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In this chapter, we adopt Probabilistic Transition Systems as a basic
model for probabilistic processes, in which probabilistic and nondeter-
ministic choices are independent concepts. The model is essentially a
nondeterministic version of Markov decision processes or probabilistic
automata of Rabin. We develop a general framework to define proba-
bilistic process languages to describe probabilistic transition systems. In
particular, we show how operators for nonprobabilistic process algebras
can be lifted to probabilistic process algebras in a uniform way similar
to de Simone format. To establish a notion of refinement, we present a
family of preorders including probabilistic bisimulation and simulation,
and probabilistic testing preorders as well as their logical or denotational
characterization. These preorders are shown to be precongruences with
respect to the algebraic operators that can be defined in our general
framework. Finally, we give a short account of the important work on
extending the succesfull field of model checking to probabilistic settings
and a brief discusion on current research in the area.
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1 INTRODUCTION

Classic process, algebras such as CCS, CSP and ACP, are well-established
techniques for modelling and reasoning about functional aspects of con-
current processes. The motivation for studying probabilistic extensions
of process algebras is to develop techniques dealing with non-functional
aspects of process behavior, such as performance and reliability. We may
want to investigate, e.g., the average response time of a system, or the
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probability that a certain failure occurs. An analysis of these and similar
properties requires that some form of information about the stochastic
distribution over the occurrence of relevant events is put into the model.
For instance, performance evaluation is often based on modeling a system
as a continuous-time Markov process, in which distributions over delays
between actions and over the choice between different actions are speci-
fied. Similarly, reliability can be analyzed quantitatively only if we know
some probability of the occurrence of events related to a failure. Perfor-
mance evaluation and reliability analysis are well-established topics, and
it is not the aim to contribute in these areas. Rather, we should try to
see what the process algebraic approach can offer to these fields. Process
algebras has contributed to our understanding of

— how to describe (model) communicating systems compositionally,

how to formulate correctness properties of systems,

how properties of a system relate to properties of its components, and

— what it means for a description of a system component to be a correct
implementation of another component description.

A solution to these problems would be very useful, e.g., in a stepwise de-
velopment process. An abstract model can be analyzed by proving prop-
erties in some logic (for the non-probabilistic case, see e.g., Chapter 1.4
of this handbook). The abstract model can then be refined in a sequence
of steps, where correctness is preserved in each step by establishing a pre-
order relation between the refined system and the refining one (techniques
for the non-probabilistic case are described in Chapter 2.2).

In this chapter, we will study the above issues in the context of a simple
vet general model of probabilistic processes. In the non-probabilistic set-
ting, labeled transition systems are well-established as a basic semantic
model for concurrent and distributed systems (e.g. [43,46]). In the liter-
ature, the model of transition systems has been extended to the proba-
bilistic case by adding a mechanism for representing probabilistic choice
(e.g. [54,29,31,41,44,47,48,50]). We will adopt a model of probabilistic
transition systems, in which probabilistic and nondeterministic choice are
independent concepts. Non-determinism can be used to represent under-
specification, which can then be partly removed in refinement steps. For
example, nondeterminism can be used to specify the allowed probabilities
of failure of a medium, and a refinement can decrease the set of allowed
failure rates [37]. Non-determinism can also represent incomplete infor-



mation on the parameters of system behavior, such as Milner’s “weather
conditions” [43].

Our model is essentially a nondeterministic version of Markov decision
processes [24] or the probabilistic automata of Rabin [50]. In the area of
process algebra, the model has been put forward by Vardi under the term
concurrent Markov chain [55], by Wang and Larsen [57] and by Hansson
and Jonsson as the alternating model [31], and by Segala and Lynch [52,
51]. A deterministic version has been proposed as the reactive model by
Larsen and Skou [41]. There are several other models of probabilistic
transition systems proposed in the literature. A short summary will be
provided in section 3.2.

The rest of the chapter will be organized as follows: Section 2 introduces
notation and basic concepts from probability theory. Section 3 presents
Probabilistic Transition Systems (PTS) as a basic model for probabilis-
tic processes and summarizes variants of PTS proposed in the literature.
Section 4 will consider how operators can be defined on probabilistic
processes. We will, in particular, see how operators for nonprobabilistic
process algebras can be lifted to the probabilistic case in a uniform way
similar based on de Simone format. Probabilities are added only by means
of a probabilistic choice construct. We will thereafter, in the following
sections, consider different preorders between probabilistic processes, and
how these preorders interact with the operators for constructing processes
i.e. (pre)congruence results. Section 5 is devoted to the development of
probabilistic versions of bisimulation and simulation. These are preorders
based on relating states or distributions to each other i.e. relations on
branching (or tree) structures. Section 6 presents testing preorders, an-
other family of preorders that are defined in terms of an operational no-
tion of testing, and characterize them in terms of simulations. Section 7
presents a basic probabilistic modal logic and show how it relates to and
characterizes the various behavioural preorders. Also, we give a short ac-
count of the important work on extending the successful field of model
checking to probabilistic settings. Section 8 conclude the chapter with a
brief discussion on current research in the area.

2 Preliminaries

In this section, we introduce some notation and definitions from proba-
bility theory.



A probability distribution on a countable set S is a function 7 : .S — [0, 1]
such that > ,csm(s) = 1. More generally, a weighting on a set S is a
function 7 : § = R>g from S to nonnegative real numbers. Note that a
probability distribution on a finite set S is a weighting 7 on S such that
7(S) = 1. The support of a distribution or weighting = on 9, denoted
support(w) is the set of elements s such that m(s) > 0. For a subset
S" C S, we define 7(5) = Y ,cq 7m(s). Let Dist(S) denote the set of
probability distributions on S. If & is a probability distribution on S and
p is a probability distribution on 7', then their product ¢ = © X p is a
probability distribution on S x T, defined by o((s,t)) = 7(s) * p(t). For
simplicity, we shall write o(s,T) for o({s} xT') and (9, ¢) for o(S x {t}).

We will next define a general way, proposed by Jonsson and Larsen [37],
to lift a relation between two countable sets to a relation between distri-
butions on these sets.

Definition 1. Let ~C S x T be a relation between the sets S and T, «
be a probability distribution on S and p be a probability distribution on T.
We define 7 =* p iff there is a distribution o € Dist(S x T) on S x T
such that

— ofs,T) =n(s) for each s € S,
— a(S,t) = p(t) for each t € T and
— afs,t) =0 if st O

We shall write 7=p whenever ma~*p and it is understood from the context.

Intuitively, #7="p means that there is a distribution on S x T" whose pro-
jection onto S is w, whose projection onto 7T is p, and whose support is
in 2. The relation 7~*p thus holds if for each s € S, it is possible to
distribute the probability 7 (s) over elements of 17" that are a-related to
s, in such a way that the sum of these distributed probabilities, weighted
by =, is the distribution p.

There is a simpler way of lifting equivalence relations on countable sets

to the distributions on these sets.

Theorem 1. Let = be an equivalence relation over the set S. Then m=*p
iff m([s]) = p([s]) for all equivalence classes [s] C S of relation =.

Proof. If: Assume that 7([s]) = p([s]) for all s € S. Let a(s,t) =
p(t)/m([s]) if s =t and 7(s) > 0, and 0 otherwise. Then a(s, 5)



p([s])/m([s]) = 7 (s) as w([s]) = p([s]). Similarly, «(S,t) = p(t). The third

condition holds immediately from the definition of a.

Only If: Assume that 7a"p and further assume that «is asin Definition 1.
Then 7([s]) = X e a(s,.5) = a([s], 5) = a([s], [s]) since a(s,t) = 0 for
¢ & [s]. Symmetrically, p((s]) = a([s], [s]). Thus =([s]) = p([s]). 0

The lifting operation on relations preserves the characteristic properties
of preorders and equivalences.

Theorem 2. Let = be a relation on the set S. Then = is a preorder
implies that =* is a preorder on Dist(S).

Proof. We only show the transitivity of =*. Assume that 7 = p and p = p.
Then there are distributions v and 8 on S x S satisfying the three condi-
tions given in Definition 1. Now let v(s,t) = > cqa(s,s')/ p(s')*B5(5,1).
We check the three conditions in Definition 1. First v(s,5) = Y, ¢5
a5, ) | pls) * B, S)= Ses(a(s, )/ pl)) * p() =S pes(s: o) =
7(5). Second, 7(5,8) = Syes(al(S, )/ p(') * B, 0)=Ywes ( o)/
p(s') * B(s',t))=>"ycs B(s', t)=0(t). For the third condition, note that if
v(s,t) > 0 then there must be s’ such that a(s,s’) * §(s',t) > 0. This
implies that s & s’ and s’ &~ t. By the transitivity of ~, s a~ t. a

The above result can be extended to equivalence relations.

Theorem 3. Let = be a relation on the set S. Then == is an equivalence
implies that =* is an equivalence on Dist(S).

Proof. Immediate from Theorem 1

Equivalences and preorders will be of particular interests in the rest of this
chapter. We extend a relation & on the set S to the cartesian product
S x S in the usual way. That is, (s,t) ~ (s',t') whenever s = s’ and
t ~ t'. Then ~* is preserved by the product operation on probability
distributions.

Theorem 4. Let = be a preorder (or an equivalence relation) and =, p, 7’
and p’ be probabilistic distributions on S. Then wa*p and ©'~*p’ imply
that © x w'=*p x p'.

Proof. By the transitivity of ~*, we only need to establish that = ~ p
implies ™ X p=*p X p.



Following definition 1, we construct a distribution 3 over (S x.5) X (Sx.5).
First note that ma*p. Thus, there exists a distribution a on S x .S such

that a(s, S) = 7 (s), a(9,s") = o(t) and a(s,s’) =0 for s & §'.

Now let 3((s, ), (s',t')) = a(s,s") * o(t) whenever t =’ and 0 otherwise.
Then B({s,t),.5 X 5) = Zs’,t’es(a(sv s') x o(t)) = p(t) * Zs’,t’eSO‘(Sv s') =
p(t) * Y gcsal(s,s’) = p(t) x m(s). Thus 3 holds for the first condition
in definition 1. Similarly, we can establish the second condition for 3.
That is S(S x S, (s',t")) = p(s') * p(t'). The third condition is obvi-
ous. If ((s,t), (s, t")) % then s % . Thus a(s,t) = 0 and therefore
B((s,t),(s',t) = a(s,s) x o(t) = 0. ]

3 PROBABILISTIC MODELS

We consider a model of probabilistic transition systems, containing prob-
abilistic and nondeterministic choices as independent concepts.

3.1 Probabilistic Transition Systems

We assume a set Act of actions, ranged over by a and b.

Definition 2. A Probabilistic Transition System (PTS) is a tuple
(S, —, mo), where

— S is a non-empty finite set of states,
— — C S X Act x Dist(S) is a finite transition relation, and
— 7wy € Dist(S) is an initial distribution on S.

We shall use s — 7 to denote that (s,a,nw) €—s. We use s — to
denote that there is a ™ such that s =+ 7, and s—1+ to denote that there
is no m such that s — . We say that a state s is terminal (written

s~ ) if s+ for all a € Act. O

This definition occurs with minor variations in [55,57,31,38,52,51,41].
In each state, a probabilistic transition system can perform a number of
possible actions. Each action leads to a distribution over successor states.
In many cases when it is understood from the context, we will identify a
state s with the distribution that assigns probability 1 to the state s.



An initial state of a process P = (S, —,m) is a state s € S such that
mo(s) > 0. A state s is reachable in P if there is a sequence sgs;...s,
where sg is initial, s = s,, and for each 0 <1 < n there is a distribution
i1 such that s; =% 741 and 741 (s41) > 0. A distribution 7 € Dist(S)
is reachable in P if it is either the initial distribution or if s —— = for
some a and state s which is reachable in P.

We use s —3~+ s’ to denote that there is a 7 such that s — 7 and
7(s') > 0, and s— ~+ s’ to denote that there is an a such that s 3~ 5.
A finite process is a process (S, —, 7o) with a finite number of states, in
which the relation —~~ is acyclic.

A scheduler will decide which action should be taken in each state and
then makes a probabilistic choice. Thus each scheduler corresponds to a
probabilistic execution of a process. In the following sections, we shall
study how to compare processes in terms of such executions.

3.2 Variants of Probabilistic Transition Systems

The Reactive Model In [40,41,54] a simple class of probabilistic
transition systems is identified as the reactive models. It is the class of
probabilistic transition systems where all states s are deterministic in
the sense that for each action a, whenever s - 7 and s - 75, then
w1 = . Systems in the reactive models have the same structure as
Markov Decision Processes [24].

The Generative Model A definition of a generative probabilistic tran-
sition system differs from the one given above in that each transition is
an element in S X Dist(Act x 9), i.e., the probability distribution also
includes a distribution over the possible actions. If all actions in a distrib-
ution are identical, we get the above definition of a probabilistic transition
systeml.

Several researchers (e.g., [30,17] have noticed that it is not trivial to
define a symmetric parallel composition operator in the generative model.
One source of difficulty is that in a generative model, a probabilistic
transition system defines in each of its states a probability distribution

! Note that the above notion of generative model still allows some nondeterminism in
the sense that a state may have transitions to several distributions. In [54], states
are allowed at most one transition.



over a set of enabled actions. This view makes sense if the set of enabled
actions is offered by, e.g., the environment. If two probabilistic transition
systems are composed in parallel, then each of them defines a separate
probability distribution over a set of enabled actions. It is not clear how
the set of "enabled actions” is to be defined, nor how the two probability
distributions should be composed. Approaches to this problem can be
found in, e.g., [17,15].

Another interpretation of a distribution over different actions in the gen-
erative model is that the choice is under control of the process itself. This
could be the case if the actions are “output” actions, which communicate
with corresponding “input actions” in a process that does not constrain
the choice of the “outputting” process. A natural resulting model is then
a probabilistic version of /O automata, defined as Probabilistic 1/0 au-
tomata [56]. Probabilistic 1/O automata use continuous time and rates
to define transition probabilities. An model in a discrete-time framework
that captures an analogous distinction between input and could, but not
the time-dependent behavior modeled by the rates of Probabilistic 1/0-
automata, can be obtained from the model in Definition 2, as follows. For
each input action, there is an enabled transition from each state. In each
state, at most one output action may be enabled. The choice between
different output actions must have been made in the previous transitions.

4 OPERATORS OF PROBABILISTIC PROCESS
ALGEBRAS

In this section, we consider how operators can be defined in probabilistic
process algebras. We will present a general framework that allows essen-
tially any non-probabilistic process algebra to be extended to a proba-
bilistic process algebra by introduction of a probabilistic (internal) choice
operator. The operators of the given non-probabilistic process algebra
may be lifted to operators in the probabilistic process algebra in a com-
pletely uniform way, under certain assumptions. Later we will instantiate
the framework to particular process algebras.

Terms in the resulting probabilistic algebra will denote probabilistic processes.
A set of terms can be used to form a probabilistic transition systems as in
Definition 2. Some of the terms will correspond to states, and the others
will correspond to distributions over states.



Terms of the non-probabilistic process algebra are assumed to be formed
in the usual way by the constant NIL, and a number of operators, each
with a certain arity. NIL denotes a state which has no outgoing transi-
tions.

Also, the meaning of an n-ary operator op of the non-probabilistic process
algebra, is assumed to be defined by a finite set of rules in the so-called
de Simone format [23] (see also Aceto, Fokking and Verhoef, Chapter 1.3
in this issue):

al Qg
Piy — iy o Piy, — Gy (1)
op(p1, -+ pn) —t
where p1,...,p, and ¢;,,..., ¢, are all distinct process expression vari-
ables, e and ay, . .., a; are actions, {p;,, ..., p;, } is asubset of {p1,...,p,},
and ¢ is a linear term? over the process expression variables {py,...,p,}\

{p2177p2k}u{q2177q2k}

In the above rule (1), we say that the ¢th argument is initally active if i
is among 1, ..., ;. For an n-ary operator op, the ¢th argument is said to
be initially active if it is initially active in any of the defining rules for op.

The probabilistic extension of the process algebra is obtained by an exten-
sion of the syntax allowing for distributions to be expressed. We introduce
a single additional binary operator, internal probabilistic choice ©,, pa-
rameterized by a real number 0 < p < 1. The term £ ¢, F' denotes a
distribution which assigns the probability p- E(s)+ (1 — p) - F'(s) to each
state s (note that we regard F and F' as distributions and F/(s) and F(s)
are probabilities assigned by E and I’ on state s respectively). The choice
is internal in the sense that the term denotes a probability distribution
over states.

Now, terms of the extended process algebra are build using the original
operators op together with the new additional operator @,. Our guiding
principle for separating these terms into those denoting states and those
denoting distributions over states is, that all probabilistic choices should
be resolved before any non-deterministic transition is taken. Thus, terms
denoting distributions may be inductively defined as either terms of the
form £/ @, F, or terms of the form op(ty,...,t,), where for some initially
active position 7 the ¢; denotes a distribution. Formally this becomes:

Definition 3. The set of process expressions that denote states is defined
as the smallest set that satisfies:

2 In a linear term each variable occurs at most once.



— op(ty,---,t,) denotes a state if all terms t;,,...,t;, in initially active

positions denote states.

k

An arbitrary process expression op(ty,---,t,), in which i1,..., 1 are the
initially active positions, and where each t;, denotes a distribution [t;,]
over states, denotes a distribution, which assigns the probability [t;, (s, )*
<ok [t 1(s6,) to the state op(ty, ..., i, .., S5, ..., 1y), where op(ty, ...,
Siyy ey Sigy oo .y L) is obtained from op(ty,---,t,) by replacing the terms
tiyy .., ti, inanitially active positions by states s; , ..., s;,.
To understand our general framework it may be instructive to consider
the following examples:

— NIL is a process expression, which denotes a state without outgoing
transitions.
— The prefixing operator is defined by the rule

a.pi>p

Thus the term a.F has no initially active positions, and hence it de-
notes a state.
— The nondeterministic choice operator is defined by the rules

a / a !
p—p q9—4
p+qg—yp p+qg—yp

Thus, both positions are initially active. Figure 1 illustrates the be-
haviour of the term (a ®o.3b) + (¢Po.4 d). Note that this term (due to
the presence of & in active positions) denotes a distribution. In the
figure, we use dotted lines to indicate probabilistic choices from dis-
tributions, and filled lines to indicate action transitions from states.
Also, we are omitting trailing occurrences of NIL, writing « for a.NIL.

— The operator for synchronous parallel composition a’la CSP may be
defined by the following rule?:

a / a /
p—=p ¢
pllg—=p'l|p’

Clearly, both positions are initially active. Figure 2 illustrates the
behaviour of the parallel term (denoting a distribution) (a®g.3b)||(a+
b).
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Fig. 1. Behaviour of (a @o.3 b) + (¢ Po.4 d).

(@ Doz b)l[(a +b)
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Fig. 2. Behaviour of (a @o.3 b)||(a + b).

As usual, process constants P may be introduced by recursive definitions,
def

P = F, with transitions of P being inferred from its definition F.
Along similar lines, we can present a probabilistic version of SCCS, which
is similar to the calculus PCCS presented by Giacalone et al [29]. As in
SCCS, let (Act, x, 1,) be the Abelian group of atomic actions. Intuitively,
actions of the form « x 3 represent the simultaneous, atomic occurrence
of the actions a and . We will often write af instead of o x . The
action 1 is the “idle action”, and @ is the dual action of «. The action
« X @ represents a synchronized communication between complementary
actions, and o« X & = 1.

The syntax of PCCS is given by
E:=nl|X|aE|E®,F|EXxF|E\A|E[f]|recX.E

® We have chosen to illustrate a synchronous parallel operator, as we will need it later
for introducing testing preorders. However, asynchronous parallel composition as in
CCS may be extended in a similar manner.



a.P =P

PSP QL
PxQlpxq

P2 p (adA P2 p
P\A = PhA PLA Y Py

Table 1. Inference Rules for PCCS.

where A is a subset of Act such that 1 € A and f : Act — Act is a
group morphism. Note the absence of nondeterministic choice in the above
definition. The operational semantics of PCCS for action transitions is
given in Table 1.

In [29], the presentation is slightly different in appearance. In the opera-

tional semantics, transitions are of the form P M P’ meaning that “P
can perform the action a with probability p and become process P'”. In
this representation, P is a distribution over states, which assigns proba-
bility p to the set of states that can perform « and become FP’.

5 PROBABILISTIC BISIMULATION AND
SIMULATION

In this section, we will present a series of bisimulation-preorders between
probabilistic processes. These are intended to be generalizations of cor-
responding preorders on nonprobabilistic processes (see also Cleaveland
and Sokolsky, Chapter 2.2 in this issue).

5.1 Probabilistic Bisimulation

A bisimulation can be understood as an equivalence relation, where two
processes are equivalent if each process can mimick whatever the other



process can do. We will first consider probabilistic bisimulation defined
as an equivalence over states, not over distributions.

Definition 4. An equivalence relation R over a set of states S is a bisim-
ulation if sRt implies that whenever s — 7 for some action a and dis-
tribution 7, then there is a distribution p such that t = p and 7 Rp.
O

In Figure 3 is an example of two bisimilar processes.

out err out

0.8
0.2

Fig. 3. Two bisimilar processes

In the process to the left, the action in leads to a distribution over two
states. From the left state, the process can perform the action out, mean-
ing that the action ¢n has been performed normally. From the right state,
only the action err can be performed, meaning that the previous action n
was not successful. In the left process, the probability of an unsuccessful
i action is 0.2. In the right process, the intention is to model two ways,
represented by the states to the right, for the action ¢n to be unsuccessful.
Each of the states is reached with probability 0.1. In this process, both
of these states are bisimilar, since they can perform equivalent actions,
leading to equivalent states. Therefore, also the two start states (from
which the action in can be performed) are equivalent, since they both
lead to the successful equivalence class with probability 0.8 and to the
unsuccessful equivalence class with probability 0.2).

The above definition of bisimulation was introduced by Larsen and Skou
[41] for reactive systems and it is the most commonly used generalization
of bisimulation to the probabilistic setting.



For models that embody both probabilistic and nondeterministic choice,
in the way defined in this chapter, it can be argued that the above defi-
nition of probabilistic bisimulation is too restrictive. Namely, recall that
we could let nondeterministic choices be resolved by schedulers, and that
schedulers can be probabilistic. But the above definition of bisimulation
considers only deterministic choices by schedulers. Consider for example
the two processes of Figure 4.

Fig.4. Two probabilistic bisimilar processes

Note that ignoring the middle ¢n-transition of the right process, these
two processes are identical and the middle in-transition is a convex com-
bination of the other two (see definition 5). Assuming that schedulers can
be probabilistic, the extra transition can be generated as a probabilistic
choice over the two other transitions. It therefore does not add anything to
the process, meaning that the two processes ought to be equivalent. The
definition of probabilistic bisimulation can thus be weakened by including
combined transitions as follows:

Definition 5. Lett be a state of a probabilistic transition system and let
a be an action. We say that t = p is a combined transition of t if p is
a conver combination of the set I = {p;|t ==+ p;} of distributions, that
is, for each p;, there is a nonnegative real number A; such that 3", A\; =1

and p =3, cip Ai % pi- a

Definition 6. An equivalence relation R over S is a probabilistic bisim-
ulation if sRt implies that whenever s — 7 for some action a and dis-
tribution 7, then there is a distribution p such that t = p is a combined
transition with T Rp.



We use ~ to denote the largest probabilistic bisimulation i.e. the union of
all probabilistic bisimulations over S and Dist(S). o

Now we have a weaker equivalence relation than bisimulation. For ex-
ample, consider the two processes shown in Figure 4. Note that the two
processes are not bisimilar according to definition 4. But they are bisim-
ilar according to definition 6 because the middle in-transition is a com-
bined transition of the other two.

This definition was introduced by Segala and Lynch [52]. Following their
terminology, we use the term bisimulation for the more restrictive def-
inition, and the term probabilistic bisimulation for the definition which
considers also combined transitions. With the definition of probabilistic
bisimulation, we can use a combination of two or more transitions to de-
note a range of allowed probabilities for the outcome of an action, namely
those that are in the convex closure of the outcomes of the actions actu-
ally described. In this way, it is similar to the use of intervals by Jonsson
and Larsen [37].

5.2 Probabilistic Simulation

A simulation can be understood as a relation, which captures the idea that
one of the processes can mimick whatever the other process can perform.
In contrast to bisimulation, a simulation need not be symmetric, since
the mimicking capability is required only of one of the processes.

Definition 7. A preorder R over S is a simulation if sRt implies that
whenever s — w for some action a and distribution ©, then there is a
distribution p such that t = p and TR*p. O

As an example, consider again the two processes in Figure 4. The right
process simulates the left one since it has more transitions. However, the
left process does not simulate the right one . But as in the case of bisim-
ulation, we can allow the matching transition ¢ == p to be a combined
transition. We can then use simulation to let a range of possible outcomes
of an action be simulated by an even wider range of possible outcomes.
Figure 5 shows a simple example of this. According to previous definition,
the left process is not simulated by the right process. For example, its first
in-transitions is not simulated by any of the ¢n transitions of the right



process. However, the in-transition is simulated by the convex combina-
tion of the two in-transitions of the right process, resulted by multiplying
the two distributions by 3/4 and 1/4 respectively.

Fig. 5. Probabilistic simulation

It can thus be argued that a more appropriate definition of probabilistic
simulation is the following:

Definition 8. (Probabilistic Simulation) A preorder R over S is a prob-
abilistic simulation if sRt implies that whenever s — 1 for some action
a and distribution 7, then there is a distribution p such that t = p is a
combined transition with 7 R*p.

We use ~ to denote the largest simulation i.e. the union of all probabilistic
simulations over S and Dist(S). o

For the nonprobabilistic case, we know that a bisimulation is a symmetric
simulation and vice versa. This is also true in the probabilistic setting.

Theorem 5. A probabilistic simulation is symmetric iff it is a probabilis-
tic bisimulation.

Proof. The result follows from Theorem 1.

5.3 Congruence Properties

The bisimulation and simulation relations that have been introduced in
this section, can all be checked on finite-state processes by a standard



iterative procedure that repeatedly refines the universal relation until it
satisfies the appropriate definition of (bi-)simulation. At each step, the
condition for (bi-)simulation may in general involve checking for inclusion
between convex polytopes, spanned by different possible outcomes of a
nondeterministic choice. Decision procedures for checking probabilistic
(bi-)simulation can be found in e.g. [3,4].

These relations may be used to reason about probabilistic processes by
means of algebraic operators in a compositional manner.

A process expression may be generated by process constants, process vari-
ables and algebraic operators described in section 4. We define a process
context to be a process expression containing free process variables. We
use C to denote the set of process contexts. Let C' be a process context
that contains free process variables ¢ ...t,,. Let py...p, be process ex-
pressions that denote states or distributions. We write C[p1/t1 . ..pm/tm]
for the process expression C' in which all ¢; are substituted with p;. As
desired, the largest (bi-)simulation relations are all preserved by the al-
gebraic operators described in section 4.

Theorem 6. Let C' be a process context containing free process variables
...ty Letpr...py and g1 . . . q,, be process expressions that may denote
states or distributions.

— pi =~ q; for all i implies that Clpy/t; - pm/tm] = Cla1/ti -+ qm [t
— pi ~ q; for all i implies that Clpi/t; - pm/tm] ~ Clar/ti -+ Gm [t

Proof. By the transitivity of ~ and ~, the case when m > 1 can be
transformed to the case of m = 1. For example, if p[py/t1,p2/ta] ~

plar/ti, p2/ta] and plar/ta, p2/ta] ~ pla1/t1, g2/t2], we have pp1/t1, pa2/ts]
~ plg1/t1, g2/t2]. Thus, we consider only process contexts C' with a single

variable t. Let R = {(C[p/t],Clq/t]) |p ~ q}. We will show that R is a

probabilistic bisimulation.

First we observe that, whenever 7 ~ p, then C[r/t]RC[p/t]. Now C
will be of the form op(7y,...,7n, ¢, p1,...,pr) for some derived opera-
tor op, with 7y,...,7,, and possibly ¢, denoting the initially active ar-
guments. Assuming ¢ is initially active in C', C[r/t] denotes the distri-
bution, which assigns the probability 7(q) * 71(q1) * - - - * 7.(gq) to the
state op(q1, .- -y Gn, ¢, P1, - - -, Pr). Similarly, C[p/t] assigns the probability
p(q) * m1(q1) * -+ - * 7,(q,) to the same state. As # ~ p it follows that
C[r/t] and C[p/t] assign the same probabilities to equivalence classes of



R, which are sets of the form {D[p/t]|p =~ po} for some state py. Thus,
as claimed, C[r/t] R Clp/t].

Now let (C[p/t],Clq/t]) € R and assume that C'[p/t] Y4 7. We must find
a matching, combined transition for C[g/t]. The transition of C[p/t] will
be of one of the two following forms:

i) 7= C'[p/t]

it) 7 = C'[x'/t] where t is active in C' and p - 7’ for some «

In case i), the “de Simone”-format allows us to infer that C[q/t] LN

C"[q/t]. Since p ~ ¢ (both as states and singleton distributions), it follows
from our first observation that C'[p/t]RC[q/t].

In case i7), it follows that 7/ ~ p’ for some distribution p’, where ¢ -~ p/
is a combined transition (as p ~ ¢). Now, due to the “de Simone”-format,

it may be argued that also C[q/t] LN C'[p'/t] is a combined transition.
From our first observation, it follows that C'[z'/t] R C'[p'/t].

As R is symmetric, this suffices to demonstrate that R is a probabilistic
bisimulation. The case of simulation can be established by similar argu-
ment using Theorem 4. a

6 TESTING PREORDERS

In the previous section, we have defined preorders which are based on
relating states or distributions to each other. For non-probabilistic sys-
tems, there is another rich family of preorders, which are based on the
comparison between execution sequences. These preorders can be based
on traces, refusals, ready-sets, behaviors, etc. In this section, we are going
to give a partial answer to the question how these preorders generalize to
a setting with probabilistic processes. However, we are not going to define
first some analogue of e.g., traces. The reason is that such an analogue
would not lead to a compositional preorder, as shown e.g., by Segala [51].
Instead, we will use another method for arriving at a weaker composi-
tional preorder. We will use the framework of testing, as defined by de
Nicola and Hennessy [22]. The idea of this framework is that processes
are compared by their ability to pass a specified set of “tests”.

We will generalize the framework of may-testing to probabilistic processes,
and then characterize the resulting preorder. It will turn out that the re-



sulting preorder will be rather different from the nonprobabilistic trace
inclusion. In fact, it will be closer to the nonprobabilistic simulation pre-
order (in fact, it reduces to simulation in the nonprobabilistic case), for
the reason that in the framework we will define, the probabilistic choices
will induce an effect which is similar to “copying” of a process state. In
this section, we give a simplified presentation by limiting tests to be finite
processes.

6.1 Related Work

Testing-based preorders of probabilistic processes have also been studied
by Christoff [10] and by Cleaveland, Smolka, and Zwarico [15] and by
Yuen et al. [49,49,56]. These works consider a pure probabilistic model
[64], and therefore their preorders do not capture the notion of refine-
ment in the sense of being “less nondeterministic”. On the other hand,
they can be efficiently checked in the finite-state case, as demonstrated
by Christoff and Christoff [11], using the polynomial-time algorithm for
checking equivalence between probabilistic automata by Tzeng [53]. The
work which is closest to the current one is by Segala [51], who define es-
sentially the same testing preorders as in this work. However, Segala does
not develop an explicit characterization of the testing preorder.

6.2 Tests, Testing Systems and Preorders

Following Wang and Larsen [57], we define tests as finite trees with a
certain subset of the terminal states being “accepting states”.

Definition 9. A (probabilistic) test is a tuple (T', —, po, F), where ((I', —), po)
s a finite tree, and F C T is a set of success-states, each of which is ter-
minal. a

A test T is applied to a process P by putting the process P in parallel
with the test 7 and observing whether the test reaches a success state.

We define a testing system as the parallel composition of a process and a
test.

Definition 10. Let P = (S, —, mg) be a process and T = (I', —, po, F)
be a test. The composition of P and T, denoted P||T is a so-called test-
ing system, defined as the process (S, —, o) ||((T', —), po) with success
states S X F. O



Our intention is that a testing system defines a probability of reaching a
success-state. However, since from each state there may be several out-
going transitions, such a probability is not uniquely defined. We will be
interested in the maximal probabilities of success. These can be defined
inductively on the structure of the testing system.

Definition 11. Let P||T be a testing system, composed of the process
P = (S,—,mo) and the test T = (T, —, po, F). For each state s||t of
P||T we define its maximal probability of success, denoted t[s] and its
minimal probability of success, denoted t|s|, inductively by

— If s||t is terminal, then t[s]| = t|s] = 1 if t is a success-state, else
t[s] =t|s] =0.

— If s||t is not terminal, then
t[s] = maz (Z(ﬂ' X p)(s'||t") * t’[s’])
st = 7 x p \o'|t/

and

t|s] = min (Z(ﬂ' X p)(s'||t") * t’Ls’J)

st = 7 x p \o'|t/

For a distribution 7 on S and a distribution p on T, we define

plrl =D (7 x p)(st)  t[s]

s|¢
and
plr] = (7 x p)(slt) * t[s]
s|¢
We define T[P] = mo[po]. and T|P| = mo|po]. a

We note that, using the definition of p[7], we can make a simpler defini-
tion of ¢[s] as
t[s] = max p[~]
st % 7 xp

We now define preorders of testing, which abstract from the set of possible
expected outcomes when testing a process P by a test T: may testing con-
siders only maximal possible expected outcome of P||7 and must testing
considers only minimal possible outcome.



Definition 12. Given two processes P and Q, we define

1. P Emay Q vaT : T{’P-‘ <
2. PLlpust QifVT : T|P] <T1|Q]

The intention, for example, behind the definition of C,,,, is that intu-
itively, P C,,qy Q should means that P refines Q with respect to “safety
properties”. We can regard the success-states of a test as states defining
when the tester has observed some “bad” or “unacceptable” behavior. A
process then refines another one if it has a smaller potential for “bad be-
havior” with respect to any test. In the definition of P C,,,, Q, this means
that the maximal probability of observing bad behavior of P should not
exceed the maximal probability of observing bad behavior of Q.

For example, consider process P and () in Figure 6. The probability that
P may pass a test is always less or equal to the probability (2 may pass
the same test; therefore P C,,,, Q.

Process P Process Q
O O

03 07 02 .08
Vg A Vg A
sO t sO t
j b j a b

Fig. 6. P Conay Q.

A useful property of C,,,, is that it is compositional in the sense that they
are precongruences with respect to our parallel composition operator.

Proposition 1. For arbitrary processes P, @), R,

1. PCpay @ implies PR C,4y QIR
2. PCust @ implies P||R C,ust Q||R



6.3 Characterization of Testing Preorders

In the following, we show that testing preorders defined in Definition 12
can be characterized by variants of probabilistic simulation. When re-
stricted to nonprobabilistic processes, probabilistic may-testing preorder
coincides with ordinary simulation; whereas probabilistic must-testing
preorder with refusal simulation [36]. We shall only consider may-testing.
It may seem a little surprising that a preorder defined in terms of testing,
which is a “linear-time” activity, is characterized by a simulation relation,
which is a “branching-time” relation. The explanation is that the proba-
bilistic choices of tests have the effect of “copying” the process under test
into a number of copies, and that the testing of each copy is performed
independently [1].

Recall that a probabilistic process is essentially a distribution over states.
Such a distribution gives rise to a number of possibilities for choosing
the next action and next distribution. We will capture these possibilities
in a notion of step corresponding to a transition in the non-probabilistic
setting.

Definition 13. Let (S, —) be a probabilistic transition system. A step is
a weighting on Actx Dist(S). We say that a step ¢ is a step of distribution
m on S if there is a function h : (Act x Dist(S)) — S such that

— s 2 whenever s is in the support of h({a, ")), and
= (Ch((ayy=s 9@, 7)) < w(s) for each s € S.

We say that a step ¢ is an a-step if a’ = a for all (a’,7") in the support
of ¢. m

Intuitively, a step represents a combination of next transitions that can
be made by a process. A step from a distribution 7 is a weighting over
possible outgoing transitions, which is consistent with 7 in the sense that
it can be obtained by choosing for each state in the support of 7 a sub-
distribution over outgoing transitions. Note that for a given distribution,
there may be infinitely many steps possible. A step is normal if the func-
tion h in Definition 13 can be chosen such that for each nonterminal s
in the support of 7, there is a (a,7’) € ¢ such that h({a,7')) = s and

7 (h({a,))) = ¢({a, 7).
That is, a normal step is obtained by choosing a unique transition from
each state, satisfying the above condition. Since each state in a distri-



bution in general has several outgoing transitions, there are many (but
finitely many) normal steps from each distribution.

We define post on steps by
post(¢) = > ¢((a, 7)) + 7’
(a,7')

i.e., post(¢) is the weighting obtained by projecting a step onto the “next”
distribution in its transitions. The notion of post weighting is analogous
to the notions of next state in the non-probabilistic setting. We can now
define the notion of step-simulation between weightings.

Definition 14 (Probabilistic Step-Simulation). Let (S, —) and (I', —
) be two probabilistic transition systems. A relation < C (Weight(S) x
Weight(T)) between weightings on S and weightings on T is a probabilis-

tic step-simulation if # <1 p tmplies that

~ #(S) < p(T), and
— for each normal step ¢ from © there is a step ¥ from p and a function
h = support(¢) +— Weight(Act x Dist(R)) from pairs {a,=’) in the
support of ¢ to steps from p such that
e L maps each (a,7’) to an a-step from 1,
o h(¢) <, i.e., the image of ¢ under h is “covered” by 1, and
o for each pair {(a, ') in the support of ¢ we have

< post(h({a,7')))

For two probabilistic processes P = (S, —, 7o) and Q = (T, —, pg), we
say that P is simulated by Q if there is a probabilistic step-simulation <
between (S, —) and (T, —) such that mo < po. ]

Intuitively, a weighting 7 is simulated by a weighting p if the total “mass”
of 7 is at most that of p (first condition), and if each step ¢ from = can
be simulated by a step 1 from p in the sense that each “next transition”
(a,7') in the support of ¢ can be covered by an a-step from p, such that
the weighted sum (weighted wrp. to ¢) of all the weightings h({(a,#")) is
covered by 4, and such that 7’ is simulated by the next-state distribu-
tion obtained from h({a,7’)). In Figure 7, we illustrate why process P is
simulated by process (). Note that P C,,,, ) as shown in Figure 6.

The following characterization theorem was stated and proven by Jonsson
and Yiin [39].
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Fig.7. A proof for P < Q.

Theorem 7. 7 C,,,, p if and only if there is a probabilistic step-simulation
< such that © < p. a

7 PROBABILISTIC LOGICS

7.1 Characterizing Preorders

For non-probabilistic transition systems, several behavioural preorders
have been characterized by simple modal logics. That is, the particular
preorder has been shown to be completely captured by inclusion between
the sets of logical properties satisfied by states (see also Bradfield and
Stirling, Chapter 1.4 in this issue).

Bisimilarity between non-probabilistic transition systems is characterized
by the so-called Hennessy-Milner Logic [33]. In [40-42], this characteri-
zation has been extended to probabilistic bisimulation for reactive prob-
abilistic systems by identification of a suitable probabilistic extension
of Hennessy-Milner Logic. In [9,25,26], a further generalization to non-
discrete probabilistic systems (Labelled Markov Processes) is given, and
in particular it is shown that probabilistic bisimulation can be charac-
terized by a very weak, negation-free modal logic. In addition, and in



contrast to [40—-42], the characterization offered by [9,25,26] requires no
finite branching assumptions.

Here, we adapt the probabilistic modal logic, PML, of [40-42] to the
probabilistic model studied in this paper. As for states, the formulas of
the logic come in two flavours: non-deterministic formulas (ranged over
by F, I}, ...) and probabilistic formulas (ranged over by ¢, ¢;,...), given
by the following abstract syntax (where p € [0, 1]):

F o= tt| AAF | =F | (o)
g o= e e | mp | Ol

The interpretation is relative to a probabilistic transition system, (S, —
, 7o) More precisely, the semantics of a formula F' (respectively ¢) is a set
of non-deterministic states [F7] (respectively of probabilistic states [¢]),
defined inductively as follows:

i) [t =S i) [ A B] = [R]N 5]
iwi) [-F] = S\[F] w) [a)ye] = {s|3a,7 € [¢].5s — 7}
i) [t] = Dist(S) W) [1 A p2] = [pi] N [2]

at’) [-¢] = Dist(S\[¢] @) [OpF] = {7 [=([F]) = p}

For F' a non-deterministic property, we write [F]¢c to denote the set of
non-deterministic states satisfying F’, when we use the combined transi-
tion relation in iv). For a state s we denote by Sat(s) and Satc(s) the set
of properties satisfied by s with respect to [] and [J¢. Bisimulation and
probabilistic bisimulation as presented in Section 5 may now be charac-
terized as follows:

Theorem 8. Let (S, —, 7o) be an image-finite* probabilistic transition
system. Then two states s,t are bisimilar respectively probabilistic bisim-
ilar if and only if Sat(s) = Sat(t) respectively Satc(s) = Satc(t).

Let NSat(s) and NSatc(s) denote the set of negation-free properties
satisfied by the state s with respect to [] and []¢.. Then simulation and
probabilistic simulation as presented in Section 5 are characterized as
follows:

* A probabilistic transition system (S,—,mo) is said to be image-finite if for all

reachable non-deterministic states s, the set {= |3a, s.s — =} is finite, and for all
reachable probabilistic states 7, the set {s|w(s) > 0} is finite.



Theorem 9. Let (S, —, 7o) be an image-finite probabilistic transition
system. Then two states s,t are in the simulation preorder respectively
probabilistic simulation preorder if and only if NSat(s) C NSat(t) re-
spectively NSatc(s) C NSato(t).

As an example reconsider Figure 4. Here the two processes are probabilis-
tic bisimilar but not bisimilar. The lack of bisimilarity may, according to
Theorem &, be ’explained’ by a distinguishing property, e.g.:

(in) (Oo.r(out) tt A O slerrytt)

which is satisfied by the right process but not by the left processes (with
respect to []). The above property is clearly negation-free, thus according
to Theorem 9, this also demonstrates that the right process is not even
simulated by the left one.

Reconsidering Figure 5, the property
(in) o 9(out) tt

is satisfied by the right process but not by the left processes (with respect
to [Jc). Thus the right process is not probabilistically simulated by the
left one.

7.2 Model Checking Probabilistic Temporal Logics

Several probabilistic extensions of temporal logics such as CTL and CTL*
[13,14] have been suggested for the formal specification of probabilistic
properties of systems. In addition, associated model checking algorithms
have in many cases been offered.

The first probabilistic extension of branching-time logics for expressing
properties of probabilistic system was proposed by Hansson and Jonsson
[31,32]. Formulas of the resulting logic PCTL are obtained by adding sub-
scripts and superscripts to CTL formulas, as in <>§(1).56c,9, which expresses
that the property ¢ will hold within 15 transition-steps with probability
at least 0.6. The presented model-checking algorithms rely on results on
Markov chains and dynamic programming. Later, the logic PCTL was
extended to systems including non-determinism by Hansson in [30] and
Segala and Lynch in [52]. Christoff and Christoff [12] adapt a restricted



form of the modal mu-calculus. A new probabilistic semantics for the
mu-calculus has been developed by Narasimha et al. [45].

Aziz et al [2] introduces pCTL* a probabilistic extension of CTL*. Here
the model checking algorithm is based on early results due to Cour-
coubetis and Yannakakis [16]. The logic was later extended to systems
with non-determinism by Bianco and de Alfaro [8,21]. Symbolic model-
checking algorithms of these logics was presented by Baier et al. in [6].

For more detailed information on the interesting topic of model checking

probabilistic systems, we refer the reader to the excellent works by Alfaro
[20] and Baier [4].

8 CONCLUSION and TRENDS

In this chapter, we have dealt with a number of classical process alge-
braic issues in a rather general setting allowing both discrete probabilistic
choice as well as nondeterminism. In particular, we have

— shown how non-probabilistic process algebraic operators, in a uniform
manner, may be extended to this probabilistic setting;

— offered a range of probabilistic extensions of well-known behavioural
preorders such as simulation, bisimulation and testing;

— established congruence properties for these preorders;

— provided alternative characterizations of the probabilistic preorders,
either in terms of “trace”- or “tree”-based denotational models, or in
terms of probabilistic modal logics.

Current research considers further extensions of the process algebraic
framework to settings with continuous-time [35,34]. One goal is to com-
bine the contributions of process-algebra, viz. compositionality and the
use of logics to specify and analyze properties, with the work on efficient
algorithms for analyzing performance of stochastic processes [5, 18]. Also,
the basic notions of probabilistic bisimulation and probabilistic modal
logics have been recast and analysed in settings with continuous-space
probability distributions [9,25,19,27,28]. From this work it may be in-
ferred that the negation-free version of the logic in section 7 suffices in or-
der to characterize probabilistic bisimulation. In this chapter we have not
considered the difficult problem of extending probabilistic bisimulation to
allow for abstraction from internal computation (resulting in probablistic



versions of weak bisimulation). For the most promissing suggestions in
this direction we refer the reader to [7].
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