
Ştefan Ciob̂acă, Véronique Cortier

Protocol composition for arbitrary primitives

Research Report LSV-10-09

April, 2010

0

Protocol composition for arbitrary primitives
Ştefan Ciobâcă

LSV, ENS Cachan & CNRS
Email: stefan.ciobaca@gmail.com

Véronique Cortier
LORIA, CNRS & INRIA

Email: cortier@loria.fr

Abstract—We study the composition of security protocols when
protocols share secrets such as keys.

We show (in a Dolev-Yao model) that if two protocols use
disjoint cryptographic primitives, their composition is secure if
the individual protocols are secure, even if they share data. Our
result holds for any cryptographic primitives that can be modeled
using equational theories, such as encryption, signature,MAC,
exclusive-or, and Diffie-Hellman.

Our main result transforms any attack trace of the combined
protocol into an attack trace of one of the individual protocols.
This allows various ways of combining protocols such as sequen-
tially or in parallel, possibly with inner replications.

As an application, we show that a protocol using pre-
established keys may use any (secure) key-exchange protocol
without jeopardizing its security, provided that they do not use
the same primitives. This allows us, for example, to securely
compose a Diffie-Hellman key exchange protocol with any other
protocol using the exchanged key, provided that the second
protocol does not use the Diffie-Hellman primitives.

We also explore tagging, which is a way of forcing the dis-
jointness of two protocols which share cryptographic primitives
such as encryption. We explain why composing protocols which
use tagged cryptographic primitives like encryption and hash
functions is secure by reducing this problem to the previousone.

I. I NTRODUCTION

Security protocols aim at ensuring security properties (for
example confidentiality or authentication) of communications
over public networks. Their design is error-prone due to the
fact that they are used in arbitrary environments, with possibly
malicious behaviors. It is known for example that a small
variation in the design of a protocol may open the way to
an attack (see e.g. [1]).

Formal methods have demonstrated their usefulness when
designing and analyzing security protocols. They indeed pro-
vide rigorous frameworks and techniques that have led to the
discovery of new flaws [1], [2], [3] and to careful security anal-
ysis (see e.g. [4], [5]). While insecurity is undecidable ingen-
eral [6], several decision procedures (sometimes incomplete)
have been proposed for automatically analyzing the security of
protocols. For example, checking secrecy and authentication-
like properties has been shown to be NP-complete [7] for a
bounded number of sessions. Blanchet has developed a proce-
dure based on clause resolution [8] for analyzing protocolsfor
an unbounded number of sessions. Several tools [9], [2], [10]
have been developed and successfully applied to checking the
security of protocols.

However, most of existing techniques are dedicated to the
analysis of a single protocol, without taking into account other
protocols which may be used at the same time.

This is unrealistic for several reasons. Firstly, a number
of protocols are verified under the assumption that agents
share some pre-distributed keys (e.g. public keys or symmetric
keys between agents and servers). But these keys might have
been established by some other sub-protocols. There is no
guarantee that a protocol remains secure if a specific key-
exchange protocol is used to establish the keys, even if both
protocols have been proven secure in isolation.

Secondly, even apparently isolated protocols might interact
in unexpected ways. For example, a user might choose the
same password for two different network services, or a server
might use the same key for different protocols. Even if the
network services (or the different protocols) were proven
secure in isolation, there is no security guarantee which carries
over when they share keys or passwords.

Furthermore, even assuming that we can produce a global
model of all protocols which are used in a certain setting, it
might be unrealistic to formally verify such a collection of
protocols in its entirety due to computational constraints.

Therefore more modular reasoning about security is desir-
able, where we can infer security guarantees for the composi-
tion of protocols from the security guarantees of the individual
protocols.

The goal of our paper is to study the composition of
protocols. We usecompositionto refer to arbitrary ways of
interleaving protocols, in particular in parallel or sequentially.
For example, given a protocolP1 that has been proven
secure assuming pre-established keys or assuming some secure
channel, we wish to study under which conditionsP1 remains
secure if it usesP2 as a sub-protocol to establish some of
keys.

Related work.There are a number of papers studying
the secure composition of security protocols in a symbolic,
Dolev-Yao model [11], [12], [13], [14], [15], [16] and in the
computational model [17], [18]. We explain how our result
compares to the existing work in Section VI.

Our contributions.We propose a generic composition result
for arbitrary cryptographic primitives which can be modeled
by equational theories. More precisely, we show that an
attack trace against the composition of two protocols can be

1

transformed into an attack trace on one of the two protocols.
For the clarity of the exposition we concentrate on secrecy
properties although we believe that our result carries overto
other trace properties such as authentication.

Our main theorem is generic in the sense that the composi-
tion can be any interleaving of actions from the two protocols:
for example, the composition can be parallel or sequential,
possibly with nested replication. In particular, we capture the
case where a protocol uses a sub-protocol to e.g. establish
keys.

The composition theorem holds for any cryptographic prim-
itives which can be modeled by equational theories, provided
that the signatures of the two composed protocols are disjoint.
This allows us to handle many cryptographic primitives such
as symmetric and asymmetric encryption, hash functions,
messages authentication codes, signatures, blind signatures,
re-encryption, zero-knowledge proofs and others [19], [20].
We can also allow some common primitives between the two
protocols, such as encryption and hash, provided that they are
tagged.

As a consequence, we can for example easily compose a
protocol using Diffie-Hellman exponentiation for establishing
symmetric keys, together with any protocol making use of
pre-established keys.

Applications.Our main composition result can be used in
different contexts. As an application, we study the case of key-
exchange protocols. We first consider the case where a key-
exchange protocol is used to establish shared long-term keys.
Assume thatP = νn · (P1 | P2) is a protocol that establishes
a key between two participants.P1 intuitively denotes the
first participant,P2 denotes the second participants,| denotes
the fact thatP1 and P2 run in parallel,· denote sequential
composition andνn means thatP1 andP2 share some secret
n. The role ofP is to establish a shared key betweenP1 and
P2. Assume that the key will be stored in the variabley1 for
P1 and in the variabley2 for P2.

An important question is the following one: which proper-
ties should be satisfied byP in order to be safely used within
any other protocol? As expected, we retrieve the fact that the
established key (stored iny1 for P1 and iny2 for P2) should
remain secret to an attacker, but we also point out two other
important properties which are not always checked in security
proofs of the literature.

We show that wheneverP satisfies our identified properties
and whenever a protocolQ is secure assuming pre-established
keys (e.g. ifQ preserves the secrecy of some datas):

Q = νk · ((y1 := k) · Q1 | (y2 := k) · Q2) |= Secret(s)

then Q remains secure when runningP as subprotocol for
establishing the secret key (iny1 for the first participant and
in y2 for the second participant):

νn · (P1 · Q1 | P2 · Q2) |= Secret(s).

We also consider the case where a key-exchange protocol
is used within each session for establishing a secure channel.
We show that if a protocolQ′ is secure assuming a secure
channel:

Q′ =!(νk · ((y1 := k) · Q1 | (y2 := k) · Q2)) |= Secret(s)

thenQ′ remains secure when runningP as subprotocol:

!(νn · (P1 · Q1 | P2 · Q2)) |= Secret(s).

We describe our setting in Section II. We state our
generic composition theorem in Section III, providing counter-
examples when protocols are not carefully composed. In
Section IV, we illustrate our main theorem with the case of
key-exchange protocols. We explain how to compose protocols
with common tagged primitives in Section V. We discuss
related work in Section VI.

II. M ODEL

We first introduce a process algebra for security proper-
ties. The process algebra closest to ours is the appliedπ-
calculus [21]. However, the appliedπ-calculus is not adequate
in our case since it makes formulating our main theorem
unnecessarily cumbersome. The main differences between our
calculus and the appliedπ-calculus are the following ones:

• we add asynchronization phase, so that we can write
P ·Q for arbitrary processesP andQ. This is important
to express the fact that a protocol first runsP before
continuing withQ,

• we consider only one public channel,
• only positive tests are allowed (no else branches).

A. Terms and deduction

The process algebra is parametrized by a signatureF which
associates to each function symbolf its arity ar(f). We
assume that the signature contains at least a (regular) constant
function symbol and that it contains a countably infinite setN
of special constant symbols, which we callnamesand which
are used to represent data freshly generated during protocol
executions. We also assume a countably infinite set of variables
Xall = X ∪ Xw, disjoint from F and such thatX and Xw

are disjoint countably infinite sets. Intuitively, the variables of
X will be used to describe the variables instantiated by the
protocols while the variables ofXw will be used to store the
messages sent on the network.

The set of terms over a signatureF and over a set of
variablesX is denoted byT (F ,X) and is defined as follows:

t, t1, . . . ::= terms
| x variablex ∈ X
| f(t1, . . . , tk) application of symbol

f ∈ F , ar(f) = k

A term is ground if it contains no variable. As usual, we
denote by{x1 7→ t1, . . . , xk 7→ tk} the substitutionσ that
replaces the variablexi with the termti. The domainof σ,
denoted bydom(σ) is the set{x1, . . . , xk}. The substitutionσ
is ground if eachti is ground. We letE = {li = ri}i∈{1,...,n}

be an equational theory, whereli, ri ∈ T (F \ N ,X) (1 ≤
i ≤ n) are not allowed to contain names. We say that two
terms s and t are equal in the equational theoryE and we
write s =E t if s = t is a consequence ofE in the first order
theory of equality. We denote by[t]=E

the equivalence class

2

of a termt moduloE. Note that such an equational theory is
stable by replacement of names by arbitrary terms.

We write u ∈E S if there existst ∈ S such thatu =E t.
Given a finite setS, its cardinality is denoted by|S|.

Processes are executed within an environment formed of a
frameϕ that contains messages sent over the network (as in
the appliedπ-calculus) and abinding substitutionσ whose
domain is a subset of the free variables of the process.

In what follows, we always assume aframeϕ to be a ground
substitution whose domain is included inXw. An equational
theory typically describes the properties of the primitives and
defines what an attacker candeducefrom a set of messages,
represented by a frame.

Definition 1 (deduction):Let ϕ be a frame. We say thatt ∈
T (F) is deducible fromϕ with reciper ∈ T (F \N , dom(ϕ))
in the equational theoryE and we writeϕ ⊢r

E
t if rϕ =E t. If

E is clear from context, we write only⊢r instead of⊢r
E
. If we

are not interested in the exact value of the reciper, we also
write ⊢E or ⊢ (if the equational theory is clear from context).

Note that we assume that during the deduction phase the
intruder does not have access to the infinite set of names.
This is not a restriction in our case, since we will only allow
positive tests in processes; so the intruder can simply use any
term in place of the names.

Example 1:Let FDH = {f, g, mac, nI} ∪N be a signature
wheref andg are of arity 1 whilemac is of arity 2 andnI

is of arity 0 (nI represents a public data). Together with the
equational theory

EDH = {f(g(y), x) = f(g(x), y)}

the function symbolsf and g model the Diffie-Hellman
primitives (f(x, y) = xy mod p, g(y) = αy mod p for a
generatorα) while macdenotes a keyed hash function.

Let ϕ1 = {w1 7→ g(a), w2 7→ g(b), w3 7→ c} where
a, b, c are names. Thenϕ1 ⊢

f(w1,w3)
EDH

f(g(c), a) but ϕ1 6⊢EDH

f(g(a), b).

Example 2:A classical example is the modeling of sym-
metric encryption. LetFenc = {dec, enc, mI} ∪ N be a
signature wheredec and enc are of arity 2 and represent
respectively the decryption and encryption operator.mI is of
arity 0 and represents some public data. As usual, we may
write {m}k instead ofenc(m, k).

The standard property of symmetric encryp-
tion/decryption is represented by the equational
theory Eenc = {dec(enc(x, y), y) = x}. Let
ϕ2 = {w1 7→ {k1}k2

, w2 7→ k2, w3 7→ {k3}k1
}, where

k1, k2, k3 are names. Thenϕ2 ⊢
dec(w3,dec(w1,w2))
Eenc

k3.

B. Combination of equational theories

To prove our composition result for security protocols, we
make use of some notions and results in term rewriting for
disjoint equational theories. We recall here these notionsand
results.

Let Fa andFb be two disjoint signatures and letEa andEb

be two nontrivial equational theories overFa and respectively

Fb. Let E = Ea ∪ Eb. If c ∈ {a, b}, by c̄ we will denote the
only element of the singleton set{a, b} \ {c}.

Definition 2 (pure term, pure context):We say that a term
t ∈ T (Fa ∪ Fb) is a pure (Fc-)term if t ∈ T (Fc) for some
c ∈ {a, b}. Similarly, a contextC ∈ T (Fa ∪ Fb,X) a is pure
(Fc-)context if C ∈ T (Fc,X) for somec ∈ {a, b}.

Definition 3 (alien subterms):Let c ∈ {a, b} be such that
root(C) ∈ Fc. If t = C[s1, . . . , sn] whereC is a pureFc-
context androot(sj) ∈ Fc̄, we write t = C[[s1, . . . , sn]] and
we say thats1, . . . , sn are the alien subterms oft. Note that
C ands1, . . . , sn are uniquely determined and thatC cannot
the empty context (at least the root symbol oft is in C).

We define a function ‘collapse ’ which associates to any
term t a collapsedterm s such thats =E t. The collapsed
version of a term serves as a kind of “normal form” of the
term.

Definition 4 (collapse):If t = C[[t1, . . . tn]] and
C[collapse(t1), . . . , collapse(tn)] = D[[s1, . . . , sk]], then
collapse(t) is defined recursively as follows:

1) if
D[n[s1]=

E

, . . . , n[sk]=
E

] =E n[sj]=
E

for somej, then

collapse(t) = sj

If there are several valuesj which satisfy the condition,
we choose the minimal suchj. The choice ofj does not
influence our results, but it makes the functioncollapse

determined, which eases the proofs.
2) otherwise, if there exists no suchj, we define

collapse(t) = C[collapse(t1), . . . , collapse(tn)]

If t = collapse(t), then we say thatt is collapsed.

Proposition 1: All alien subterms of a collapsed term are
collapsed.

Proof: The proof can be found in Appendix A.

Lemma 1:Let t1 = C[[s1, . . . , sk]] and t2 =
D[[s′1, . . . , s

′
l]] be two collapsed terms. Letk ∈ {a, b} be

such thatroot(C) ∈ Fk. If root(D) 6∈ Fk then t1 6=Ea∪Eb
t2.

If root(D) ∈ Fk, then:

t1 =E t2 iff t1{sj 7→ n[sj]=
E

} =E t2{sj 7→ n[sj]=
E

}

wheren[sj]≡ are names not appearing int1 or t2.
Proof:

The proof follows from Theorem 9.4.2, Chapter 9 (Combi-
nation Problems), Page 216 from [22].

Lemma 2: If s1, . . . , sk, s′1, . . . , s
′
l are collapsed terms with

the root symbols fromFc andC, D are both pureFc̄-contexts,
we have that

C[s1, . . . , sk] =E D[s′1, . . . , s
′
l]

iff

C[n[s1]=
E

, . . . , n[sk]=
E

] =E D[n[s′

1
]=

E

, . . . , n[s′

l
]=

E

]

3

Proof: By case analysis on the definition ofcollapse and
application of Lemma 1.

Lemma 3: If t1, t2 are collapsed terms such thatt1 =E t2,
we have thatroot(t1) ∈ Fa iff root(t2) ∈ Fa.

Proof:
Immediate by Lemma 1.

C. Process algebra

Definition 5: Processes are defined inductively as follows:

P, Q, R . . . ::= processes
| 0

| νx for x ∈ X
| in(x) for x ∈ X
| (x := t) for x ∈ X , x 6∈ vars(t),

t ∈ T (F \ N ,X)
| out(t) for t ∈ T (F \ N ,X)
| [s = t] for s, t ∈ T (F \ N ,X)
| (P · Q)
| (P | Q)
| !P

The process0 does nothing. The processνx binds x to
a fresh name. The processin(x) reads a termt from the
public channel, and bindsx to t. The assignment process
(x := t) instantiatesx with t. The processout(t) outputs
the term t on the public channel. The test process[s = t]
blocks if s 6=E t and does nothing otherwise. The sequential
composition processP · Q executesP followed by Q. The
parallel composition process(P | Q) runsP andQ in parallel.
The replication process!P will act as an infinite number
of Ps in parallel. We may writeν{x1, . . . , xk} instead of
νx1. · · · .νxk.

When we write processes, we assume that! binds strongest,
followed by | and then by·. We assume that the variables
introduced byνx, in(x) and (x := t) are bound throughout
sequential composition· as far to the right as possible. We
identify processes up toα-renaming of bound variables and
up to the following structural equivalence rules:

P ≡ P · 0 ≡ 0 · P
!0 ≡ 0

P | 0 ≡ P
P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)
!P ≡ P |!P

The operational semantics is given by the transition relations
→ and

t
→ (wheret a term) described in Figure 1.

In the above semantics,§ is a meta-variable denoting either

the empty string, in which case
§
→=→, or a reciper, in which

case
§
→=

r
→.

The relation
t1·...·tn

→∗ is defined as the reflexive and transitive
closure of→ ∪

t
→.

Example 3:Continuing Example 1,PDH = νxk · (P1 | P2)
models for the Diffie-Hellman protocol where

NEW
P = νx · R x 6∈ dom(σ) n fresh

(P, ϕ, σ) → (R, ϕ, σ ∪ {x 7→ n})

INPUT
P = in(x) · R ϕ ⊢r t x 6∈ dom(σ)

(P, ϕ, σ)
r
→ (R, ϕ, σ ∪ {x 7→ t})

ASSGN
P = (x := t) · R x 6∈ dom(σ) vars(t) ⊆ dom(σ)

(P, ϕ, σ) → (R, ϕ, σ ∪ {x 7→ tσ})

OUTPUT
P = out(t) · R vars(t) ⊆ dom(σ)

(P, ϕ, σ) → (R, ϕ ∪ {w|dom(ϕ)|+1 7→ tσ}, σ)

TEST
P = [s = t] · R sσ =E tσ vars(s, t) ⊆ dom(σ)

(P, ϕ, σ) → (R, ϕ, σ)

PARALLEL
P = (Q0 | Q1) · R (Q0, ϕ, σ)

§
→ (Q′

0, ϕ
′, σ′)

(P, ϕ, σ)
§
→ ((Q′

0 | Q1) · R, ϕ′, σ′)

Fig. 1. Operational semantics.

P 1
DH

= νx · out(g(x)) · out(mac(g(x), xk)) · in(z)·
in(z′) · [z′ = mac(z, xk)] · y1 := f(x, z)

P 2
DH

= νy · out(g(y)) · out(mac(g(y), xk)) · in(z)·
in(z′) · [z′ = mac(z, xk)] · y2 := f(y, z)

The processP 1
DH

models the first participant in an authen-
ticated Diffie-Hellman key exchange whileP 2

DH
models the

second participant. The free variablexk should be previously
shared by the two participants to ensure authentication.

Examples of process executions can be found in the next
section.

We conclude this section by defining secrecy and freshness.
Intuitively, a variable is secret if in any protocol execution, its
instantiation remains not deducible.

Definition 6 (secrecy):We say that a processP preserves
the secrecyof x ∈ vars(P) in the equational theoryE, and we
denote it byP |=E Secret(x), if whenever

(P, ∅, ∅)
t1·...·tn

→∗ (Q, ϕ, σ)

we have thatϕ 6⊢E xσ.

Definition 7 (freshness):We say that a processP guar-
antees the freshnessof x ∈ vars(P) w.r.t. {y1, . . . , yk} ⊆
vars(P) in the equational theoryE if whenever

(P, ∅, ∅)
t1·...·tn

→∗ (Q, ϕ, σ)

we have thatxσ 6=E yiσ for all 1 ≤ i ≤ k.
In the above definitions we assume that the variables in

the processes have been convenientlyα-renamed before ap-
plication of the definition. If the above definitions concern
variables appearing under replications, we assume that the
conditions hold for any of the variables denoted byx (and

4

resp.y1, . . . , yk). This can be achieved formally by coloring
all bound variables with different colors; whenever a variable
is α-renamed it preserves its color. We would then say that
a certain color c is secretwhen all variables colored with
c remain secret. As this technicality is not essential in our
approach, we prefer to use the less formal version.

III. C OMPOSING PROCESSES

A. Difficulties

Of course, two protocolsP, Q cannot in general be (se-
curely) composed in arbitrary ways. We illustrate several cases
where composing two secure protocols yields an attack. For
readability, in this section we use the notation{s}t for the
term enc(s, t).

Revealing shared keys.
If a protocol P is establishing a (secret) keyk, then

a protocol Q using the keyk should not reveal it. This
would clearly compromise the security ofP but it could also
compromise the security ofQ.

Assume for example that a protocolP1 (playing the role of
P above) generates two fresh (secret) datax andy and reveals
the encryption ofx undery:

P1 = νx · νy · out({x}y)

Note thatP1 may computex and y in a more complicated
way, but we consider just the rather trivial case wherex and
y are instantiated by fresh nonces for the sake of clarity. Then
P1 preserves the secrecy of bothx andy. Assume now that a
processQ1 (playing the role ofQ above) revealsy and uses
x for encrypting a secretz:

Q1 = νz · out(y) · out({z}x) · 0

Then νx′ · νy′ · (x := x′) · (y := y′) · Q1 preserves the
secrecy ofz, while the compositionP1 ·Q1 of both processes
does not preserve the secrecy ofz. Indeed

(P1 · Q1, ∅, ∅) →
∗ (0, ϕ, σ = {x 7→ k1, y 7→ k2, z 7→ k3})

where ϕ = {w1 7→ {k1}k2
, w2 7→ k2, w3 7→ {k3}k1

}. We
haveϕ ⊢

dec(w3,dec(w1,w2))
Eenc

zσ and thusP1 ·Q1 6|=Eenc
Secret(z).

Note that this attack works even ifP1 andQ1 actually use
different encryption symbols (thus even if they use disjoint
signatures).

Sharing primitives.
The interaction of two protocols using common primitives

may yield an attack, even if each of the protocols is secure
when executed in isolation. Indeed, consider again the process
P1 described above and letQ2 be a process that usesx for
encrypting a secretz and outputsm for anym received under
the encryption ofy.

Q2 = νz · out({z}x) · in(z′) · out(dec(z′, y)) · 0

Thenνx′ · νy′ · (x := x′) · (y := y′) ·Q2 preserves the secrecy
of z, while the compositionP1 · Q2 of both processes does
not preserve the secrecy ofz. Indeed

(P1 · Q2, ∅, ∅) →
∗w1→ (0, ϕ′, σ)

where σ has been defined above andϕ′ = {w1 7→

{k1}k2
, w2 7→ {k3}k1

, w3 7→ k1}. We haveϕ′ ⊢
dec(w2,w3)
Eenc

zσ,
thusP1 · Q2 6|=Eenc

Secret(z).
So, in what follows, we will assume that the composed

protocols use disjoint primitives. In Section V, we extend
our result to the case where the protocols may share some
primitives such as encryption and hash, provided they are
tagged.

Key freshness.
It is important that shared variables (that are assumed to be

fresh) are indeed instantiated by fresh values.
Assume for example that a protocolR is composed of three

phases:
• it first generates a fresh keyx: let R1 = νx;
• it then runs a sub-protocolP to establish some secrety;
• it outputs a fresh valuez if x = y:

let R2 = νz · [x = y] · out(z) · 0.
ThenR is a secure protocol ify is a fresh key:

R1 · νk · (y := k) · R2 |= Secret(z)

while it is not secure for all sub-protocolsP establishing a
secret keyy. Indeed, letP ′ = (y := x). Thenνk ·(x := k)·P ′

preserves the secrecy of the shared keyy but, becausey is not
fresh,

R1 · P
′ · R2 6|= Secret(z)

In what follows, we will see that the counter-examples men-
tioned here are actually the only problematic cases. So we will
require in our composition theorem that sub-protocols do not
introduce equalities between shared variables.

B. Composition theorem

In order to state our composition theorem in a general way,
we simply need to show that any execution trace on two
combined processes can be transformed into an execution trace
on one of the two processes. Then a trace of the composition
leading to an attack can be transformed into a trace of one of
the individual protocols leading to an attack.

Since an execution trace involves only a finite number
of replications and determines the scheduling in parallel
composition, we simply need to state our main result on
linear processes, that is processes that contain neither parallel
composition nor replication. We say that a process isatomicif
it is linear and if it does not contain the sequencing operator ·.
As illustrated in Section IV, our theorem can of course be
applied to compose processes with arbitrary replications and
parallel compositions.

Let P = P1 · . . . · Pn be a linear process overFa with free
variables{x1, . . . , xp} wherePi is an atomic process (1 ≤
i ≤ n). Let Q = Q1 · . . . · Qm be a linear process overFb

with free variables{y1, . . . , yq} whereQi is an atomic process
(1 ≤ i ≤ n). Intuitively, the free variables ofQ are established
by P and conversely, the free variables ofP are established
by Q.

Let R = R1 · . . . · Rn+m be a ground interleav-
ing of P1, . . . , Pn, Q1, . . . , Qm, that is fv(R) = ∅ and
{R1, . . . , Rn+m} = {P1, . . . , Pn, Q1, . . . , Qm} (as multiset

5

equality). We considerR′ a copy of R where the shared
variables of P and Q are duplicated. More precisely, let
R′ = R′

1 · . . . · R
′
n+m be such that

1) R′
i = Pj{x 7→ xa} if Ri is Pj for somej and wherex

ranges over all variables inPj

2) R′
i = Qj{x 7→ xb} if Ri is Qj for somej and wherex

ranges over all variables inQj

We consider an execution of the composition ofP andQ.

(R, ∅, ∅)
r1·...·rk

→∗ (S0, ϕ0, σ0)
§
→ (S, ϕ, σ) (1)

where§ is a reciperk+1 if the last action was an input and
then empty string otherwise.

Assume w.l.o.g. thatx1, . . . , xp′ are the variables from
{x1, . . . , xp} which appear indom(σ0) and thaty1, . . . , yq′ are
the variables from{y1, . . . , yp} which appear indom(σ0). This
means thatx1, . . . , xp′ , y1, . . . , yq′ are the shared variables
which were instantiated before the last action of the execution.

Let {z[xiσ0]=E
} and{z[yiσ0]=E

} be fresh variables and let

R′′ = ν{z[xiσ0]=E
}1≤i≤p′ · ν{z[yiσ0]=E

}1≤i≤q′ ·

xa
1 := z[x1σ0]=E

· . . . · xa
p′ := z[xp′σ0]=E

·

yb
1 := z[y1σ0]=E

· . . . · yb
q′ := z[yq′σ0]=E

·

R′

R′′ corresponds to an interleaving ofP and Q where P
and Q do not share any variable anymore (since they are
duplicated) and where the previously shared variables are
instantiated by fresh distinct names. Note that whenever the
execution ofR instantiates two shared variables by the same
value (e.g.xiσ = xjσ) then the (duplicated version of)
xi and xj are instantiated inR′′ by the same fresh name.
This corresponds e.g. to the case where the same key is
distributed among several participants (thus is assigned to
distinct variables).

We are now ready to state our main theorem which says that
we can mimic onR′′ the execution trace ofR (see Equation 1)
unlessP or Q do not preserve the secrecy or the freshness of
the shared variables.

Theorem 1:Assume ϕ0 6⊢ t for any t ∈
{x1σ0, . . . , xp′σ0, y1σ0, . . . , yq′σ0} and thatxiσ0 6=E yjσ0

for all xi, yj ∈ dom(σ0). Then there existS′, ϕ′, σ′ such that

(R′′, ∅, ∅)
r1·...·rk·§

→∗ (S′, ϕ′, σ′) (2)

and
1) if ϕ ⊢ t for somet ∈ {xiσ, yjσ | xi, yj ∈ dom(σ)}, then

ϕ′ ⊢ s for somes ∈ {xa
i σ′, xb

iσ
′, ya

j σ′, yb
jσ

′ | xi, yj ∈
dom(σ)}

2) if there existxi, yj ∈ dom(σ) such thatxiσ =E yjσ
thenxc

iσ
′ =E yc

jσ
′ for somec ∈ {a, b}

3) otherwise, ifϕ ⊢ xσ for some variablex ∈ vars(P) ∩
dom(σ) (resp.vars(Q)∩dom(σ)), thenϕ′ ⊢ xaσ′ (resp.
ϕ′ ⊢ xbσ′).

Intuitively, R′′ is a composition ofP andQ where the two
process do not share variables anymore. Theorem 1 says that
we can mimic onR′′ the execution trace ofR unlessR reveals
a shared variable, in which caseR′′ reveals some (duplicated)

shared variable as well. It will be used in the next section
to conclude that one of the two processesP or Q (executed
alone) reveals one of its (shared) variables thus is not secure.
Indeed, assume w.l.o.g. thatR′′ reveals the variablexa

i . Since
R′′ corresponds toP executed in parallel (and independently)
of Q, the processQ can be entirely simulated by the adversary
thusP revealsxi, that isP 6|=E Secret(xi).

The second condition is important to be able to completely
separate the processesP and Q in R′′: as the variablexa

i

(1 ≤ i ≤ p′) and yb
i (1 ≤ i ≤ q′) are instantiated in

the processR′′ by fresh names such thatxa
i and yb

j receive
the same name ifxiσ =E yjσ, it is important that such an
equality does not happen. Otherwise, the two processes still
share data and therefore we cannot conclude about either of
them individually.

We now prove Theorem 1:
Proof:

Consider w.l.o.g. thatσ is in collapsed form, i.e.σ(x) =
collapse(σ(x)) for all x ∈ dom(σ).

Let n[xiσ]=
E

, n[yjσ]=
E

(1 ≤ i ≤ p, 1 ≤ j ≤ q) be fresh
names. LetVc (c ∈ {a, b}) be functions on terms defined as
follows:

1) Vc(t) = n[t]=
E

, if t =E s for some s ∈
{x1σ0, . . . , xp′σ0, y1σ0, . . . , yq′σ0} and root(t) 6∈ Fc

2) f(Vd(t1), . . . , Vd(tk)) if f ∈ Fd, otherwise

The purpose ofVa (resp.Vb) is to replace the keys created by
the processP (resp.Q) with fresh names such that equalities
between terms are preserved. We have thatVc (c ∈ {a, b})
preserve equalities between terms:

Claim 1: If t1, t2 are collapsed terms such thatt1 =E t2,
thenVc(t1) =E Vc(t2) (c ∈ {a, b}).

Proof: The proof can be found in Appendix B.
We will now use the functionsVc (c ∈ {a, b} to construct

the run in Equation 2 from the run in Equation 1.
Let σ′ be defined as follows:

1) σ′(xa) = Va(σ(x))
2) σ′(xb) = Vb(σ(x))
3) σ′(z[xiσ0]=

E

) = n[xiσ0]=
E

(1 ≤ i ≤ p′)
4) σ′(z[yiσ0]=

E

) = n[yiσ0]=
E

(1 ≤ i ≤ q′)

Assumeϕ = {w1 7→ t1σ, . . . , wl 7→ tlσ} (wherewi 7→ tiσ
comes from an atomic processRj = out(ti)). If Rj comes
from P we let t′i = ti{x 7→ xa} and if Rj comes fromQ we
let t′i = ti{x 7→ xb} (wherex ranges over all variables inti).
We defineϕ′ = {w1 7→ t′1σ

′, . . . , wl 7→ t′lσ
′}.

We proceed in two phases. InPhase 1, we show that
Equation 2 holds. InPhase 2, we show that the Items 1, 2
and 3 from the conclusion are true.

Phase 1. We prove that the transition in Equation 2 holds
for the σ′ and ϕ′ that we have defined and for someS′ we
do not care about. We prove this by induction on the number
of transitions in Equation 2. For each transition we do a case-
by-case analysis:

1) (tests work) if the transition is a test[M = N] in R′′

coming fromPor Q. We assume w.l.o.g. that it comes
from P (otherwise conclude by symmetry). ThenM and
N are purea-terms. We have to prove thatM ′σ′ =E

N ′σ′, whereM ′ = M{x 7→ xa}, N ′ = N{x 7→ xa}

6

and wherex ranges over variables inM and respectively
N .
By definition of M ′, N ′, σ′ and Va we have that
Va(Mσ) = M ′σ′ andVa(Nσ) = N ′σ′.
Let Mσ = C[s1, . . . , su] and Nσ = D[t1, . . . , tv]
whereC, D area-contexts ands1, . . . , su, t1, . . . , tv are
b-terms (C, D, si, tj are uniquely determined –C and
D might be).
BecauseC and D are pureFa-contexts, they contain
all of M and respectivelyN and therefore it follows
that si and tj must be subterms ofσ. Thereforesi and
tj are collapsed by Proposition 1. AsC[s1, . . . , su] =
Mσ =E Nσ = D[t1, . . . , tv], we can apply Lemma 2
to conclude that

C[n[s1]=
E

, . . . , n[su]=
E

] =E D[n[t1]=
E

, . . . , n[tv]=
E

] (3)

But M ′σ′ = Va(Mσ) = C[Va(s1), . . . , Va(su)] and
N ′σ′ = Vb(Nσ) = D[Va(t1), . . . , Va(tv)] and, by
Claim 1, si =E sj (resp. ti =E tj , resp. si =E tj)
implies Va(si) =E Va(sj) (resp. Va(ti) =E Va(tj),
resp. Va(si) =E Va(tj)). Therefore, by applying the
substitutionτ = {n[t]=

E

7→ Va(t)}, wheret ranges over
{s1, . . . , su, t1, . . . , tv}, to Equation 3, we obtain

C[Va(s1), . . . , Va(su)] =E D[Va(t1), . . . , Va(tv)]

which is exactlyM ′σ′ =E N ′σ′.
2) (inputs work) if the transition is thei-th input in(x) in

R′′ (coming fromP (resp.Q)) we prove thatxaσ′ =E

riϕ
′ (resp.xbσ′ =E riϕ

′), whereri is thei-th recipe on

the
r1·...·rk

→∗ transition in Equation 2.
Assume w.l.o.g. that thei-th input inR′′ comes fromP
(otherwise conclude by symmetry). We know thatxσ =E

riϕ and we have to prove thatxaσ′ =E riϕ
′.

Definition 8: We say that a collapsed termt is good if
one of the following conditions holds inductively:

a) t is a subterm ofσ
b) t is deducible fromϕ and t = E[[t1, . . . , tk]] for

some pure contextE and good termst1, . . . , tk
Let c ∈ {a, b}. Let r be a recipe overϕ such that for
all strict (i.e. not itself) subtermsr′ of r we have that
r′ϕ 6∈E {x1, . . . , xp′ , y1, . . . , yq′}σ0. Assume thatrϕ 6∈E

{x1, . . . , xp′ , y1, . . . , yq′}σ0 or that root(rϕ) ∈ Fc. We
show by structural induction on (the pure layers of)r
that

Claim 2: We have that

Vc(rϕ) =E Vc(collapse(rϕ))

and thatcollapse(rϕ) is a good term.
Proof: The proof can be found in Appendix B.

We are now ready to show that “inputs work”, namely
that xσ =E riϕ implies

xaσ′ =E riϕ
′ (4)

As the input we are handling is one of the transitions
in Equation 1, it follows thatri is a recipe overϕ0

(because there is no transition afterϕ). Therefore, by

the hypothesis,riϕ = riϕ0 cannot be a shared secret in
(and neither can the subrecipes ofri instantiated byϕ)
in {x1, . . . , xp′ , y1, . . . , yq′}σ0.
By the definition ofσ′ andϕ′, we have that

xaσ′ = Va(xσ) (5)

and that
riϕ

′ = Va(riϕ) = Vb(riϕ) (6)

In Equation 6, it does not matter if we have ana or a
b as the subscript ofV since riϕ cannot be a shared
secret in{x1, . . . , xp′ , y1, . . . , yq′}σ0.
From our hypothesis

xσ =E riϕ

and asriϕ =E collapse(riϕ) we have that

Va(xσ) =E Va(collapse(riϕ))

by Claim 1. But combining this last equality with

Va(collapse(riϕ)) =E Va(riϕ)

(which is immediate by Claim 2), we obtain

Va(xσ) =E Va(riϕ)

We combine this with Equations 5 and 6 to immediately
derive Equation 4, which concludes the proof of this
item.

3) (news work) if the transition is someνx in R′′, we have
that σ′(x) is a fresh name.
For processesνx in R′′ but not inR, we have thatxσ′ =
n is a fresh name by the choice ofn .
For processesνxa in R′ coming fromP (for processes
νxb coming fromQ the proof is analogous) we distin-
guish two cases:

a) eitherxa is a shared variable from{y1, . . . , yq′},
in which casexaσ is a name fromFa. Therefore
xaσ′ = xσ by definition of σ′. We know that
xaσ′ = xσ is fresh with respect to the namesn
(by choice ofn) and is fresh with respect with
the other names by Equation 1.

b) orxa is not a shared variable, in which casexaσ′ =
xσ is fresh by the same reasoning.

4) (outputs work) if the transition is theith out(t) in R′′,
we have thatwi+1ϕ

′ = t′σ′. This is immediate by
definition of ϕ′.

5) (old assignments work) if the transition is an assignment
x := t in R′′ coming fromP (resp.Q) we have that
xaσ′ =E (t{y 7→ ya})σ′ (resp. xbσ′ =E (t{y 7→
yb})σ′), wherey ranges over all variables int,
Let M = x, N = t, M ′ = xa and N ′ = t′ (resp.
M ′ = xb andN ′ = xb). Then this proof can be seen as
an instance of the proof for Item 1 (tests work).

6) (new assignments work) if the transition is an assign-
ment x := t in R” that did not come fromP or
Q: We show that forj ∈ {1, . . . , p′} (resp. j ∈
{1, . . . , p′}) (i.e. for all assignmentsxa

j := z[xiσ0]=
E

7

(resp.yb
j := z[yiσ0]=

E

) in R′′ but not in R′), we have
that xa

j σ′ = n[xjσ0]=
E

(resp.yb
jσ

′ = n[yjσ0]=
E

).
It is sufficient to prove thatroot(xjσ0) ∈ Fb (resp.
root(yjσ0) ∈ Fa), since then, by the definition ofVc,
we havexa

j σ′ = n[xjσ0]=
E

(resp.yb
jσ

′ = n[yjσ0]=
E

). We
prove something stronger by induction on the transitions
in Equation 1.

Let (R, ϕ1, σ1)
§1
→ (R2, ϕ2, σ2)

§2
→ . . .

§n
→ (Rn, ϕn, σn),

whereσ1 = ∅, ϕ1 = ∅, Rn = S, ϕ = ϕn, σ = σn and
§i is either some reciperj or the empty string, be the
transitions in Equation 1.
Definition 9: We say that a collapsed termt is i-good
if one of the following conditions holds inductively:

a) there existsx ∈ {x1, . . . , xp′ , y1, . . . , yq′} ∩
dom(σi) such thatt = xσ

b) t is deducible fromϕi and t = C[[t1, . . . , tk]] for
somei-good termst1, . . . , tk.

Claim 3: For i ∈ {0, . . . , n}, we have that
collapse(wjϕi) (for all wj ∈ dom(ϕi)) is an i-good
term andxσi = C[s1, . . . , sk] (for all x ∈ dom(σi))
for a pure (possibly empty)Fc-contextC and i − 1-
good termss1, . . . , sk (with root(sj) ∈ Fc̄), where
c = a if x ∈ vars(P) \ {x1, . . . , xp′} and c = b if
x ∈ vars(Q) \ {y1, . . . , yq′}.

Proof: The proof can be found in Appendix B.
Now it is easy to prove thatroot(xjσ) ∈ Fb (1 ≤ j ≤
p′). Indeed, assume w.l.o.g. thatx1, . . . , xp′ appear inσ
in this order.
We prove by well founded induction on1 ≤ i ≤ p′

that root(xiσ) ∈ Fb. Suppose by contradiction that
root(xiσ) ∈ Fa. Then, by Claim 3, we have thatxiσ
is a j-good term. Asxiσ is not deducible fromϕ0 (by
hypothesis), it follows that we are in the first case of
the definition of j-good and therefore there exists a
shared variablexj (1 ≤ j < i) or yj (1 ≤ j ≤ q′)
appearing beforexi such thatxiσ = xjσ or xiσ = yjσ.
But the second case is impossible by the hypothesis
of the theorem (freshness ofx w.r.t. y). Therefore
xiσ = xjσ with j < i and therefore we obtained a
contradiction (by applying the induction hypothesis, we
have thatroot(xjσ) ∈ Fb).

Phase 2. We have shown in Phase 1 that Equation 2 holds
for our definition ofσ′ andϕ′. We show now that each item
in the conclusion of the theorem holds.

1) if ϕ ⊢ t for some t ∈ {x1σ, . . . , xpσ, y1σ, . . . , yqσ},
thenϕ′ ⊢ s for some

s ∈ {xa
1σ′, . . . , xa

pσ′, xb
1σ

′, . . . , xb
pσ

′,

ya
1σ′, . . . , ya

q σ′, yb
1σ

′, . . . , yb
qσ

′}

Supposer is a minimal recipe such thatrϕ is a shared
secret. Then none of the subrecipes ofr, instantiated by
ϕ, can be shared secrets in{x1, . . . , xp′ , y1, . . . , yq′}σ0.
Assume w.l.o.g. that the shared secret is anxjσ =E rϕ.
Let c be such thatroot(rϕ) ∈ Fc.
We know thatxc

jσ
′ = Vc(xjσ) by definition. We also

know by Claim 1 thatVc(xjσ) =E Vc(collapse(rϕ))

(becausecollapse(rϕ) =E rϕ =E xjσ). Therefore
xc

jσ
′ =E Vc(collapse(rϕ)). But by Claim 2, we have

thatVc(rϕ) =E Vc(collapse(rϕ)) and thereforexc
jσ

′ =E

Vc(rϕ). But Vc(rϕ) is, by the definition ofϕ′, equal to
rϕ′. Therefore we can choses = xc

jσ
′ =E rϕ′ which is

deducible and we conclude this item.
2) if there exist i, j such thatxi ∈ dom(σ) and yj ∈

dom(σ) andxiσ =E yjσ thenxc
iσ

′ =E yc
jσ

′

By definition we havexc
iσ

′ = Vc(xiσ) and yc
jσ

′ =
Vc(yjσ). We immediately conclude by Claim 1.

3) otherwise, ifϕ ⊢ xσ for some variablex ∈ vars(P)
thenϕ′ ⊢ xaσ′ (the case withQ is symmetric)
Let r be a recipe forxσ. As no shared secret is deducible
(otherwise we would be in the case of Item 1) we can
apply Claim 2 to obtain that

Vc(rϕ) =E Vc(collapse(rϕ)).

By definition xaσ′ = Va(xσ). But Va(xσ) =E

Va(collapse(rϕ)) =E Va(rϕ) = rϕ′. Therefore we
obtainxaσ′ =E rϕ′, which meansxaσ′ is deducible.

C. Some further useful lemmas

Theorem 1 is our key result for composing processes. We
list here some other useful (and rather straightforward) results
that we will use to show how to securely compose processes.

Theorem 1 is stated forlinear processes. Given an arbitrary
processP , we say thatQ1 · . . . ·Qn is a linearizationof P if

P
Q1

⇒ P1
Q2

⇒ . . .
Qn
⇒ Pn where the transitions

§
⇒ are defined in

Figure 2. Intuitively, a linearization ofP is a symbolic partial
trace ofP .

We denote byL(P) the set of linearizations ofP . It
intuitively consists of the set of all possible interleaving for
the executions ofP . We will use this set for reasoning about
protocols containing parallel composition and replications.

NEW
P = νx · R

P
νx
⇒ R

INPUT
P = in(x) · R

P
in(x)
⇒ R

ASSGN
P = (x := t) · R

P
x:=t
⇒ R

TEST
P = [s = t] · R

P
[s=t]
⇒ R

OUTPUT
P = out(t) · R

P
out(t)
⇒ R

PARALLEL
P = (Q0 | Q1) · R Q0

§
⇒ Q′

0

P
§
⇒ Q′

0 | Q1

Fig. 2. Linearization.

A processP preserves a secret if and only if all its
linearizations preserve the secret.

8

Lemma 4:Let P be a process. Then for any equational
theory E, P |=E Secret(x) iff for all Q ∈ L(P) we have
that Q |=E Secret(x).

Proof:
By induction on the number of transitions and case analysis.

One can also notice that if a protocol reveals a secret then
it a fortiori reveals it when projecting two names on a single
one.

Lemma 5:For any equational theoryE, if νx1 ·νx2 ·P 6|=E

Secret(x) thenνx1 · x2 := x1 · P 6|=E Secret(x).
Proof:

By induction on the number of transitions in the trace
leading to the revelation ofx.

We also need to show that, when mounting an attack on
a processP on the signatureFa, the adversary is not more
powerful when using the combined theoryEa ∪ Eb. This is
captured by the following lemma.

Lemma 6: If P is a linear process overFa and

(P, ∅, ∅)
§1
→E (P1, ϕ1, σ1)

§2
→E . . .

§n
→E (Pn, ϕn, σn))

then

(P, ∅, ∅)
§′
1→Ea

(P1, ϕ
′
1, σ

′
1)

§′
2→Ea

. . .
§′n→Ea

(Pn, ϕ′
n, σ′

n))

for someϕ′
n, σ′

n and§′ such thatϕn ⊢E xσn impliesϕ′
n ⊢Ea

xσn and xσn =E yσn implies xσ′
n =Ea

yσ′
n for all x, y ∈

dom(σn).

Note that this lemma relies on the assumption we made
that Eb is not trivial (it does not equate all terms). Otherwise
Ea ∪ Eb would be trivial and therefore all terms would be
deducible. Even though the intuition behind this lemma is
straightforward, the proof is rather technical (presentedin
Appendix B).

From the above lemma, we immediately obtain:
Corollary 1: If P is a process overFa and P |=Ea

Secret(x), thenP |=E Secret(x).

IV. A PPLICATIONS

We now show how to apply our composition theorem in
several contexts.

A. Key-exchange protocol

It is often the case that a security protocol is verified
assuming that some keys are already shared between the
principals, abstracting away from the process by which these
keys have been established. We can use our result to show that
if a key exchange protocol was used to establish a shared key
and if the two protocols use disjoint cryptographic primitives,
their composition is secure provided that neither the key
exchange protocol nor the main protocol reveal the established
keys.

To state our result, we first need the following definition:

Definition 10: We say thatP bindsx if P = P1 ·P2 ·. . .·Pn

andPj ∈ {in(x), x := t, νx} for some1 ≤ j ≤ n and some
term t (note thatP1, . . . , Pn are not necessarily atomic).

Theorem 2:Let P = νk1 · . . . · νkn · (P1 | P2) be a process
overFa and letQ = νk · (xk := k · Q1 | yk := k · Q2) be a
process overFb such that:

• P1 bindsxk andP2 bindsyk

• fv(P) = ∅, fv(Q) = ∅ andvars(P)∩vars(Q) = {xk, yk}
• P |=Ea

Secret(xk) andP |=Ea
Secret(yk)

• Q |=Eb
Secret(xk) andQ |=Eb

Secret(yk).

If Q |=Eb
Secret(xs) thenW = νk1 · . . . · νkn · (P1 · Q1 |

P2 · Q2) |=E Secret(xs).

Intuitively, the protocolP corresponds to two rolesP1 and
P2 that establish a keyk stored respectively inxk for P1 and
in yk for P2. Then each of the two rolesQ1 and Q2 of Q
uses respectively its version of the key. Theorem 2 ensures
that the protocolP can be safely abstracted by the generation
of a single fresh key, distributed among the participants.

This result could easily be extended to an arbitrary number
of roles. Note thatQ1 andQ2 may contain replications thus
the keyk may be used in several distinct sessions.

Proof:
If c ∈ {a, b} and if P is a process, we denote byP c the

process in which any occurrence of a variablex ∈ vars(P)
has been replaced by the variablexa.

We do a proof by contradiction. We assume thatW 6|=E

Secret(xs). Then, by Lemma 4, we have that there exists a
linearizationR of W such thatR 6|=E Secret(xs).

R is then a ground interleaving of a linearizationP0 ∈ L(P)
and a linearizationQ0 ∈ L(Q1 | Q2). We denote byR′ the
same ground interleaving ofP a

0 andQb
0.

As R 6|=E Secret(xs), there is a trace

(R, ∅, ∅)
§1
→ (R1, ϕ1, σ1)

§2
→ . . .

§m
→ (Rm, ϕm, σm)

such thatϕm ⊢ xsσm.
Let 1 ≤ l ≤ m be the first index such thatϕl ⊢ xkσl or

ϕl ⊢ ykσl or ϕl ⊢ xsσl.
We can then apply Theorem 1 to obtain that the process

R′′ = ν{za, zb} · (x
b
k := za) · (yb

k := zb) · R
′

revealsxa
k, ya

k , xb
k, yb

k or xb
s in the equational theoryE. (We

do not know ifza andzb are the same variable). In either case,
by Lemma 5, we have that

R′′′ = νkb · (xb
k := kb) · (yb

k := kb) · R′

revealsxa
k, ya

k , xb
k, yb

k or xb
s.

But R′′′ is an interleaving of some linearization ofP a and
Qb. ThereforeR′′′ is a linearization ofP a | Qb.

ThereforeP a | Qb revealsxa
k, ya

k , xb
k, yb

k or xb
s. Assume

P a | Qb revealsxa
k or ya

k . SinceP a andQb share no data,Qb

can be simulated by the adversary and thusP a 6|=E Secret(z)
for some z ∈ {xa

k, ya
k}. If P a | Qb reveals xb

k, yb
k or

xb
s, we similarly deduce thatQb 6|=E Secret(z) for some

z ∈ {xb
k, yb

k, xb
s}. By Corollary 1, we obtain thatP 6|=Ea

Secret(z) for somez ∈ {xk, yk} or that Q 6|=Eb
Secret(z)

9

for somez ∈ {xk, yk, xs}. In both cases, this contradicts the
hypotheses. We thus deduce thatW |=E Secret(xs).

B. Secure channels

Another composition scenario is when a protocol is proven
secure assuming some secure channels, that is, assuming that
some secret key is established on the fly. We show that
the secure channel can be implemented by any sub-protocol
provided that neither the main protocol nor the sub-protocol
reveal the key.

Theorem 3:Let P = νk1 · . . . · νkn·!(P1 | P2) be a process
overFa and letQ =!(νk · (xk := k ·Q1 | yk := k ·Q2)) be a
process overFb such that:

1) P1 bindsxk andP2 bindsyk

2) fv(P) = fv(Q) = ∅
3) P |=Ea

Secret(xk) andP |=Ea
Secret(yk)

4) Q |=Eb
Secret(xk) and Q |=Eb

Secret(yk) and Q |=Eb

Secret(xs)

ThenR = νk1 · . . . ·νkn·!(P1 ·Q1 | P2 ·Q2) |=E Secret(xs).

Compared to Theorem 2, the two rolesQ1 andQ2 now use
a different keyk in each session.

Proof:
We prove the result by contradiction along the same lines as

the proof of Theorem 2. We assume thatW 6|=E Secret(xs).
Then, by Lemma 4, we have that there exists a linearization
R of W such thatR 6|=E Secret(xs).

R is then a ground interleaving of a linearizationP0 ∈ L(P)
and a linearizationQ0 ∈ L(!(Q1 | Q2)). We denote byR′ the
same ground interleaving ofP a

0 andQb
0.

As R 6|=E Secret(xs), there is a trace

(R, ∅, ∅)
§1
→ (R1, ϕ1, σ1)

§2
→ . . .

§m
→ (Rm, ϕm, σm)

such thatϕm ⊢ xsσm.
Let 1 ≤ l ≤ m be the first index such thatϕl ⊢ xkσl or

ϕl ⊢ ykσl or ϕl ⊢ xsσl.
We can then apply Theorem 1 to obtain that the process

R′′ = νza, zb · (x
b
k := za) · (y

b
k := zb) · R

′

revealsxa
k, ya

k , xb
k, yb

k or xb
s in the equational theoryE. (We

do not know ifza andzb are the same variable). In either case,
by Lemma 5, we have that

R′′′ = νkb · (xb
k := kb) · (yb

k := kb) · R′

revealsxa
k, ya

k , xb
k, yb

k or xb
s.

But R′′′ is an interleaving of some linearization ofP a and
Qb. ThereforeR′′′ is a linearization ofP a | Qb.

ThereforeP a | Qb revealsxa
k, ya

k , xb
k, yb

k or xb
s. Assume

P a | Qb revealsxa
k or ya

k. SinceP a andQb share no data,Qb

can be simulated by the adversary and thusP a 6|=E Secret(z)
for some z ∈ {xa

k, ya
k}. If P a | Qb reveals xb

k, yb
k or

xb
s, we similarly deduce thatQb 6|=E Secret(z) for some

z ∈ {xb
k, yb

k, xb
s}. By Corollary 1, we obtain thatP 6|=Ea

Secret(z) for somez ∈ {xk, yk} or that Q 6|=Eb
Secret(z)

for somez ∈ {xk, yk, xs}. In both cases, this contradicts the
hypotheses. We thus deduce thatW |=E Secret(xs).

Example 4:Consider the processPDH defined in Exam-
ple 3, over the signatureFDH. Consider any other protocol

Q = νyk · (y1 := yk · Q1 | y2 := yk · Q2)

that models a protocol in which a participantQ1 sends a secret
xs to the second participant using a shared keyyk. Assume
that Q is defined over the signatureFenc and thatQ |=Eenc

Secret(xs). Then the sequential composition ofPDH and Q,
wherePDH is used to establish the shared key used inQ is
defined by

W = νxk · (P 1
DH · Q1 | P 2

DH · Q2)

Applying Theorem 2,W |=EDH∪Eenc
Secret(xs), that is W

does not leakxs in the theoryEDH ∪ Eenc.

V. TAGGING

Tagging is a syntactic transformation of a protocol in
order, for example, to make it more resistant against attacks.
Many ways to tag protocols have been proposed in different
contexts, e.g. for composing protocols [11], [13] as discussed
in introduction, to facilitate their analysis [23], [24] orto
prevent type-flow attacks [25]. Typically, tagging a security
protocol consists in appending a tag (e.g. a number, a nonce
or a protocol identifier) to each plaintext before encrypting
it and removing the tag after decryption. Tagging a protocol
does not introduce additional attacks in the protocol, while
preserving its commucation goals.

In the previous sections, we have shown how to compose
protocols which do not share cryptographic primitives. In this
section, we show that protocols which do share common cryp-
tographic primitives, such as encryption and hash functions,
can also be securely composed in the same manner, as long
as the two protocols are tagged differently.

Our proof technique relies on our previous theorems, in
that we show that an attack against the composition of two
differently tagged protocols can be transformed into an attack
where the protocols use different encryption and hash func-
tions. Therefore, tagging essentially enforces the disjointness
of the two protocols.

Even though we prove this only for symmetric encryption
and hash functions, our technique can be extended in a
straigtforward manner to other usual cryptographic primitives
such as asymmetric encryption and digital signature. Other
cryptographic primitives can pose more problems (for example
it is not obvious if/how theeXclusive ORcan be tagged). It
is an interesting open problem to give a generic definition of
tagging and characterize which cryptographic primitives can
be tagged.

We consider protocols over the signatureFenc,h =
{enc, dec, h} whereencanddecmodel respectively encryption
and decryption and are of arity 2 andh models a hash function
and is of arity 1. We also consider the signaturesFa

enc,h =

{enca, deca, ha} and Fb
enc,h = {encb, decb, hb}. We consider

the associated equational theoryEenc defined in Example 2
and the equational theoriesEa

enc
= {deca(enca(x, y), y) = x}

10

and Eb
enc

= {decb(encb(x, y), y) = x}. The signaturesFa
enc,h

and Fb
enc,h, together with the associated equational theories

Ea
enc

andEb
enc

, can be considered to intuitively model different
implementations of the encryption/decryption/hash functions.

In order to define tagging, we first consider the signature
renaming transformationc (c ∈ {a, b}) which assigns to
a protocol P over Fenc,h a protocol P c (c ∈ {a, b}) in
the signatureFc

enc,h such that the two protocols are identical
modulo bijective renaming of functions symbols (enc, decand
h are transformed intoencc, decc and respectivelyhc and
this transformation is extended homomorphically to the entire
protocol).

Example 5: If P = νy · in(x) · out(dec(x, y)), thenP a =
ν(y) · in(x) · out(deca(x, y)).

For c ∈ {a, b} we consider atagging function symbol tagc
and anuntagging function symbol untagc contained in the
signatureFc = {tagc, untagc} (where both function symbols
have arity 1). The role of thetagc function is to tag its
argument with the tagc. Typically, this means appending
c to the argument but the precise implementation of the
tagging function does not need to be specified. The role of the
untagc function is to remove the tag. To model this interaction
betweentagc and untagc we consider the equational theories
Ec = {untagc(tagc(x)) = x} (for c ∈ {a, b}).

If A ∈ {in(x),out(t), νx, x := t, s = t} is an atomic
action overFc

enc,h (with c ∈ {a, b}), we let [|A|] be a linear
process overFenc,h ∪ Fc denoting thec-tagged version ofA,
defined as follows:

[|in(x)|] = in(x)
[|out(t)|] = testsc(H(t)) · out(H(t))
[|νx|] = νx
[|x := t|] = testsc(H(t)) · x := H(t)
[|s = t|] = testsc(H(s)) · testsc(H(t)) · x := H(t)

whereH(t) tags the termt with c as defined below:

H(encc(t1, t2)) = enc(tagc(H(t1)),H(t2))
H(decc(t1, t2)) = untagc(dec(H(t1),H(t2)))
H(hc(t1)) = h(tagc(H(t1)))
H(u) = u if u is a name or a variable

and where testsc(t) is a sequence of tests which ensure
that every decryption and every untagging performed by the
protocol is succesful:

testsc(enc(t1, t2)) = testsc(t1) · testsc(t2)
testsc(h(t1)) = testsc(t1)
testsc(tagc(t1)) = testsc(t1)
testsc(dec(t1, t2)) = [enc(dec(t1, t2), t2) = t1]·

testsc(t1) · testsc(t2)
testsc(untagc(t1)) = [tagc(untagc(t1)) = t1] · testsc(t1)
testsc(u) = 0 if u is a name or a variable

The transformation[| |] is extended homomorphically to
composed processes.

Example 6:Continuing Example 5, we have that

H(deca(x, y)) = untaga(dec(x, y)))

and that

testsa(untaga(dec(x, y))) =
[taga(untaga(dec(x, y))) = dec(x, y)]·
[enc(dec(x, y), y) = x].

Finally, we have that

[|P a|] = νy · in(x) · [taga(untaga(dec(x, y))) = dec(x, y)]·
[enc(dec(x, y), y) = x] · out(untaga(dec(x, y))).

Note that before performing the decryption, the process
[|P a|] verifies that the received term is a valid encryption and
that the underlying plain-text has been correctly tagged.

Our next lemma shows why tagging two protocols is es-
sentially the same as forcing them to use disjoint equational
theories. It allows us to reduce the security problem for differ-
ently tagged processes to the security problem for processes
which use disjoint equational theories. It states that if there is
an attack on a composition of two differently tagged protocols
[|P a|] and [|Qb|], there is an attack on the composition of
the same protocols before tagging (P a and Qb), where the
encryption and hash functions come from disjoint equational
theories.

Lemma 7:Let P and Q be linear processes overFenc,h.
Let W be an arbitrary interleaving ofP a andQb and letR =
[|W |]. If R revealsx thenW revealsx.

Proof:
The technique is to transform a trace leading to an attack

on R into a trace leading to an attack onW . The proof can
be found in Appendix C.

Furthermore, we have that if a protocol is secure then its
c-tagged version is secure.

Lemma 8: If P is a protocol overFenc,h, then P |=Eenc

Secret(x) implies [|P c|] |=Eenc∪Ec
Secret(x).

The proof of this lemma can be found in Appendix C.

We can now state a generic theorem, in the spirit of
Theorem 1, but for tagged protocols.

Let P = P1 · . . . · Pn be a linear process overFenc,h with
free variables{x1, . . . , xp} wherePi is an atomic process (1 ≤
i ≤ n). Let Q = Q1 · . . . ·Qm be a linear process overFenc,h

with free variables{y1, . . . , yq} whereQi is an atomic process
(1 ≤ i ≤ n).

Let R = R1 · . . . · Rn+m be a ground interleaving of
[|P a

1 |], . . . , [|P
a
n |], [|Q

b
1|], . . . , [|Q

b
m|]. We considerR′ a un-

tagged copy ofR where the shared variables ofP and Q
are duplicated as in Theorem 1 such thatP and Q access
disjoint variables. More precisely, letR′ = R′

1 · . . . ·R
′
n+m be

such that:

1) R′
i = Pj{x 7→ xa} if Ri is [|P a

j |] for somej and where
x ranges over all variables inPj

2) R′
i = Qj{x 7→ xb} if Ri is [|Qb

j|] for somej and where
x ranges over all variables inQj

11

We consider an execution of the composition of[|P a|] and
[|Qb|] in the equational theoryEenc ∪ Ea ∪ Eb.

(R, ∅, ∅)
r1·...·rk

→∗ (S0, ϕ0, σ0)
§
→ (S, ϕ, σ) (7)

where§ is a reciperk+1 if the last action was an input and
then empty string otherwise.

Assume w.l.o.g. thatx1, . . . , xp′ are the variables from
{x1, . . . , xp} which appear indom(σ0) and thaty1, . . . , yq′ are
the variables from{y1, . . . , yp} which appear indom(σ0). This
means thatx1, . . . , xp′ , y1, . . . , yq′ are the shared variables
which were instantiated before the last action of the execution.

Let {z[xiσ0]=E
} and{z[yiσ0]=E

} be fresh variables and let

R′′ = ν{z[xiσ0]=E
}1≤i≤p′ · ν{z[yiσ0]=E

}1≤i≤q′ ·

xa
1 := z[x1σ0]=E

· . . . · xa
p′ := z[xp′σ0]=E

·

yb
1 := z[y1σ0]=E

· . . . · yb
q′ := z[yq′σ0]=E

·

R′

Then we have:

Theorem 4:Assume ϕ0 6⊢ t for any t ∈
{x1σ0, . . . , xp′σ0, y1σ0, . . . , yq′σ0} and thatxiσ0 6=Eenc∪Ea∪Eb

yjσ0 for all xi, yj ∈ dom(σ0). Then there exist
S′, ϕ′, σ′, r′1, . . . , r

′
k, §′ such that

(R′′, ∅, ∅)
r′

1
·...·r′

k·§
′

→∗ (S′, ϕ′, σ′) (8)

is a run in the equational theoryEenc and such that:
1) if ϕ ⊢ t for somet ∈ {xiσ, yjσ | xi, yj ∈ dom(σ)},

then ϕ′ ⊢Eenc
s for somes ∈ {xa

i σ′, xb
iσ

′, ya
j σ′, yb

jσ
′ |

xi, yj ∈ dom(σ)}
2) if there existxi, yj ∈ dom(σ) such thatxiσ =Eenc

yjσ
thenxc

iσ
′ =Eenc

yc
jσ

′ for somec ∈ {a, b}
3) otherwise, ifϕ ⊢ xσ for some variablex ∈ vars(P) ∩

dom(σ) (resp.vars(Q) ∩ dom(σ)), then ϕ′ ⊢Eenc
xaσ′

(resp.ϕ′ ⊢Eenc
xbσ′).

In this tagged setting, the above theorem intuitively states
that any trace on the tagged composition of two protocols can
be transformed into a trace of the un-tagged composition, but
where the two protocols no longer share secrets.

Example 7:We illustrate the above theorem with an exam-
ple where the untagged composition of two protocols is not
secure. However, using the theorem, we can conclude that the
tagged composition is secure.

We consider the processes

P1 = νx · νy · out({x}y)

and

Q2 = νz · out({z}x) · in(z′) · out(dec(z′, y)) · 0

previously defined in Section III-A. We have seen thatνx′ ·
νy′ · (x := x′) · (y := y′) ·Q2 preserves the secrecy ofz, while
the sequential compositionP1 ·Q2 (whereP1 is used to create
the keysx andy) does not preserve the secrecy ofz.

However, the sequential composition[|P a
1 |] · [|Qb

2|] does
preserve the secrecy ofz by Theorem 4.

We can also use Theorem 4 to prove tagged variants of
Theorem 2 and Theorem 3:

Theorem 5 (Tagged version of Theorem 2):Let P = νk1 ·
. . . ·νkn · (P1 | P2) andQ = νk · (xk := k ·Q1 | yk := k ·Q2)
be processes overFenc,h such that:

1) P1 bindsxk andP2 bindsyk

2) fv(P) = ∅, fv(Q) = ∅ andvars(P)∩vars(Q) = {xk, yk}
3) P |=Eenc

Secret(xk) andP |=Eenc
Secret(yk)

4) Q |=Eenc
Secret(xk) and Q |=Eenc

Secret(yk) and
Q |=Eenc

Secret(xs)

Then W = νk1 · . . . · νkn · ([|P a
1 |] · [|Qb

1|] | [|P a
2 |] ·

[|Qb
2|]) |=Eenc∪Ea∪Eb

Secret(xs).

Theorem 6 (Tagged version of Theorem 3):Let P = νk1 ·
. . . · νkn·!(P1 | P2) be a process overFenc,h and let Q =
!(νk · (xk := k · Q1 | yk := k · Q2)) be a process overFenc,h

such that:

1) P1 bindsxk andP2 bindsyk

2) fv(P) = fv(Q) = ∅
3) P |=Ea

Secret(xk) andP |=Ea
Secret(yk)

4) Q |=Eb
Secret(xk) and Q |=Eb

Secret(yk) and Q |=Eb

Secret(xs)

Then R = νk1 · . . . · νkn·!([|P a
1 |] · [|Qb

1|] | [|P a
2 |] ·

[|Qb
2|]) |=Eenc∪EaEb

Secret(xs).

Theorems 5 and 6 allow us to securely compose key-
exchange protocols which make use of symmetric encryption
with protocols which use the exchanged keys, as long as
the two protocols are tagged differently and if they obey the
security requirements detailed above.

We have seen that Example 7 explains the need to tag
the encryptions in order to obtain secure composition. One
might think that tagging encryptions is sufficient to ensurethe
security of the composition and that it is not necessary to tag
the hash function as well. Unfortunately, this is not true. We
end this section on tagging by an example which illustrates
why tagging is necessary for the hash function as well.

Example 8:We consider the processes

P = νx · out(h(x))

and

Q = νz · in(y) · [y = h(x)] · out(z).

We have that the protocolP does not revealx. The protocol
νx · Q reveals neitherz nor x. However, if P is used to
instantiate the variablex for Q, we have that

P · Q 6|= Secret(z).

By Theorem 4, we have however that the tagged composi-
tion does satisfy the secret ofz:

[|P a|] · [|Qb|] |= Secret(z).

12

VI. RELATED WORK

There are two large classes of models for studying the
security of cryptographic protocols. On one hand, there arethe
Dolev-Yao (also called symbolic) models, in which messages
sent over the network are represented by terms and the attacker
is modeled as a deduction system. On the other hand, there
are the computational (or cryptographic) models, in which
the messages are bit-strings and the attacker is an arbitrary
probabilistic polynomial time Turing machine.

Our result clearly belongs to the first approach. One of the
first papers studying the composition of protocols in the sym-
bolic model is [11]. In this paper, Guttman and Thayer show
that (in the formalism of strand spaces [26]) two protocols
which make use of concatenation and encryption can be safely
executed together without damaging interactions, as soon as
the protocols are “independent”. Also, an assumption is made
that all keys are atomic and not generated for example by
hashing some message. The independence hypothesis requires
in particular that the sets of encrypted messages handled by
the two protocols be disjoint. This is a semantic hypothesis
on all possible executions of the two protocols which needs
to be checked by hand.

In [13], Cortieret al show that tagging is sufficient to avoid
collusion between protocols sharing common keys and making
use of standard cryptographic primitives: concatenation,sig-
nature, hash functions and encryption. This framework allows
to compose processes in parallel; however, it does not allowto
securely compose e.g. a key exchange protocol with another
protocol which makes use of the shared key. In particular, this
is because the shared keys should never appear as payloads.

In [12], Guttman provides a characterization which ensures
that two protocols can run securely together when sharing
some data such as keys or payloads. The main improvement
over [11] is that keys are allowed to be non-atomic. The
characterization is syntactic but has to be computed for each
pair of protocols. As cryptographic primitives, the protocols
are allowed to contain encryptions and concatenations. The
proof method in our result is roughly similar to the proof
methods described here: an attack against the composition is
transformed into an attack against one of the two protocols.

In [14], Delauneet al use a derivative of the applied-
π calculus to model off-line guessing attacks. They show
that in the passive case resistance against guessing attacks is
preserved by the composition of two protocols which share the
weak secret against which the attack is mounted. This result
(in the passive case) holds for arbitrary equational theories.
However, for the active case this is no longer the case: it is
however proven thattagging the weak secret enforces secure
composition (in the sense of guessing attacks). Again, this
framework applies to parallel composition only.

Mödersheim and Viganò [15] have proposed a framework
for composing protocols sequentially. They propose a criterion
for a protocol P1 to safely useP2 as a sub-protocol (for
implementing a secure channel). However, their criterion is a
semantic criterion, for which no decision procedure has been
provided yet.

In [27], Delauneet al use a simulation based approach
inspired from the computational model to provide a framework

for securely composing protocols in the applied-π calculus.
This involves defining for each sub-protocol anideal function-
ality and then showing that a certain implementation securely
emulates the ideal functionality.

Another line of work is represented by the Protocol Com-
position Logic [16], which can be used to modularly prove
security properties of protocols using a fixed set of primitives.
In order to safely compose two protocols, one has to check
that each protocol satisfies some invariant used in the security
proof of the other protocol. While offering more flexibility, this
criteria is not syntactic and needs to be checked each time by
hand.

As opposed to [11], [13], [12], [15], [16], our result allows
not only the standard cryptographic primitives like encryption
and hash functions, but arbitrary primitives expressible as
equational theories. Furthermore, unlike [13], [14], our result
allows to compose protocols asymmetrically (i.e. not just in
parallel). The main difference between our approach and [27]
is that we do not need to prove anything about the protocols we
are trying to compose except standard reachability properties.
In particular, we do not have to provide a key exchange
functionality and prove that an implementation satisfies this
functionality. However, [27] can be used to reason about
protocols which do share primitives.

In the context of computational models, Canettiet al.
have developed the Universal Composability framework [17],
designed to allow composition. In this framework, anideal
functionality is defined and a specific protocol is shown to
implement this functionality securely. Then this protocolmay
be securely used instead of the functionality. This approach
is compositional in the sense that the protocol can be safely
used instead of the functionality in any context (possibly inside
other protocols/functions). However, as pointed out in [18],
this framework does not allowa priori to compose protocols
sharing data such as keys. Some specific results have been
further developed in order to allow composition with “joint
state” [18]. These results allow e.g. several sessions of a
protocol (sharing common data such as keys and random
coins) to be considered independently (each session having
fresh keys and randomness). However, the shared data have to
be used in the same manner in each copies. It is not possible
for example to use this approach for composing a protocol
that uses a key for encrypting date with a protocol that uses
the same key as payload (even if the key remains secret), as
it is done in our work.

VII. C ONCLUSIONS AND FUTURE WORK

We have proven that protocols can be securely composed
provided that they use primitives modeled by disjoint equa-
tional theories or provided that their common primitives are
tagged encryptions or tagged hash functions.

Our result is a generic composition result: any trace leading
to an attack on the composition of the two protocols is
transformed into a trace that leads to an attack in one of the in-
dividual protocols, even if the two protocols share secretssuch
as keys. This allows us to securely perform several kinds of
compositions. We can have secure parallel composition under

13

shared secrets or we can have an asymmetric composition,
where one of the protocols is used as a sub-protocol. As a
matter of fact, our combination theorem could actually be used
in any context where two protocols are arbitrarily interleaved
and use shared data.

As an application, we have shown how our main composi-
tion theorem can be used in order to securely refine a protocol
that uses pre-established keys or secure channels.

For the sake of simplicity, the only security property that we
have considered is secrecy. We believe however that our result
extends to general trace properties (e.g. authentication). This is
because our trace transformation proof technique transforms
any trace of the composition of two protocols under shared
secrets (as long as a shared key is not revealed) into a trace on
the composition under no shared secrets. This means that any
violation of authentication in the composed protocol wouldbe
transformed into a violation of authentication on one of the
individual protocols.

We intend to develop and analyze a logic for trace properties
which are preserved by our composition theorem. We are also
investigating if composition with disjoint equational theories
preservestrace equivalence, as defined e.g. in [28] and more
generally other behavioral equivalences which can be used to
reason about security properties such as anonymity.

We have proven that primitives can be shared between the
protocols provided they are tagged, in the case of symmetric
encryption and hash. We think that our proof technique easily
extends to any classical destructor/constructor theories(e.g.
signatures and asymmetric encryption).

There are certain primitives which seem harmless enough
that they may be shared without tagging them. For example,
the concatenation defined through the equational theory:

fst(pair(x, y)) = x snd(pair(x, y)) = y.

is a candidate. However, let us consider the processes

P = νx · νy · z := pair(x, y)

Q = νk · out(enc(z, k)) · in(y)·
out(pair(fst(dec(y, k)), snd(dec(y, k)))).

The processνz · Q does not revealz. However, if the
generation ofz is handled byP , we have thatP · Q does
reveal z. This is becauseQ was only verified secure when
z is instantiated to a name. We are trying to prove that the
equational theory ofpair can be safely shared between two
protocols as long as neither of the protocols instantiates a
shared key to a pair.

Finally, many relevant equational theories are not so easy to
tag. In particular, taggingexclusive oris particularly difficult.
Finding a way to securely compose two protocols which both
make use of this primitive (theexclusive or) is a challenging
open problem.

REFERENCES

[1] G. Lowe, “Breaking and fixing the Needham-Schroeder public-key
protocol using FDR,” inTools and Algorithms for the Construction and
Analysis of Systems (TACAS’96), ser. LNCS, T. Margaria and B. Steffen,
Eds., vol. 1055. Springer-Verlag, march 1996, pp. 147–166.

[2] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuel-
lar, P. Hankes Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani,
S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santiago,M. Turu-
ani, L. Viganò, and L. Vigneron, “The AVISPA Tool for the automated
validation of internet security protocols and applications,” in 17th
International Conference on Computer Aided Verification, CAV’2005,
ser. Lecture Notes in Computer Science, K. Etessami and S. Rajamani,
Eds., vol. 3576. Edinburgh, Scotland: Springer, 2005, pp. 281–285.

[3] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. T.Abad,
“Formal analysis of saml 2.0 web browser single sign-on: Breaking the
saml-based single sign-on for google apps,” inProceedings of the 6th
ACM Workshop on Formal Methods in Security Engineering (FMSE
2008), 2008, pp. 1–10.

[4] M. Abadi and B. Blanchet, “Computer-Assisted Verification of a Pro-
tocol for Certified Email,”Science of Computer Programming, vol. 58,
no. 1–2, pp. 3–27, Oct. 2005, special issue SAS’03.

[5] M. Abadi, B. Blanchet, and C. Fournet, “Just Fast Keying in the Pi
Calculus,” inProgramming Languages and Systems: Proceedings of the
13th European Symposium on Programming (ESOP’04), ser. Lecture
Notes on Computer Science, D. Schmidt, Ed., vol. 2986. Barcelona,
Spain: Springer Verlag, Mar. 2004, pp. 340–354.

[6] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov, “Undecidability
of bounded security protocols,” inProc. of the Workshop on Formal
Methods and Security Protocols, 1999.

[7] M. Rusinowitch and M. Turuani, “Protocol Insecurity with Finite
Number of Sessions and Composed Keys is NP-complete,”Theoretical
Computer Science, vol. 299, pp. 451–475, April 2003. [Online].
Available: http://www.loria.fr/ rusi/pub/tcsprotocol.ps.gz

[8] B. Blanchet, “An efficient cryptographic protocol verifier based on
prolog rules,” in Proc. of the 14th Computer Security Foundations
Workshop (CSFW’01). IEEE Computer Society Press, June 2001.

[9] G. Lowe, “Casper: A compiler for the analysis of securityprotocols,”
in Proc. of 10th Computer Security Foundations Workshop (CSFW’97).
Rockport, Massachusetts, USA: IEEE Computer Society Press, 1997,
also in Journal of Computer Security, Volume 6, pages 53-84,1998.

[10] B. Blanchet, “An automatic security protocol verifier based on resolution
theorem proving (invited tutorial),” in20th International Conference on
Automated Deduction (CADE-20), Tallinn, Estonia, July 2005.

[11] J. D. Guttman and F. J. Thayer, “Protocol independence through disjoint
encryption.” in Proc. 13th Computer Security Foundations Workshop
(CSFW’00). IEEE Comp. Soc. Press, 2000, pp. 24–34.

[12] J. D. Guttman, “Cryptographic protocol composition via the authen-
tication tests,” inFoundations of Software Science and Computation
Structures (FOSSACS’09), ser. Lecture Notes in Computer Science,
March 2009.

[13] V. Cortier, J. Delaitre, and S. Delaune, “Safely composing
security protocols,” in Proceedings of the 27th Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’07), ser. Lecture Notes in Computer Science, V. Arvind
and S. Prasad, Eds., vol. 4855. New Delhi, India: Springer,
Dec. 2007, pp. 352–363. [Online]. Available: http://www.lsv.ens-
cachan.fr/Publis/PAPERS/PDF/CDD-fsttcs07.pdf

[14] S. Delaune, S. Kremer, and M. D. Ryan, “Composition of password-
based protocols,” inProceedings of the 21st IEEE Computer Security
Foundations Symposium (CSF’08). Pittsburgh, PA, USA: IEEE
Computer Society Press, Jun. 2008, pp. 239–251. [Online]. Available:
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DKR-csf08.pdf

[15] S. Mödersheim and L. Viganò, “Secure pseudonymous channels,” in
Proceedings of the 14th European Symposium On Research In Computer
Security (ESORICS’09), ser. Lecture Notes in Computer Science, vol.
5789. Springer, 2009, pp. 337–354.

[16] A. Datta, A. Derek, J. C. Mitchell, and A. Roy, “Protocolcomposition
logic (pcl),” Electron. Notes Theor. Comput. Sci., vol. 172, pp. 311–358,
2007.

[17] R. Canetti, “Universally composable security: A new paradigm
for cryptographic protocols,” inIEEE Symposium on Foundations
of Computer Science, 2001, pp. 136–145. [Online]. Available:
citeseer.ist.psu.edu/article/canetti05universally.html

[18] R. Canetti and T. Rabin, “Universal composition with joint state,” in
CRYPTO, 2003, pp. 265–281.

[19] M. Backes, M. Maffei, and D. Unruh, “Zero-knowledge in the applied pi-
calculus and automated verification of the direct anonymousattestation
protocol,” in IEEE Symposium on Security and Privacy, 2008, pp. 202–
215.

[20] S. Delaune, S. Kremer, and M. D. Ryan, “Verifying privacy-type
properties of electronic voting protocols,”Journal of Computer

14

Security, vol. 17, no. 4, pp. 435–487, Jul. 2009. [Online]. Available:
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DKR-jcs08.pdf

[21] M. Abadi and C. Fournet, “Mobile values, new names, and secure
communication,” inProc. of the 28th ACM Symposium on Principles
of Programming Languages (POPL’01), January 2001, pp. 104–115.

[22] F. Baader and T. Nipkow,Term Rewriting and All That. Cambridge
University Press, 1999.

[23] B. Blanchet and A. Podelski, “Verification of cryptographic protocols:
Tagging enforces termination,” inFoundations of Software Science and
Computation Structures (FoSSaCS’03), ser. LNCS, A. Gordon, Ed., vol.
2620, April 2003.

[24] R. Ramanujam and S.P.Suresh, “Tagging makes secrecy decidable
for unbounded nonces as well,” inProc. of the 23rd Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’03), Mumbai, 2003.

[25] J. Heather, G. Lowe, and S. Schneider, “How to prevent type flaw
attacks on security protocols,” inProc. of the 13th Computer Security
Foundations Workshop (CSFW’00). IEEE Computer Society Press,
2000.

[26] F. J. T. Fábrega, “Strand spaces: proving security protocols correct,”J.
Comput. Secur., vol. 7, no. 2-3, pp. 191–230, 1999.

[27] S. Delaune, S. Kremer, and O. Pereira, “Simulation based security in
the applied pi calculus,” inProceedings of the 29th Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’09), ser. Leibniz International Proceedings in Informatics,
R. Kannan and K. Narayan Kumar, Eds., vol. 4. Kanpur, India: Leibniz-
Zentrum für Informatik, Dec. 2009, pp. 169–180. [Online].Available:
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DKP-fsttcs09.pdf

[28] V. Cortier and S. Delaune, “A method for proving observational
equivalence,” inProceedings of the 22nd IEEE Computer Security
Foundations Symposium (CSF’09). Port Jefferson, NY, USA: IEEE
Computer Society Press, Jul. 2009, pp. 266–276. [Online]. Available:
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CD-csf09.pdf

APPENDIX

A. Combination of equational theories

Proposition 1: All alien subterms of a collapsed term are
collapsed.

Proof:
First note that|collapse(t)| ≤ |t|. Indeed, by induction on

t, we have either:

|collapse(t)| = |sj | ≤ |collapse(tx)| ≤ |tx| < |t|

for somex ∈ {1, . . . , n} (sincesj is a subterm oftx) or

|collapse(t)| = |C[collapse(t1), . . . , collapse(tn)]| ≤ |C[t1, . . . , tn]|

Let t be a term. We prove by induction on|t| that all alien
subterms ofcollapse(t) are collapsed. Lett = C[[t1, . . . , tn]]
and C[collapse(t1), . . . , collapse(tn)] = D[[s1, . . . , sk]]. We
distinguish two cases.

1) D[n[s1]=
E

, . . . , n[sk]=
E

] =E n[sj]=
E

for somej, in which
casecollapse(t) = sj .
But sj is either collapse(tx) or an alien subterm of
collapse(tx) for somex ∈ {1, . . . , n}. In the first case,
we have thatsj = collapse(tx) is collapsed and we can
apply the induction hypothesis onsj = collapse(tx). In
the second case,sj is an alien subterm ofcollapse(tx)
and by the induction hypothesis is collapsed. Therefore
we can apply the induction hypothesis onsj itself to
conclude.

2) collapse(t) = C[collapse(t1), . . . , collapse(tn)], in
which case any alien subterm ofcollapse(t) is

a) either collapse(tx) for some x ∈ {1, . . . , n}
(in which case we are done, as the alien term
collapse(tx) is collapsed)

b) or an alien subterm ofcollapse(tx), in which case
we conclude by the induction hypothesis ontx

B. Proof of the main result

Claim 1: If t1, t2 are collapsed terms such thatt1 =E t2,
thenVc(t1) =E Vc(t2) (c ∈ {a, b}).

Proof:
By induction on the size of terms. By Lemma 3,t1 and

t2 start with a root symbol from the same signature. Assume
w.l.o.g. thatroot(t1), root(t2) ∈ Fa.

If t1 =E t2 =E s for some s ∈
{x1σ0, . . . , xp′σ0, y1σ0, . . . , yq′σ0} and c = b, then
Vb(t1) = n[t1]=

E

= n[t2]=
E

= Vb(t2) and we are done.
Otherwise, t1 = C[[s1, . . . , sn]], t2 = D[[s′1, . . . , s

′
m]]

for some pure a-contexts C and D. Then Vc(t1) =
C[Va(s1), . . . , Va(sn)] and Vc(t2) = D[Va(s′1) . . . , Va(s′m)]
for any c ∈ {a, b}.

We can apply the induction hypothesis on
s1, . . . , sn, s′1, . . . , s

′
m (which are collapsed by Proposition 1)

to conclude that the equalities between these terms are
preserved when passed throughVc() and therefore we can
apply Lemma 1 to conclude.

15

Claim 2: We have that

Vc(rϕ) =E Vc(collapse(rϕ))

and thatcollapse(rϕ) is a good term.
Proof: Indeed, letC be such thatrϕ = C[[t1, . . . , tk]].

As ϕ = {wj 7→ sjσ}j for some pure termssj , C either fully
spanssj or it does not span it at all (for allj). Therefore
each termti (1 ≤ i ≤ k) is such thatti is a subterm ofσ or
ti = riϕ for some reciperi (whereri is a subterm ofr).

Let the predicateP (i) be true exactly on indexesi such that
ti = riϕ (whereri is a subterm ofr).

By the induction hypothesis, for all indexesi such that
P (i), we have thatVc(riϕ) =E Vc(collapse(riϕ)) and
collapse(riϕ) = Ei[[s

i
1, . . . , s

i
ni

]] is a good term. Also
si
1, . . . , s

i
ni

must be good terms (1 ≤ i ≤ k)1. We have thus
definedEi andsi

j for all i such thatP (i).
For all indexesi such that notP (i), ti is an alien subterm

of σ (and is therefore collapsed) and therefore we have that
ti = Ei[[s

i
1, . . . , s

i
ni

]] is a good term (by the first item of the
definition) and thatsi

j (1 ≤ i ≤ k, 1 ≤ j ≤ ni) are good
terms (by the first items of the definition as well). We have
thus definedEi andsi

j for all i such that notP (i).
We next define a class of contextsCi (1 ≤ i ≤ k). Let

Ci = Ei if root(Ei) comes from the same signature asroot(C)
and letCi = otherwise.

Let C′ = C[C1, . . . , Ck]. Then

rϕ = C[[t1, . . . , tk]]
=E C[E1[[s

1
1, . . . , s

1
n1

]], . . . , Ek[[sk
1 , . . . , sk

nk
]]]

= C′[[s1, . . . , sl]]

for good termssj (1 ≤ j ≤ l)2 and furthermore, by the
definition of collapse

collapse(rϕ) = sj (9)

if C′[n[s1]=
E

, . . . , n[sl]=E

] =E n[sj]=
E

for some j and fresh
namesn[]=

E

or

collapse(rϕ) = C′[[s1, . . . , sl]] (10)

otherwise. In either case, we can see thatcollapse(rϕ) is a
good term3, which concludes part of the induction.

Let us now prove that

Vc(rϕ) =E C′[Vd(s1), . . . , Vd(sl)] (11)

whered is such thatroot(C) ∈ Fd

Indeed, by the definition ofVc and becauserϕ cannot be
both a shared secret in{x1, . . . , xp′ , y1, . . . , yq′}σ0 and have
its root symbol inFc̄ (by hypothesis), we have that

Vc(rϕ) = C[Vd(t1), . . . , Vd(tk)] (12)

1if collapse(riϕ) is good by the first item of the definition of good, then
si
j are subterms of it and therefore subterms ofσ, which means they are good;

if collapse(riϕ) is good by the second item of the definition of good, then
si
j are good by definition

2a termsj is either equal to sometj if Cj = and we knowtjs are good,
or is equal to somesi

x, which we also know are good
3becausesj is a good term by the first item in the definition and because

C′[[s1, . . . , sl]] is a good term by the second item of the definition

We prove that

Vd(ti) =E Vd(collapse(ti)) (13)

Indeed, eitherti is an alien subterm ofσ, in which caseti =
collapse(ti) and Equation 13 trivially holds, orti = riϕ, in
which case Equation 13 holds by the induction hypothesis.

From Equations 12 and 13, ascollapse(ti) =
Ei[[s

i
1, . . . , s

i
ni

]], we have that

Vc(rϕ) = C[Vd(E1[[s
1
1, . . . , s

1
n1

]]), . . . , Vd(Ek[[sk
1 , . . . , sk

nk
]])]

(14)
Let us prove that for eachi such thatCi = Ei that

Vc(Ei[s
i
1, . . . , s

i
ni

]) = Ei[Vd(s
i
1), . . . , Vd(s

i
ni

)] (15)

Indeed, for such ani, ti cannot be a shared secret in
{x1, . . . , xp′ , y1, . . . , yq′}σ0(by hypothesis, asti =E r′ϕ for
some strict subreciper′ of r) and therefore Equation 15 holds
by the definition ofcollapse and becauseroot(Ei), root(C) ∈
Fd (root(Ei) and root(C) are from the same signature).

From Equations 15 and 14, and by the definition ofC′ =
C[C1, . . . , Ck], we immediately obtain Equation 11.

We are now ready to prove that

Vc(rϕ) =E Vc(collapse(rϕ)) (16)

We distinguish between two cases (either Equation 9 or
Equation 10 holds).

• if Equation 9 holds then we must have that

C′[n[s1]=
E

, . . . , n[sl]=E

] =E n[sj]=
E

and that
Vc(collapse(rϕ)) = Vc(sj) (17)

But ass1, . . . , sl are good terms, they are also collapsed
and by Claim 1, we have thatsx =E sy implies
Vd(sx) =E Vd(sy) (1 ≤ x, y ≤ l). Therefore

C′[Vd(s1), . . . , Vd(sl)] =E Vd(sj)

Combining this with Equation 11, we obtain

Vc(rϕ) =E Vd(sj) (18)

– if sj = collapse(rϕ) =E rϕ is not a shared secret
in {x1, . . . , xp′ , y1, . . . , yq′}σ0 then

Vc(sj) = Vd(sj)

which combined with Equations 17 and 18 immedi-
ately yields Equation 16.

– if sj =E rϕ is a shared secret in
{x1, . . . , xp′ , y1, . . . , yq′}, then by hypothesis
root(rϕ) ∈ Fc. But Fd was chosen as the signature
which contains the root symbol ofC (equivalently
the signature which contains the root symbol
of rϕ) and therefored = c which combined
with Equations 17 and 18 immediately yields
Equation 16.

• if Equation 10 holds then

Vc(collapse(rϕ)) = C′[[Vd(s1), . . . , Vd(sl)]]

16

by the definition ofcollapse . Combining this with Equa-
tion 11, we immediately obtain Equation 16.

Claim 3: For i ∈ {0, . . . , n}, we have thatcollapse(wjϕi)
(for all wj ∈ dom(ϕi)) is an i-good term andxσi =
C[s1, . . . , sk] (for all x ∈ dom(σi)) for a pure (possibly
empty)Fc-contextC and i − 1-good termss1, . . . , sk (with
root(sj) ∈ Fc̄), wherec = a if x ∈ vars(P) \ {x1, . . . , xp′}
andc = b if x ∈ vars(Q) \ {y1, . . . , yq′}.

Proof: By induction on i. The base casei = 0 is
particularly trivial, sincedom(σ0) = ∅ and dom(ϕ0) = ∅.
Assuming the hypothesis holds forj ≤ i − 1, we prove it for
i. We do a case analysis on the transition§i:

1) if the i-th step was the execution of someνx, thenϕi =
ϕi−1 andσi = σi−1∪{x 7→ m} wherem is a fresh name
from Fc, wherec is defined as in the lemma. Therefore
it is sufficient to choseC = m andk = 0 to conclude.

2) if the i-th step was an assignmentx := t, where t is
a pureFc term andx, c are as in the lemma, we have
that xσi = collapse(tσi−1). But tσi−1 = C[s1, . . . , sk]
for a pureFc-contextC and termssj = yjσi−1 (C is
obtained fromt by replacing variables with holes).
By the induction hypothesis,sj = Cj [s

j
1, . . . , s

j
nj

]

for i − 2-good termssj
x and a pure contextCj . Let

C′
j be if Cj = or if root(Cj) ∈ Fc̄ and let

C′
j = Cj otherwise. LetC′ = C[C′

1, . . . , C
′
k]. Then

tσi−1 = C′[[t1, . . . , tl]] (eachtj is either somesj′ or
somesj′

x). Now collapse(tσi−1) is equal either to some
tj (which arei − 2-good), in which case we conclude,
or collapse(tσi−1) = C′[[t1, . . . , tl]], in which case we
are done (we have identified theC from the lemma
statement (it isC′) and thes1, . . . , sk from the lemma
statement (they aret1, . . . , tl)).

3) if the i-th statement is an outputout(t), then we
conclude thattσi is ani−1-good term exactly as above
(for assignment) (except we need thatC′[[t1, . . . , tl]] =
tσi−1 be deducible fromϕi, which is the case (it has
just been output)).

4) if the i-th step was an inputin(x), then there exists a
contextC and i-good termst1, . . . , tk such thatxσi =
collapse(C[t1, . . . , tk]) (we defineC to be the recipe§i

in which the variables have been replaces by holes and
t1, . . . , tk are the corresponding elements fromϕi−1,
which we know by induction to bei − 2-good terms).
We prove by structural induction onC that
collapse(C[t1, . . . , tk]) is an i − 1-good term. Indeed,
let C′ be such thatC[t1, . . . , tk] = C′[[s1, . . . , sl]].
Then eachsj is either equal toCj [t1, . . . , tk] (for some
Cj subcontext ofC) or sj is an i-good term (because
it is an alien subterm of somei-good termtj′ which
cannot be a shared key in{x1, . . . , xp′ , y1, . . . , yq′}σi).
In either case, we know (either by the induction hy-
pothesis in the first case or by definition ofi-good
in the second case) thatcollapse(sj) is a i-good
term and thereforecollapse(sj) = Cj [[s

j
1, . . . , s

j
nj

]]

for some contextCj and somei-good termssj
x or sj

is a shared secret in{x1, . . . , xp′ , y1, . . . , yq′}σ. We
let C′

j = Cj if sj is not a shared secret and if
root(Cj) is from the same signature asC and C′

j =
otherwise. LetC′′ = C′[C′

1, . . . , C
′
k]. Then we have

that C[t1, . . . , tk] =E C′′[u1, . . . , um] for some i-
good termsuj (eachuj is either somecollapse(sj′)
or somesj′

x) and thatcollapse(C[t1, . . . , tk]) is either
C′′[u1, . . . , um] or some uj . In either case, we can
immediately conclude.

Lemma 6: If P is a linear process overFa and

(P, ∅, ∅)
§1
→E (P1, ϕ1, σ1)

§2
→E . . .

§n
→E (Pn, ϕn, σn))

then

(P, ∅, ∅)
§′
1→Ea

(P1, ϕ
′
1, σ

′
1)

§′
2→Ea

. . .
§′n→Ea

(Pn, ϕ′
n, σ′

n))

for someϕ′
n, σ′

n and§′ such thatϕn ⊢E xσn impliesϕ′
n ⊢Ea

xσn and xσn =E yσn implies xσ′
n =Ea

yσ′
n for all x, y ∈

dom(σn).
Proof:

Let init/0 be any constant inFa (we have assumed that there
exists at least such a constant). The idea is that we obtain the
second trace from the first trace by abstracting any elements
that starts with a symbol fromFb by the constantinit.

This abstraction is formalized by the functionabstract ,
which is defined inductively on ground terms as follows:

1) abstract(f(t1, . . . , tk)) =
f(abstract(t1), . . . , abstract(tk)) if f ∈ Fa

2) abstract(f(t1, . . . , tk)) = init if f ∈ Fb

The functionabstract enjoys the following good property
on collapsed terms:

Lemma 9: If s =E t and s and t are collapsed, we have
that abstract(s) =Ea

abstract(t).
Proof: Let s = C[[s1, . . . , sk]] and t = D[[t1, . . . , tl]].

As s =E t and s and t are collapsed, by Lemma 1, we have
that root(C) and root(D) come from the same signatureFc.
If c = b, then abstract(s) = abstract(t) = init and we are
done.

Otherwise c = a and abstract(s) = C[init, . . . , init]
and abstract(t) = D[init, . . . , init]. By Lemma 1, we
have thatC[n[s1]=

E

, . . . , n[sk]=
E

] =Ea
D[n[t1]=

E

, . . . , n[tl]=E

],
where n are fresh names. As our theory is stable by
replacement of arbitrary terms for names, we have that
(C[n[s1]=

E

, . . . , n[sk]=
E

] =Ea
D[n[t1]=

E

, . . . , n[tl]=E

]){n 7→
init} and thereforeabstract(s) =Ea

abstract(t).

We also have that:
Lemma 10:If t is a pure Fa term and σ is a col-

lapsed substitution, we have thatabstract(collapse(tσ)) =Ea

abstract(tσ).
Proof:

Indeed, ift is a variable thencollapse(tσ) = tσ (since we
assumedσ to be collapsed) and we are done.

Otherwise,root(t) ∈ Fa. Let C be the context obtained
from t by replacing all variables with holes. Thentσ =
C[t1, . . . , tk] for some collapsed termstj (1 ≤ j ≤ k).

17

Let tj = Cj [[t
j
1, . . . , t

j
kj

]]. Let C′
j = Cj if root(Cj) ∈ Fa

and let C′
j = otherwise. LetC′ = C[C′

1, . . . , C
′
j]. Then

tσ = C′[[s1, . . . , sl]].
Then either collapse(tσ) = tσ and we are done or

C′[n[s1]=
E

, . . . , n[sl]=E

] =E nj and collapse(tσ) = sj for
some 1 ≤ j ≤ l. As our equational theory is stable by
replacement of terms for names, we have that

(C′[n[s1]=
E

, . . . , n[sl]=E

] =E nj){n 7→ init}.

But abstract(tσ) = C′[init, . . . , init] and
abstract(collapse(tσ)) = init and therefore we conclude.

We now defineσ′
i and ϕ′

i (for 1 ≤ i ≤ n). We as-
sume w.l.o.g. thatσi and ϕi are collapsed and letσ′

i(x) =
abstract(σ(x)) and ϕ′

i(w) = abstract(ϕ(w)) (1 ≤ i ≤ n,
x ∈ dom(σi), w ∈ dom(ϕi)).

Definition 11: We say that a collapsed termt =
C[[t1, . . . , tk]] is i-good (1 ≤ i ≤ n) if there exist pureFa

recipesr1, . . . , rk such thatϕ′
i ⊢

rj

Ea
abstract(tj) and if tj is

an i-good term (1 ≤ j ≤ k).
It is easy to see that a(i − 1)-good term is also ani-good

term.
We prove by induction oni that there exist§′1, . . . , §

′
i such

that the recipes among them are pureFa-recipes such that:

(P, ∅, ∅)
§′
1→ (P1, ϕ

′
1, σ

′
1)

§′
2→ . . .

§′i→ (Pi, ϕ
′
i, σ

′
i)

and thatϕi(w) andσi(x) are i-good (w ∈ dom(ϕi) andx ∈
dom(σi)).

We distinguish among the possible actions at stepi:

1) if the action was aνx, then§i is the empty string. We
choose§′i also as the empty string.
By definition of the transition, we have thatσi = σi−1∪
{x 7→ n} for some fresh namen. We only need to show
that σi(x) is an i-good term, since the other terms are
i-good directly by the induction hypothesis. WeC = n
(a context with0 holes) andk = 0 in the definition
of i-good and we can trivially conclude thatσi(x) is
i-good.
We also need to establish that this transition works, i.e.
σ′

i(x) = abstract(σi(x)), which is obviously the case.
2) if the action was an assignmentx := t, then §i is the

empty string. We choose§′i also as the empty string.
By definition of the transition, we have thatσi = σi−1∪
{x 7→ collapse(tσi−1)}. As t is a term appearing in the
protocol, it is a pureFa-term.
Let C be the context obtained fromt by replacing all
variables with holes. Thenσi(x) = C[t1, . . . , tk] for
somei-good termstj (1 ≤ j ≤ k) – the termstj are
equal toσi−1(yj) for someyj ∈ dom(σi−1) (1 ≤ j ≤
k). Let tj = Cj [[t

j
1, . . . , t

j
kj

]].
If C is the empty context we have thatσi(x) = σi−1(y)
for somey ∈ dom(σi−1) and therefore we can conclude
by the induction hypothesis.
Otherwise, ifC 6= , let c be such thatroot(C) ∈ Fc.
For 1 ≤ j ≤ k, let C′

j = Cj if root(Cj) ∈ Fc and let
Cj = otherwise. LetC′ = C[C′

1, . . . , C
′
k]. We have

that tσi−1 = C′[[s1, . . . , sl]] such thatsj is an i-good
term (eachsj (1 ≤ j ≤ l) is either sometj′ (1 ≤ j′ ≤ k)
which is i-good by the induction hypothesis or sometj

′

z

(1 ≤ j′ ≤ k, 1 ≤ z ≤ kj′) which is i-good because it
is an alien term oftj′ , which is i-good by the induction
hypothesis).
Then collapse(tσi−1) is either equal to somesj (1 ≤
j ≤ l) or to C[s1, . . . , sl].
In the first case, we conclude because we have already
seen that allsj (1 ≤ j ≤ l) are i-good.
In the second case, we have thatroot(C) ∈ Fa and
therefore root(sj) ∈ Fb (1 ≤ j ≤ l). Therefore
abstract(sj) = init and it is sufficient to choose
rj = init to obtainϕ′

i ⊢
rj

Ea
abstract(sj) (1 ≤ j ≤ l).

Furthermore we already know that allsj arei-good and
therefore we can conclude thatC[s1, . . . , sl] is i-good.
We also need to show that this transition in the con-
clusion works, i.e. thatxσ′

i =Ea
tσ′

i−1. We know that
collapse(xσi) =E collapse(tσi−1) (by the transition in
the hypothesis). We also have thatxσ′

i = abstract(xσi)
and thattσ′

i−1 = abstract(tσi−1). Using Lemma 10 and
Lemma 9, we immediately conclude.

3) if the action was a test[s = t], then §i is the empty
string. We choose§′i also as the empty string.
As ϕi = ϕi−1 and σi = σi−1, it is sufficient to show
that sσ′

i−1 =Ea
tσ′

i−1. But sσ′
i−1 = abstract(sσi−1)

and tσ′
i−1 = abstract(tσi−1) by the definition ofσ′

i−1

andabstract .
By Lemma 10 we have that
abstract(collapse(sσi−1)) =Ea

abstract(sσi−1)
and analogously fort.
We conclude by Lemma 9 thatcollapse(tσi−1) =E

collapse(sσi−1) (which we know because
we have the corresponding transition in the
hypothesis) impliesabstract(collapse(tσi−1)) =Ea

abstract(collapse(sσi−1)).
4) if the action was an outputout(t), we have thatϕi =

ϕi−1∪{wi 7→ collapse(tσi−1)} and that§i is the empty
string. We choose§′i also as the empty string.
We first have to establish thatϕi(wi) = collapse(tσi−1)
is an i-good term, which is exactly the same as in the
case of the assignmentx := t (see second item above).
We also have to establish that this transition works
in the conclusion, i.e. thatϕ′

i(wi) =Ea
tσ′

i−1 know-
ing that ϕi(wi) = collapse(tσi−1) (i.e. that the
transition works in the hypothesis). We can con-
clude by Lemma 10 (ϕ′

i(wi) = abstract(ϕi(wi)) =
abstract(collapse(tσi−1)) =Ea

abstract(tσi−1) =
tσ′

i−1).
5) if the action was an inputin(x), we have thatσi =

σi−1 ∪ {x 7→ collapse(rϕi−1)} for some reciper such
that §i = r.
We prove by induction onr that collapse(rϕi−1) is an
i-good term and at the same time we construct a pure
Fa-reciper′ such thatr′ϕ′

i−1 =Ea
abstract(rϕi−1). We

choose§i to be r′. This means in particular that the
transition in the hypothesis will work (xσ′

i =Ea
r′ϕ′

i−1).

18

Therefore all we need is the proof ofi-goodness and the
construction ofr′ by induction.

a) base case: Ifr is a variablew, we have that
rϕi−1 is i-good by the induction hypothesis (the
outer induction). We chooser′ = w and we
obtain r′ϕ′

i−1 = wϕ′
i−1 = abstract(wϕi−1) =

abstract(rϕi−1).
b) Let rϕi−1 = C[[t1, . . . , tk]]. Let c be such that

root(C) ∈ Fc.
Eachtj (1 ≤ j ≤ k) is such thattj = rjϕi−1 for
some reciperj ⊂ r or an alien subterm ofϕi−1(w)
for some variablew ∈ dom(ϕi−1). In the first case
we know thattj = collapse(tj) is an i-good term
by the outer induction hypothesis (tj is an alien
subterm ofϕi−1(w) for somew ∈ dom(ϕi−1))
and in the second case we thatcollapse(tj) is
an i-good term by the inner induction hypothesis.
Similarly, there exist pureFa-recipes overϕ′

i−1 for
abstract(collapse(tj)).
Let collapse(tj) = Cj [[t

j
1, . . . , t

j
kj

]] and letC′
j =

Cj if root(Cj) ∈ Fc and let C′
j = otherwise

(1 ≤ j ≤ k). Let C′ = C[C1, . . . , Ck]. As tjj′ are
the alien subterms of ani-good term, it follows
that tjj′ are i-good terms (1 ≤ j ≤ k, 1 ≤ j′ ≤
kj) and there exist pureFa-recipes overϕ′

i−1 for
abstract(tjj′).
Thenrϕi−1 = C′[[s1, . . . , sl]] where eachsj (1 ≤
j ≤ l) is either sometj′ (1 ≤ j′ ≤ k) or some
tj

′

z (1 ≤ j′ ≤ k, 1 ≤ z ≤ kj′). In either casesj

(1 ≤ j ≤ l) are i-good terms and there exist pure
Fa-recipes overϕ′

i−1 for abstract(sj).
As collapse(rϕi−1) is

i) either somesj , in which case we conclude
directly that it is ani-good term and there is a
pureFa-recipe overϕ′

i−1 for abstract(sj)
ii) or it is C′[[s1, . . . , sl]], in which it is also easy

to establish thatC′[[s1, . . . , sl]] is an i-good
term (its alien subterms arei-good terms and
there are pureFa-recipes overϕ′

i−1 for their
abstractions).
We also need to show that there is a pureFa-
recipe overϕ′

i−1 for C′[[s1, . . . , sl]]. In the
case root(C′) ∈ Fb, we simply choose the
recipe r′ = init. Otherwise, if root(C′) =
root(r) = f ∈ Fa and r = f(r1, . . . , rm), we
let r′ = f(r′1, . . . , r

′
m). It is then easy to show

by induction thatr′ϕ′
i−1 =Ea

abstract(rϕi−1).

C. Tagging

Lemma 8: If P is a protocol overFenc,h, then P |=Eenc

Secret(x) implies [|P c|] |=Eenc∪Ec
Secret(x).

Proof:
We consider w.l.o.g. thatc = a. We show that if

[|P a|] 6|=Eenc∪Ea
Secret(x) then P 6|=Eenc

Secret(x). Then

there exists a trace([|P a|], ∅, ∅)
r1·...·rn→Eenc∪Ea

(Q, ϕ, σ) such that
ϕ ⊢Eenc∪Ea

xσ.
We construct a trace

(P, ∅, ∅)
r′

1
·...·r′

n→Eenc
(Q′, ϕ′, σ′) (19)

such thatϕ′ ⊢Eenc
xσ′.

For any termt (includingr1, . . . , rn), we let t′ be the term
obtained fromt by removing any reference oftag anduntag.
It is formally defined inductively as follows:

1) enc(t1, t2)′ = enc(t′1, t
′
2)

2) dec(t1, t2)′ = dec(t′1, t
′
2)

3) h(t1)
′ = h(t′1)

4) init′ = init
5) tag(t1)′ = t′1
6) untag(t1)′ = t′1
7) t′ = t if t is a variable or a name

We let σ′(x) = σ(x)′ andϕ′(w) = ϕ(w)′.
To prove Equation 19, it is sufficient to establish that:

1) (tests work)H(sa)σ =Eenc∪Ea
H(ta)σ implies that

sσ′ =Eenc
tσ′

2) (inputs work)xσ =Eenc∪Ec
rϕ implies thatxσ′ =Eenc

r′ϕ′

3) (outputs work) wiϕ =Eenc∪Ec
H(ta)σ implies that

wiϕ
′ =Eenc

tσ′

Let R be the convergent term rewriting system obtained by
orientingEenc from left to right and letRc be the convergent
term rewriting system obtained by orienting the equations of
Eenc ∪ Ea from left to right. We have thats =E t (resp.
s =Eenc∪Ea

t) iff s ↓R= t ↓R (resp. s ↓Rc
= t ↓Rc

), where
t ↓R represents the normal form oft with respect toR.

As (sc)′ = s, (tc)′ = t, x′ = x and w′
i = wi, all of the

above are instances of the more general implications =Eenc∪Ec

t implies thats′ =Eenc
t′. This implication is easy to prove,

since(s ↓Rc
)′ = s′ ↓R (proof by induction ons).

Lemma 7:Let P and Q be linear processes overFenc,h.
Let W be an arbitrary interleaving ofP a andQb and letR =
[|W |]. If R revealsx thenW revealsx.

Proof:
We transform any attack trace onR into an attack trace on

W . Let

(R, ∅, ∅)
r1·...·rk

→∗ (R′, ϕ, σ) (20)

be such thatϕ ⊢ σ(x).
We show that

(W, ∅, ∅)
r′

1
·...·r′

k

→r (W ′, ϕ′, σ′) (21)

such thatϕ′ ⊢ σ′(x).
For c ∈ {a, b, d}, let F ′

c = {encc, decc, hc} and E′
c =

{decc(encc(x, y), y) = x}. For c′ ∈ {a′, b′}, let Fc′ =
{tagc′ , untagc′} andEc′ = {untagc′(tagc′(x)) = x}.

We show that Equation 21 holds in the signatureF0 =
F ′

a ∪ F ′
b ∪ Fa′ ∪ Fb′ ∪ F ′

d and in the equational theoryE0 =
E′

a ∪ E′
b ∪ Ea′ ∪ Eb′ ∪ E′

d. We then conclude by Lemma 6.

19

We consider the following transformation⌈ ⌉ on terms (in
the following, c ranges over{a, b} (but notd) and c′ ranges
over {a′, b′} (but notd′, which does not exist)):

⌈tagc(t)⌉ = tagc′(⌈t⌉)
⌈enc(t1, t2)⌉ = encc(t3, ⌈t2⌉) if ⌈t1⌉ =E tagc′(t3)

= encd(⌈t1⌉, ⌈t2⌉) otherwise
⌈dec(t1, t2)⌉ = tagc′(decc(⌈t1⌉, ⌈t2⌉)) if ⌈t1⌉ =E encc(, ⌈t2⌉)

= decd(⌈t1⌉, ⌈t2⌉) otherwise
⌈untagc(t)⌉ = untagc′(⌈t⌉)
⌈h(t)⌉ = hc(t0) if ⌈t⌉ =E tagc′(t0)

= hd(⌈t⌉) otherwise
⌈u⌉ = u for a name or variableu

Note that ifs =E t then

⌈s⌉ =E0 ⌈t⌉. (22)

We let σ′ = ⌈σ⌉ and ϕ′ = ⌈ϕ⌉. We next construct by
induction on the number of transitions in Equation 21 the
recipesr′1, . . . , r

′
k such that: for all subterms ofσ′ and ϕ′

of the form tagc′(t) there exists a reciper for t:
1) if the current action is an input actionin(x), we

transform the reciper used for the same transition in
Equation 20 into a recipe⌊r⌋ as follows:

⌊tagc(r)⌋ = tagc′(⌊r⌋)
⌊enc(r1, r2)⌋ = encc(r3, ⌊r2⌋) if ⌊r1⌋ϕ′ =E tagc′(t3)

and wherer3 is a recipe fort3
= encd(⌊r1⌋, ⌊r2⌋) otherwise

⌊dec(r1, r2)⌋ = tagc′(decc(⌊r1⌋, ⌊r2⌋))
if ⌊r1⌋ϕ′ =E encc(, ⌊r2⌋ϕ′)

= decd(⌊r1⌋, ⌊r2⌋) otherwise
⌊untagc(t)⌋ = untagc′(⌊r⌋)
⌊h(t)⌋ = hc(r0) if ⌊t⌋ =E tagc′(t0)

and wherer0 is a recipe fort0
= hd(⌊t⌋) otherwise

⌊w⌋ = w for a variablew

We know thatrϕ =E xσ and we have to show that
⌊r⌋ϕ′ =E0 xσ′. By Equation 22 we have that⌈rϕ⌉ =E0

⌈xσ⌉. But ⌈xσ⌉ = xσ′ by definition. Therefore, to
establish our conclusion, it is sufficient to show that
⌈rϕ⌉ =E0 ⌊r⌋ϕ′. But this follows immediately by
induction onr.

2) if the current action is an outputout(t) (assume that
t is from Fc) we know thattestsc(t) passed in Equa-
tion 20 and thatwϕ =E H(t)σ. We have to show
that wϕ′ =E0 tσ′. By Equation 22, we have that
wϕ′ = ⌈wϕ⌉ =E0 ⌈H(t)σ⌉. To establish the conclusion,
it is sufficient therefore to show thattσ′ = ⌈H(t)σ⌉.
This follows by induction ont (for the case of untagged
decryption, we use thattestsc(t) work).

3) if the current action is a test[s = t] (assume that
[s = t] is fromFc), we know thatH(s)σ =E H(t)σ and
that testsc(s) and testsc(t) work. We have to show that
sσ′ =E0 tσ′. It is sufficient to show that⌈H(u)σ⌉ =E0

uσ′ whentestsc(u) work (by induction onu), since then
we can use the equality foru ∈ {s, t} and we can
conclude by Equation 22.

4) if the current action is an assignmentx := t (assume
it comes fromFc) we have thattestsc(t) work and that
xσ =E H(t)σ. We have to show thatxσ′ =E0 tσ′. We
have from the previous item that⌈H(t)σ⌉ =E0 tσ′, and
we conclude by Equation 22.

5) if the current action is a newνx, we have to show that
xσ′ = ⌈xσ⌉ = xσ is a fresh name, which is immediate.

