \ [[F2]]iii) [[:F ]] = Sn[[F ]] iv) [[hai']] = fs j 9a; � 2 [[']]: s a�! �gi0) [[tt]] = Dist(S) ii0) [['1 ^ '2]] = [['1]] \ [['2]]iii0) [[:']] = Dist(S)n[[']] iv0) [[3pF ]] = f� j �([[F ]]) � pgFor F a non-deterministic property, we write [[F ]]C to denote the set ofnon-deterministic states satisfying F , when we use the combined transi-tion relation in iv). For a state s we denote by Sat(s) and SatC(s) the setof properties satis�ed by s with respect to [[]] and [[]]C . Bisimulation andprobabilistic bisimulation as presented in Section 5 may now be charac-terized as follows:Theorem 8. Let hS;�!; �0i be an image-�nite4 probabilistic transitionsystem. Then two states s; t are bisimilar respectively probabilistic bisim-ilar if and only if Sat(s) = Sat(t) respectively SatC(s) = SatC(t).Let NSat(s) and NSatC(s) denote the set of negation-free propertiessatis�ed by the state s with respect to [[]] and [[]]C .. Then simulation andprobabilistic simulation as presented in Section 5 are characterized asfollows:4 A probabilistic transition system hS;�!; �0i is said to be image-�nite if for allreachable non-deterministic states s, the set f� j 9a; s:s a�! �g is �nite, and for allreachable probabilistic states �, the set fs j�(s) > 0g is �nite.



Theorem 9. Let hS;�!; �0i be an image-�nite probabilistic transitionsystem. Then two states s; t are in the simulation preorder respectivelyprobabilistic simulation preorder if and only if NSat(s) � NSat(t) re-spectively NSatC(s) � NSatC(t).As an example reconsider Figure 4. Here the two processes are probabilis-tic bisimilar but not bisimilar. The lack of bisimilarity may, according toTheorem 8, be 'explained' by a distinguishing property, e.g.:hini(30:7houtitt ^30:3herritt)which is satis�ed by the right process but not by the left processes (withrespect to [[]]). The above property is clearly negation-free, thus accordingto Theorem 9, this also demonstrates that the right process is not evensimulated by the left one.Reconsidering Figure 5, the propertyhini30:9houtittis satis�ed by the right process but not by the left processes (with respectto [[]]C). Thus the right process is not probabilistically simulated by theleft one.7.2 Model Checking Probabilistic Temporal LogicsSeveral probabilistic extensions of temporal logics such as CTL and CTL�[13, 14] have been suggested for the formal speci�cation of probabilisticproperties of systems. In addition, associated model checking algorithmshave in many cases been o�ered.The �rst probabilistic extension of branching-time logics for expressingproperties of probabilistic system was proposed by Hansson and Jonsson[31,32]. Formulas of the resulting logic PCTL are obtained by adding sub-scripts and superscripts to CTL formulas, as in 3�15�0:6', which expressesthat the property ' will hold within 15 transition-steps with probabilityat least 0:6. The presented model-checking algorithms rely on results onMarkov chains and dynamic programming. Later, the logic PCTL wasextended to systems including non-determinism by Hansson in [30] andSegala and Lynch in [52]. Christo� and Christo� [12] adapt a restricted



form of the modal mu-calculus. A new probabilistic semantics for themu-calculus has been developed by Narasimha et al. [45].Aziz et al [2] introduces pCTL� a probabilistic extension of CTL�. Herethe model checking algorithm is based on early results due to Cour-coubetis and Yannakakis [16]. The logic was later extended to systemswith non-determinism by Bianco and de Alfaro [8, 21]. Symbolic model-checking algorithms of these logics was presented by Baier et al. in [6].For more detailed information on the interesting topic of model checkingprobabilistic systems, we refer the reader to the excellent works by Alfaro[20] and Baier [4].8 CONCLUSION and TRENDSIn this chapter, we have dealt with a number of classical process alge-braic issues in a rather general setting allowing both discrete probabilisticchoice as well as nondeterminism. In particular, we have{ shown how non-probabilistic process algebraic operators, in a uniformmanner, may be extended to this probabilistic setting;{ o�ered a range of probabilistic extensions of well-known behaviouralpreorders such as simulation, bisimulation and testing;{ established congruence properties for these preorders;{ provided alternative characterizations of the probabilistic preorders,either in terms of \trace"- or \tree"-based denotational models, or interms of probabilistic modal logics.Current research considers further extensions of the process algebraicframework to settings with continuous-time [35,34]. One goal is to com-bine the contributions of process-algebra, viz. compositionality and theuse of logics to specify and analyze properties, with the work on e�cientalgorithms for analyzing performance of stochastic processes [5, 18]. Also,the basic notions of probabilistic bisimulation and probabilistic modallogics have been recast and analysed in settings with continuous-spaceprobability distributions [9, 25, 19,27, 28]. From this work it may be in-ferred that the negation-free version of the logic in section 7 su�ces in or-der to characterize probabilistic bisimulation. In this chapter we have notconsidered the di�cult problem of extending probabilistic bisimulation toallow for abstraction from internal computation (resulting in probablistic
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