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ABSTRACT

Motivation: The ability to predict binding profiles for an arbitrary
protein can significantly improve the areas of drug discovery, lead
optimization and protein function prediction. At present, there are
no successful algorithms capable of predicting binding profiles for
novel proteins. Existing methods typically rely on manually curated
templates or entire active site comparison. Consequently, they
perform best when analyzing proteins sharing significant structural
similarity with known proteins (i.e. proteins resulting from divergent
evolution). These methods fall short when used to characterize
the binding profile of a novel active site or one for which a
template is not available. In contrast to previous approaches,
our method characterizes the binding preferences of sub-cavities
within the active site by exploiting a large set of known protein–
ligand complexes. The uniqueness of our approach lies not only
in the consideration of sub-cavities, but also in the more complete
structural representation of these sub-cavities, their parametrization
and the method by which they are compared. By only requiring
local structural similarity, we are able to leverage previously unused
structural information and perform binding inference for proteins that
do not share significant structural similarity with known systems.
Results: Our algorithm demonstrates the ability to accurately cluster
similar sub-cavities and to predict binding patterns across a diverse
set of protein–ligand complexes. When applied to two high-profile
drug targets, our algorithm successfully generates a binding profile
that is consistent with known inhibitors. The results suggest that our
algorithm should be useful in structure-based drug discovery and
lead optimization.
Contact: izharw@cs.toronto.edu; lilien@cs.toronto.edu

1 INTRODUCTION
The ability to identify and exploit patterns of protein–small-
molecule interaction is a critical component of protein function
prediction, pharmacophore inference, molecular docking and protein
design (Halperin et al., 2002; Langer and Hoffmann, 2006; Powers
et al., 2006; Sousa et al., 2006). In most cases, the protein–
ligand interface is characterized by a number of geometric and/or
chemical features (Dror et al., 2006). This characterization is
facilitated by mining high-resolution experimental structures where,
ideally, a single protein would be observed interacting with several
different bound ligands. Unfortunately, for most proteins, this type
of multiple-binding information is not available (Berman et al.,
2000). To avoid this problem, we chose to focus on sub-cavities
within an active site with the assumption that structurally similar
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sub-cavities are likely to exhibit similar binding profiles. It is
important to emphasize the definition of sub-cavity utilized in this
work. We define a sub-cavity to be a small region of the traditionally
described active site capable of interacting with a single chemical
group (e.g. phenyl, hydroxyl and carboxyl). That is, an active site is
generally composed of 5–20 sub-cavities. By considering protein–
ligand interactions at the sub-cavity level, we can utilize binding
information from structurally and functionally distinct proteins.
A pair of proteins whose active sites differ significantly when
compared in their entirety may still share similarity at the sub-cavity
level. In this work, we decompose a target active site into a set of
sub-cavities, identify structurally similar sub-cavities within other
proteins and then use this information to construct a binding profile.
This approach enables inference when no global receptor similarity
is available.

There are several existing approaches to analyzing an active site’s
protein–ligand binding preference. In most cases, these methods aim
to predict protein function which differs from our aim of identifying
the local binding patterns of sub-cavities. A result of these different
goals is that a direct comparison between our work and the described
methods using a common dataset is not feasible. State-of-the-art
methods can be classified into three groups:
Template-based methods: these methods (Laskowski et al., 2005;
Stark and Russell, 2003; Wallace et al., 1997) accept a template
structure as input (e.g. catalytic triad in serine proteases) and query
a given structural database for matching patterns. Their reliance
on the provided input template makes them particularly useful
for studying or predicting relations to an already known pattern.
The strength of the template-based methods is their speed. The
lightweight template representation (usually, a set of amino acid
residues) allows rapid queries against large databases; however, the
templates are often overly simplistic and are incapable of capturing
the rich physicochemical variations among binding pockets. Further,
templates are often manually generated and are therefore restricted
in their complexity. These limitations make general binding site
analysis with template-based methods difficult.
Binding site similarity methods: these methods compare entire
binding sites and retrieve sets of proteins which share globally
similar binding patterns. They are commonly used for protein
function prediction where similar binding patterns imply similar
catalytic functionality. Several approaches utilize active site
geometry (i.e. amino acid backbone, solvent accessible surface or
active site volume) (Kuhn et al., 2006; Morris et al., 2005), while
other methods exploit both geometry and the chemical function of
the amino acid residues flanking the binding site (Najmanovich
et al., 2008; Schmitt et al., 2002; Shatsky et al., 2005).
A slightly different approach combines sequence alignment with
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subsequent spatial pattern matching of the defined active site
surface (Binkowski et al., 2003). These methods infer patterns using
a variety of techniques to identify similarity such as sub-graph
isomorphism, geometric hashing, multiple structural alignment and
clique detection (Kinoshita and Nakamura, 2003; Leibowitz et al.,
2001; Pennec andAyache, 1998; Shulman-Peleg et al., 2008). Unlike
the template-based methods, the binding site similarity methods
often utilize an elaborate model that includes both geometrical
constraints and chemical profile. While these methods are suitable
for comparing whole binding sites, they are less effective when
considering functionally similar proteins which only share local
‘hot-spots’ within their binding pockets. They are also less useful
when analyzing proteins with novel structure and function. These
novel proteins are unlikely to match any patterns derived from
known active sites.
Local binding site similarity methods: recently methods that search
for local similarities within binding sites have emerged. These
methods allow inference when global active site similarity is poor.
They characterize local interaction patterns within the binding site
cavity. The latter is particularly useful for structure-based drug
discovery, where the interaction between a ligand’s chemical group
and the flanking amino acids can be separately studied outside the
context of the binding site. In (Kupas et al., 2007), the Klebe group
defines a set of functional pseudo-centers for each amino acid and
pairs each pseudo-center with an associated surface-patch (Schmitt
et al., 2002). Each surface-patch reflects the chemical function and
location of its corresponding residue. A wavelet representation of the
surface-patches allows fast structural comparison with adjustable
resolution. A slightly different approach (Ramensky et al., 2007)
associates each sub-cavity with its occupying ligand fragment. Using
the ligand fragments as anchor points, the sub-cavities are aligned
and a similarity is computed using the spatial and chemical overlap
of the neighboring residues. Local similarity methods suffer from
two major shortcomings. First, existing methods define sub-cavities
using an arbitrary fixed distance threshold from either the associated
residue or the ligand fragment. Second, the inclusion of apo proteins
potentially reduces the quality of identified templates. Selecting
a threshold that is too large results in the inclusion of irrelevant
and potentially confusing residues. Conversely, a threshold that is
too small results in a partial model that ignores relevant residues;
proteins frequently undergo moderate structural changes upon ligand
binding. Methods which ignore the holo structure are likely to infer
a biased view of the binding profile.

2 APPROACH
We have developed a sub-cavity-based approach to characterizing
protein–small-molecule binding patterns. Our algorithm
deconstructs the active site into a set of potentially overlapping
sub-cavities and then infers the binding profile of each sub-cavity.
The deconstruction allows us to exploit the sub-cavity similarity
that often exists between structurally diverse proteins. The binding
profile of the entire active site can then be constructed by joining
the information gleaned from each sub-cavity. The approach differs
from previous work in several important ways: first, we analyze
only protein–small-molecule complexes. The current abundance
and diversity of holo structures allows us to avoid inclusion of apo
structures during learning. This design decision removes binding
site localization from the inference problem and ensures that

analyzed sub-cavities are indeed involved in binding. We discuss
the possibility of relaxing this restriction in Section 4.4. Second,
we divide each binding site into sub-cavities according to the
chemical groups of the bound ligand. This separation enables
us to identify sub-cavities that are likely to form interactions,
and more importantly, to label each sub-cavity with the chemical
group to which it is bound (i.e. its functionality). Third, we model
sub-cavities by combining the shape of the binding site (i.e. its
solid 3D volume) with the chemical profile of its flanking residues
to form a single physicochemical representation. This allows us to
benefit from the accuracy of modeling the shape of the active site
while still accounting for the chemical properties of the surrounding
residues. Furthermore, this representation allows us not only to
avoid matching the flanking residues directly but also to account
for their cumulative effects at any location within the sub-cavity.
Finally, we allow the algorithm to iteratively cluster sub-cavities
with the same function and to reshape sub-cavities. The iterative
sub-cavity reshaping procedure is unique to our approach and
provides an advantage over simply including all residues within a
distance cutoff. Reshaping increases the within-class similarity (i.e.
sub-cavities with the same function become more similar) while
reducing the between-class similarity. This procedure not only
improves the classification results (Section 4) but also produces
optimized sub-cavity structures.

In the context of this article, we define the following terms: (i) a
chemical group is a group of atoms that characterize a chemical
moiety. Like a set of building blocks, a limited set of chemical
groups can specify the structure of virtually all small molecules.
We utilize a set of 47 chemical groups (e.g. phenyl, hydroxyl,
carboxyl) inspired by (Chen et al., 1999). (ii) A function type is
the mapping of a chemical group to its corresponding chemical
interaction type. We utilize six functional types: hydrophobic,
aromatic, acid, base, hydrogen-bond donor (HBD) and hydrogen-
bond acceptor (HBA) (McGregor, 2007). Because some chemical
groups correspond to more than one function type (i.e. HBD and
HBA) the mapping is one-to-many. In practice, each of our 47
chemical groups can be described by one of only 9 sets of function
types.

In this framework, a small molecule can be considered a spatial
arrangement of active chemical groups connected by inert bridging
fragments. We propose that within a sub-cavity, the function types
of the protein residues specify a set of preferred ligand fragments
(i.e. chemical groups) with which to bind. Recent analysis of the
binding site variations (Kahraman et al., 2007) as well as local
binding site similarity methods (Kupas et al., 2007; Ramensky
et al., 2007) provide evidence that such patterns do exist. Using
the structures of solved protein complexes we can learn which sub-
cavities (parametrized by shape and function type) preferentially
associate with which ligand fragments (parametrized by chemical
group). Using the occupying ligand fragments to define sub-cavities
not only isolates properly configured sub-cavities but also pairs each
sub-cavity with the bound chemical group. This information can then
be used to infer a binding profile for a query potentially apo protein.

3 METHODS
The training of our algorithm can be divided into a sub-cavity generation
stage (steps 1–4) and a sub-cavity comparison stage (steps 5–6). The process
is summarized below and in Figure 1.
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Fig. 1. The algorithmic framework is divided of two stages: the sub-cavity
generation stage where the sub-cavities are initially identified and the sub-
cavity comparison stage where sub-cavities are clustered and reshaped.

(1) Dataset generation: (Section 3.1) generate a non-redundant set of
protein–small-molecule complexes.

(2) Ligand chemical analysis: (Section 3.2) identify the chemical groups
of each bound ligand.

(3) Shape identification and characterization of binding sites:
Section (3.3) generate a 3D model of the binding site bounded by
the solvent accessible surface. Assign the function types (Section 2)
for each point in the volume based on the flanking residues.

(4) Binding site division into sub-cavities: (Section 3.4) divide the model
into sub-cavities corresponding to the identified chemical groups of
the bound ligand.

(5) Sub-cavity clustering: (Sections 3.5 and 3.6) compute the pairwise
similarity of all sub-cavities and cluster.

(6) Sub-cavity reshaping: (Section 3.6) identify outliers within each
cluster (i.e. sub-cavities binding a ligand chemical group that is
different than the plurality of sub-cavities in the cluster) and
structurally reshape the inliers to increase their similarity.

After generating and clustering the sub-cavities (steps 1–6), we can perform
functional inference on a novel sub-cavity with unknown function by
assigning the sub-cavity the function type of its most similar cluster.

3.1 Dataset generation
We developed the PSMDB database (Wallach and Lilien, 2009) explicitly
to enable non-biased inference of binding patterns. The PSMDB provides
sets of protein–small-molecule complexes that are ideally suited for the
analysis in the present work. It includes only high-quality crystal structures
that contain at least one non-covalently bound ligand. Furthermore, the

PSMDB handles structural redundancy at both the protein and ligand levels
and thus contains highly similar ligands interacting with different proteins
and different ligands interacting with highly similar proteins. In contrast
to other small-molecule databases, this feature provides multiple instances
of sub-cavity–ligand interactions while reducing the bias toward any single
pattern.

3.2 Ligand chemical analysis
The chemical groups contained within each ligand are used as anchoring
points to define the sub-cavities. We identify chemical groups by first defining
a template library of chemical groups [modeled after (Chen et al., 1999) and
encoded using SMARTS patterns (James et al., 2000)] and then matching
these templates against each ligand structure. Similar to the pseudo-center
approach described in (Schmitt et al., 2002), we assign a location for each
identified chemical group and label the group with up to six features (e.g.
HBD, HBA, …) corresponding its functional type. This reduced ligand
representation captures the functional type and arrangement of each chemical
group while removing structural scaffolding that is not likely to form a
significant interaction.

3.3 Shape identification and characterization of
binding sites

We identify the binding site cavities and generate structural models that
include the shape of the cavity and the function type of the amino acid
residues that flank it. Since all input structures contain a bound ligand,
we are able to easily identify the location of the binding site. We place
the protein structure over a grid of 0.75 Å (half the length of a carbon–
carbon bond) consisting of grid cells with the center of each cell defined
as a grid point. We then assign one of three labels (inner volume, binding
surface and inner surface) to each grid cell/point. Starting with one of the
ligand’s atoms, we select the atom’s corresponding grid cell and label it
as inner volume. We then iterate over the neighboring grid cells. Inspired
by the POCKET and SURFNET algorithms (Laskowski, 1995; Levitt and
Banaszak, 1992), we define the solvent accessible surface by first checking
for van der Waals clashes of protein atoms with a pseudo water molecule
located at each grid point. If there is no clash, we mark the grid cell as an
inner volume and recursively proceed to its neighbors. When a grid point
clashes with a protein atom, we mark the cell as a binding surface cell,
tentatively mark all its neighbors that have not yet been explored as inner
surface and then backtrack. The inner surface points are either be relabeled
to binding surface or inner volume as they or their neighbors are visited.
In order to remain within the cavity, we stop and backtrack when a grid
point reaches a distance of >5 Å from all ligand atoms. We use a burial
degree measurement to locate the mouth of the binding pocket (Schmitt et al.,
2002). From each inner volume or surface point, we virtually project beams
in the 26 canonical directions. The burial degree of a point is the number
of beams that hit a binding surface grid point. We found, visually, that a
burial degree of 15 is sufficient to identify binding pockets, thus points with
a burial degree smaller than 15 are considered outside the binding pocket
and are discarded. Once the shape of the binding site is identified, we locate
the amino acid residues that flank it. Then, as in the ligand chemical analysis
step, we identify the chemical groups of these residues and map each group
to its corresponding functional types. A schematic of the general process is
illustrated in Figure 2A.

3.4 Binding site division into sub-cavities
Having identified the extent of the binding site as well as the chemical groups
of the ligand, we then define sub-cavities that are likely to participate in
binding. We define a sub-cavity to be the region of the binding site that
surrounds a chemical group of the bound ligand (Fig. 5) and we label the
sub-cavity with the chemical group’s function type. We define an initial sub-
cavity to be the set of binding site grid points that are closer than 3 Å to a
ligand chemical group. We eliminate sub-cavities which have <20% of their
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Fig. 2. A simplified illustration of the physicochemical analysis of a sub-
cavity. (A) illustrates the binding site identification described in Section 3.3.
Open square, circle and triangle correspond to inner volume, binding surface
and inner surface grid points, respectively. Star corresponds to a chemical
group of a flanking amino acid residue. The dashed axes represent the
principal axes of the sub-cavity. (B) Illustrates the initialization of the sub-
cavity similarity maximization stage described in Section 3.5. The sub-cavity
is rigidly transformed such that its principle axes are aligned with the x and
y axes and its center of mass is at the origin. The cumulative effect of each
flanking functional group (illustrated by the shaded regions) is computed for
every grid point in the new coordinate frame that overlaps the sub-cavity.

surface in direct contact with the protein. At this point in the process, we
do not yet know which grid points will define the final characterizing of the
sub-cavity. Consequently, we are conservative and initially include a large
set of grid points. In subsequent steps, we reshape the sub-cavity toward a
more optimal conserved structure.

3.5 Sub-cavity similarity
The comparison of two sub-cavities requires a similarity function that
accounts for both their shape and chemical features. We regard one sub-
cavity as a reference and the other as a query. We place a grid over the
reference and find the grid points that occupy its shape (i.e. the shape defined
in Section 3.4). The three principal axes of the occupied grid points are
determined by an eigenvalue decomposition of the covariance matrix. We
then translate the sub-cavity center of mass to the origin and rotate the sub-
cavity to align the three principal axes with the x,y and z axes, respectively
(Fig. 2B). We next calculate a feature vector, defined as a chem-vector, for
each grid point occupied by the reference structure. The chem-vector reflects
the local cumulative effect of six functional types of the flanking residues
(Fig. 2B). We pose the query sub-cavity over the reference’s coordinate frame
in the same manner. We then apply a similarity function (see below) which
combines the degree of overlap between the shapes as well as the similarity
between overlapping chem-vectors. We maximize the similarity score using
the Nelder–Mead simplex optimization over the rigid transformations of the
query (Nelder and Mead, 1965).
Formal definition: in the following, we formulate the similarity function
referenced above.

Define Ci ={Ci
1 ...Ci

ni
},Ci

k ∈R3 where Ci
k are the coordinates of the k-th

chemical group of functional type i∈{1 ...6} in the sub-cavity.
For each point p∈R3 we define a feature vector (chem-vector), vp,

which reflects the chemical profile in that location such that vp =(
vp

1 ...vp
6

)
where 0≤vp

i ≤1 and vp
i indicates the effect of the i-th feature at

location p. We define vp
i as following:

Let dkip =‖Ci
k −p‖2 be the Euclidean distance between the chemical

group Ci
k and the point p.

Let λ(ε,dkip)=‖dkip −ε‖2 be a function that indicates the effect of a
chemical group, Ci

k , on the point p such that ε is the optimal distance for a

maximal effect. We define:

vp
i =L

( ni∑
k=1

N (
λ(ε,dkip)|μ,σ

))

where N (
λ|μ=0,σ =2

)
is the probability density function and L(x)=

2
1+e−x −1 is a logistic-like function such that 0≤L(x)≤1. Using a logistic
function allows us to define a maximal contribution for a given feature
(functional type), thus a point cannot be dominated by any single chemical
group. This reduces the chance that an outlying functional group will affect
the total similarity. We regard each vp

i as the cumulative influence of all
chemical groups of functional type i at point p.

Given two points, p and q, we define their similarity using the Pearson
correlation between the corresponding chem-vectors: S

(
p,q

)=S
(
vp,vq

)=
max

[
0,P

(
vp,vq

)]
where P

(
vp,vq

)
is the Pearson correlation coefficient.

Given two sub-cavities, A1 and A2, we define N1 and N2 to be the sets
of grid points defining their shapes, respectively. Assuming all points in N1

and N2 sets are uniformly distributed over the space defined by N1 ∪N2 the
similarity function is:

S(A1,A2)=∑
p∈N1∩N2

S
(

vp
A1

,vp
A2

)
−

∑
p∈N1\N2

M
(

vp
A1

)
−

∑
p∈N2\N1

M
(

vp
A2

)

Where vp
A1

and vp
A2

are chem-vectors of the same 3D coordinate from A1 and

A2, respectively and M (v )= 1

|v|
∑|v|

i vi.

3.6 Sub-cavity clustering and reshaping
We now have a set of sub-cavities which are observed to participate in
binding, extracted from a large diverse set of protein–ligand complexes
and have specified a similarity function which accounts for sub-cavity
shapes and chemical profiles. Using the similarity function, we alternate
between clustering and reshaping the sub-cavities. Sub-cavity refinement
addresses the fact that the initial sub-cavities naively include all points within
a specified distance of a chemical group. Therefore, the sub-cavity may
include many points that are neither relevant nor specific to binding. With
a goal of accurate functional inference, we employ a reshaping process to
increase the functional agreement among those sub-cavities that fall within
the same cluster. This procedure is possible with the assumption (confirmed
by our experiments) that in their initial state, two sub-cavities with the same
label (i.e. associated with the same chemical group) will generally be more
similar than two sub-cavities with different labels. Furthermore, we assume
that this initial similarity exists because the sub-cavities share a similar
substructure. Likewise, sub-cavities can be made more similar by removing
the inconsistent structural variations.

The process starts by computing the pairwise similarity of all initial
sub-cavities and clustering them using Affinity Propagation (Frey and
Dueck, 2007). Following our previous assumption, there will typically be an
overrepresented or dominant) label among the sub-cavities of each cluster.
Within a cluster, the sub-cavities sharing the dominant label are considered
inliers [or true positives (TP)] while the remaining sub-cavities are outliers
[or false positives (FP)]. The number of outliers can be reduced by reshaping
the inliers toward their maximal common substructure (MCS). We use the
Random Sample Consensus algorithm (RANSAC) (Fischler and Bolles,
1981) to identify outliers. Intuitively, the RANSAC algorithm assumes that
iterative random sampling of sets of sub-cavities from a cluster will result in
an all-inlier subset and that the MCS computed from an all-inlier subset will
be both large and consistent. Within the cluster, inconsistent sub-cavities are
marked as outliers. The inliers are reshaped by retaining only the structures
consistent with the MCS. Once reshaping is complete, we recalculate the
new pairwise similarities and cluster again. The process terminates when the
clusters no longer change or a maximal number of iterations has elapsed.
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4 RESULTS AND DISCUSSION
The current work describes experiments using both simulated and
real experimental data. In Section 4.1, we describe an experiment
on simulated data in which we identified and clustered a set of
generated sub-cavities. The experiments described in Section 4.2
were performed with real experimental data and explore sub-
cavity label recovery for a set of functionally similar proteins.
These experiments demonstrate the performance of our approach
on real sub-cavities. In Section 4.3, we describe the results of
an evaluation of a non-redundant set of over 300 protein–small-
molecule complexes taken from the PSMDB. We analyze the
predictive performance of the resulting clusters and highlight
functional inference on the binding sites of HIV-1 Protease and
Thrombin. Finally, in Section 4.4 we discuss design decisions,
limitations and possible extensions of the presented work.

4.1 Simulated data
We began by evaluating the clustering and reshaping stages of our
algorithm (Section 3.6). We tested the ability of our procedure
to recover the structure of a sub-cavity template given a set of
noisy instances of a template structure. We first randomly generated
20 sub-cavity templates according to the distribution of sub-
cavity sizes, number of pseudo-centers and function types found
in the sub-cavities extracted from 1754 non-redundant protein–
ligand complexes in the PSMDB. For each template, we generated
approximately 20 noisy instances or observed sub-cavities. This was
done by randomly adding structure grid points adjacent to the sub-
cavity surface and altering its pseudo-center locations. The number
of random grid points that were added varied from 10% to 40%
of the size of the initial sub-cavity. Each experiment was evaluated
using the following parameters: (i) homogeneity—the percent of
TP within each cluster; (ii) cluster coherence—a measure similar
to homogeneity but which penalizes false negatives (FN) (missed
relevant sub-cavities); and (iii) net cluster similarity—a measure of
the compactness of each cluster. After refinement, 26 clusters (mean
cluster size of 15) and 27 clusters (mean cluster size of 13) were
found for the 10% and 40% noise experiments, respectively. The
additional clusters were formed by splitting a single cluster with
consistent labeling into two smaller clusters (data not shown). This
is a consequence of Affinity Propagation’s automatic selection of the
number of clusters—a feature that is considered both an advantage
and a disadvantage of the approach.
Homogeneity: we define the homogeneity score of a recovered
cluster to be its precision, TP/(TP+FP). This measurement is
particularly important when structurally distinct sub-cavities with
identical labels are split into multiple clusters. Figure 3A shows the
changes in homogeneity gained by each iteration of clustering and
reshaping. We found the algorithm to yield a high homogeneity score
(0.97–0.99) regardless the amount of noise. We saw a small decrease
in the homogeneity of the clusters (<0.02) which can be attributed
to the appearance of additional small clusters after reshaping. A
single error in a small cluster significantly effects the homogeneity
score thereby slightly pulling down the reported averages. This is
supported by an increase in the SD of the homogeneity scores.
Cluster coherence: the RANSAC algorithm’s ability to identify
outliers (or FP) during the reshaping step refines the MCS and
subsequently improves the cluster quality. The cluster coherence
score is calculated as TP/(TP+FP+FN) and is similar to the

1 2 3 4 5
0.9

0.92

0.94

0.96

0.98

1.0

Iteration

H
o

m
o

g
e

n
e

ity
 s

co
re

Cluster Homogeneity

1 2 3 4 5

0.6

0.8

1.0

Iteration

C
o
h
e
re

n
ce

 s
co

re

Cluster Coherence

10% noise

20% noise

30% noise

40% noise

(B)(A)

(C) Net Cluster Similarity

Noise (%)

Percentage of Improvement

10 20 30 40

0.00 5.26 6.37 7.47

Fig. 3. Results on 20 simulated template sub-cavity structures. While the
homogeneity scores are fairly consistent during refinement (A) the outlier
scores dramatically improve after the first iteration (B). The percentage
improvement in net cluster similarity for each noise level is shown in (C).
Significant improvement is not observed for the 10% noise experiments as
the clusters are already extremely similar. A larger improvement in similarity
is observed for experiments run with higher noise levels.

homogeneity score with an added penalty for FNs. In the context
of the simulated sub-cavities, a FN is a sub-cavity that should
be included in a given cluster but which is not. The cluster
coherence score is relevant primarily for simulated data in which
the true number of clusters is known and the algorithm’s ability to
recover them is tested. Figure 3B illustrates the quality of outlier
identification with respect to the reshaping iterations. We see that
the reshaping process improves outlier identification regardless of
the amount of noise in the data. It is interesting to note that there is
almost no improvement in the score after the first reshaping iteration
suggesting convergence to a locally optimal solution.
Net cluster similarity: we evaluated the net cluster similarity of the
clustering process after each reshaping iteration. Using the cluster
exemplar identified by Affinity Propagation, the net similarity is
the sum of all similarities between each sub-cavity and its cluster’s
exemplar plus the sum of all exemplar preferences (Frey and Dueck,
2007). This indicated how well the objective function had been
maximized. For example, if we had recovered the optimal structures,
the net similarity of every cluster would be maximal. Figure 3C
shows the change in net similarity with respect to the reshaping
iterations. We see that the net similarity increased with the iterative
reshaping process. This implies that the sub-cavities within each
cluster became more similar to their exemplar and also to each other.

4.2 Clustering different protein classes
In the second experiment, we evaluated our algorithm on a set of
experimentally solved protein–ligand complexes. We assembled a
dataset of 80 protein–ligand complexes from the PSMDB database
(482 sub-cavities) spanning 6 different enzyme classes. Each protein
in the same enzyme class shares the same 3-number prefix of their
Enzyme Classification (EC) number (Bairoch, 2000) and catalyzes a
similar chemical reaction. We evaluated the recovered clusters by the
homogeneity (Section 4.1) of the cluster’s most common function
type. Our algorithm returned 39 clusters with a mean cluster size
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Fig. 4. The distribution of homogeneity scores by ligand function type
for the six enzyme class experiments. The majority of clusters are highly
homogeneous.

of 12 sub-cavities. Figure 4 shows the distribution of cluster scores
and demonstrates that most clusters have very high homogeneity.

4.3 PDB sub-cavity analysis and inference
In order to establish the suitability of our algorithm for inferring
protein–ligand interactions, we analyzed large non-redundant
datasets of sub-cavities derived from complexes in the PSMDB. In
these experiments, we trained our system using one set of protein–
ligand complexes and then evaluated the performance of the system
using a novel, independent test set. Although the complexes in
the training and testing set were different, our prediction was that
the complexes would share local or sub-cavity similarity which
could then be used to infer sub-cavity binding preferences. Our
experiments using two well-characterized protein systems, HIV
Protease and Thrombin, confirmed this prediction and highlight the
utility of this approach.

4.3.1 Sub-cavity analysis We extracted 6573 sub-cavities from
the PSMDB-25% dataset which contains protein–small-molecule
complexes having no >25% protein sequence identity. From this
initial set, we created five different random subsets each containing
650 sub-cavities. Each of the five sets was run through our algorithm
to obtain clusters and corresponding exemplars. For each cluster we
calculated a homogeneity score (similar to Section 4.2) that is the
ratio between the highest number of occurrences of any function
type and the size of the cluster. We labeled each cluster by the most
frequent function type.

For each experiment, we randomly sampled a test set of 300
sub-cavities not included in the training set. Using the similarity
function of Section 3.5, we identified the cluster with the most
similar exemplar to the query. The homogeneity of the most similar
cluster was compared to a set threshold. If the homogeneity score
was above a threshold, we made a prediction and compared the label
of the cluster to the known label of the sub-cavity. The percent of
correctly predicted sub-cavities was reported as the precision of the
experiment (Table 1). If a prediction is not made, it is not counted
against the precision. Table 1 shows that the best predictions were
made by clusters with high homogeneity. This effect became more
pronounced if reshaping had been performed. Visual inspection
revealed that some of the false predictions occurred when two
different chemical groups were located in close proximity. In this
situation, the function types’ associated cavities were extremely
similar and the algorithm had difficulty teasing the two apart.

Table 1. Inference success rate by homogeneity score cutoffs

Reshaping iteration <0.5 0.5–0.75 0.75–1.00

0 0.61 0.73 0.72
1 0.62 0.73 0.75
2 0.61 0.73 0.84

Clusters having higher homogeneity scores demonstrate better inference precision. The
iterative clustering–reshaping process increases the precision for clusters with a higher
homogeneity scores. It supports the assumption that the similarity within a cluster
comes from the sharing of a common substructure the— reshaping process uncovers
this structure and increases prediction accuracy. Clusters with lower homogeneity scores
are less likely to share common substructure and benefit less from the reshaping process.

For example, a phenol group shows two proximate function types—
a hydrophobic group arising from the benzene ring and a HBD
group arising from the associated hydroxyl group. In this case, it
is possible for the algorithm to confuse one binding pocket for
another. This suggests that a single cluster may support interactions
with multiple different chemical groups. A larger training set may
provide disambiguation of these cases.

4.3.2 Inference Toward the goal of automatic sub-cavity-based
pharmacophoric inference, we characterize the function type of each
sub-cavity within a protein binding site. This was a challenging
task for several reasons: any bound ligand may not exploit all
possible interaction sites, different bound ligands may satisfy the
same interaction site in alternate ways and the presence of a ligand
chemical group in a sub-cavity does not necessarily imply that the
chemical group is the ideal interaction partner for the associated
sub-cavity. Despite these caveats, the set of known binding ligands
provided arguably the best source of information for learning
sub-cavity binding preferences.

We performed binding inference for two protein systems, HIV-
1P and Thrombin. These systems were selected because they are
high-profile drug targets for which multiple complex structures
had been solved. Starting from the known ligand binding site, we
predicted the function type of each sub-cavity and compared these
predictions to a set of known binding ligands. We constructed a
training set of approximately 650 sub-cavities in a manner similar
to Section 4.3.1; however, most importantly, we removed any sub-
cavity which originated from either test protein or their homologs.
We applied the algorithm over the training set to produce a set
of clustered sub-cavities. Using the function prediction method
described in Section 4.3.1 with homogeneity thresholds of 0.65, 0.75
and 0.85 the sub-cavities of the two test proteins were predicted.
The predictions were compared to a set of ligands known to bind
the specified sub-cavities.
Binding site prediction for HIV-1 Protease: HIV-1 Protease is an
aspartic protease responsible for the cleavage of two HIV poly-
protein chains into several distinct proteins including the protease
itself. The PDB contains structures for a total of nine HIV protease
inhibitors which use the structural scaffold illustrated in Figure 5A.
For example, the ligand of 1HWR (Ala et al., 1998) contains two
phenyl groups (hydrophobic and aromatic) (R3, R7), two 1-butene
groups (hydrophobic) (R4, R6), two hydroxyl groups (HBD and
HBA) (R1, R2) and one carbonyl group (HBA) (R5). In our
experiment, the 1HWR PDB complex was used as the query protein.
We extracted seven sub-cavities using three homogeneity score
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Fig. 5. The structural scaffold common to many HIV protease inhibitors
contains a central seven-member ring with seven peripheral R-groups (A). A
sub-cavity is defined for each R-group. The binding site of HIV-1P 1HWR
with its bound ligand is shown in (B). The extent of the binding site is
illustrated as a blue mesh. A sub-cavity of one of the 1-butene groups is
shown in red.

Table 2. Inference results for HIV-1 Protease active site

R1 R2 R3 R4 R5 R6 R7

Prediction HBD HBD Arom. Arom. – – Arom.

0.65 8/8 9/9 9/9 8/9 – – 9/9
0.75 8/8 9/9 9/9 8/9 – – 9/9
0.85 8/8 – – – – – –

Sub-cavity inference results for the binding site of HIV-1 Protease. Using three different
homogeneity score thresholds (0.65, 0.75 and 0.85), the predicted sub-cavity labels were
compared to a set of nine ligands. R-groups refer to Figure 5A. The predictions made
by our algorithm appear in the ‘Prediction’ row (Arom., aromatic). No prediction was
made when the cluster’s homogeneity score did not pass the set threshold (indicated
by a ‘−’). An entry X/Y indicates X correct predictions made for the Y ligands with a
corresponding R-group ( i.e. not all ligands have a substituted chemical group at each
R position).

thresholds as shown in Table 2. For five of the seven sub-cavities,
the predicted function types strongly agreed with the R-groups
observed among the nine ligands. The nearest cluster for two of
the sub-cavities had a homogeneity score below the three specified
thresholds; therefore, a prediction was not made. None of the HIV-
1P proteins or their homologs were used in training which supports
the use of our method as a general approach.
Binding site prediction for Thrombin: Thrombin is a serine
protease involved in the blood coagulation cascade. It catalyzes the
conversion of inactive fibrinogen to an active fibrin and participates
in activation of other coagulation factors. Consequently, it is a
high-profile target for many anticoagulant drugs. The PDB contains
the structures of nine thrombin complexes with ligands containing
slight variations on a common scaffold. Similar to the HIV-1P
example above, the thrombin ligands vary at five R-group positions.
For example, the ligand of 3BIU (Gerlach et al., 2007) contains
two carbonyl groups (HBA) (R3, R4), one 5-carbon ring group
(hydrophobic) (R5), one phenyl group (hydrophobic and aromatic)
(R2) and one amidine group (HBD) (R1). The 3BIU PDB complex
was used as a query for this experiment. We extracted five sub-
cavities corresponding to the five R-groups as shown in Table 3.
For three of the five sub-cavities, the predicted function types
strongly agree with the R-groups observed among the nine ligands.
For each of the remaining two cavities, the nearest cluster had
a homogeneity score below the three specified thresholds, thus a

Table 3. Inference results for Thrombin active site

R1 R2 R3 R4 R5

Prediction HBD + HBA – HBD + HBA HBA –

0.65 6/6 – 9/9 9/9 –
0.75 6/6 – 9/9 – –
0.85 6/6 – – – –

Sub-cavity inference results for the binding site of Thrombin. Using three different
homogeneity score thresholds (0.65, 0.75 and 0.85), the predicted sub-cavity labels
were compared to a set of nine ligands. The predictions made by our algorithm appear
in the ‘Prediction’ row. No prediction was made when the cluster’s homogeneity score
did not pass the set threshold (indicated by a ‘−’). An entry X/Y indicates X correct
predictions made for the Y ligands with a corresponding R-group (i.e. not all ligands
have a substituted chemical group at each R position).

prediction was not made. Sub-cavity R1 corresponds to the well-
known catalytic triad of Ser, His and Asp often seen in protease
enzymes. Interestingly, the cluster containing the R1 sub-cavity had
the highest homogeneity value demonstrating the algorithm’s ability
to learn a highly conserved local motif (i.e. observed across multiple
different active sites). As in the previous experiments, no thrombin
proteins or their homologs were used in training.
In summary, our algorithm represents a significant step toward fully
automated binding site analysis. Using simulated data, we were
able to recover known sub-cavity structure in the presence of up
to 40% noise. We demonstrated the utility of the iterative clustering
and reshaping stages to increase classification accuracy. When run
against a set of 80 experimental protein–ligand complexes, our
algorithm successfully generated a small number of clusters with
high homogeneity. We tested the ability of the algorithm to perform
binding inference by training on 650 experimental sub-cavities and
then measuring the predictive accuracy on an independent set of 300
different sub-cavities. Our approach achieved a predictive accuracy
of 84%. The ability of the algorithm to predict the functional group of
a ligand observed to occupy a query sub-cavity should be interpreted
in the appropriate context, however. The observation of a chemical
group inside a sub-cavity does not necessarily imply a significant
interaction. The predicted function type simply reflects the general
binding preference of the sub-cavity as observed across a large
number of protein–ligand complexes. The chemical groups of any
one bound ligand may disagree slightly with the predicted function
types providing possible opportunities for lead optimization. In
practice, we expect that the predicted types will generally agree
with a set of known substrates. This hypothesis was confirmed for
both the HIV-1P and Thrombin proteins (Section 4.3.2). Working
from this observation, a prediction should only be considered
incorrect if the predicted function type is unlikely to interact with
the receptor.

4.4 Extensions and limitations
Our method represents a step toward a complete and automatic
system for characterizing an active site binding profile. One
limitation of the current approach is our reliance on experimentally
determined structures of bound protein–ligand complexes. Although
these experimental structures provide the highest quality verified
structural information on protein–ligand interactions, the number
of available complexes is limited. To expand the dataset used in
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analysis, it may be possible to incorporate the use of experimental
structures in the apo form. With respect to inference, it may be
possible to predict the location of a protein’s binding site (Hendlich
et al., 1997; Weisel et al., 2007) and to divide it into hypothesized
sub-cavities each of which can be clustered and reshaped using
the approach of Section 3.6. A second limitation of our approach
is the independence assumption between the binding profiles of
neighboring sub-cavities (Pellecchia et al., 2002). We are currently
working to incorporate such synergistic effects on binding. With
respect to evaluating inference, it is possible we have been too
conservative with reporting the performance of our independent
training and testing experiments. A TP by our definition requires
a known holo structure involving the specified chemical group. In
practice, the inferred interaction may indeed be correct; however,
there may simply be no experimentally solved structure that can
verify it.

The experimental results suggest two final avenues for extension.
First, we demonstrated the importance of sculpting sub-cavities
toward their maximal common substructure; however, our results
suggest that a more sophisticated MCS algorithm (Shatsky et al.,
2006) may improve both classification accuracy and structure
recovery. Second, although not explicitly discussed in this article,
computational challenges may arise when our approach is scaled
to include a larger structural dataset (such as the use of apo
structures listed above). Accuracy and scalability may be maintained
by approximating the similarity matrix of Section 3.5 with an
appropriately computed sparse matrix. Fortunately, the affinity
propagation clustering algorithm we employed should be consistent
with such an approximation.

5 CONCLUSION
We have presented an algorithm that infers binding site patterns
by utilizing local similarity among active site sub-cavities. The
uniqueness of our approach lies not only in the consideration of
sub-cavities, but also in the more complete structural representation
of these sub-cavities, their parametrization and the method by
which they are compared. We demonstrated the algorithm’s ability
to leverage previously unused structural information to perform
binding inference for proteins that do not share significant structural
similarity with known systems. Using HIV-1 Protease and Thrombin
as test cases, we have taken the first step toward sub-cavity-based
pharmacophore inference. We intend to extend our work toward
fully automatic pharmacophore inference and protein function
prediction. More specifically, we believe that an automatically
generated pharmacophore map could be used for virtual docking,
lead optimization and de novo drug design. An example of a lead
optimization effort using this approach would be to apply predicted
binding preferences to the replacement of chemical groups on a
well-studied scaffold. Detailed knowledge of a pharmacophore map
may also allow protein function prediction or provide support for
human-generated binding hypotheses.
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