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Abstract—Real world MANETs often exhibit an inherent
community structure in their topological connectivity and in the
evolution of the topology over time. Such temporal community
structure of MANETs has been shown to be extremely useful in
improving the performance of routing and content-based routing
in MANETs [1]–[4]. However, detecting temporal communities
in a completely distributed and real time manner is a hard
problem, and it is often performed offline with knowledge of
the full network topology over time.

We propose CLAN, a distributed and real-time protocol
for detecting temporal communities in MANETs. CLAN is an
adaptation of the Label Propagation algorithm [5] to distributed
and time-varying graphs that MANETs are. A key novel com-
ponent of CLAN is local rules for community rediscovery as
the network evolves. CLAN also uses a weighted version of the
network topology where the weights are defined using a novel
notion of social entropy to promote stability of communities.
Extensive simulation results demonstrate that CLAN is quick
to converge, incurs minimal overhead and is as effective as
centralized approaches to temporal community detection. We also
demonstrate how the temporal community structure can be used
by designing a hierarchical routing protocol that achieves the
delivery ratio of the OLSR [6] routing protocol at a fraction of
the overhead.

I. INTRODUCTION

Almost every smartphone is now capable of direct phone-
to-phone WiFi communication using WiFi-Direct, Bluetooth
3.0/4.0, and in some cases the 802.11 ad hoc mode. Thus, large
deployed MANETs now exist in the real world. Applications
to take advantage of this huge potentially planet-scale MANET
are also beginning to emerge. Examples include FireChat,
WiFi Social, HitcherNet etc. Many of the applications are
however still single hop as scaling MANETs to many hops
and to significant traffic remains a challenge. A rich trove
of routing protocols have been proposed over the years for
improving MANET scalability, and more recently content-
centric MANETs have also been designed and built [7]. In this
paper, we look at a fundamental building block for building
scalable MANETs: community detection.

We argue that connectivity in many mobile ad-hoc networks,
particularly those exhibiting human-centric mobility patterns
(e.g., networks formed from phones carried by humans) exhibit
community structure rather than random connectivity. That is,
the network can be partitioned into dense groups such that
there are more intra-group links than inter-group links. The
detection of communities, taking into account both temporal
and spatial connectivity, in a distributed fashion, is referred to

as distributed temporal community detection and is the focus
of this paper. The foundations of scalability and efficiency in
MANETs lie in exploiting the underlying community structure
of a network for routing, aggregation and load-balancing.

Community detection in static graphs has been widely
studied and shown to reveal latent yet meaningful patterns in a
variety of fields ranging from social networks to systems biol-
ogy; see the comprehensive survey by Fortunato [8] for more
details. Recent work (e.g. [9], [10]) on temporal communities
detection extends the notion of communities to time-varying
graphs by seeking to detect how communities emerge, grow,
merge and split overtime. Intuitively, temporal communities
are a partitioning of the network nodes into (relatively) dense
groups such that the intra-group connectivity is (relatively)
stable over time. Temporal community structure is a basic
building block that has been used to improve performance of
routing in MANETs, DTNs and content based networks. We
describe these applications in detail in Section II.

However, temporal community detection that is distributed,
efficient, and fast is especially challenging in a MANET
environment. The first challenge is that the global topology
information is either unavailable or expensive to maintain.
Thus, we must use a local protocol that primarily involves
communication with one-hop neighbors. The next challenge
is that that time is not apriori divided into snapshots or win-
dows over which we can aggregate node-contacts to construct
graphs. We must monitor the network as it is evolving to
detect changes in the community structure and adapt to those
triggers. The final challenge is to detect stable communities
that incorporate temporal structure in node mobility which
may differ from the instantaneous connectivity.

In this paper, we present CLAN - Community detection
via Label propagation in Ad-hoc Networks. CLAN is a dis-
tributed community detection algorithm that relies simply on
periodic one-hop broadcasts to neighbors. No global topology
knowledge or periodic network snapshots are required. CLAN
is based on the Label Propagation Algorithm(LPA) proposed
by Raghavan, Albert and Kumara [5] for static (e.g., non-
temporal) graphs. In LPA, each node is initially assigned a
unique label, which serves as the identifier of the community
to which the node belongs. During an iteration of LPA, each
node updates its label to the most popular label among its one-
hop neighbors. This process continues until the set of labels is
stable. CLAN adapts LPA in three key ways: First, it makes



LPA distributed. Second, it allows the community structure
to adapt to the topology by specifying how nodes “reset”
their labels and rediscover the current community structure
on specific topological triggers. Third, CLAN specifies a
time-varying function to assign weights to links before doing
the community detection. This weight assignment helps us
discover stable communities by excluding highly mobile nodes
(e.g. data mules) from the temporal communities.

We evaluate CLAN thoroughly on real and synthetic traces
using the ns3 simulator. Results show that CLAN is able to
detect the temporal community structure as accurately as a
centralized, offline algorithm in a wide range of scenarios.
Furthermore, CLAN is able to do so at a low overhead which
makes it appealing as a building block for more complex
protocols. We design a novel one ourselves: community-based
hierarchical routing (Section V), and show that it achieves the
delivery ratio of the OLSR routing protocol at a fraction of
the overhead.

The rest of the paper is organized as follows. Section II,
overviews existing work on temporal community detection
and its applications to wireless networks. Section III describes
the CLAN protocol in detail, and Section IV presents the
evaluation results.

II. COMMUNITY DETECTION APPLICATIONS AND
RELATED WORK

Temporal community detection is a widely applicable build-
ing block for efficient ad-hoc networks. If accurately done
with minimal overhead, its fundamental nature can enhance
existing networks and applications, as well as enable new
technology and paradigms. These include routing in disruption
tolerant networks, routing in pocket-switched social networks
with widely varying topological densities, information-centric
networking at the edge, and security and privacy in social
networks.

Two example applications where temporal community de-
tection is immediately applicable is DTN routing and content-
based edge networking. In DTN environments, instantaneous
end-to-end paths are not guaranteed to exist. However, due
to inherent structure and clustering commonly found in these
networks, particularly ones exhibiting human-centric mobility
patterns, temporal community detection allows for more intel-
ligent forwarding decisions to be made. A common approach
used to deliver messages between humans is to pass the
message to a carrier that is known to be in close contact
with the destination. This same tactic of “social forwarding”
has been successfully applied to social DTNs [3], where
a forwarding node prefers to make progress towards nodes
within the destination’s community. Furthermore, hybrid DTN
and MANET environments, with reasonably connected clus-
ters operating together in a disconnected fashion, are not
well suited for straight DTN routing or straight MANET
routing. With DTN protocols, many replicas are needed to
reach nodes multiple hops away [11], [12] which is inefficient
for traversing connected clusters. For this reason, protocols
have been developed that use a combination of techniques,

such as single-copy, MANET-style routing to traverse clusters
and DTN-style routing to bridge clusters [13]–[15]. Temporal
community detection allows discovery of these clusters, and
provides a foundation for managing and distributing data
flowing through them.

Temporal community detection also allows for efficient
management of pooled network resources within a commu-
nity, which is critical in content networking protocols with
heavy in-network caching. One technique, using a DHT to
organize storage space within a particular cluster, has been
used to implement efficient content networking solutions for
MANETs [4]. In this particular scheme, the “publish” op-
eration places a single copy of the published content in all
clusters, using a DHT to determine storage responsibility
within the cluster. The “query” operation then fetches the
content from the responsible node in its local cluster’s DHT.
Accurate and efficient community detection is necessary in
order to minimize DHT churn and maintain a small number
of overall replicas.

Numerous community detection algorithms have been pro-
posed, with the focus ranging from social communities [16]
to biological networks [17] to communication networks [18].
Raghavan et. al proposed the Label Propagation Algorithm
(LPA) [5], where nodes iteratively adopt the most common
label in its neighborhood. Barber and Clark [19] showed
that LPA is equivalent to maximizing the Hamiltonian for a
ferromagnetic Potts model [20] and that the globally optimal
solution is achieved when all nodes have the same label,
irregardless of community structure. To solve this problem,
they added a constraint to LPA that penalizes undesirable
solutions and showed that this constraint can be set so that
constrained LPA performs modularity maximization. Modu-
larity maximization [18] involves partitioning nodes so that
the fraction of intra-community edges, in excess of that in a
random graph, is maximized.

For community detection in time-varying networks, many
authors [2], [21], [22] have proposed maximizing some qual-
ity function (e.g. modularity) over discrete snapshots of the
network and mapping communities across snapshots to the
same label. The community structure in each snapshot is
independent of that in the previous snapshot, leading to a
possibly unstable community structure. Multislice modularity
optimization was introduced by Mucha et. al. [23] to extend
constrained LPA to time-varying network. This algorithm is
centralized and requires snapshots of network connectivity
(called slices). Connections, called interslice links, are made
between consecutive slices to map nodes across slices. These
interslice links allows the coupling of adjacency matrices,
allowing the community structure in one slice to influence
the detected community structure in the subsequent slice,
increasing the stability of the detected community structure
over time. This algorithm cannot be applied to a distributed
system because of its reliance of discrete snapshots.

Dang et. al. proposed a distributed clustering protocol [24]
based on the average pair-wise contact time. In this protocol,
clusters are defined such that each node must have some



minimum average contact (γ) time with every other node in
the cluster. Drugan et. al [25] modify the modularity-based ap-
proach of Newman and Grivan [18], the random walk approach
proposed by van Dongen [26] and the q-spin Potts model
proposed by Reichard and Bornholdt [27], to accept as input
the topology table maintained by the OLSR routing protocol
[6] rather than a complete graph. The paper demonstrated that
the OLSR topology table was sufficient to accurately detect
the communities in the network without additional overhead,
under the given network conditions. CLAN incurs significantly
less overhead than OLSR since we rely primarily on neighbor
discovery beacons and not network-wide link state broadcasts.

In [28], the authors present an adaptive algorithm to detect
the evolution of overlapping temporal communities. They
define a community to be a group of nodes where the number
of internal edges, expressed as a fraction of the total possible
number of edges between the nodes in the community, is
greater than some user-specified threshold. Hui et. al proposed
a similar approach using local modularity, to partition the net-
work into communities and to guide the incremental evolution
of the network. Local modularity is based on the the ratio of
intra to inter community edges of the border nodes, which is
difficult to compute in a dynamic, distributed environment.

CLAN is a distributed temporal community detection pro-
tocol that is distinct from the above approaches in that it
does not need global topology information, does not need
offline aggregation of the time-varying network topology into
snapshots or windows.

III. PROTOCOL

In this section, we describe the CLAN protocol in full detail.
CLAN has three basic components: i) a distributed adaptation
of the Label Propagation algorithm [5] ii) a mechanism to
re-initialize the algorithm based on local triggers whenever
sufficient changes in community structure is detected and iii)
a scheme to assign weights to links based on contact history
and novel notion of social entropy thus allowing the detection
of temporal communities rather than instantaneous community
structure.

A. Label Propagation Algorithm and its distributed adaptation

The Label Propagation Algorithm (LPA) was proposed by
Raghavan, Albert, and Kumara [5] for community detection
in static graphs. In LPA, each node is initially assigned a
unique label, which serves as the node’s community identifier.
In every iteration of LPA, each node adopts the most popular
label among its one-hop neighbors as its own label. The
algorithm terminates when no node changes its label.

Barber and Clark [19] analyzed LPA more formally. Let, `x
denote the label at node x, and δ(`u, `v) be the the equality
indicator between `u and `v (i.e., δ(`u, `v) = 1 if `u = `v ,
and equals 0 otherwise). Let Auv be the components of the
adjacency matrix (i.e. Auv = 1 if u is adjacent to v). Then

LPA finds a local minima of the objective function
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In each iteration of LPA, every node x maximizes the second
term

∑n
u=1Auxδ(`u, `x), which maximizes its contribution to

the overall objective (1) since the first term is independent of
`x. Tibely and Kertesz [20], also show that LPA is equivalent
to finding a local minima of a simple Potts model in statistical
mechanics.

Our first contribution is a distributed adaptation of LPA.
This is relatively straight-forward since each node uses only
local information, namely the most recent label of each its one-
hop neighbors to decide its current label. In the distributed
adaptation, each node recomputes and transmits its label
roughly every τ seconds, in it’s hello messages. Nodes record
the latest label for each of its neighbors, to be used in the next
recompilation.

B. Detecting evolving community structure

LPA was designed for static graphs with fixed community
structure. After each iteration of LPA, the number of labels
decreases or remains the same. It is therefore impossible to
detect the emergence of a new community. A naive approach
would be to re-initialize LPA by resetting node labels of all
nodes to their node identifiers whenever there is any change in
the network topology. Reinitialization, however, is expensive
and disruptive. Further, in a mobile network, such an algorithm
may never converge. To reduce the negative impacts, with
CLAN, we investigate reset triggers and localized resets.

Our key contribution is to observe that only a small fraction
of topology events require resets, most events do not cause a
change in the community structure and thus do not require
resets. Moreover, each node can locally determine the events
that require resets and the reset can be restricted to the relevant
communities. The basic idea is for each node to keep track of
the change in its objective function, H, since last convergence
of LPA and issue a reset to all nodes in its community
when this change crosses a threshold (∆H). We prove these
assertions, demonstrating that CLAN can efficiently detect and
discover evolution in community structure over time.

We modify the objective function of LPA (Equation 1), to
decrease with the addition to inter-community links by redefin-
ing δ: δ(`u, `v) = 1 if `u = `v , and equals −1 otherwise. This
allow for label resets when communities merge, otherwise LPA
may not detect mergers between communities of comparable
size.

Lemma 1. LPA still works when δ(`u, `v) is redefined to be
equal to 1 if `u = `v , −1 otherwise.



Proof. Consider a node u with n neighbors, whose labels
are L1, L2, L3, ., Ln. Let |Lx| denote the number of neigh-
bors with label x. Let p be the label selected by LPA,
i.e. p is the most popular label in A’s neighborhood and
max(

∑n
u=1Auvδ(`u, `v)) = |Lp|.

With the new definition of δ(`u, `v),
∑n

u=1Auvδ(`u, `v) =
|v| − (n− |v|) = 2|v| − n, for any label v. This is maximized
when |v| is maximized, which happens when the most popular
label is chosen, i.e. v = p. Therefore, the redefinition of
δ(`u, `v) does not change the label chosen by LPA.

LPA, with this modified objective function, should therefore
uncover static communities in the network. The caveat is that
once the algorithm has converged, it must be reinitialized
to discover changes in the community structure. We argue
that nodes can use changes in its locally computed objective
function H to determine when resets are necessary.

Lemma 2. An increase in the objective function, H , does not
indicate a change in community structure.

Proof. From Equation 3 and the above modified definition
of δ, an increase in the objective function occurs when
intra-community links are added or inter-community links
are deleted. Communities are defined such that there are
more intra-community links than inter-community links. This
adding intra-community links or removing inter-community
links only reinforces the existing community structure and
does not correspond to a change in the underlying community
structure.

From the above lemma, resets should only be triggered
when there is a decrease in the objective function. The
sensitivity parameter, σ, quantifies the change necessary to
trigger a reset. A larger value of σ allows for quicker detection
in the community structure but also increases the frequency
at which resets happen in a mobile network. Empirically, we
find that values of σ > 2 are sufficient to detect changes,
and it is up the user to specify the tradeoff in responsiveness
and frequency of resets, based on the network. To limit the
effects of label resets, we argue that network-wide resets are
not necessary but that community-wide resets are sufficient.

Lemma 3. When the network changes after LPA has con-
verged, community-wide labels resets are sufficient to discover
a reasonable community structure.

Proof. This is simply saying that link changes on a set of
nodes only affect the communities that those nodes belong to.
If there is not a sufficiently large decrease in the objective
function at any node of an established community, then that
community still exists in its current form and there is no
need to reinitialize LPA regardless of changes elsewhere in
the network.

Conjecture 1. ∆H is a good local indicator of potential
changes in the global community structure.

Comment An evolution in community structure must cor-
respond to the addition of a significant number of inter-

community links (for a merger), or the removal of a significant
number of intra-community links) a split. The intuition behind
this proposition is that in either case, at least one node in the
existing community structure will undergo significant changes
in its ∆H .

C. Temporal Communities, Link Weights and Social Entropy

The temporal community structure is defined over a period
of time, and may differ from the community structure indicated
in a snapshot of instantaneous connectivity. For example, a
node may temporarily move to the region of community A,
but spends most of its time in community B. Such a node
clearly belongs to the temporal community of B, it may
belong to the instantaneous community of A. This issue is
easily addressed with the use of an exponentially weighted
moving average (EWMA) for the link weights. Node updates
the EWMA link weight to every other node before sending
the periodic hello message. If a hello was received in the last
interval, the associated link weight is increased, otherwise it
is decreased.

We take a novel approach by allowing nodes to individually
determine the coefficient, α, of the EWMA. Drawing from
social networking, we define the social entropy of a node as
the rate of change of connectivity of that node with other nodes
of the network. Intuitively, nodes with higher social entropy
should be less inclined to join a community, thus we make α
proportional to the social entropy. We formally define social
entropy in Equation 4 and its use in Equation 5.

This notion of social entropy is particularly relevant to
MANET as it prevents data mules from joining communities.
Data mules, by design, frequently move between communities
and will therefore have high social entropy. By Equation 5,
the rate at which their link weights increase will be small.
Therefore, data mules will be required to stay within the
proximity of a community for a longer time than a non-
data-mule before it joins that community. As a node moves
out of range of a community, the value of its objective
function decreases, and it will eventually cause a reset before
it completely leaves the community. It is therefore beneficial
to differentiate data mules from other nodes in the network.
Simulation results in the next section demonstrate that this
definition and use of social entropy results in data mules
creating and maintaining their own individual communities.

SA(t) =
|N |∑

B∈N

LAB(t) ∗ µAB(t)
(4)

αA(t) =
α(0)

SA(t)
(5)

D. The CLAN Algorithm

In CLAN, nodes can be in any of three states, as illustrated
in Figure 1. All nodes are initially in the unstable state and
they use CLAN’s modified weighted LPA to update their labels
every hello interval. If a node does not change its label for
ψ ∗τ , then we assume LPA has converged and the node enters



Fig. 1. Flow diagram of LPA

the converged state. Once in the converged state, nodes do
not run LPA but monitor the difference in the current value
of the objective function from its maximum value since the
last reset (∆H). If ∆H > Hmax/σ, and the node’s degree is
greater than 3, the node initiates a community-wide label reset
and enters the reset state. We introduce this minimum degree
exception to prevent border nodes from constantly resetting
communities. Nodes must wait in the reset state for 2τ before
re-entering the unstable state.

IV. SIMULATION RESULTS

We evaluate CLAN in NS3 using real and synthetic mobility
traces. For comparison, we use multislice modularity optimiza-
tion [23] and the Louvain algorithm [29]. Like CLAN, the
multislice clustering algorithm detects and preserves temporal
communities, by finding relationships between nodes over
time (slices). However, the multislice algorithm is neither
distributed nor online as it requires complete topology snap-
shots. We create snapshots of the network connectivity every
4 seconds as use these snapshots as input to the centralized al-
gorithms. CLAN is completely distributed and we demonstrate
that it is able to detect community structure as accurately as
the centralized algorithm.

Our simulation results show that CLAN is able to detect
evolution in community structure over time, without excessive
label resets. We further demonstrate that CLAN can preserve
communities even if multiple communities are collocated
for a short period of time, a stark contrast to non-temporal
community detection algorithms. More interestingly, CLAN
is adaptive so that the social entropy dictates the ease at
which communities can evolve, and this changes over time.
Consequently, high entropy (e.g. data mules) do not readily
join communities. Unless otherwise stated, we set the (σ) in
CLAN is set to 4, the convergence threshold ψ is set to 5
and the hello interval (τ ) to 1 second. The interslice link
weight in the multislice algorithm is set to 1 in the multislice
algorithm. Empirically, we find this is a good balance between
the frequency of resets and the time taken to detect evolution
of community structure.

We illustrate the results using tiled plots, with time on the
x-axis and node ID on the y-axis. If a group of nodes are the
same color over a contiguous period of time, they belong to
a temporal community for that duration.

A. CBMANET dataset

We use the CBMANET mobility trace [30]–[32] to demon-
strate that CLAN is able to detect time-varying communities
in real networks. In this trace, there are 40 soldiers, arranged
into 6 platoons. Each of these platoons travel one of two paths
shown in Figure 2. The platoons move from one staging area
to the next, labeled A-E in Figure 2, one platoon at a time.
Initially all platoons are at the start point. Platoon 1 moves
to point A, then platoon 2 moves to A, followed by platoon
3. While platoon 3 is moving to point A, platoon 1 starts to
move to point B. Platoon 1 and 2 are concurrently at each
intermediate point for some time and likewise for platoons 2
and 3. However, platoon 1 and 3 are never collocated, except
at the start point and the end point. This trace is particularly
interesting as the communities merge and split as the platoons
meet and separate, demonstrating evolution in the communities
over time.

Fig. 2. The paths and intermediate meeting points in the CBMANET mobility
trace

From Figure 3(b) , some of the platoons are easily iden-
tifiable. Those colored orange, and the small strip of light
blue are two platoons that do not merge with other platoons
at the intermediate points. The darker blue community, at the
top of the plot is platoon 1. It merges with platoon 2 at the
intermediate points and they both use the blue color when this
happens. The third platoon is red when they are isolated but
they join platoon 2 at the intermediate points and adopt the
green color of platoon 2 at these points. There is only one
community at the start, and all but 2 soldiers are together at
the end. It is evident by comparing Figure 3(a) to Figure 3(b)
that CLAN is able to detect the same communities as the
multislicing algorithm, with more stability towards the end of
the experiment.

B. Synthetic mobility trace based on social network theory

We use a synthetic mobility generator [33], based on a
social networking theory. In this model, the user specifies
the number of nodes and the number of communities. Each
node is randomly assigned to a community and an interaction
matrix is generated based on the community assignments.
Nodes belonging to the same community are attracted to each
other more than to nodes belonging to a different community
s. Each community is mapped to a unique geographical space
and member nodes move from one point to another within



(a) Multislicing (b) CLAN

Fig. 3. CLAN detects almost the same community structure as the centralized
multislicing algorithm.

the assigned space. Their destination position is determined
by the interaction matrix; nodes move towards nodes they are
attracted to. Consequently members of the same community
cluster together as they more strongly attracted to each other.
However, they do have some attraction to non-community
members and can move away from their communities, at least
temporarily. Different community structures can be specified
for different timescales. As nodes are reassigned, they will be
strongly attracted to the geographical region associated with
their new communities. The model also allows for travelers,
which have roughly the same attraction to every node in the
network and move frequently between communities. These
travelers can represent city buses or taxis moving around a
city and serve as data mules in communication networks.
We use an area of 1000m x 1000m and a radio range of
150m. In general, there are links between nodes of different
communities but there is even more links between nodes of
the same community, as seen in Figure 4 This mobility model
has been validated with real traces and it has been shown to
be a good approximation of human movement patterns [33].

C. Evolution of Communities over time

We generate two simple traces to demonstrate that CLAN
is able to detect basic community evolution: mergers and
splits. The first scenario consists of 50 nodes, 5 of which
are travelers. As the input to the social model, we start with
one community, which splits into three communities at 150
seconds and two of these merge at 550 seconds. After each
change in the social model nodes will begin to move to create
a topology that reflects the new structure. The movement is
not instantaneous and it takes time before the new community
structure emerges. In Figure 4 we show snapshots of the
connectivity of the nodes at two points in time, with different
community structures.

Figure 5(a) shows the input to the social model, which we
treat as ground truth. This figure is based solely on community
assignment and not on location or connectivity. Each color
represents a community, and nodes with the same color at any
instant, belong to the same community.

With LPA, community structure is based solely on instan-
taneous connectivity. If two communities are close enough at
any instant, they may merge and this leads to inaccurate com-
munity structure as can be seen at the end of the experiment.

(a) Connectivity at time t=340s (b) Connectivity at time t=640s

Fig. 4. In this example, there are initially one community, which then splits
into three communities and after some time, two of the communities merge
to form a single community

Multislice and CLAN deliver similar results, as they both
preserve temporal communities despite short term changes
in instantaneous connectivities. For CLAN, the vertical bars
where nodes have different colors represent a label reset, which
are infrequent.

(a) Input Social Model (b) LPA

(c) Multislicing (d) CLAN

Fig. 5. All algorithms reveal similar evolution community structure. There
are significantly more label resets in LPA and the instantaneous community
structure detected by LPA does not always reflect the social model

In the second synthetic model, we have 100 nodes, including
5 travelers. Initially there are 8 communities, but they merge
into 2 communities, then split into 8 communities and finally
merge back into 2 communities. The results are shown in
Figure 6. Once again, we demonstrate that CLAN is able
to detect similar temporal communities to the centralized
algorithm.

D. Variation of Information

The concept of variation of information [34] allows us to
quantify the differences in clustering. Let XN denote {nodes
in x}, let n(x, y) denote {nodes in x with label y} and let XL



(a) Multislicing (b) CLAN

Fig. 6. Both algorithms reveal similar community structure, but CLAN is
better able to separate the data mules from the other nodes as they eventually
do not join communities

= {labels in x}. We define the intersection of two labels, i and
j as:

nij = |n(A, i) ∩ n(B, j)| (6)

Variation of information of two clusterings, A and B is the
sum of the distances between communities and is formally
defined according to Equation 7. There is a special case, when
nij = 0, and in this case the communities are disjoint over
both clusterings and VI is defined to be 0.

V I(A,B) =
∑
i∈AL

∑
j∈BL

− nij
|AN ∩BN |

∗
log(n2ij)

|AN | ∗ |BN |
(7)

Using this definition of VI, we can compare the results of
the clustering algorithms relative to the ground truth social
model used to generate the mobility. The average results
over 10 runs of the 50 node synthetic network, described
above, are shown in Figure 7. The spikes in VI with CLAN
corresponds to community-wide label resets. The larger the
community, the greater the spike in VI upon reset. There is
some delay before CLAN and multislice can detect the merger
at 550 seconds. This delay is due to the temporal aspect of
these protocols, time is needed for link weights to increase
before the merger can be detected. Generally, the communities
detected by CLAN is closer to the ground truth than that of
the other algorithms. A key difference is that the multislice
algorithm experiences some instability during the first 150
seconds and CLAN does not, as reflected in Figure 5 and
Figure 7.

E. Social Entropy

We use the notion of social entropy to control the ease with
which a node joins a community. Nodes that frequently travel
between communities have high social entropy making it more
difficult for them to join communities. Since they do not join
the community, they do not cause resets when they leave. With
both synthetic traces described in Section IV-C, there are 5
travelers with no community attractions. They each belong to
their own community and move independently between nodes
selected at random. These nodes are shown by the 5 shades
of blue at the top of Figure 5(a).

LPA and multislice are not able to isolate the travelers from
the other nodes, as can be seen in Figure 5. With CLAN,

Fig. 7. On average, the community structure detected by CLAN is closer to
that of the ground truth social model

however, the travelers eventually form their own individual
communities. There is some learning time during which their
social entropy grows. With high enough social entropy, the
travelers do not join communities regardless of their position,
hence the 5 shades of blue at the top of Figure 5(d) and
Figure 6(b). These nodes do not trigger resets, thus there are
few vertical, multicolored bars in Figure 5(d) and Figure 5(b).

F. Sensitivity

We vary CLAN’s sensitivity parameter σ, as described in
Section III-B and compare the results using variation of infor-
mation. Figure 8 shows the average variation of information
over 10 simulation runs with different seeds. It is clear that a
sensitivity of σ = 1 or σ = 2 is insufficient, as the VI curve
remained high; indicating that the split after 150 seconds was
not completely detected. With a sensitivity of σ = 1, a node
must lose all of its link before it starts a reset. This can only
happen if a node becomes separated from every other node
in the network. Without label resets, a dominant label takes
hold and is propagated as nodes move about. As the value
of sensitivity, σ, increases, the frequency of resets increases
and the time to detect changes in communities decreases.
Sensitivities of σ = 3 and σ = 4 both detected clusterings
similar to the ground truth throughout the experiment (VI is 0),
but δ = 3 causes fewer resets (spikes in VI) and takes longer
to detect changes (temporarily elevated VI after a change in
ground truth). The value of σ allows a trade-off between time
to detect change, and the overhead of resets.

V. COMMUNITY-BASED HIERARCHICAL ROUTING

Temporal community detection is of particular interest to
the MANET community as it can be used as the basis for
scalable hierarchical routing. The use of CLAN is more
practical than other hierarchical approaches as communities
do not need to be static or predefined, leaders do not have to
be predesignated and communities are based on connectivity
rather than geography.



Fig. 8. In CLAN lower sensitivity σ results in fewer resets (spikes in VI),
but it is more difficult to detect changes in community structure (elevated VI)

With a few modifications of OLSR, we instantiate commu-
nity based routing using CLAN. Nodes advertise their labels
in their periodic hello messages, allowing them to use CLAN
algorithm to discover the evolving community structure of
network. As in OLSR, each node transmits topology control
(TC) messages containing a list of its current neighbors.
Unlike OLSR, TC messages contain the source’s label and
are only retransmitted by members of the same community.
Thus CLAN restricts TC messages to the community of the
source unlike OLSR which floods TC messages throughout
the network. This results less state at each node and reduces
total overhead. The greater the number of communities, the
more significant the reduction. Nodes use the TC messages to
populate their intra-community routing table using Dijkstra’s
algorithms. Nodes will also be able to compute paths to
nodes that have a link to the community but belong to an
adjacent community. Thus nodes will be aware of adjacent
communities and be able to compute the shortest path to each
such community.

A node whose label is the same as its identifier is des-
ignated the community leader and these community leader
form a level above the individual nodes in the hierarchy.
Community leaders augment their TC messages to contain a
list of community members and a list of adjacent community
labels. These augmented TC messages are sent only upon
convergence of CLAN and at a reduced frequency (one out
of ten TC messages). The community leaders’ augmented
TC messages are propagated throughout the network. Nodes
then use community leaders’ adjacency to populate their inter-
community forwarding table with the best adjacent community
to every community in the network. Nodes also maintain a list,
mapping each node to its last known community label.

When a node receives a packet, it looks up the community
label of the destination and then use the intra-community or
inter-community routing table as appropriate. When routing to
an adjacent community, the node must have at least one mem-
ber of that community in it’s intra-community forwarding table
and forwards the packets to the closest such node. Packets are
routed from one community to another until it arrives at the

destination community, where the intra-community forwarding
table can be used.

We stop at this two-layer hierarchy, but for very large
networks, the community leaders can be further clustered,
using CLAN, to form additional levels in the hierarchy. We
tested this routing protocol using the mobility pattern shown
in Figure 6, with eight initial communities, which merge into 2
communities and then splits into eight communities again. The
results are shown in Figure 9. We notice that with smaller sized
networks, the difference in performance between the protocols
are marginal. However, as the size of the network increases, the
the CLAN incurs significantly less overhead while achieving
comparable delivery and latency. With a 100-node network,
CLAN incurs roughly half the overhead as OLSR. These
results show that CLAN can leverage community structure to
significantly reduce overhead and thereby improve scalability
of routing protocols.

Fig. 9. The use of CLAN significantly reduces overhead without significant
impact on delivery.

VI. CONCLUSIONS

We have proposed a distributed and efficient algorithm for
detecting temporal communities in wireless networks. The
algorithm does not need global topology information, as it
utilizes 1-hop neighbor discovery messages. It also does not



need to discretize time into snapshots, rather it continuously
updates the community structure efficiently as the network
involves. The temporal community structure is further im-
proved by assigning time-varying weights to links based on the
uptown of the link and the variability in the set of neighbors of
a node. Our distributed algorithm finds a temporal community
structure as good as a centralized offline algorithm in our tests.

Some future work includes a more exhaustive study of the
CLAN parameters, including more rigorous guidelines on how
they can be set in a given environment. These include σ: the
sensitivity for issuing resets, the minimum degree that a node
is required to have to be able to resets, ψ: the time to detect
convergence of LPA, and τ : the hello interval. Finally, we plan
to explore further the effects that asymmetrical link weight
updates using social entropy have in a variety of environments.
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