Stefan Ciobaca, Veronique Cortier

Protocol composition for arbitrary primitives

Research Report LSV-10-09
April, 2010

écification
e
arification

Ecole Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France




Protocol composition for arbitrary primitives

Stefan Ciobaca
LSV, ENS Cachan & CNRS
Email: stefan.ciobaca@gmail.com

Veéronique Cortier
LORIA, CNRS & INRIA
Email: cortier@Iloria.fr

Abstract—We study the composition of security protocols when ~ However, most of existing techniques are dedicated to the
protocols share secrets such as keys. ) analysis of a single protocol, without taking into accouttieo
We show (in a Dolev-Yao model) that if two protocols use protocols which may be used at the same time.

disjoint cryptographic primitives, their composition is secure if This i listic f | First] b
the individual protocols are secure, even if they share dataOur IS Is unrealistic for several reasons. Firstly, a number

result holds for any cryptographic primitives that can be modeled  Of protocols are verified under the assumption that agents
using equational theories, such as encryption, signaturdVlAC, share some pre-distributed keys (e.g. public keys or symnet
exclusive-or, and Diffie-Hellman. . keys between agents and servers). But these keys might have
Our main result transforms any attack trace of the combined oy estaplished by some other sub-protocols. There is no
protocol into an attack trace of one of the individual protocols. . . .
This allows various ways of combining protocols such as seqn- guarantee that a protocol remains secure if a specific key-
tially or in parallel, possibly with inner replications. exchange protocol is used to establish the keys, even if both
As an application, we show that a protocol using pre- protocols have been proven secure in isolation.
established keys may use any (secure) key-exchange protbco Secondly, even apparently isolated protocols might itera
without jeopardizing its security, provided that they do not use -, \neynected ways. For example, a user might choose the
the same primitives. This allows us, for example, to securgl . .
compose a Diffie-Hellman key exchange protocol with any otie S&me password for two different network services, or a serve
protocol using the exchanged key, provided that the second Might use the same key for different protocols. Even if the
protocol does not use the Diffie-Hellman primitives. network services (or the different protocols) were proven

~We also explore tagging, which is a way of forcing the dis- secure in isolation, there is no security guarantee whictiesa
jointness of two protocols which share cryptographic primiives over when thev share kevs or passwords

such as encryption. We .explaltin.yvhy cpmposing protocols whic Furth y y . pth i ’ d lobal
use tagged cryptographic primitives like encryption and hah urthermore, even assuming that we can proauce a globa

functions is secure by reducing this problem to the previousne. model of all protocols which are used in a certain setting, it
might be unrealistic to formally verify such a collection of
protocols in its entirety due to computational constraints
Therefore more modular reasoning about security is desir-
Security protocols aim at ensuring security properties (fable, where we can infer security guarantees for the composi
example confidentiality or authentication) of communica$ tion of protocols from the security guarantees of the irdinal
over public networks. Their design is error-prone due to thgotocols.
fact that they are used in arbitrary environments, with jihgs ~ The goal of our paper is to study the composition of
malicious behaviors. It is known for example that a smafirotocols. We useompositionto refer to arbitrary ways of
variation in the design of a protocol may open the way taterleaving protocols, in particular in parallel or seqtially.
an attack (see e.g. [1]). For example, given a protocaP; that has been proven
Formal methods have demonstrated their usefulness whgsture assuming pre-established keys or assuming sonre secu
designing and analyzing security protocols. They inde@d prchannel, we wish to study under which conditidAsremains
vide rigorous frameworks and techniques that have led to tsecure if it usesP, as a sub-protocol to establish some of
discovery of new flaws [1], [2], [3] and to careful securityadn keys.
ysis (see e.g. [4], [5])._Whi|e insecurity is undgcidat_)leg'fm— Related work.There are a number of papers studying
eral [6], several decision proceo!ures (some'_umes InCdmplethe secure composition of security protocols in a symbolic,
have been proposed for automgtlcally analyzing the SQ'EI-DfI’It. Dolev-Yao model [11], [12], [13], [14], [15], [16] and in the
protocols. For example, checking secrecy and authertitati computational model [17], [18]. We explain how our result

like properties has been.shown to be NP-complete [7] forc%mpares to the existing work in Section VI,
bounded number of sessions. Blanchet has developed a proce-

dure based on clause resolution [8] for analyzing protofasls ~ Our contributionsWe propose a generic composition result
an unbounded number of sessions. Several tools [9], [2], [for arbitrary cryptographic primitives which can be modkle
have been developed and successfully applied to checkieng ty equational theories. More precisely, we show that an
security of protocols. attack trace against the composition of two protocols can be
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transformed into an attack trace on one of the two protocothen @’ remains secure when runnirgas subprotocol:
For the clarity of the exposition we concentrate on secrecy |
properties although we believe that our result carries ower vn - (P Qul P2 Q2)) = Secret(s).

other trace properties such as authentication. ‘We describe our setting in Section Il. We state our
. Our main the(_)rem IS generic m_the sense that the COMPOFEneric composition theorem in Section 11, providing ctasn

tion can be any mterleavmg of actions from the two prOteco!examples when protocols are not carefully composed. In
for example, the composition can be parallel or sequentigeq(ion v, we illustrate our main theorem with the case of
possibly with nested replication. In particular, we captthie key-exchange protocols. We explain how to compose prasocol

case where a protocol uses a sub-protocol to e.g. establisfh, common tagged primitives in Section V. We discuss

keys. . .. related work in Section VI.
The composition theorem holds for any cryptographic prim-

itives which can be modeled by equational theories, pralide

that the signatures of the two composed protocols are dtsjoi Il. MoDEL

This allows us to handle many cryptographic primitives such We first introduce a process algebra for security proper-

as symmetric and asymmetric encryption, hash functiortiss. The process algebra closest to ours is the apptied

messages authentication codes, signatures, blind sigsatucalculus [21]. However, the appliegcalculus is not adequate

re-encryption, zero-knowledge proofs and others [19]].[20n our case since it makes formulating our main theorem

We can also allow some common primitives between the twmnecessarily cumbersome. The main differences between ou

protocols, such as encryption and hash, provided that tfeey galculus and the applied-calculus are the following ones:

tagged. ) » we add asynchronization phaseso that we can write
As a consequence, we can for example easily compose & p. ¢ for arbitrary processe® andQ. This is important

protocol using Diffie-Hellman exponentiation for estabiigy to express the fact that a protocol first rufsbefore
symmetric keys, together with any protocol making use of continuing withQ

pre-established keys. - _« we consider only one public channel,
Applications.Our main composition result can be used in only positive tests are allowed (no else branches).
different contexts. As an application, we study the caseeyf k

exchange protocols. We first consider the case where a key- _
exchange protocol is used to establish shared long-term kef Terms and deduction

Assume that? = vn - (P | I») is a protocol that establishes  The process algebra is parametrized by a signafurénich
a key between two participants?, intuitively denotes the associates to each function symbglits arity ar(f). We
first participant,P, denotes the second participaritslenotes assume that the signature contains at least a (regularacins
the fact that” and P, run in parallel,- denote sequential function symbol and that it contains a countably infinite et
composition and’n means that’; and P, share some secretof special constant symbols, which we caimesand which
n. The role of P is to establish a shared key betweBnand are used to represent data freshly generated during piotoco
P,. Assume that the key will be stored in the variaplefor  executions. We also assume a countably infinite set of iasab
Py and in the variabley, for P,. Xa = X U X, disjoint from F and such thatt and X,

An important question is the following one: which propergyre disjoint countably infinite sets. Intuitively, the \atsles of
ties should be satisfied by in order to be safely used within x' will be used to describe the variables instantiated by the

any other protocol? As expected, we retrieve the fact that throtocols while the variables of,, will be used to store the
established key (stored ip for Py and iny; for P,) should messages sent on the network.

remain secret to an attacker, but we also point out two otherrhe set of terms over a signaturE and over a set of
important properties which are not always checked in sgcuriariablest is denoted byZ (F, X') and is defined as follows:
proofs of the literature.

We show that wheneveP satisfies our identified properties

and whenever a protoc@) is secure assuming pre-established bty = terms iabl
keys (e.g. if@Q preserves the secrecy of some dgfa e variabler X
| f(t1,.. . tk) application of symbol
Q=vk ((y1 :=k) Q1 (y2 :== k) - Q2) |= Secret(s) feFar(f)=k

then @ remains secure when running as subprotocol for A term is ground f it contains no variable. As usual, we
establishing the secret key (in for the first participant and genote by{z1 ~ t1,...,z) — t,} the substitutiono that
in y, for the second participant): replaces the variable; with the term¢;. The domainof o,

vn - (Pr- Q1 | Py-Qs) |= Secret(s). denoted bydom(o) is the set{x, ...,z }. The substitutionr

is ground if eacht; is ground. We le€ = {l; = 7 }ic(1,....n}

, [
We also consider the case where a key-exchange proto&g an equational theory, wheter; € T(F\ N, X) (I <
is used within each session for establishing a secure chan?e : ! ’ —

We show that if ¢ . . < n) are not allowed to contain names. We say that two
chear;sngl\'N at if a protocol)” is secure assuming a S€CUerms s and ¢ are equal in the equational theoEyand we

write s =g ¢ if s =t is a consequence & in the first order
Q ='vk-((y1:=k)-Q1| (y2 :==k) - Q2)) = Secret(s) theory of equality. We denote by|_, the equivalence class



of a term¢ modulo E. Note that such an equational theory isF;,. Let E = E, UE,. If ¢ € {a, b}, by ¢ we will denote the
stable by replacement of names by arbitrary terms. only element of the singleton sét, b} \ {c}.

We write u € S if there existst € § such thatu = ¢. Definition 2 (pure term, pure context\\e say that a term

Given a finite setS, its cardinality is denoted b}5S]. . .
Processes are executed within an environment formed o g T(Fo U Fy) is a pure Ee)term if ¢ € T(F,) for some

frame ¢ that contains messages sent over the network (asc'ﬁ {a, b];' Stmfm(l;arly,Ta]Sor;exF €T(FoU fb’bX) als pure
the appliedr-calculus) and &inding substitutions whose (Fe-)eontext if ¢ € T(Fe, &) for somec € {a, b}

domain is a subset of the free variables of the process. Definition 3 (alien subterms)Let ¢ € {a, b} be such that

In what follows, we always assumdrame to be a ground root(C) € F.. If t = C|[s1,...,s,] whereC is a pureF,-

substitution whose domain is included i,. An equational context androot(s;) € Fz, we writet = C[[s1,...,s,]] and
theory typically describes the properties of the primigiand we say thatsy, ..., s, are the alien subterms of Note that
defines what an attacker caieducefrom a set of messages,C andsy,..., s, are uniquely determined and th@tcannot
represented by a frame. the empty context (at least the root symbolta$ in C).

Definition 1 (deduction):Let ¢ be a frame. We say thate We define a function dollapse’ which associates to any
7T (F) is deducible fromp with reciper € 7 (F\N,dom(y)) termt a collapsedterm s such thats =g ¢t. The collapsed
in the equational theorf and we writep ¢ ¢ if r¢ =g t. If  version of a term serves as a kind of “normal form” of the
E is clear from context, we write only” instead of-f. If we term.
are not interested in the exact value of the recipave also

write kg or I (if the equational theory is clear from context).C[Deflnltlon 4 (collapse):It & = Cffts,... 1] and

collapse(ty), ..., collapse(tn)] = Dl[s1,...,sk]], then
Note that we assume that during the deduction phase thélapse(t) is defined recursively as follows:
intruder does not have access to the infinite set of namesy) if

This is not a restriction in our case, since we will only allow Dngs, s s | =E nys,)_
positive tests in processes; so the intruder can simply oge a , - o TE
term in place of the names. for somej, then

Example 1:Let Fpy = {f,g,magn;} UN be a signature collapse(t) = s;

where f and g are of arity 1 whilemacis of arity 2 andn;
is of arity O (»; represents a public data). Together with the
equational theory

If there are several valugswhich satisfy the condition,
we choose the minimal sugh The choice ofj does not
influence our results, but it makes the functiarlapse
Eon = {f(9(),2) = f(g(x),y)} determined, which eases the proofs.

) . 2) otherwise, if there exists no sughwe define
the function symbolsf and ¢ model the Diffie-Hellman

primitives (f(z,y) = 2Y mod p, g(y) = oY mod p for a collapse(t) = C|collapse(ty), ..., collapse(t,)]
generatory) while macdenotes a keyed hash function. If ¢ — collapse (), then we say that is collapsed.

Let o1 = {w1 — g(a),wy — g(b),ws — c} where
a,b,c are names. Them, L") f(g(c),a) but o, Hey, Proposition 1: All alien subterms of a collapsed term are
f(g(a),b). > collapsed.

] ] . Proof: The proof can be found in Appendix A. |
Example 2:A classical example is the modeling of sym-

metric encryption. LetF.,. = {decencm;} UN be a Lemmal:let &, = C[s1,...,s)] and tp =
signature wheredec and enc are of arity 2 and representDP[[s1; - - -, s]]] be two collapsed terms. Let € {a,b} be
respectively the decryption and encryption operater.is of Such thatroot(C') € Fi. If root(D) ¢ Fj. thenty #e,up, t2.
arity 0 and represents some public data. As usual, we mbyoot(D) € Fi, then:
write {m} instead ofendm, k).

The standard property of symmetric encryp-
tion/decryption is represented by the equationdtheren, _ are names not appearing i or t,.

t1 =g to iff tl{Sj — n[sj]:E} = tg{Sj — n[sj]:E}

theory Eee = {dedendz,y),y) = z}. Let Proof:
0o = {wy — {ki}p,, w2 — ko,ws — {ks}r, }, where The proof follows from Theorem 9.4.2, Chapter 9 (Combi-
k1, ko, ks are names. Thep ,_(éedwswde¢W1=w2>> ks. nation Problems), Page 216 from [22].
-enc .
Lemma 2:1f sq,...,sk,5),...,s; are collapsed terms with

B. Combination of equational theories
q - ) the root symbols fron#, andC, D are both pureF;-contexts,
To prove our composition result for security protocols, Wge have that

make use of some notions and results in term rewriting for
disjoint equational theories. We recall here these noters Cls1,---,5k) = D[sy, ..., 5]]
results.
Let 7, andF;, be two disjoint signatures and |Et, andE,
be two nontrivial equational theories ovg&}, and respectively C[n[sl]:E, e ,n[Sk]:E] =E D[n[sg]:E, _ 7”[5/]:E]

1



Proof: By case analysis on the definition efllapse and P—vr-R z ¢ don(o) n fresh
application of Lemma 1. m NEw

(P,p,0) = (R, 0,0 U{x — n})
Lemma 3:If ¢1,t5 are collapsed terms such that=g ts,
we have thatoot(t,) € F, iff root(ts) € Fy,. P=in(z)-R pH"t x ¢ dom(o)

: INPUT
Proof: T
P, R,p,0U t
Immediate by Lemma 1. (Brp,0) = (RopoUte = 1))

. ASSGN P=(z:=1)-R x¢domo) vargt) C domo)
(P,p,0) — (R,p,0 U{x — to})

C. Process algebra

Definition 5: Processes are defined inductively as follows: oytput P =out(t) R vars(t) € dom(o)

(Pv P 0) - (Ra pU {w|d0ﬁ(§0)|+l = tU}a 0)

P,Q.R... ::|: 0 processes ; P=[s=t]-R so=gto vargs,t)C domo)
EST

[ forze X (P, p,0) = (R, p,0)

| in(x) forzr e X .

| (I = t) for S X?I g Vars(t)7 P = (QO | Ql) ‘R (QOv@?G) - (Q67<p/70./)
te T(f\./\/, X) PARALLEL 5 ; —

| out(t) fOI’tET(]:\N,X) (PaSDaU)_’((Q0|Q1)'RaSOaU)

| [s=t] fors,t e T(F\N,X)

| (p . Q) Fig. 1. Operational semantics.

| (PlQ)

| P

The procesd does nothing. The process: binds = to
a fresh name. The procesa(xz) reads a term: from the
public channel, and binds to ¢. The assignment process - .
(z := t) instantiatesz with ¢. The procesut(t) outputs DH .Vy'(,)ut(g,]@) ' Out(maqg(y.)’jk)) infz)-
the term¢ on the public channel. The test procdss= ¢] in(') - [¢" = madz, ze)] - g2 1= fy: 2)
blocks if s #¢ ¢ and does nothing otherwise. The sequential The process’3,, models the first participant in an authen-
composition proces® - ) executesP followed by Q. The ticated Diffie-Hellman key exchange whilB3,, models the
parallel composition proce$® | Q) runsP and@ in parallel. second participant. The free variahtg should be previously
The replication proces$P will act as an infinite number shared by the two participants to ensure authentication.
of Ps in parallel. We may writev{x1,..., 2z} instead of
vry. - V.

When we write processes, we assume thahds strongest, We conclude this section by definina secrecy and freshness
followed by | and then by-. We assume that the variableﬁn u : : y defining y '

introduced byva, in(x) and (« = ) are bound throughout tuitively, a variable is secret if in any protocol exeaut;j its

sequential composition as far to the right as possible. We”‘]St"’mt"'jltlon remains not deducible.

identify processes up ta-renaming of bound variables and Definition 6 (secrecy)We say that a procesB preserves
up to the following structural equivalence rules: the secrecyf x € vars(P) in the equational theorl, and we
denote it byP =g Secret(z), if whenever

t1...tn

Piy = vz -out(g(z)) - out(madg(z),zs)) - in(z)-
in(z’) - [/ =madz, zx)] - y1 = f(x, 2)

Examples of process executions can be found in the next
section.

P=P-0=0-P

10=0 :
Plo=P (P,0,0) = (Q,¢,0)
PlQ=Q|P we have thatp /g zo.
(P1Q)|R=P[(Q|R)

\P=P[IP Definition 7 ( freshness)We say that a procesB guar-
T r antees the freshnessf » € varsg(P) w.rt. {y1,...,yx} C
The operational semantics is given by the transition m@tati varg P) in the equational theor§ if whenever
— and % (wheret a term) described in Figure 1. te ot
In the above semantic§,is a meta-variable denoting either (P,0,0) —* (Q,p,0)

the erﬁnpty‘strmg, in which casé:—n or a reciper, in which we have thatro ¢ y;0 for all 1 < i < k.

case—=->. et In the above definitions we assume that the variables in
The relation —* is defined as the reflexive and transitivéhe processes have been convenientlgenamed before ap-

closure of— U 5. plication of the definition. If the above definitions concern
Example 3:Continuing Example 1P,y = vy - (Py | P») variables appearing under replications, we assume that the

models for the Diffie-Hellman protocol where conditions hold for any of the variables denoted byand



resp.yi, ..., yk). This can be achieved formally by coloringwhere ¢ has been defined above and = {w; ~—

all bound variables with different colors; whenever a valga {k;},,ws — {k3}x,, ws — k1}. We havey’ F‘éfff”’”‘“’) Z0,

is a-renamed it preserves its color. We would then say thidus P, - Q2 J~g.,. Secret(z).

a certain color ¢ is secrewhen all variables colored with  So, in what follows, we will assume that the composed
c remain secret. As this technicality is not essential in oprotocols use disjoint primitives. In Section V, we extend

approach, we prefer to use the less formal version. our result to the case where the protocols may share some
primitives such as encryption and hash, provided they are
I1l. COMPOSING PROCESSES tagged.
A. Difficulties Key freshness.

Of course, two protocols?, Q cannot in general be (se- Itis important that shared variables (that are assumed to be
curely) composed in arbitrary ways. We illustrate seveagks fresh) are indeed instantiated by fresh values.
where composing two secure protocols yields an attack. ForAssume for example that a protoclis composed of three
readability, in this section we use the notatips}, for the Pphases:
termends, t). « it first generates a fresh key let Ry = vz;
« it then runs a sub-protocd? to establish some secrgt
o it outputs a fresh value if x = y:
let Ro = vz - [x = y| - out(z) - 0.
Then R is a secure protocol if is a fresh key:

Revealing shared keys.

If a protocol P is establishing a (secret) kek, then
a protocol @ using the keyk should not reveal it. This
would clearly compromise the security &f but it could also
compromise the security @. Ry -vk-(y:=k)- Ry |= Secret(z)

Assume for example that a protocB] (playing the role of o o
P above) generates two fresh (secret) datndy and reveals while it is not secure for all sub-protocoB establishing a

the encryption of: undery: secret keyy. Indeed, letP’ = (y := x). Thenvk-(x := k)- P’
' preserves the secrecy of the shared kdyt, becausg is not
Py =vz vy out({z},) fresh,

Note thatP, may computex andy in a more complicated Ry P’ Ry - Secret(z)

way, but we consider just the rather trivial case wherand |n what follows, we will see that the counter-examples men-
y are instantiated by fresh nonces for the sake of claritynTh@oned here are actually the only problematic cases. So We wi
Py preserves the secrecy of bothandy. Assume now that a require in our composition theorem that sub-protocols do no

processQ; (playing the role ofQ) above) revealg and uses introduce equalities between shared variables.
x for encrypting a secret:

Q1 = vz -out(y) - out({z},) -0 B. Composition theorem
In order to state our composition theorem in a general way,
we simply need to show that any execution trace on two
combined processes can be transformed into an executm tra
on one of the two processes. Then a trace of the composition
(P1-Q1,0,0) —=* (0,0,0 = {x+— ki,y+— ko, 2z +— k3}) leading to an attack can be transformed into a trace of one of
the individual protocols leading to an attack.
Whereﬁpd;(w{“ééq:’ 1;{/;)1}’@27“’2 — ko,w3 — {k3}r,}. W8 gjnce an execution trace involves only a finite number
havep g 7T 2o and thusPy - Qq e, Secret(z). of replications and determines the scheduling in parallel
Note that this attack works even i, and@, actually use composition, we simply need to state our main result on
different encryption symbols (thus even if they use digjoiinear processes, that is processes that contain neither parallel
signatures). composition nor replication. We say that a procesatdsnicif
Sharing primitives. it is linear and if it does not contain the sequencing operato

The interaction of two protocols using common primitiveés illustrated in Section IV, our theorem can of course be
may yield an attack, even if each of the protocols is secu@@Plied to compose processes with arbitrary replicatiors a

when executed in isolation. Indeed, consider again thegssocParallel compositions.

Thenva' - vy - (x := 2') - (y := ¢') - Q1 preserves the
secrecy ofz, while the compositiorP; - ), of both processes
does not preserve the secrecy:zofindeed

P, described above and 1€}, be a process that usasfor Let P = Py -...- P, be alinear process over, with free
encrypting a secret and outputsn for anym received under Variables{z,,...,xz,} where P, is an atomic processl (<
the encryption ofy. i <n). LetQ =Q1-... Q. be alinear process ovef,

with free variableqy., . .., y,} where@Q; is an atomic process

Q2 = vz -out({z},) - in(z’) - out(dedz’, y)) - 0 (1 < i < n). Intuitively, the free variables of) are established

by P and conversely, the free variables Bfare established

Thenva' -vy' - (x:=2") - (y :=y') - Q2 preserves the secrecy,
of z, while the composition”; - Q2 of both processes does
not preserve the secrecy of Indeed

by Q.

Let R = Ry - ... R,y be aground interleav-
. ing of P,...,P,,Q1,...,Qm, that is fv(R) = ( and
(P1-Qa,0,0) =*2 (0,4, 0) {R1,...Rpim} = {P1,...,Py,Q1,...,Qn} (@as multiset



equality). We conside?’ a copy of R where the shared shared variable as well. It will be used in the next section
variables of P and ) are duplicated. More precisely, letto conclude that one of the two procesder ) (executed
R =R} -...- R}, be such that alone) reveals one of its (shared) variables thus is notreecu
1) R, = Pj{x — 2°} if R; is P; for some; and wherer Indeed, assume w.l.0.g. th&’ reveals the variable?. Since
ranges over all variables iR; R corresponds td® executed in parallel (and independently)
2) R, = Q;{x+ 2"} if R; is Q; for some;j and wherer of @, the process§) can be entirely simulated by the adversary
ranges over all variables i@j thus P revealsy;, that isP b&E Secret(a:l-).

We consider an execution of the compositionffand Q. The second condition is important to be able to completely
separate the processésand @ in R”: as the variable:?
T1eo o' TE
(R.0,0) =" (S0.90,00) > (S,0,0) ()

(1 <i <p)andy? (1 < i < ¢) are instantiated in
) ) _ ) ) the processkR” by fresh names such that and yé’ receive
where§ is a recipery |f_ the last action was an input andine same name if ;0 =¢ y,0, it is important that such an
then empty string otherwise. . equality does not happen. Otherwise, the two processés stil
Assume w.l.0.g. thatr,...,z, are the variables from ghare data and therefore we cannot conclude about either of
{z1,...,2,} which appear iorm(oo) and thaty,, ..., yy are  them individually.

the variables fror{y, . .., y, } which appear irdom(oy). This We now prove Theorem 1
means thatc,...,zp,y1,...,y,y are the shared variables Proof:

which were instantiated before the last action of the exeout  cgnsider w.l.0.g. thatr is in collapsed form, i.ec(z) =
Let {2(s,00_, } @Nd{2y,0,)_, } b€ fresh variables and let collapse(o(z)) for all = € dom(o).

R" = v{Zpo0l_ i V20 ol e Let njp0)_ Ny, (1 <4 < p, 1 <5 < q) be fresh
Ii [: ;]’E}lg = ,x{a [yf:"]z”f}lg =1 names. LetV, (c € {a,b}) be functions on terms defined as
y% Z': Z[[w]:o]]:E . yzj : Z[[IP;U[])]:E. fO”OWS:
j yroi=e E Yo o0l=s 1) Ve(t) = mny_, if t = s for some s e
{z100,...,2p00,Y100,...,Ygy 00} androot(t) ¢ F,.

R” corresponds to an interleaving & and Q where P 2) f(Valt1),...,Va(ty)) if f € Fy, otherwise

and Q do not share any variablg anymore (since. they arene purpose o/, (resp.V;) is to replace the keys created by
duplicated) and where the previously shared variables afg process (resp.Q) with fresh names such that equalities

instantiated by fresh distinct names. Note that whenever tjorveen terms are preserved. We have tHalc € {a,b})
execution ofR instantiates two shared variables by the SaMfeserve equalities between terms: '

value (e.g.x;oc = zj;0) then the (duplicated version of) ~jaim 1: I t1,t are collapsed terms such that =¢ ¢,
x; and z; are instantiated ink” by the same fresh Name.then v, (1)) =¢ Vi (t2) (c € {a,b}).

This corresponds e.g. to the case where the same key IS prqof: The proof can bé found in Appendix B. -
distributed among several participants (thus is assiged t \ya \will now use the function®/, (c € {a,b} to construct

distinct variables).

the run in Equation 2 from the run in Equation 1.

We are now ready to state our main theorem which says thaLet o be defined as follows:

we can mimic onR” the execution trace dk (see Equation 1)
unlessP or Q do not preserve the secrecy or the freshness of

the shared variables.

Theorem 1:Assume g t/  t for any t €
{x10'07...,xp/O'Q,leo,...,yq/O'Q} and that.%'iUo 7éE Yjoo
for all x;,y,; € dom(oy). Then there exist’, ¢’, o’ such that

Tl-...~7’k-§

(R",0,0) —" (5.¢,0") )

and

1) if p - ¢ for somet € {z;0,y;0 | z;,y; € dom(o)}, then
¢ s for somes € {x?aﬂxfo',y}la’,ygo' | 2,y €
dom(o)}

2) if there existz;,y; € dom(o) such thatr;oc =g y,o
thenzfo’ =g y$o’ for somec € {a,b}

3) otherwise, ify F zo for some variabler € vars(P) N
dom(o) (resp.vars(Q) Nndom(c)), theny’ F z%0’ (resp.
o'+ zba’).

Intuitively, R is a composition of? and ) where the two

1) o' () = Va(o(2))

2) o'(2") = Vy(o(z))

3) o'/(z[miao]:E) - n[ziao]:E (1 <1< p/)

4) ' (21y,00_) = Nyiool, 1 <0< 4q)

Assumey = {wy — ti0,...,w; — tjo} (Wherew; — t;o
comes from an atomic procegs; = out(t;)). If R; comes
from P we lett, = ¢;{x — 2*} and if R; comes fromQ) we
let ti = t;{z — b} (wherex ranges over all variables if).
We definey’ = {wy — tho’, ..., w — tjo'}.

We proceed in two phases. IRhase 1 we show that
Equation 2 holds. IrPhase 2 we show that the Items 1, 2
and 3 from the conclusion are true.

Phase 1 We prove that the transition in Equation 2 holds
for the ¢/ and ¢’ that we have defined and for son$é we
do not care about. We prove this by induction on the number
of transitions in Equation 2. For each transition we do a-case
by-case analysis:

1) (tests work) if the transition is a te§¥/ = N| in R”
coming from Por (. We assume w.l.o.g. that it comes

process do not share variables anymore. Theorem 1 says that from P (otherwise conclude by symmetry). Th&h and

we can mimic onk” the execution trace d® unlessR reveals

a shared variable, in which cag®’ reveals some (duplicated)

N are purea-terms. We have to prove thatl’c’ =g
N'o’, where M’ = M{z — 2%}, N' = N{z — 2%}



2)

and wherer ranges over variables it/ and respectively
N.

By definition of M’, N’, ¢/ and V, we have that
Vo(Mo) = M'c" andV,(No) = N'o’.

Let Mo = CJs1,...,5,) and No Dlty,. .., t]
whereC, D area-contexts and, ..., s,,t1,...,t, are
b-terms C, D, s;, t; are uniquely determined &€ and
D might be_).

BecauseC' and D are pureF,-contexts, they contain
all of M and respectivelyNV and therefore it follows
that s; and¢; must be subterms af. Therefores; and
t; are collapsed by Proposition 1. AS[s1,...,s,] =
Mo =g No = D[t4,...,t,], we can apply Lemma 2
to conclude that

C[n[ ’n[su]:E] =F D[n[tl]:E’ e ’n[tv]:E] (3)

But M'ec’ = V,(Mo) = C[V,(s1),...,Va(sy)] and

N'd’ = VWW(No) = D[Vu(t1),...,V.(t,)] and, by

Claim 1, s; =g s; (resp.t; =g t;, resp.s; =g t;)

implies V,(s;) =g Vu(s;) (resp. Vo (t;) =g Vi(t;),

resp. Vo (si) =e Va.(t;)). Therefore, by applying the
substitutionr = {np)__ — Va(t)}, wheret ranges over
{s1,-. ., t»}, to Equation 3, we obtain

ClVa(s1), .-+, Va(su)] =g D[Va(t1), ..., Va(ty)]

which is exactly =g N'o’.

(inputs work) if the transition is théth inputin(x) in
R” (coming fromP (resp.Q)) we prove thatr®c’ =¢
rig’ (resp.x’o’ =g r;¢’), wherer; is thei-th recipe on

o
transition in Equation 2.

s1)ogr

.,Su,tl,..

the T
Assume w.l.0.g. that theth input in R” comes fromP
(otherwise conclude by symmetry). We know that=¢
r;p and we have to prove that'c’ =g r;¢’.
Definition 8: We say that a collapsed teris good if
one of the following conditions holds inductively:

a) t is a subterm o#r
b) t is deducible fromp andt¢ = E[[ty,...,tx]] for
some pure contextl and good terms, ..., tx

Let ¢ € {a,b}. Let r be a recipe ovep such that for
all strict (i.e. not itself) subterms’ of » we have that
o &e {z1,...,Tp, Y1, ..., Yg }O0. ASSUMe thaty &
{z1,...,Zp, Y1, ..., Yg too OF thatroot(ry) € F.. We
show by structural induction on (the pure layers of)
that

Claim 2: We have that
Ve(re) =g Ve(collapse(ry))

and thatcollapse(ry) is a good term.

Proof: The proof can be found in Appendix Bl
We are now ready to show that “inputs work”, namely
thatxo =g r; implies

%0’ =g i (4)
As the input we are handling is one of the transitions
in Equation 1, it follows thatr; is a recipe overpg

(because there is no transition aftey. Therefore, by

3)

4)

5)

6)

the hypothesisy; o = r;¢09 cannot be a shared secret in
(and neither can the subrecipesrgfinstantiated byp)
in{z1,..., 2, Y1, .., Yg }00-

By the definition ofs’ and ', we have that

%0’ =V, (zo)

(5)
and that
(6)

In Equation 6, it does not matter if we have aror a
b as the subscript of” sincer;p cannot be a shared
secret in{x1,...,2p,Y1,...,Yq }00.

From our hypothesis

ri’ = Va(rip) = Vi(rip)

TO =g TP
and asr;p =g collapse(r;) we have that
Va(wo) = Va(collapse (rip))
by Claim 1. But combining this last equality with
Va(collapse(rip)) =g Va(rip)
(which is immediate by Claim 2), we obtain
Va(zo) =g Va(rip)

We combine this with Equations 5 and 6 to immediately
derive Equation 4, which concludes the proof of this
item.

(news work) if the transition is somer in R”, we have
thato’(z) is a fresh name.

For processesz in R” but notinR, we have thato’ =
n_is a fresh name by the choice of.

For processesz® in R’ coming from P (for processes
va? coming from(@ the proof is analogous) we distin-
guish two cases:

a) eitherz® is a shared variable fronfy1,. ...y, },
in which caser®c is a name fromF,. Therefore
z%¢’ = xo by definition of ¢/. We know that
x%c’ = 27 is fresh with respect to the names
(by choice ofn ) and is fresh with respect with
the other names by Equation 1.

orz® is not a shared variable, in which caser’ =
xo is fresh by the same reasoning.

(outputs work) if the transition is thé&h out(¢) in R”,

we have thatw;.1¢’ = t'o’. This is immediate by
definition of ¢'.

(old assignments work) if the transition is an assignment
2 := t in R” coming from P (resp.®) we have that
e’ =¢ (t{y — y*})o’ (resp.a’o’ =¢ (t{y —
y®})o’), wherey ranges over all variables i

Let M = 2z, N =1, M = z% and N’ = ¢’ (resp.
M’ = zb and N’ = 2?). Then this proof can be seen as
an instance of the proof for Item 1 (tests work).

(new assignments work) if the transition is an assign-
mentz := ¢ in R” that did not come fromP or

Q: We show that forj € {1,...,p'} (resp.j €
{1,...,p'}) (i.e. for all assignments} = z(;,q,

b)

I



(resp. yJ = Z[y00)-.) IN R but not in '), we have (becausecollapse(ro) =g ¢ =g z;0). Therefore

thatzlo’ = Ny, oy_ . (resp. y o = = Nfy;00]—,)- x50’ =g Vi(collapse(ry)). But by Claim 2, we have
It is sufficient to prove tharoot(x o0) € Fp (resp. thatV..(ry) =g Ve(collapse(ry)) and thereforefo’ =¢
root(y;o0) € Fo), since then, by the definition of,, Vc(rgo). But V.(r¢) is, by the definition ofy’, equal to
we havez§o’ = np,q,__ (resp. Yo' = Ny00]—, ) We r¢'. Therefore we can chose= z§o’ =g r¢’ which is
prove something stronger by induction on the transitions  deducible and we conclude this ftem.

in Equation 1. 2) if there existi,j such thatz; € domo) andy; €

Let (R, (pl,O'l) (Rg,(pg,O’g) —2> §—n> (Rn,(pn,dn),
whereog; =0, p1 =0, R, = S, ¢ = pn, 0 = 7, and

dom(o) andx;o =g y;jo thenzfo’ =¢ yjcr’
By definition we havez{o’ = V.(z;0) and yj‘?a' =

§; is either some recipe; or the empty string, be the Vc(yja).- We immediately conclude. by Claim 1.
transitions in Equation 1. 3) otherwise, ify - zo for some variabler € vargP)
Definition 9: We say that a collapsed tertis i-good theny’ - z%0” (the case with) is symmetric) _
if one of the following conditions holds inductively: Letr be_a recipe foro. As_no shared secret is deducible
a) there existsz € {x . AN (otherwise we would be in the case of Item 1) we can
dom(o;) such thatt — xclr’ s TR Yo Y apply Claim 2 to obtain that
b) ¢ is deducible fromp; andt = C[[t1, ..., #]] for Ve(ro) = Ve(collapse(ro)).
somei-good termsty, . . ., tg.
Claim 3: For i € {0,...,n}, we have that By definition z0’ = Vi(x0). B}Jt Va(zo) =k
collapse(w; ;) (for all w; € dom(y;)) is an i-good Va(collapse(re)) =e Va(re) = ry'. Therefore we
term andzo; = C[s1,...,s,] (for all z € dom(a;)) obtainz®c’ =g r¢’, which meanse®c’ is deducible.
for a pure (possibly emptyy.-contextC' andi — 1- [ |
good termssy,..., s, (with root(s;) € Fz), where

c=ualif z € vargP) \ {z1,...,2p} @andc = b if
zevardQ) \ {v1,---,Yq}-

Proof: The proof can be found in Appendix Bl Theorem 1 is our key result for composing processes. We
Now it is easy to prove thabot(z,;0) € F, (1 < j < list here some other useful (and rather straightforwarsi)ite

C. Some further useful lemmas

p). Indeed, assume w.l.o.g. that, ..., z, appearinc that we will use to show how to securely compose processes.
in this order. Theorem 1 is stated fdinear processesGiven an arbitrary
We prove by well founded induction oh < i < p/ processP we say that); - ...- Q. is alinearizationof P if

that root(z;0) € J,. Suppose by contradiction thatp & p, % % p where the transitions> are defined in

root(z;o) € F,. Then, by Claim 3, we have thatoc  Figure 2. Intuitively, a linearization oP is a symbolic partial
is aj-good term. Asz,;o is not deducible frompy (by trace of P.

hypothesis), it follows that we are in the first case of \we denote byL(P) the set of linearizations of?. It
the definition of j-good and therefore there exists antuitively consists of the set of all possible interleayifor
shared variabler; (1 < j <4) ory; (1 <j < ¢) the executions of>. We will use this set for reasoning about

appearing before; such thatr;o = o Or z;0 = y;jo.  protocols containing parallel composition and replicasio
But the second case is impossible by the hypotheS|s

of the theorem (freshness of w.rt. y ). Therefore

z;0 = xj0 With j < ¢ and therefore we obtained a P=vx-R INPUT P=in(z) R
diction (by applying the induction hypothesis, we NEw Ve in(g)
contradic y applying yp , PER P R
have thatroot(x ;o) € F3).
Phase 2 We have shown in Phase 1 that Equation 2 holds P=(z:=t)-R P=[s=1-R
for our definition ofo’ and’. We show now that each item ASSGN——————— TEST ——————
x:=t [ ]
P'= R P =R

in the conclusion of the theorem holds.

1) if ¢ -t for somet € {z10,...,2,0,y10,...,y40}, P —out(t)- R

theny’ - s for some OuUTPUT — 1\ 7%

PR g
se{xlo, ... ,IZO’I, b’ ... ,xgol
y?ala"'ayqa7ylala'--aygal} P:(Q0|Q1)R QOéQ’O
PARALLEL -

Suppose- is a minimal recipe such thaty is a shared pi Qy | Q1

secret. Then none of the subrecipes:pinstantiated by

¢, can be shared secrets{imi, ..., 2y, y1, ..., Yy }00. Fig. 2. Linearization.

Assume w.l.0.g. that the shared secret istam =g rp.

Let ¢ be such thatOOt(W) € Fe. A process P preserves a secret if and only if all its

We know thatzfo’ = V.(x;0) by definition. We also jinearizations preserve the secret.
know by Claim’ 1 thatV, (x o) =g Ve(collapse(rp))



Lemma 4:Let P be a process. Then for any equational Definition 10: We say that? bindsx if P = P,-Ps-...- P,
theory E, P =g Secret(z) iff for all @ € L(P) we have andP; € {in(z),z :=t,vz} for somel < j < n and some
that @ =g Secret(z). termt (note thatPy, ..., P, are not necessarily atomic).

Proof:

. . " . Theorem 2:Let P = vky -...-vk, - (P, | P») be a process
By induction on the number of transitions and case analyscl)sv.er]__a and 1etQ = vk - (zx = k- Q1 | g = k - Q») be a

process overF;, such that:
One can also notice that if a protocol reveals a secret then, p, pindsz, and P, bindsy;

it a fortiori reveals it when projecting two names on a single , fy(pP) = ), fv(Q) = 0 andvarg P) Nvars(Q) = {zy, yx}

one. o P =g, Secret(xy) and P =g, Secret(yx)
Lemma 5:For any equational theotly, if vy - vy - P [ o @ |=e, Secret(zy) andQ |=e, Secret(yg).
Secret(x) thenvz; - x9 := x1 - P g Secret(z). If Q =g, Secret(x,) thenW = vky -... vk, - (P1-Q1 |
Proof: Py - Q2) = Secret(xy).

By induction on the number of transitions in the trace

. . Intuitively, the protocolP corresponds to two roleB;, and
leading to the revelation af. y P P !

P, that establish a key stored respectively in;, for P, and

We also need to show that, when mounting an attack &myx for P». Then each of the two roleQ; and Q» of Q@
a processP on the signatureF,, the adversary is not moreuses respectively its version of the key. Theorem 2 ensures
powerful when using the combined theaBy, U E,. This is that the protocolP can be safely abstracted by the generation
captured by the following lemma. of a single fresh key, distributed among the participants.
This result could easily be extended to an arbitrary number

Lemma 6:1f P is a linear process ovef, and of roles. Note that); and Q> may contain replications thus

(P,0,0) _§>1E (P1,¢1,01) —§>25 o _§;LE (Pa, ons0m)) the keyk may be used in several distinct sessions.
Proof:

then If ¢ € {a,b} and if P is a process, we denote by° the

81 VAN 8, ro process in which any occurrence of a variables vargP)

(P.0,0) =&, (Pr¢hs0n) —e, - (o s 0n)) has been replaced by the variabte #

for somey;,, o], and§’ such thatp,, g zo, implies ¢/, g, We do a proof by contradiction. We assume th#t g
xo, and xo, =g yo, implies zo] =g, yo,, for all z,y € Secret(x,). Then, by Lemma 4, we have that there exists a
dom(oy,). linearizationR of W such thatR [~ Secret(z).

Note that this lemma relies on the assumption we madel? is then a ground interleaving of a linearizatifh € L(P)
that E, is not trivial (it does not equate all terms). Otherwis@nd a linearizatiorQy € L(Q1 | Q2). We denote byR' the
E, U E, would be trivial and therefore all terms would besame ground interleaving df§' and Qg.
deducible. Even though the intuition behind this lemma is AS I [~ Secret(z;), there is a trace
straightforward, the proof is rather technical (presenited

§ ] §m

Appendix B) (Ra @7 (Z)) _1> (R17 901,01) _2> el T (Rm7 Pm, Um)

From the above lemma, we immediately obtain: such thatpy, - 2500

Corollary 1: If P is a process overF, and P |=¢, Let 1 <[ < m be the first index such that, - zxo; or
Secret(x), then P |=¢ Secret(z). ¢ Fyror OF @ x50 .

We can then apply Theorem 1 to obtain that the process
IV. APPLICATIONS R = v{za, 2} - (2} = 20) - (4 == 2) - R

We now show how to apply our composition theorem irevealsz¢, y¢, 2%, y? or 2% in the equational theor§. (We

several contexts. do not know ifz, andz;, are the same variable). In either case,
by Lemma 5, we have that

A. Key-exchange protocol R" = vk’ (a8 = kb) - (40 := k*) - R

It is often the case that a security protocol is verified W oa b b b

assuming that some keys are already shared between rméeals:v/,f/, Yk Th» Yp, OF T o
principals, abstracting away from the process by whichehes bBUt R is an//llnfcerlea_\vmg of some Ilnearlfanon 6f* and
keys have been established. We can use our result to show fAat ThereforeR” is a linearization ofP* | Q”.

if a key exchange protocol was used to establish a shared key hereforeP? | Q" revealsaf, yi, 2, yj, or . Assume
and if the two protocols use disjoint cryptographic prines, £ | Q revealsey or y;i. SinceP” andQ" share no data”’
their composition is secure provided that neither the k&R be simulated by the adversary and titisi“e Secret(z)
exchange protocol nor the main protocol reveal the estadis fOr some z € {zf, yi}. If P* | Q" revealszy, y; or
keys. 2%, we similarly deduce that)® g Secret(z) for some

, . - bbb :
To state our result, we first need the following definition: 2 € {1, Y, %5} By Corollary 1, we obtain that> g,
Secret(z) for somez € {xy,yr} or that@ g, Secret(z)



for somez € {xk,yr, xs}. In both cases, this contradicts the [ ]

hypotheses. We thus deduce thit=g Secret(z). Example 4:Consider the proces#py defined in Exam-

ple 3, over the signatur&py. Consider any other protocol

B. Secure channels Q=vyr (Y1 =yr Q1] y2:=yr Q2)

Another composition scenario is when a protocol is provafRat models a protocol in which a participapt sends a secret
secure assuming some secure channels, that is, assuminghao the second participant using a shared kgy Assume
some secret key is established on the fly. We show thatt Q is defined over the signatutg,,. and thatQ =, .
the secure channel can be implemented by any sub-protogdret(z,). Then the sequential composition &by and Q,
provided that neither the main protocol nor the sub-prdtoc@here Ppy is used to establish the shared key used)iris

reveal the key. defined by
Theorem 3:Let P = vky -... vk, (P | P2) be a process L )
over F, and letQ =!(vk - (zy ;== k- Q1 | yx := k- Q2)) be a W = vz, (Pon - Q1 | Pou - Q2)
process overr;, such that: Applying Theorem 2W |=g,,0E... Secret(z,), that isTW
1) P, bindsz; and P, binds y; does not leakr; in the theoryEpy U Eepc.
2) fv(P) =(Q) =10
3) P =g, Secret(xy) and P =g, Secret(yx) V. TAGGING

4) Q e, Secret(zx) and Q [Fe, Secret(yy) andQ e, Tagging is a syntactic transformation of a protocol in

Secret(zs) order, for example, to make it more resistant against adtack
ThenR = vk ... -vky!(Pr- Q1 | P2+ @2) [=e Secret(zs).  Many ways to tag protocols have been proposed in different
Compared to Theorem 2, the two rol®s andQ, now use contexts, e.g. for composing protocols [11], [13] as diseds

a different keyk in each session. in introduction, to facilitate their analysis [23], [24] dD
Proof: prevent type-flow attacks [25]. Typically, tagging a seturi
We prove the result by contradiction along the same lines B&tocol consists in appending a tag (e.g. a number, a nonce
the proof of Theorem 2. We assume th&t j-g Secret(z,). O @ protocol identifier) to each plaintext before encryptin
Then, by Lemma 4, we have that there exists a linearizati§rand removing the tag after decryption. Tagging a protocol

R of W such thatR g Secret(z,). does not introduce additional attacks in the protocol, &hil
Ris then a ground interleaving of a linearizati&h c L(P) Preserving its commucation goals.
and a linearization)o € L(!(Q; | Q2)). We denote byR’ the In the previous sections, we have shown how to compose
same ground interleaving df¢ and Q}. protocols which do not share cryptographic primitives.Hist
As R £ Secret(zs), there is a trace section, we show that protocols which do share common cryp-
i i i tographic primitives, such as encryption and hash funstion
(R,0,0) L (Ry,1,01) = ... iy (Roms ©ms Om) can also be securely composed in the same manner, as long

as the two protocols are tagged differently.
Let 1 < | < m be the first index such that, - a0, or Our proof technique relies on our previous th_e_orems, in
that we show that an attack against the composition of two
1t ykot O pu - Tso1. differently tagged protocols can be transformed into aacktt
We can then apply Theorem 1 to obtain that the process ytagged p : .
where the protocols use different encryption and hash func-
R'=vzg,zp- (af = 24) - (Y == 2) - R’ tions. Therefore, tagging essentially enforces the digjass
revealszf, yi, o}, yj or z7 in the equational theorft. (We o I;T/Zr:v:ﬁo%roao\?vc:s. rove this only for symmetric encryption
do not know ifz, andz, are the same variable). In either case 9 P y y yp

and hash functions, our techniqgue can be extended in a
by Lemma 5, we have that . T
straigtforward manner to other usual cryptographic piireg
R" = vk’ (2% = kb) - () = k") - R such as asymmetric encryption and digital signature. Other
cryptographic primitives can pose more problems (for eXamp
it is not obvious iffhow theeXclusive ORcan be tagged). It
is an interesting open problem to give a generic definition of
tagging and characterize which cryptographic primitivas c
be tagged.

such thatp,, b zs04,.

revealsz¢, v, x4, y? or 2b.

But R" is an interleaving of some linearization &f* and
QY. ThereforeR" is a linearization ofP? | Q°.

ThereforeP® | QP revealsz?, y¢, z%, y> or z%. Assume
P | QP revealsz¢ or y¢. SinceP* andQ® share no datap®
can be simulated by the adversary and tfisig Secret(z) We consider protocols over the signatutBycn =
for somez € {z¢,y¢}. If P* | QP revealsz}, y? or {encdegh} whereencanddecmodel respectively encryption
2%, we similarly deduce that)® [4g Secret(z) for some and decryption and are of arity 2 ahdnodels a hash function
z € {zf,yb,2%}. By Corollary 1, we obtain that” {~¢, and is of arity 1. We also consider the signatuse, , =
Secret(z) for somez € {xy,yr} or that @ Fsg, Secret(z) {eng,deg,h,} and ]—"fnc,h = {eng,deq, h,}. We consider

for somez € {xx, yr, xs}. In both cases, this contradicts thehe associated equational thedty,. defined in Example 2
hypotheses. We thus deduce thEt=g Secret(z). and the equational theori€¥, . = {dec,(enc,(x,y),y) = =}
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andEb, . = {deg(eng(z,y),y) = =}. The signaturesr?

enc enc,h

and F;, . together with the associated equational theories
EZ can be considered to intuitively model different

Example 6:Continuing Example 5, we have that

andE® H(deg,(z,y)) = untag,(dedx, y)))
implementations of the encryption/decryption/hash fioms. and that
In order to define tagging, we first consider the signature testé (untaa (d o
renaming transformation® (¢ € {a,b}) which assigns to es [,Ezn ?l?;]iaecgi():z) _))) — dedz,y))-
a protocol P over Fenn @ protocol P¢ (¢ € {a,b}) in [engc?dec(a:gl) );y] Y
the signatureF | such that the two protocols are identical W)=
modulo bijective renaming of functions symboén( decand Finally, we have that
h are transformed int@nc, dec¢. and respectivelyh. and [1Pa[] = vy - i o
. 1ee. ; ; = vy - in(z) - [tag, (untag, (deqx, )))) = ded, )]-
tphrgtct)réa\c:)s'formatlon is extended homomorphically to theérent lenddedz,y),y) = x] - out(untag,(deqz, y))).
_ . " Note that before performing the decryption, the process
Example 5:1f P = vy -in(x) - out(dedz, y)), thenP* = 1 pa)j yerifies that the received term is a valid encryption and

v(y) - in(z) - out(dec,(z,y)). that the underlying plain-text has been correctly tagged.

For ¢ € {a, b} we consider aagging function symbol tag
and anuntagging function symbol untagcontained in the

signature. = {tag,, untag } (where both function symbols theories. It allows us to reduce the security problem fdiedif

have arity 1)h TEe role (')I'f theall% flﬁnCtion Is totag itds_ ently tagged processes to the security problem for prosesse
argument with the tag:. Typically, this means appending,nich yse disjoint equational theories. It states thatef¢his

¢ to_the arg.ument but the precise imp!gmentation of t attack on a composition of two differently tagged protsco
tagging function does not need to be specified. The role of t ?DaH and [|Q"|}, there is an attack on the composition of

untag, function is to remove the tag. To model this interactiof} . <, me protocols before tagging“( and Q"), where the

betweentag, anduntag, we consider the equational theorie%ncryption and hash functions come from disjoint equationa
E. = {untag,(tag.(z)) = =} (for ¢ € {a,b}). theories.

If A € {in(x),out(t),ve,x := t,s = t} is an atomic
action overr,, , (with ¢ € {a,b}), we let[|A]] be a linear |

process overFen.n U F. denoting thec-tagged version of4,
defined as follows:

Our next lemma shows why tagging two protocols is es-
sentially the same as forcing them to use disjoint equaltiona

Lemma 7:Let P and @ be linear processes ovV&fenc h.
t W be an arbitrary interleaving d?* and@Q® and letR =
[[W]]. If R revealsz thenTV revealsz.

Proof:
The technique is to transform a trace leading to an attack
[lin(z)|]] = in(z) on R into a trace leading to an attack &#. The proof can
[lout(t)]] = tests(H(t)) out(H(t)) be found in Appendix C.
[lvz)] = vx m
[lz:=t]] = test$(H(t)) z:=H(¢) . ) .
ls=t] = tests(H(s))-tests(H(t)) -z := H(t) Furthermorg, we have that if a protocol is secure then its
c-tagged version is secure.
whereH(t) tagsthe termt¢ with ¢ as defined below: Lemma 8:If P is a protocol overFe,n, then P =,
Secret(z) implies [| P¢|] Ee.,.ue, Secret(z).
H(enc(t1,t2)) = endtag.(H(t)), H(t2)) The proof of this lemma can be found in Appendix C.
H(deG.(t1,t2)) = untag.(deqH(t1), H(t2)))
H(h.(t1)) = h(tag.(H(t1))) We can now state a generic theorem, in the spirit of
H(u) = wu if uis aname or a variable =~ Theorem 1, but for tagged protocols.
Let P =P, -... - P, be a linear process ov&fe,cn With

and Wheretest§(t)_ is a sequence of _tests which ensurg .o variablegz, ..., } whereP, is an atomic procesd (<
that every decryption and every untagging performed by tflw% n). LetQ = Q1 - ... Q. be a linear process ovefun.n
protocol is succesful: — ,

with free variableqys, . .., y,} whereQ; is an atomic process
(1<i<n).
test§(endty,tz2)) = test$(t) - tests(iq) Let R = Ry - ... R4, be a ground interleaving of
tests(h(t1)) = test$(ty) [P, [P, [1Q8 ) - - -5 [IQL,]]. We considerR’ a un-
tests(tag.(t1)) = test$(ty) tagged copy ofR where the shared variables &f and @
tests(dedty,t2)) = [enddedty,ta),t2) = t1]- are duplicated as in Theorem 1 such thiatand (Q access
tests (1) - test$(¢2) disjoint variables. More precisely, 1€t = R} -...- R, ,,, be
test$(untag.(t1)) = [tag.(untag.(t1)) = t1] - tests§(¢;)  such that:
tests (u) = 0 if uisaname or a variable 1) R, = Pj{z— a°} if R; is [|P?|] for some;j and where
The transformatior{|_|] is extended homomorphically to T ranges over ab” variables lﬁ:j _
composed processes. 2) R} = Qj{x 2’} if R;is[|Q7]] for some;j and where

x ranges over all variables i@ ;
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We consider an execution of the composition[|dt*|] and We can also use Theorem 4 to prove tagged variants of

[IQ]) in the equational theore,. U E, U Ey. Theorem 2 and Theorem 3:
A Theorem 5 (Tagged version of Theorem Rgt P = vk, -
(R.0,0) = (So,0.90) > (S.,0) (7) .. vha- (P | Py) andQ = vk (= k- Q1 | yp == k- Q2)

. . : . . be processes oveF, such that:
where§ is a recipery if the last action was an input and P enc;h

then empty string otherwise. 1) Py bindsz) and P, bindsyy,

Assume w.l.0.g. thatr1,...,z, are the variables from 2) fV(P)=0,f(Q) = 0 andvars(P)"vars(Q) = {w, yx }
{x1,...,x,} which appear ilon{o,) and thatyy, . .., y, are 3) P =k, Secret(zx) and P |=g,, Secret(yy)
the variables fromy,, . . ., y,} which appear imon(op). This ~ 4) @ [Fe... Secret(xy) and @ |=g,,. Secret(yy) and

means thatci,...,z,,y1,...,y, are the shared variables Q Fe.,. Secret(zs)
which were instantiated before the last action of the exeout  Then W = vky - ... - vk, - ([|P2] - Q%] | [|1Ps]] -
Let {2(z,00)_, } @Nd{z(y,5,]_, } be fresh variables and let [|Q}|]) k=e.,..ue, uE, Secret(s).
R’ = V{Z[mwo]:E}lgz‘Sp' 'V{Z[ymo]:E}lgigq“ Theorem 6 (Tagged version of Theorem Bgt P = vk -
T = Zayogloy e Ty i 2w o0)o ... vk \(Py | P;) be a process oveFe,., and letQ =
Y= 2ol et Y = o), (k- (== k- Q1 | yr := k- Q2)) be a process oVeFench
R such that:
Then we have: 1) P; bindsz; and P, bindsyy

: 2) W(P) =(Q) =0
Theorem 4:Assume g t/  t for any t € 3) P k¢, Secret(z,) and P =g, Secret(yy,)
{z100,..., 200, 4100, . .., Yy 00} @nd thatr; oo #e,, e, UE, 4) Q Eg, Secret(zr) and @ =g, Secret(yr) and Q g,

%7-1001 fcl>r IaII Ti Yj Eh dom(og). Then there exist Secret(x,)
oo ry, ..., 1, § such that . X .
I Then R = vki - ... vk AP - QlQUN T (2] -
w00 T (5 o @ [ Fenoee, Secret(x.).

Theorems 5 and 6 allow us to securely compose key-
exchange protocols which make use of symmetric encryption
with protocols which use the exchanged keys, as long as
the two protocols are tagged differently and if they obey the
security requirements detailed above.

is a run in the equational theoB,. and such that:

1) if ¢ - ¢t for somet € {z;0,yj0 | z;,y; € domo)},
theny’ bg,, s for somes € {0’ 2b0’ y50’, ybo’ |
z1.y; € dom(a))

2) if there existx;,y; € dom(o) such thatr;o =g, y;0
thenzio’ =g, yjo’ for somec € {a, b} We have seen that Example 7 explains the need to tag

3) otherwise, ifp I~ zo for some variabler € varSP) N the encryptions in order to obtain secure composition. One
dom(o) (resp.varQ) N dom(o)), theny’ e, 2°0"  might think that tagging encryptions is sufficient to enstime
(resp.¢’ Fe,, 2’0’). security of the composition and that it is not necessary go ta

In this tagged setting, the above theorem intuitively statd'e hash function as well. Unfortunately, this is not truee W
that any trace on the tagged composition of two protocols c§Rd this section on tagging by an example which illustrates
be transformed into a trace of the un-tagged composition, By t2gging is necessary for the hash function as well.

where the two protocols no longer share secrets. Example 8:We consider the processes

Example 7:We illustrate the above theorem with an exam-

ple where the untagged composition of two protocols is not P = vz -out(h(z))
secure. However, using the theorem, we can conclude that the
tagged composition is secure. an
We consider the processes Q =vz-in(y) - [y = h(z)] - out(z).
Py =vx-vy-out({z},) We have that the protocdt does not reveat. The protocol

vx - @ reveals neitherz nor x. However, if P is used to

and instantiate the variable for @), we have that
Q2 = vz -out({z},) -in(z') - out(dedz’,y)) - 0 P - Q £~ Secret(z).
previously defined in Section IlI-A. We have seen that - By Theorem 4, we have however that the tagged composi-

vy - (z:=2")-(y :=y')- Q2 preserves the secrecy of while i does satisfy the secret of
the sequential compositiaf; - Qo (whereP; is used to create

the keysz andy) does not preserve the secrecy:zof [[P]] - [|Q°]] k= Secret(z).
However, the sequential compositidiPy|] - [|Q5]] does
preserve the secrecy efby Theorem 4.
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VI. RELATED WORK for securely composing protocols in the appliedsalculus.

There are two large classes of models for studying tHéis involves defining for each sub-protocolideal function-
security of cryptographic protocols. On one hand, therdtae ality and then showing that a certain implementation securely
Dolev-Yao (also called symbolic) models, in which messag&&ulates the ideal functionality.
sent over the network are represented by terms and the attack Another line of work is represented by the Protocol Com-
is modeled as a deduction system. On the other hand, thegsition Logic [16], which can be used to modularly prove
are the computational (or cryptographic) models, in whickecurity properties of protocols using a fixed set of privesi
the messages are bit-strings and the attacker is an aybitréy order to safely compose two protocols, one has to check
probabilistic polynomial time Turing machine. that each protocol satisfies some invariant used in the isgcur

Our result clearly belongs to the first approach. One of thg0of of the other protocol. While offering more flexibiljtthis
first papers studying the composition of protocols in the syrffiteria is not syntactic and needs to be checked each time by
bolic model is [11]. In this paper, Guttman and Thayer shofiand.
that (in the formalism of strand spaces [26]) two protocols As opposed to [11], [13], [12], [15], [16], our result allows
which make use of concatenation and encryption can be safégt only the standard cryptographic primitives like enciyp
executed together without damaging interactions, as ssona@d hash functions, but arbitrary primitives expressibde a
the protocols are “independent”. Also, an assumption isenagquational theories. Furthermore, unlike [13], [14], oesult
that all keys are atomic and not generated for example Bjfows to compose protocols asymmetrically (i.e. not jumst i
hashing some message. The independence hypothesis seq@iaéallel). The main difference between our approach anfl [27
in particular that the sets of encrypted messages handledi®ihat we do not need to prove anything about the protocols we
the two protocols be disjoint. This is a semantic hypothesie trying to compose except standard reachability prigsert
on all possible executions of the two protocols which need#s particular, we do not have to provide a key exchange
to be checked by hand. functionality and prove that an implementation satisfids th

In [13], Cortieret al show that tagging is sufficient to avoidfunctionality. However, [27] can be used to reason about
collusion between protocols sharing common keys and makipgptocols which do share primitives.
use of standard cryptographic primitives: concatenatsigy, In the context of computational models, Canedti al.
nature, hash functions and encryption. This frameworkaalo have developed the Universal Composability framework,[17]
to compose processes in parallel; however, it does not alowdesigned to allow composition. In this framework, @leal
securely compose e.g. a key exchange protocol with anotifignctionality is defined and a specific protocol is shown to
protocol which makes use of the shared key. In particulés, timplement this functionality securely. Then this protoowy
is because the shared keys should never appear as paylodus.securely used instead of the functionality. This apgroac

In [12], Guttman provides a characterization which ensurés compositional in the sense that the protocol can be safely
that two protocols can run securely together when sharinged instead of the functionality in any context (possihbide
some data such as keys or payloads. The main improvemetfter protocols/functions). However, as pointed out in][18
over [11] is that keys are allowed to be non-atomic. Thilis framework does not allow priori to compose protocols
characterization is syntactic but has to be computed foh eagharing data such as keys. Some specific results have been
pair of protocols. As cryptographic primitives, the praitsc further developed in order to allow composition with “joint
are allowed to contain encryptions and concatenations. Tétate” [18]. These results allow e.g. several sessions of a
proof method in our result is roughly similar to the prooprotocol (sharing common data such as keys and random
methods described here: an attack against the compositiorains) to be considered independently (each session having
transformed into an attack against one of the two protocoldresh keys and randomness). However, the shared data have to

In [14], Delauneet al use a derivative of the applied-be used in the same manner in each copies. It is not possible
m calculus to model off-line guessing attacks. They shofer example to use this approach for composing a protocol
that in the passive case resistance against guessingsttackhat uses a key for encrypting date with a protocol that uses
preserved by the composition of two protocols which shage tthe same key as payload (even if the key remains secret), as
weak secret against which the attack is mounted. This resitlis done in our work.

(in the passive case) holds for arbitrary equational tlesori
However, for the active case this is no longer the case: it is
however proven thataggingthe weak secret enforces secure
composition (in the sense of guessing attacks). Again, thisWe have proven that protocols can be securely composed
framework applies to parallel composition only_ provided that they use primitives modeled by disjoint equa-

Modersheim and Vigano [15] have proposed a framewotional theories or provided that their common primitives ar
for composing protocols sequentially. They propose arwoite tagged encryptions or tagged hash functions.
for a protocol P, to safely useP, as a sub-protocol (for Our result is a generic composition result: any trace leadin
implementing a secure channel). However, their criteria i to an attack on the composition of the two protocols is
semantic criterion, for which no decision procedure hasmbetransformed into a trace that leads to an attack in one ofithe i
provided yet. dividual protocols, even if the two protocols share secsath

In [27], Delauneet al use a simulation based approacls keys. This allows us to securely perform several kinds of
inspired from the computational model to provide a framéwoicompositions. We can have secure parallel compositionrunde

VII. CONCLUSIONS AND FUTURE WORK
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shared secrets or we can have an asymmetric compositiqel, A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compag J. Cuel-

where one of the protocols is used as a sub-protocol. As a lar. P. Hankes Drielsma, P.-C. Heam, O. Kouchnarenko, htééani,
. . S. Mddersheim, D. von Oheimb, M. Rusinowitch, J. SantiddoTuru-

matter of fact, our combination theorem could actually bedus ani, L. Vigano, and L. Vigneron, “The AVISPA Tool for the aumated
in any context where two protocols are arbitrarily inteviec validation of internet security protocols and applicasignin 17th
and use shared data. International Conference on Computer Aided VerificatiodAV005
. . . ser. Lecture Notes in Computer Science, K. Etessami and janRai,

As an application, we have shown how our main composi-  gqs. vol. 3576. Edinburgh, Scotland: Springer, 2005, 1§1-285.

tion theorem can be used in order to securely refine a protocsl A. Armando, R. Carbone, L. Compagna, J. Cuellar, and LABad,

that uses pre—established keys or secure channels. “Formal analysis of saml 2.0 web browser single sign-on:aRiry the
F h ke of si lici h | . h saml-based single sign-on for google apps,Piroceedings of the 6th
or the sake of simplicity, the only security property that w ACM Workshop on Formal Methods in Security Engineering (EMS

have considered is secrecy. We believe however that oult resu  2008) 2008, pp. 1-10.
extends to general trace properties (e.g. authenticafitng is  [4] M. Abadi and B. Blanchet, “Computer-Assisted Verificati of a Pro-

) ; tocol for Certified Email,"Science of Computer Programmingpl. 58,
because our trace transformation proof technique tramsfor no. 1-2, pp. 3-27, Oct. 2005, special issue SAS'03.

any trace of the composition of two protocols under shareg] m. Abadi, B. Blanchet, and C. Fournet, “Just Fast Keyimgthe Pi
secrets (as long as a shared key is not revealed) into a trace o Calculus,” inProgramming Languages and Systems: Proceedings of the

the composition under no shared secrets. This means that any I{f(’)ttZSEg;OpC%?QpﬁéT%%?gﬁeo?) Psr‘(’:%ﬁ?;{"'gg (530299%?' L;;;‘;f

violation of authentication in the composed protocol wolodd Spain: Springer Verlag, Mar. 2004, pp. 340-354.
transformed into a violation of authentication on one of thd6] Nf- tl)Durg(ijn,dP. Lincoln, J. Mitlchell, and 4%. hScedrolzl,h“Urﬂdability |
[T of bounded security protocols,” iRroc. of the Workshop on Formal
IndIVId,ual prOtOCOIS' . . Methods and Security Protocol$999.

We intend to develop and analyze a logic for trace propertig$] m. Rusinowitch and M. Turuani, “Protocol Insecurity WitFinite
which are preserved by our composition theorem. We are also Number of Sessions and Composed Keys is NP-compl&tesoretical

; ; ; ; e ; feing ; ; Computer Sciengevol. 299, pp. 451-475, April 2003. [Online].
investigating if composition with disjoint equational tirees Available: http:/www.loriafr] rusi/pub/tosprotocpb.qz

preservedrace eqUival_enQeaS qeﬁnEd €.g. in [28] and more [g] B. Blanchet, “An efficient cryptographic protocol veeifi based on
generally other behavioral equivalences which can be used t prolog rules,” in Proc. of the 14th Computer Security Foundations

reason about security properties such as anonymity. Workshop (CSFW’'01) IEEE Computer Society Press, June 2001.
h h L b h db Agé G. Lowe, “Casper: A compiler for the analysis of secuniyotocols,”
We have proven that primitives can be share etween t in Proc. of 10th Computer Security Foundations Workshop (CSFW

protocols provided they are tagged, in the case of symmetric Rockport, Massachusetts, USA: IEEE Computer Society PrESS7,
encryption and hash. We think that our proof technique pasj| _ @so in Journal of Computer Security, Volume 6, pages 53:888.

tends t | ical destructor/ tructor th . [10] B. Blanchet, “An automatic security protocol verifiead®ed on resolution
extends to any classical destructor/constructor theqees theorem proving (invited tutorial),” ir20th International Conference on

signatures and asymmetric encryption). Automated Deduction (CADE-20)allinn, Estonia, July 2005.
There are certain primitives which seem harmless enou@hl J. D. Guttman and F. J. Thhayeﬂ “Protocol i”dePe“degﬂwgh disioli(”th
. . encryption.” in Proc. 13th Computer Security Foundations Workshop
that they may k_:)e sha_red without tagging them. For example, (CSFW'00) IEEE Comp. Soc. Press, 2000, pp. 24—34.
the concatenation defined through the equational theory: [12] J. D. Guttman, “Cryptographic protocol compositioravihe authen-
tication tests,” inFoundations of Software Science and Computation
fst(pair(z,y)) = « sndpair(x,y)) = y. Structures (FOSSACS'Q9per. Lecture Notes in Computer Science,
March 2009.
is a candidate. However, let us consider the processes  [13] V. Cortier, J. Delaitre, and S. Delaune, *Safely conipgs
security protocols,” in Proceedings of the 27th Conference on
Foundations of Software Technology and Theoretical Coerpitience

P=vx- -vy-z:=pair(z ) ' g
Y P ( ’y) (FSTTCS'07) ser. Lecture Notes in Computer Science, V. Arvind

. and S. Prasad, Eds., vol. 4855. New Delhi, India: Springer,
Q=vk- ouf,(en((z, k)) - in(y)- Dec. 2007, pp. 352-363. [Online]. Available: http://wm&v.leels-g
out(pair(fst(dedy, k)), snddeqy, k)))). cachan.fr/Publis/PAPERS/PDF/CDD-fsttcs07.pdf
. [14] S. Delaune, S. Kremer, and M. D. Ryan, “Composition o$gweord-
The processvz - (Q does not reveak. However, if the based protocols,” irProceedings of the 21st IEEE Computer Security
generation ofz is handled byP’ we have thatP - Q does Foundations Symposium (CSF'08) Pittsburgh, PA, USA: I|EEE

P i Computer Society Press, Jun. 2008, pp. 239-251. [Onlinéilable:
reveal z. This is becaus&) was Only verified secure when http://www.Isv.ens-cachan.fr/Publis/PAPERS/PDF/DE$08.pdf

z is ir_‘Stantiated to a name. We are trying to prove that thes s. Moadersheim and L. Vigano, “Secure pseudonymousnobls,” in
equational theory opair can be safely shared between two  Proceedings of the 14th European Symposium On Researchnip@er

; ; ; Security (ESORICS’09¥ker. Lecture Notes in Computer Science, vol.
protocols as long as neither of the protocols instantiates a 5789. Springer, 2009, pp. 337-354.

Sha_red key to a pair. _ _ [16] A. Datta, A. Derek, J. C. Mitchell, and A. Roy, “Protocobmposition
Finally, many relevant equational theories are not so easy t logic (pcl),” Electron. Notes Theor. Comput. Saiol. 172, pp. 311-358,

tag. In particular, taggingxclusive oris particularly difficult. 2007.

g . 7] R. Canetti, “Universally composable security: A new rggigm
F'nd'ng away to Securely compose two pl’OtOCOlS which bOH’] for cryptographic protocols,” inlIEEE Symposium on Foundations

make use of this primitive (thexclusive oy is a challenging of Computer Scienge 2001, pp. 136-145. [Online]. Available:
open problem. citeseer.ist.psu.edu/article/canettiO5universatylh
[18] R. Canetti and T. Rabin, “Universal composition withnjppstate,” in
CRYPTQ 2003, pp. 265-281.
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a) either collapse(t,) for somez € {1,...,n}

(in which case we are done, as the alien term
collapse(t,) is collapsed)

b) or an alien subterm afollapse(t,.), in which case
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B. Proof of the main result

Claim 1: If ¢1,t5 are collapsed terms such that =g ts,
thenV.(t1) =e Ve(t2) (c € {a,b}).
Proof:
By induction on the size of terms. By Lemma &, and
to start with a root symbol from the same signature. Assume
w.l.0.g. thatroot(¢; ), root(t2) € F,.

If ¢ = to = s for some s S
{1‘10’0,...,{Ep/Uo,leo,...,yq/O'Q} and ¢ = b, then
Vo(t1) = Nity]o, = Nta] o, = Vi (t2) and we are done.

Otherwise,t; = C[[s1,...,8s]], t2 = D][s],...,s0,]]

for some purea-contexts C and D. Then V.(t;) =
CVa(s1), ..., Va(sn)] and Vi(t2) = D[Va(s)) ..., Va(sh,)]
for anyc € {a,b}.

We can apply the induction hypothesis on
S1y.-.,8n,8,...,8, (which are collapsed by Proposition 1)
to conclude that the equalities between these terms are
preserved when passed throufl(_) and therefore we can
apply Lemma 1 to conclude.

[ |
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Claim 2: We have that We prove that
Ve(rp) =g Ve(collapse(ry)) Va(ti) = Va(collapse(t;)) (13)
and thatcollapse(ry) is a good term. Indeed, eithet; is an alien subterm of, in which casef; =

Proof: Indeed, letC' be such thaty = C[[t1,...,t;]]. collapse(t;) and Equation 13 trivially holds, of; = r;¢p, in
As ¢ = {w; — s;o}; for some pure terms;, C either fully which case Equation 13 holds by the induction hypothesis.
spanss; or it does not span it at all (for alf). Therefore ~ From Equations 12 and 13, asollapse(t;) =
each termy; (1 < i < k) is such that;, is a subterm ot or  Ei[[s}...., s} ]], we have that
t; = r;p for some recipe; (wherer; is a subterm of). B 1 1 & &
Let the predicate” (i) be true exactly on indexéssuch that Ve(rg) = ClVa(Ballsy, - sn D), Va(Billst - s, D]
) (14)
t; = r;o (Wherer; is a subterm of).

By the induction hypothesis, for all indexgéssuch that Let us prove that for eachsuch thatC; = F; that

P(i), we have thatVC_(ricp) =E Ve.(collapse(r;p)) and V.(E; [3%7 o 3;1]) — Ei[Vd(Si)a . Vd(gi”)] (15)
collapse(r;p) = E;[[s},...,s.]] iIs a good term. Also _
si,...,s. must be good termsi(< i < k). We have thus Indeed, for such ani, ¢; cannot be a shared secret in
definedE; and s’ for all i such thatP(i). {1, 2y 1, .,y foo(by hypothesis, ag; =g 'y for

For all indexes such that notP(i), t; is an alien subterm SOmMe stric_t ggbrecipé of r) and therefore Equation 15 holds
of o (and is therefore collapsed) and therefore we have i the definition ofcollapse and becauseoot(E;), root(C) &

t: = B[[si,...,s ]| is a good term (by the first item of the7d (foOt(£;) androot(C) are from the same signature).
definition) and thats;l (1<i<k1<j<mn; are good From Equatlons_15 anq 14, and _by the d_ef|n|t|onC6f:
terms (by the first items of the definition as well). We hav&'[C1, - -, Cxl, we immediately obtain Equation 11.
thus defined®; and s} for all i such that notP(i). We are now ready to prove that
We ne_xt define a class of context§ (1. < i < k). Let Vi(ro) = V,(collapse(ry)) (16)
C; = FE; if root(E;) comes from the same signaturerast(C)
and letC; = _ otherwise. We distinguish between two cases (either Equation 9 or
Let C' = C[C4,...,Ck]. Then Equation 10 holds).
ro = Cfftr,.. te]] « if Equation 9 holds then we must have that
=E C/[El[[sjiv'--asflzl]]"--aEk[[Sllca'-'asﬁk]]] C/[n[sl]:E""7n[Sz]:E] =E n[sj]:E
= C'[[s1,-..,81]]
and that
for.g_o_od termss; (1 < j < )2 and furthermore, by the Ve(collapse(rp)) = Ve(s;) (17)
definition of collapse
But assy, ..., s; are good terms, they are also collapsed
collapse(rg) = s; 9 and by Claim 1, we have that, =g s, implies
Va(sz) =g V. 1 < uxz,y <1). Therefore
if C’[n[sl]:E,...,n[sl]:E] =E N[s]_, for somej and fresh alsa) =€ Vasy) A s @y < 1)
namesn|__ or C'[Va(s1), -, Va(s))] =e Va(s;)
collapse(ro) = C'|[[s1, ..., 5] (10) Combining this with Equation 11, we obtain
otherwise. In either case, we can see thafapse(ry) is a Ve(re) =g Va(s;) (18)

good ternd, which concludes part of the induction.

— if s; = coll = is not a shared secret
Let us now prove that sj = collapse(rp) =e ¢

in{z1,...,Tp,y1,...,Yq too then
Ve(re) =e C'[Va(s1), ..., Va(s1)] (11) Vi(s;) = Va(s;)

whered is such thatoot(C') € F,

i which combined with Equations 17 and 18 immedi-
Indeed, by the definition of. and becausey cannot be

ately yields Equation 16.

both a shared s_ecret I{’lEl,...,xp/,.yl,...,yq/}cro and have —if s — ro is a shared secret in
its root symbol inF; (by hypothesis), we have that {z1,...,2p,y1,...,yy}, then by hypothesis
t(ro) € F.. But F; was chosen as the signature
Vo(rg) = C[Va(tr), ..., Va(t 12 FOOllrp) € Je d .
c(re) Valta), -, Va(te) (12) which contains the root symbol af' (equivalently
_1if collapse(rip) is good by the first item of the definition of good, then the signature which  contains the root S.ymbOI
s are subterms of it and therefore subterms pfvhich means they are good; of r¢) and therefored = ¢ which combined
if collapse(rip) is good by the second item of the definition of good, then with Equations 17 and 18 immediately yields
s;'. are good by definition Equation 16
2aterms; is either equal to somg if C; = _ and we knowt;s are good, . q . '
or is equal to some?, which we also know are good « if Equation 10 holds then

3becausesj is a good term by the first item in the definition and because
C’[[s1,...,s]] is a good term by the second item of the definition Ve(collapse(rp)) = C'[[Va(s1), ..., Va(s1)]]
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by the definition ofcollapse. Combining this with Equa- is a shared secret ifx1,...,2p,y1,...,Yy to. We

tion 11, we immediately obtain Equation 16. let C; = C; if s; is not a shared secret and if
- root(C;) is from the same signature & and C’} = _
otherwise. LetC” = C'[C{,...,C}]. Then we have
_ " -
Claim 3: Fori € {0,...,n}, we have thatollapse(w;;) that Cltr, ... t] =e C [u?""’u’”] for 'some
: _ good termsu; (eachu; is either somecollapse(s;)
(for all w; € don(y;)) is an i-good term andzo;, = 7 - o
: or somes?, ) and thatcollapse(Clty,...,t;]) is either
C[s1,...,s,] (for all = € dom(c;)) for a pure (possibly . z :
) . C"ui,...,uy) OF somew;. In either case, we can
empty) F.-contextC' andi — 1-good termssy, ..., s, (with immediately conclude
root(s;) € Fz), wherec = a if z € vars(P) \ {z1,...,2p} y '
andc = b if = € vargQ) \ {v1,..-,yq}. u
Proof: By induction oni. The base casé = 0 is _ ) )
particularly trivial, sincedom(oy) = § and dom(pg) = 0. Lemma 6:1f P is a linear process ovef, and

Assuming the hypothesis holds fgr< ¢ — 1, we prove it for
i. We do a case analysis on the transitign

§ § §n

(P,0,0) =& (P1,1,01) =€ ... =¥ (Pn,¢n,0n))
1) if thei-th step was the execution of some, theny; = then

pi—1 ando; = o;—1U{x — m} wherem is a fresh name g, PN A §. ;o

from F., wherec is defined as in the lemma. Therefore (P.0.0) =&, (P1.¢1,01) —e, - —E, (Pn, 90, 00))

i_t is su.fficient to chose&” = m andk =0 to conclud_e. for somey!,, o/, and§’ such thatp, ¢ za,, implies ¢/, e,
2) if the i-th step was an assignment:= ¢, wheret is  ;4, and zo,, =¢ yo, implies vo! =g, yo!, forall z,y €

a pureF, term andz, c are as in the lemma, we havedonr(an)_

that xo; = collapse(to;—1). Butto;—1 = C[s1,. .., sk] Proof:

for a pureF.-contextC' and termss; = y;o;—1 (C'is  Letinit/0 be any constant ifF, (we have assumed that there
obtained from: by replacing variables with holes).  exists at least such a constant). The idea is that we obtain th
By the induction hypothesiss; = Cj[si,...,s)] second trace from the first trace by abstracting any elements
for i — 2-good termss), and a pure contexC;. Let that starts with a symbol fronf, by the constaninit.

C; be _if C; = _ or if root(C;) € F: and let  This abstraction is formalized by the functiarbstract,

C} = C; otherwise. LetC’ = C[C1,...,C}]. Then which is defined inductively on ground terms as follows:
toi1 = C'([t1,...,t]] (eacht; is either somes;, or 1) abstract(f(t1, ..., t)) _
somes?. ). Now collapse(to;_1) is equal either to some f(abstract(ty), ..., abstract(ty)) if f € Fa

t; (which arei — 2-good), in which case we conclude, 2) abstract(f(t1,...,ty)) = init if f€ F

or collapse(to;—1) = C'[[t1,...,t]], in which case we

The functionabstract enjoys the following good property
on collapsed terms:

Lemma 9:If s =g t ands andt are collapsed, we have
that abstract(s) =g, abstract(t).

Proof: Let s = C|[s1,...,sx]] andt = DJ[ty,...,t]].

As s =g t and s andt are collapsed, by Lemma 1, we have
that root(C') androot(D) come from the same signatufe.
If ¢ = b, then abstract(s) = abstract(t) = init and we are

are done (we have identified the& from the lemma
statement (it i<°”) and thesy, ..., s, from the lemma
statement (they arg, ..., ;).

3) if the i-th statement is an outpubut(t), then we
conclude thato; is ani — 1-good term exactly as above
(for assignment) (except we need thi{[ty, ..., 4] =
to;—1 be deducible fromp;, which is the case (it has
just been output)).

g : - . done.
4) if the i-th step. was an inpuin(z), then there exists a Otherwise ¢ = a and abstract(s) = Clinit,....init]
contextC' andi-good termsty, ..., t; such thatro; = . o
. ' and abstract(t) = DIJinit,...,init]. By Lemma 1, we
collapse(C|t1, ..., t;]) (we defineC to be the recipé; have thatC| | e D ]
in which the variables have been replaces by holes an Msil=gr o0 Msel=g] =B DMta)=g> -+ Pti]= s

where n_ are fresh names. As our theory is stable by

t1,...,t, are the corresponding elements fram .
Lo Ok b 9 ! replacement of arbitrary terms for names, we have that

which we know by induction to bé — 2-good terms).

We prove by structural induction onC that .(C[n[sllas’ﬁ"’?[sk]ﬁ] =g, D)oo niug- Din. —
collapse(C|t1,...,tx]) is ani — 1-good term. Indeed, init} and thereforaibstract(s) =g, abstract(t). "
let C’ be such thatC[ty,...,tx] = C'[[s1,...,s1]]- We also have that:

Then eachs; is either equal ta”;[¢y, .. ., ¢x] (for some Lemma 10:If ¢ is a pure F, term ando is a col-

C; subcontext ofC) or s; is ani-good term (because lapsed substitution, we have thastract(collapse(to)) =g,

it is an alien subterm of somé&good termt;; which  abstract(to).

cannot be a shared key {1, ..., 2, y1, ..., Yg }0i). Proof:

In either case, we know (either by the induction hy- Indeed, ift is a variable thercollapse(to) = to (since we
pothesis in the first case or by definition @fgood assumedr to be collapsed) and we are done.

in the second case) thatollapse(s;) is a i-good  Otherwise,root(t) € F,. Let C be the context obtained
term and thereforecollapse(s;) = Cj[[s1,...,s),]] from t by replacing all variables with holes. Thewr =
for some contextC; and somei-good termss’, or s; Clt1,...,t;] for some collapsed terms; (1 < j < k).



Let tj = Cj[[t‘{,,

t. )] Let C; L if root(C)) € F,

and letC’ = _ otherwise. LetC’ = C[C1,...,C}]. Then
to =C'[[s1,...,s])

Then either collapse(tc) = to and we are done or
C’[n[sl]:E,...,n[sl]:E] =g n; and collapse(tc) = s; for

somel < j < [. As our equational theory is stable by
replacement of terms for names, we have that

But

(C'[ns)_y s+ s ) = ) {n_ — init}.

abstract(to) C'[init,...,init]  and

abstract(collapse(to)) = init and therefore we conclude.

We now defines, and ¢} (for 1 < i < n). We as-

sume w.l.o.g. that; and ¢; are collapsed and let}(z)

abstract(o(z)) and ¢} (w) = abstract(p(w)) (1 < i < n,
x € dom(o;), w € dom(p;)).

Definition 11: We say that a collapsed ternt
Cllt1,- .-

,tr]] is i-good (I < @ < n) if there exist pureF,

recipesry, ..., r, such thaty, FEJQ abstract(t;) and if ¢; is
ani-good term { < j < k).
It is easy to see that @ — 1)-good term is also a#good

term.
We prove by induction on that there exist, ...

, 85 such

that the recipes among them are pugrecipes such that:

85

=

&

(P,0,0) 3 (P1, ¢}, 0)) (P, ), )

and thaty,(w) ando;(x) arei-good € domy;) andz €
dOfT(O'i)).

We distinguish among the possible actions at step

1)

2)

if the action was ax, then§; is the empty string. We
chooses§! also as the empty string.

By definition of the transition, we have that = o;_; U
{z — n} for some fresh name. We only need to show
that o;(z) is ani-good term, since the other terms are
i-good directly by the induction hypothesis. \We= n

(a context withO holes) andk = 0 in the definition
of i-good and we can trivially conclude that(z) is
i-good.

We also need to establish that this transition works, i.e.
ol(x) = abstract(c;(x)), which is obviously the case.
if the action was an assignment:= ¢, then§; is the
empty string. We choos¢ also as the empty string.
By definition of the transition, we have that = o; 1 U

{x — collapse(to;—1)}. Ast is a term appearing in the
protocol, it is a pureF,-term.

Let C' be the context obtained fromby replacing all
variables with holes. Thew;(x) = C[ty,...,t;] for
somei-good termst; (1 < j < k) — the termst; are
equal too; 1 (y;) for somey; € dom(o; 1) (1 < j <
k). Lett; = Cy[lt1, . ... 3, ]I.

If C'is the empty context we have that(z) = o;-1(y)
for somey € dom(o;_1) and therefore we can conclude
by the induction hypothesis.

Otherwise, ifC # _, let ¢ be such thatoot(C) € F..
Forl <j <k, letC} = Cj if root(C;) € F. and let
C; = _ otherwise. LetC" = C[C1,...,C}]. We have

3)

4)

5)
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thatto;_1 = C'[[s1,...,s]] such thats; is ani-good
term (eachs; (1 < j <1I)is either some; (1 < j' <k)
which isi-good by the induction hypothesis or somjé

(1 <j" <k 1<z<kEky) which isi-good because it

is an alien term ot;,, which isi-good by the induction
hypothesis).

Then collapse(to;—1) is either equal to some; (1 <
j<lortoClsy,...,s)].

In the first case, we conclude because we have already
seen that alk; (1 < j <) arei-good.

In the second case, we have thabt(C') € F, and
thereforeroot(s;) € F, (1 < j < ). Therefore
abstract(s;) = init and it is sufficient to choose

r; = init to obtainy) FEJQ abstract(s;) (1 < j <1).
Furthermore we already know that all arei-good and
therefore we can conclude th@fs, ..., s is i-good.

We also need to show that this transition in the con-
clusion works, i.e. thato =g, to}_,. We know that
collapse(xo;) =g collapse(to;—1) (by the transition in

the hypothesis). We also have that, = abstract(zo;)

and thatto]_, = abstract(to;—1). Using Lemma 10 and
Lemma 9, we immediately conclude.

if the action was a tests = t], then§; is the empty
string. We chooség’, also as the empty string.

As ¢; = ;1 ando; = o;_1, it is sufficient to show
that so}_, =g, to,_,. But so,_, = abstract(so;_1)
andto,_, = abstract(to;—1) by the definition ofo}_,

and abstract.

By Lemma 10
abstract(collapse(soi—1))
and analogously fot.
We conclude by Lemma 9 thatollapse(to;—1) =g

have that
abstract(so;—1)

we
=E,

collapse(so;—1) (which  we  know  because
we have the corresponding transition in the
hypothesis) implies abstract(collapse(to;—1)) =g,

abstract(collapse(so;—1)).

if the action was an outpuwut(¢), we have thatp;
wi—1U{w; — collapse(to;—1)} and that§; is the empty
string. We chooség’ also as the empty string.

We first have to establish that (w;) = collapse(to;—1)

is ani-good term, which is exactly the same as in the
case of the assignment:= ¢ (see second item above).
We also have to establish that this transition works
in the conclusion, i.e. thap}(w;) =g, to._; know-
ing that ¢;(w;) collapse(to;—1) (i.e. that the
transition works in the hypothesis). We can con-
clude by Lemma 10 (w;) = abstract(p;(w;))
abstract(collapse(to;—1)) =g, abstract(to;_1)
toi_y).

if the action was an inpuin(z), we have thats;
oi—1 U{x — collapse(ry;—1)} for some recipe: such
that §1 =r.

We prove by induction om that collapse(ry;—1) is an
i-good term and at the same time we construct a pure
Fo-reciper’ such that’'y;_, =g, abstract(rp;—1). We
choose§; to be r’. This means in particular that the
transition in the hypothesis will worke¢, =g, '¢}_;).



Therefore all we need is the proof bfjoodness and the there exists a tracd|P*|], 0, 0) —E. 'E. (Q,¢,o) such that
construction ofr’ by induction. ¢ e, UE, TO.
a) base case: If is a variablew, we have that \We construct a trace
ryp;_1 1S i-good by the induction hypothesis (the e,
outer induction). We choose’ = w and we (P,0,0) =e,. (Q¢,0") (19)
obtainr'yp;_; = wy;_; = abstract(wpi-1) = gych thaty' Fe, 2o’
abstract(rpi-1)- For any term¢ (includingry,...,,), we lett’ be the term
b) Let rpi1 = C[[t1,.... 1]]. Let c be such that qyaineq from by removing any reference ¢&g anduntag
E’;é(h? (61};0 < &) is such that for It is formally defined inductively as follows:
J =7 = j = TjPi-1 ’ ;g
some recipe; C r or an alien subterm ab;_; (w) 1) endt, tQ), - enc(tll, t?)
for some variabler € dom(y; _1). In the first case 2) deqt}’tQ) n dedt}. t5)
we know thatt; = collapse(t;) is ani-good term i) _h(_t})iz. h(tl)
by the outer induction hypothesis;(is an alien ) init _,"L't ,
subterm ofp;_1(w) for somew € dom(p;_1)) 5) tag(t1) 5, t1 ,
and in the second case we thaillapse(t;) is 6) ulniaqm =h
an i-good term by the inner induction hypothesis. 7) ¢ =tif tis a variable or a name
Similarly, there exist puré-,-recipes over);, , for We leto’(z) = o(z)" and¢'(w) = p(w)".
abstract (collapse(t;)). _ To prove Equation 19, it is sufficient to establish that:
Let collapse(t;) = Cj[[t1,...,t; ]] and letC) = 1) (tests work)H(s*)o =g,.ue, H(t*)o implies that
C; if root(C;) € F. and letC; = _ otherwise so’ =g, to’
(1 <j<k).LetC' =C[Cy,...,Ckl. Ast), are  2) (inputs work)zo =g, e, T implies thatzo’ =g,
the alien subterms of angood term, it follows 'y’
that t;, arej-good terms [ < j < k, 1 < j' < 3) (outputs work) w;¢ =g,.ue, H(t*)o implies that
k;) and there exist puré,-recipes overy;_; for wip' =g, to’
abstract(t’,). Let R be the convergent term rewriting system obtained by
Thenry;—1 = C’[[s1,..., s;]] where eachs; (1 < orienting E¢,c from left to right and letR. be the convergent
j < 1) is either somet;, (1 < j' < k) or some term rewriting system obtained by orienting the equatiohs o
t;" (1<j <k 1<z<kj). Ineither cases; Eenc UE, from left to right. We have that =g ¢ (resp.
(1 <j <) arei-good terms and there exist pures =¢_ g, t) iff s |[r=t |r (resp.s |r.= t |r.), Where
F.-recipes overp,_, for abstract(s;). t |r represents the normal form ofwith respect toR.
As collapse(rp;—1) is As (s¢) = s, (t°) =1, 2/ = z andw] = w;, all of the
i) either somes;, in which case we concludeabove are instances of the more general implicatief,, e,
directly that it is ani-good term and there is at implies thats’ =g, '. This implication is easy to prove,
pure F,-recipe overy, , for abstract(s;) since(s |r.)" = s" [r (proof by induction ons).
i)y oritis C'[[s1,...,s]], in which it is also easy u
to establish thatC’[[s, ..., s;]] is ani-good Lemma 7:Let P and ) be linear processes ovéfenc h.
term (its alien subterms aregood terms and Let W be an arbitrary interleaving af® andQ® and letR =
there are pureF,-recipes overy, , for their [|[W]]. If R revealsz thenlV revealsz.
abstractions). Proof:
We also need to show that there is a piFg We transform any attack trace dninto an attack trace on
recipe overy, , for C'[[s1,...,s]]. In the W. Let
caseroot(C’) € Fp, we simply choose the
recipe v’ = init. Otherwise, ifroot(C") = (R,0,0) e (R, ,0) (20)
root(r) = f € F, andr = f(ry,...,7n), We
letr" = f(ry,...,r.). Itis then easy to show be such thatp - o(x).
by induction that’¢), |, =g, abstract(ry;—1). We show that
. ’r‘, ’r‘,
(W,0,0) "= (W', ") (21)
C. Tagging such thaty’ - o' (z).
For ¢ € {a,b,d}, let F, = {enc,deg,h.} and E, =
Lemma 8:1f P is a protocol overFencn, then P =g, {dec(enc(z,y),y) = z}. For ¢ € {a',V'}, let Fo =
Secret(x) implies [| P¢|] Ee.,.ue. Secret(x). {tag.,,untag, } andE. = {untag, (tag..(z)) = z}.
Proof: We show that Equation 21 holds in the signatfé =
We consider w.l.0o.g. that = a. We show that if F,UF,UF, UFy UF, and in the equational theoi’ =

18

[|P*]] WE..ue, Secret(z) then P g, Secret(z). Then E, UE; UE, UEy, UE,. We then conclude by Lemma 6.



We consider the following transformatign] on terms (in

the following, ¢ ranges ove{a, b} (but notd) and ¢’ ranges
over {a’, b’} (but notd’, which does not exist)):
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4) if the current action is an assignment:= ¢ (assume
it comes fromF,) we have thatests(¢) work and that
xo =g H(t)o. We have to show thato’ =go to’. We
have from the previous item th&#(¢)o| =go to’, and

[tag.(t)] = tag, ([t]) we conclude by Equation 22.
lendti,t2)] = enc(ts,[t2]) if [t1] = tag. (t3) 5) if the current action is a newz, we have to show that
= eng([t1], [t2]) otherwise xzo' = [zo| = xo is a fresh name, which is immediate.
[dedti,t2)] = tag,(deg([t:], [t2])) if [t1] =€ ence(_, [t2]) u
= deg([t1], [t2]) otherwise
[untag.(t)] = untag.([¢])
[h(t)] = hy(ty) if [t] = tag. (to)
= hy([t]) otherwise
[u] = « for a name or variable:

induction on the number of transitions in Equation 21 the
recipesri,...,

of

Note that ifs =g ¢ then

[s] =eo [t]. (22)
[c] and ¢’ = [¢]. We next construct by

We let o’ =

r;. such that: for all subterms of’ and ¢’

the formtag, (¢) there exists a recipe for ¢:

1) if the current action is an input actiom(z), we
transform the recipe used for the same transition in
Equation 20 into a recipér] as follows:

[tag. (1))
Len((rl s TQ)J

tag, ([r])

enc.(rs, [r2]) if |r1]¢’ = tag, (t3)
and wherers is a recipe forts
enc(|r1], |r2]) otherwise

tag, (dec.(|1], 1))

if [r1]¢" =g ence(_, [r2]¢")
deg(|r1], |r2]) otherwise

LdeC(Tl, TQ)J

luntag.(t)] = untag.(|r])
Lh(#)] = he(ro) if [¢] =g tag,(to)
and wherer is a recipe fortg
= hy(|t]) otherwise
|w] = w for a variablew

We know thatry =g xo and we have to show that
|r|¢" =go xzo’. By Equation 22 we have thaty] =go
[zo]. But [zo] xzo’ by definition. Therefore, to

establish our conclusion, it is sufficient to show that

[re] =po |r]¢’. But this follows immediately by
induction onr.

if the current action is an outputut(¢) (assume that
t is from F.) we know thattest$(¢) passed in Equa-
tion 20 and thatwy =g H(t)o. We have to show
that wp’ =po to’. By Equation 22, we have that
we’ = [we] =g [H(t)o]. To establish the conclusion,
it is sufficient therefore to show that’ = [H(t)o].
This follows by induction ont (for the case of untagged
decryption, we use thaests(t) work).

if the current action is a tests = ¢] (assume that
[s = t] is from F.), we know thatH(s)o =g H(t)o and
thattest$(s) andtest$(¢) work. We have to show that
so’ =go to’. It is sufficient to show thaf H (u)o] =go
uc’ whentests (u) work (by induction onw), since then
we can use the equality for € {s,t} and we can
conclude by Equation 22.

2)

3)



