
PROJECT ATHENA TECHNICAL PLAN

Section E.1

Moira, the Athena Service Management System
Peter Levine

Michael R. Gretzinger
Mark A. Rosenstein

Jean Marie Diaz
Bill Sommerfeld

Ken Raeburn

1. Abstract

The problem of maintaining, managing, and supporting an increasing number of
distributed network services with multiple server instances requires development and
integration of centralized data management and automated information distribution. This
paper presents Moira, the Athena Service Management System, focusing on the system
components and interface design. The system provides centralized data administration, a
protocol for interface to the database, tools for accessing and modifying the database and an
automated mechanism of data distribution.

2. Purpose

The primary purpose of Moira is to provide a single point of contact for administrative
changes that affect more than one Athena service. The secondary purpose is to provide a
single point of contact for authoritative information about Athena administration.

3. Introduction

Currently, many update tasks and routine service issues are managed manually. As the
number of users and machines grows, managing the Athena system becomes significantly
more difficult and more economically unfeasible. The Athena Service Management System
is being developed in direct response to the problem of supporting the management of an
increasing number of independent workstations. A network based, centralized data
administrator, Moira provides update and maintenance of system servers.

The development of Moira addresses centralized administration, distributed data services,
and routine system updates:

• Conceptually, Moira provides mechanisms for managing Athena servers and
services. This aspect comprises the fundamental design of Moira.

• Economically, Moira provides a replacement for the labor-intensive, hand-
management now associated with maintaining services.

Moira Draft of 2 May 1990: For beta testers reference, not for publication
Copyright 1987, 1989 by the Massachusetts Institute of Technology

Page 2, Section E.1 Athena Technical Plan

• Technically, Moira consists of a database, an Moira server and protocol interface,
a data distribution manager, and tools for accessing and changing Moira data.

Moira provides a single coherent point of contact for the access and update of data. The
access of data is performed by means of a standard application interface. Programs
designed to update network servers, edit mailing lists, and manage group members all talk
to the application interface. The programs which update servers are commonly driven by
crontab and act as a server stuffing mechanism. Applications which are used as
administrative tools are invoked by users.

Two examples of Moira use:

• One example is for the user accounts administrator to run an application on her
workstation which will change the disk quota assigned to a user. She doesn’t
need to log in to any other machine to do this, and the change will automatically
take place on the proper server a short time later.

• Another example is for a user to run an application to add themselves to a public
mailing list. Again, the user can run this application on any workstation.
Sometime later, the mailing lists file on the central mail hub will be updated to
show this change.

This technical plan discusses Moira from a functional standpoint. Its intention is to
establish a relationship between the design of Moira and the clients which use Moira.

Note that the system has changed names since work began. Originally it was simply
called SMS, the initials of Service Management System. The new name is a slightly
anglicized spelling of the Greek term for the fates. According to the mythology, there are
three aspects of fate: Clotho, who spins the thread of life; Lachesis, who assigned to each
man his destiny in the great tapestry; and Atropos, who cut the thread at death. Similarly,
the Athena Service Management System controls the creation of user accounts, the
assignment of resources, and the termination of computer access. Since the name change
has occured after much code development, the string "sms" still crops up in some of the
code.

4. Requirements

The design criteria and requirements are influenced by the following:

• Simplicity and clarity of the design are more important than complexity or speed.
A clear, simple design will guarantee that Moira will be a well structured product
capable of being integrated with other system resources. Other systems, such as
Hesiod, will provide a speedy interface to the data kept by Moira; the purpose of
Moira is to be the authoritative keeper of the database, updating slave systems
such as Hesiod as needed.

• A simple interface based on existing, tested products. Wherever possible, Moira
uses existing products.

• Moira must be independent of individual services. Each server receiving
information from Moira requires information with particular data format and
structure. However, the Moira database stores data in one coherent format.
Through its own knowledge of each server’s needs, a data control manager will
access Moira data and convert it to server-appropriate structure.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 3

• Clients must not touch the database directly; that is, they should not see the
database system actually used by Moira. An application must talk to an
application library. This library is a collection of functions allowing access to the
database. The application library communicates with the Moira server via a
network protocol.

• Maximize local processing in applications. Moira is a centralized information
manager. It is not a computing service for local processors. For efficiency, the
Moira protocol supports simple methods of requesting information; it is not
responsible for processing complex requests. Applications can select pieces of the
supplied information, or produce simple requests for change.

• Ability for expansion and routine upgrades. Moira is explicitly responsible for
supporting new information requirements; as new services are added, the
mechanism which supports those services must be easily added.

• The system must provide no direct services, i.e. none at user level, so that an
environment can exist with or without Moira. (Without it, however, the economic
consequence of managing system services by hand must be recognized.) Moira
should be reasonably easy to install at other sites.

• Moira must be tamper-proof. It should be safe from denial-of-service attacks and
malicious network attacks (such as replay of transactions, or arbitrary
"deathgrams").

• Moira must be secure. Authentication will be done using Athena’s Kerberos [2]
private-key authentication system. Once the identity of the user is verified, their
right to view or modify data is determined according to the contents of access
control lists (acl’s) which reside with the data.

• Fail gracefully.

• Moira does not have to be 100% available. Moira provides timely information to
other services which are 100% available (Hesiod, Zephyr, NFS). Once again, the
purpose is to provide a centralized source of authoritative information.

5. System Model

The model is derived from requirements listed in the previous section. As previously
mentioned, Moira is composed of six components.

• The database.

• The Moira server.

• The application library.

• The Moira protocol.

• The Data Control Manager, DCM.

• The server-specific files.

Because Moira has a variety of interfaces, a distinction must be maintained between
applications which directly read and write to Moira (i.e., administrative programs) and

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 4, Section E.1 Athena Technical Plan

services which use information distributed from Moira (i.e. name server). In both cases the
interface to Moira database is through the Moira server, using the Moira protocol. The
significant difference is that server update is handled automatically through a data control
manager; administrative programs are executed by users.

INPUT DATABASE OUTPUT

Client lib

Client lib

Moira
Server

Database

DCM

backup

Update
Server

System
Config

Moira Prtcl

Update

Prtcl

Figure 1: The Moira System Structure

In all cases, a client of Moira uses the application library. The library communicates with
the Moira server via a network protocol. The server will process database specific requests
to retrieve or update information.

5.1. System Assumptions

The support and function of Moira is derived exclusively in response to the environment
which it supports. This section presents factors of the design dealing with considerations
such as scalability, size, deployment, and support.

A. The system is designed optimally for 10,000 active users. The database has been
designed to delineate between active and non-active status. Active refers to those
individuals who have permission to use the system.

B. Moira supports a number of system services. To date there are four system services
which are supported. They are:

• Hesiod
• NFS
• Mail Service
• Zephyr - to date, supported but not in use

These services are, however, each supported by a collection of server-specific data files.
To date, there are over 20 separate files used to support the above services.

C. Each service is supported by a collection of database fields. Over 100 query handles
provide efficient, database independent methods of accessing data. All applications
use this method.

D. The system is designed to allow futher expansion of the current database, with the
ultimate capability of Moira supporting multiple databases through the same query
mechanism. Provision for many more services is recognized through this design.

E. The distribution of server-specific files can occur every 15 minutes, with an optimal
time interval being greater than 6 hours. The data control manager is designed to only

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 5

generate and propagate new files if the database has changed within the previous time
interval.

F. The system supports one hesiod server, 20 locker servers running NFS, one
/usr/lib/aliases propagation. A hesiod server requires 11 separate files; each hesiod
server will receive the same 11 files. Each NFS server requires three files, one of these
files will be the same for most NFS servers. /usr/lib/aliases is one file.

G. File Organization:

Service File Size Number Propagations Interval
Hesiod cluster.db 53656 1 1 6 hours

filesys.db 541482 1 1 6 hours
gid.db 341012 1 1 6 hours
group.db 453636 1 1 6 hours
grplist.db 357662 1 1 6 hours
passwd.db 712446 1 1 6 hours
pobox.db 415688 1 1 6 hours
printcap.db 4318 1 1 6 hours
service.db 9052 1 1 6 hours
sloc.db 3734 1 1 6 hours
uid.db 256381 1 1 6 hours

NFS partition.dirs 2784 20 20 12 hours
partition.quotas 1205 20 20 12 hours
credentials 152648 1 20 12 hours

Mail /usr/lib/aliases 445000 1 1 24 hours

Zephyr class.acl 100 6 18 24 hours
TOTAL 59 90

NOTE: The above files will only be generated and propagated if the data has
changed during the time interval. For example, although the hesiod interval
is 6 hours, there is no effect on system resources unless the information
relevant to hesiod has changed during the previous 6 hour interval.

H. Application interfaces provide all the mechanisms to change database fields. There
will be no need for any Moira updating to be done by directly manipulating the
database. For each service, there is at least one application interface. Currently there
are twelve interface programs.

5.2. The Database

The database is the core of Moira. It provides the storage mechanism for the complete
system.

The database is written using RTI INGRES, a commercially available database toolkit.
Its advantage is that it is available and it works. INGRES provides the Athena plant with
a complete query system, a C library of routines, and a command interface language. Moira
does not depend on any special feature of INGRES. In fact, Moira can easily utilize other
relational databases.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 6, Section E.1 Athena Technical Plan

A complete description of the INGRES design can be found in RTI’s INGRES users’
manuals; this paper does not discuss the structure of INGRES. This documentation does,
however, describe, in detail the structure of the Moira database.

The database contains the following:

• User information (account, finger)
• Machine information
• Cluster information
• General service information (service location, /etc/services)
• File system information (NFS partitions, logical filesystems)
• Printcap information
• Post office information
• Lists (mail, acl, groups)
• Aliases

The database fields are described in section starting on page 27 of this document.

The database is a completely independent entity from the Moira system. The Ingres
query bindings and database specific routines are layered at the lower levels of the Moira
server. All applications are independent of the database specific routines. This
independence is acheived through the use of query handles, Moira specifice functions
providing data access and updating. An application passes query handles to the Moira
server which then resolves the request. This request is passed to the database via a
database specific call. Allowing for additional data and future expansions, Moira can use
other databases for information. This mechanism, although not functional at this time, is
achieved by having a set of query handles for each accessable database. Then, the
application merely passes a query handle to a function, which then resolves the database
and query.

The current database supports all activities inherent to operation and data requirements
of the previously listed Moira-supported services. No attempt is made to circumvent Moira
as the central point of contact. When needed and where applicable, as more services are
required, new fields and query handles will be provided for support.

5.2.1. Input Data Checking

Without proper checks on input values, a user could easily enter data of the wrong type or
of a nonsensical value for that type into Moira. For example, consider the case of updating
a user’s mail address. If, instead of typing e40-po (a valid post office server), the user typed
in e40-p0 (a nonexistant machine), all the user’s mail would be "returned to sender" as
undelivereable.

Input checking is done by both the Moira server and by applications using Moira. Each
query supported by the server may have a validation routine supplied which checks that
the arguments to the query are legitimate. Queries which do not have side effects on the
database do not need a validation routine.

Some checks are better done in applications programs; for example, the Moira server is
not in a good position to tell if a user’s new choice for a login shell exists. However, other
checks, such as verifying that a user’s home directory is a valid filesystem name, are
conducted by the server. An error condition will be returned if the value specified is
incorrect. The list of predefined queries (Section 7) defines those fields which require
explicit data checking.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 7

5.2.2. Backup

It is not absolutely critical that the Moira database be available 24 hours a day; what is
important is that the database remain internally consistant, and that the bulk of the data
not be lost. With that in mind, the database backup system for Moira has been set up to
maximize recoverability in the event of damage to the database.

Two programs (mrbackup and mrrestore) are generated automatically (using an awk
1script) from the database description file db/newdb . mrbackup copies each relation of the

current Moira database into an ASCII file. Each row of the database is converted into a
single line of text; each line consists of several colon separated fields followed by a newline
character (ASCII code 10 decimal). Colons and backslashes inside fields are replaced by \:
and \\, respectively. Non-printing characters are replaced by \nnn, where nnn is the octal
value of the ASCII code for the non-printing character. The full database dump takes
roughly 12 minutes with the current (albeit partially-populated) database; the ascii files
take up about 3.2 MB of space. It is intended that mrbackup be invoked by a shell script
run periodically by the cron daemon; this shell script (currently called nightly.sh)
maintains the last three backups on line. It is intended that these backups be put on a
separate physical disk drive from the drive containing the actual database. Also, they
should be dumped to tape using tar, or copied to another machine, on a regular basis.
Whether they should be dumped to TK50 or reel-to-reel tape is open to discussion at this
point.

mrrestore does the inverse of mrbackup. It requires the existance of a empty database
2named "smstemp" , created as follows:

createdb smstemp
quel smstemp
* \i /mit/moira/src/db/newdb load DB definition
* \g execute DB definition
* \q quit
mrrestore
Do you *REALLY* want to wipe the Moira database? (yes or no): yes
Have you initialized an empty database named smstemp? (yes or no): yes
Opening database...done
Prefix of backup to restore: /site/sms/backup_1/
Are you sure? (yes or no): yes
Working on /site/sms/backup_1/users

...

This system by itself provides recovery with the loss of no more than roughly a day’s
transactions. To improve this, the journal file kept by the Moira server daemon contains a
listing of all successful changes to the database.

RTI Ingres provides some checkpointing and journalling facilities. However, past
experience with them has shown that they are not particularly reliable. Also, a common
failure mode, at least with version 3 of RTI ingres, has been corruption in the binary
structure of the database. Since the checkpointing mechanism used is simply a tar format
copy of the database directory, restoring from the checkpoint will probably not cure the
corruption, particularly since they may go for days without being noticed. The only known

1All pathnames are relative to the root of the Moira source tree

2The eventual production version will work on a database named "sms"; however, for test use,
"smstemp" is used instead

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 8, Section E.1 Athena Technical Plan

cure is to dump the entire database to text files, and recreate it from scratch from the text
files. Because of this dubious history, it was decided that the RTI checkpoint and
journalling mechanism was not sufficiently reliable for use with Moira.

5.3. The Moira Protocol

The Moira protocol is a remote procedure call protocol layered on top of TCP/IP. Clients of
Moira make a connection to a well known port (T.B.S.), send requests over that stream, and
received replies. Note: the precise byte-level encoding of the protocol is not yet specified
here.

Each request consists of a major request number, and several counted strings of bytes.
Each reply consists of a single number (an error code) followed by zero or more "tuples" (the
result of a query) each of which consists of several counted strings of bytes. Requests and
replies also contain a version number, to allow clean handling of version skew.

The following major requests are defined for Moira. It should be noted that each "handle"
(named database action) defines its own signature of arguments and results. Also, the
server may refuse to perform any of these actions based on the authenticated identity of the
user making the request.

Noop Do nothing. This is useful for testing and profiling of the RPC layer and
the server in general.

Authenticate There is one argument, a Kerberos [2] authenticator. All requests
received after this request should be performed on behalf of the
principal identified by the authenticator.

Query There are a variable number of arguments. The first is the name of a
pre-defined query (a "query handle"), and the rest are arguments to that
query. If the query is allowed, any retrieved data are passed back as
several return values, each with an error code of MR_MORE_DATA
indicating that there are more tuples coming.

Access There are a variable number of arguments. The first is the name of a
pre-defined query useable for the "query" request, and the rest are query
arguments. The server returns a reply with a zero error code if the
query would have been allowed, or a reply with a non-zero error code
explaining the reason why the query was rejected.

Trigger_DCM This takes no arguments. It will request the Moira server to
immediately spawn a DCM process. Access checking is done by
checking permissions for the pseudo-query "trigger_dcm" (tdcm).

5.4. The Moira Server

3All remote communication with the Moira database is done through the Moira server,
using a remote procedure call protocol built on top of GDB [1]. The Moira server runs as a
single UNIX process on the Moira database machine. It listens for TCP/IP connections on a
well known service port (T.B.D.), and processes remote procedure call requests on each

3The DCM and the Moira backup programs, which run on the host where the Moira database is
located, do go through the server, both for performance reasons and to avoid clogging the server

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 9

connection it accepts.

One of the major concerns for efficiency in Moira is the time it takes to start up an
application’s connection to the server. One of the limiting factors for Athenareg, Moira’s
predecessor, is the time it takes to start up the Ingres back end subprocess which it uses to
access the database. This was done for every client connection to the database. As starting
up a backend process is a rather heavyweight operation, the Moira server will do this only
once, at the start up time of the daemon.

GDB, through the use of BSD UNIX non-blocking I/O, allows the programmer to set up a
single process server which handles multiple simultaneous TCP connections. The Moira
server will be able to make progress reading new RPC requests and sending old replies
simultaneously, which is important if a reasonably large amount of data is to be sent back.

SUN RPC was also considered for use in the RPC layer, but was rejected because it
cannot handle large return values, such as might be returned by a complex query.

5.5. Access control

The server performs access control on all queries which might side-effect the database. As
most information in the database will be loaded into the nameserver and/or other
configuration files, placing access control on read-only queries is unnecessary.

Because one of the requests that the server supports is a request to check access to a
particular query, it is expected that many access checks will have to be performed twice:
once to allow the client to find out that it should prompt the user for information, and again
when the query is actually executed. It is expected that some form of access caching will
eventually be worked into the server for performance reasons.

5.6. The Application Library

The Moira application library provides access to Moira through a simple set of remote
procedure calls to the Moira server. The library is layered on top of Noah Mendohlson’s
GDB library, and also uses Ken Raeburn’s com_err library to provide a coherant way to
return error status codes to applications.

For use by the DCM and other utilities, there exists a version of the library which does
direct calls to Ingres, rather than going through the server. Use of this library should
result in significantly higher throughput, and will also reduce the load on the server itself.
The direct "glue" library provides the exact same interface as the RPC library, except that
it does not use Kerberos authentication.

5.6.1. Error Handling

Because of all the possible failure points in a networked application, we decided to use
Ken Raeburn’s libcom_err library. Com_err allows several different sets of error codes to
be used in a program simultaneously - every error code is an integer, and each error table
reserves a subrange of the integers (based on a hash function of the table name). UNIX
system call error codes are included in this system. By convention, zero indicates success,
or no error. The following routines may be useful to applications programmers who wish to
display the reasons for failure of a routine.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 10, Section E.1 Athena Technical Plan

char *error_message(code)
int code;

Returns the error message string associated with code.

void com_err(whoami, code, message)
char *whoami; /* what routine encountered the error */
int code;/* An error code */
char *message; /* printed after the error message */
int code;

By default, prints a message of the form

whoami: error_message(code) message newline

If code is zero, nothing is printed for the error message.

void set_com_err_hook(hook)
void (*hook)(); /* Function

* to call instead of printing to stderr */

If this routine is called with a non-NULL argument, it will cause future calls to com_err
to be directed into the hook function instead. This can be used to, for example, route error
messages to syslog or to display them using a dialogue box in a window-system
environment.

5.6.2. Moira application library calls

The Moira library contains the following routines:

int mr_connect();

Connects to the Moira server. This returns an error code, or zero on success. This does
not attempt to authenticate the user, since for simple read-only queries which may not need
authentication, the overhead of authentication can be comparable to that of the query. This
can return a number of operational error conditions, such as ECONNREFUSED
(Connection refused), ETIMEDOUT (Connection timed out), or
MR_ALREADY_CONNECTED if a connection already exists.

int mr_auth(clientname);
char *clientname

Attempts to authenticate the user to the system. Clientname is the name of the program
acting on behalf of the user. mr_auth can return Kerberos failures, either local or remote
(for example, "can’t find ticket" or "ticket expired"), MR_NOT_CONNECTED if
mr_connect was not called or was not successful, or MR_ABORTED if the attempt to send
or recieve data failed (and the connection is now closed).

int mr_disconnect();

This drops the connection to Moira. The only error code it currently can return is
MR_NOT_CONNECTED, if no connection was there in the first place.

int mr_noop();

This attempts to do a handshake with Moira (for testing and performance measurement).
It can return MR_NOT_CONNECTED or MR_ABORTED if not successful.

int mr_access(name, argc, argv)
char *name; /* Name of query */
int argc; /* Number of arguments provided */
char *argv[]; /* Argument vector */

This routine checks the user’s access to an Moira query named name, with arguments

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 11

argv[0]...argv[argc-1]. It does not actually process the query. This is included to give
applications a "hint" as to whether or not the particular query will succeed, so that they
won’t bother to prompt the user for a large number of arguments if the query is doomed to
failure.

int mr_query(name, argc, argv, callproc, callarg)
char *name; /* Name of query */
int argc; /* Number of arguments provided */
char *argv[]; /* Argument vector */
int (*callproc)(); Routine to call on each reply */
caddr_t callarg; /* Additional argument

* to callback routine */

This runs an Moira query named name with arguments argv[0]...argv[argc-1]. For
each returned tuple of data, callproc is called with three arguments: the number of
elements in the tuple, a pointer to an array of characters (the data), and callarg.

5.6.3. Other provided routines

The Moira library also contains a number of other routines which are used both by the
servers and some of the clients. These include

• convert between flags integer and human-readable string
• canonicalize hostname
• string utility routines - trim whitespace, save a copy
• hash table abstraction
• simple queue abstraction
• a menu package used for some of the clients

These routines are documented in the provided manualpage moira.3.

5.7. The Data Control Manager

The data control manager, or DCM, is a program responsible for distributing information
to servers. Basically, the DCM is invoked regularly by cron at intervals which become the
minimum update time for any service. Whenever the DCM runs, it will determine which
services and hosts should be updated now. The update frequency is stored in the Moira
database. A server/host relationship is unique to each update time. Through the Moira
query mechanism, the DCM extracts Moira data and converts it to server dependent form.
The conversion of the Moira data to the server-specific format is done by a sub-program
specific to that service.

5.7.1. DCM Operation

On startup, the DCM first checks for the existance of the disable file /etc/nodcm; if this
file exists, it exits quietly. Next it connects to the database and authenticates as root.
Then it retrieves the value of dcm_enable from the values relation of the database; if this
value is zero, it will exit, logging this action.

Next, the DCM scans the services table. This table contains:

Name The name of each service.

Type The type of service. Currently defined service types are unique and
replicated. This type affects some parts of the update algorythm,
described below.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 12, Section E.1 Athena Technical Plan

ACE type and ACE name
These specify the access control entity which owns the service. The type
may be list, user, or none. The name will then be a list name, a login
name, or none, respectively. The owner is allowed to manipulate the
service or service/host tuples supporting that service.

Interval Gives the minimum time between updates of this service, in minutes.

Target The name of the target file on the servers. This is where Moira will
deposit the new configuration files.

Script This is the name of the script file on Moira which will be executed on the
server to install the new configuration files.

DFGen This is the time that the data files were last generated for this service.
It is stored as a unix format time (number of seconds since January 1,
1970 GMT).

DFCheck This is the time that the data files were last checked to see if they
needed to be regenerated. It is stored as a unix format time.

Enable This boolean flag indicates if updates should be performed on this
service. It may be set and cleared by the user.

InProgress This boolean flag indicates that an update is currently in progress for
this service. It is set and cleared by only by the DCM. It is not relyed
upon for locking.

Harderror This field records the error number of any hard errors that occur during
an update.

Errmsg This is a textual representation of the error reported in harderror.

ModTime The time this data was created or last modified. This refers only to
modification by a user, not by the DCM.

ModBy The user name of who last modified this record.

ModWith The name of the application that was used for the last modification.

Each time the DCM is invoked, a search through this table will indicate which servers
need updating. It will first identify those services which are enabled, do not have hard
errors, have a non-zero interval, and do have a generator module. For each of these
services, it compares dfcheck and the update interval against the current time. If it is time
for another update, it will obtain an exclusive lock on the service, set the inprogress flag,
then run the generator.

The generator is a sub-program that does the actual extract. Each generator lives in
/u1/sms/bin/service.gen. A generator takes as an argument the name of the output file it
should generate. It’s exit status will be zero on success, otherwise the number of any error.
Note that a common ‘‘error’’ for a generator is MR_NO_CHANGE, indicating that nothing in
the database has changed and the data files were not re-built.

If the generator finishes without error, dfgen and dfcheck are updated to the current time.
If the generator exits indicating that nothing has changed, only dfcheck is updated to the
current time. If there is a soft error (an expected error that might go away if we try again
later) then the error_message is updated to reflect this, but hard error is not set. If there is
a hard error, the hard_error and error_message are set, and a zephyr message is sent to
class MOIRA instance DCM indicating this error. After this attempt, the lock on the

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 13

service is released.

For each of the services which passed the initial check above (enabled, no hard errors,
non-zero interval, and a generator exists) regardless of the result of attempting to build
data files, or even if it was time to build data files, the hosts will be scanned. The
serverhost table contains:

Service The name of the service.

Machine The name of the machine supporting this service.

Enable A boolean indicating that this host should be updated.

Override A boolean indicating that this host should be updated as soon as
possible, disregarding the service time interval.

Success A boolean indicating that the last attempted update was successful.

InProgress A boolean indicating that this host is currently being udpated.

HostError This field recrods the error number of any hard errors that occur during
an update.

Errmsg This is a textual representation of the error report in hosterror.

LastTry This is the time that the DCM last attempted to update this host. It is
stored as a unix format time.

LastSuccess This is the time of the last successful DCM update of this host. It is
stored as a unix format time.

Value1 This is service specific information, stored as an integer. For POP
servers, it is the number of poboxes assigned to this server.

Value2 This is service specific information, stored as an integer. For POP
servers, it is the maximum number of poboxes that may be assigned to
this server.

Value3 This is service specific information, stored as a string. For NFS servers,
it indicates who should be in the credentials file.

ModTime The time this data was created or last modified. This refers only to
modification by a user, not by the DCM.

ModBy The user name of who last modified this record.

ModWith The name of the application that was used for the last modification.

During the host scan, the DCM first locks the service. It will lock it exclusively if the
service type is replicated, otherwise it will acquire a shared lock. Then the DCM makes a
list of hosts which are enabled, do not have hard errors, and have not been successfully
updated sine the data files were generated for this service (or override is set). It will then
step through these hosts, updating them. The first part of an update is to obtain an
exclusive lock on the host and set the inprogress bit. Then it sends the generated file to the
target file on the host and then executes the script on that host. The exit value of the script
is reported back, with zero being success and anything else being the error number. If the
update is successful, the last_time_tried and last_time_successfull are updated. If there is a
soft fail, then just the last_time_tried is updated, and the error_message is recorded. If
there is a hard failure, then a soft fail is taken, plus hard_error is set and a zephyrgram
and mail are sent about it. If there is a hard failure and the service is replicated, then the

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 14, Section E.1 Athena Technical Plan

error code & message are also set in the service record so that no more updates will be
attempted to hosts supporting this service. Then the host lock is freed.

When the host scan is complete, the service lock is freed, and the service scan continues
with the next service.

5.8. Server Arrangement

Currently, Moira acts to update a variety of servers. Although the data control manager
performs this update task, each server requires a different set of update parameters. To
date, the DCM uses c programs, not SDFs, to implement the construction of the server
specific files. Each c program is checked in via the dcm_maint program. The DCM then
calls the appropriate module when the update interval is reached.

For each server file propagated, there is at least one application interface which provides
the capability to manipulate the Moira database. Since the Moira database acts as a single
point of contact, the changes made to the database are reflected in the contents of recipient
servers.

The services which Moira now supports are:

• Hesiod - The athena nameserver.

• NFS - Network file system.

• /usr/lib/aliases - Mail Service.

• Zephyr - The athena notification service.

5.8.1. Server Assumptions

The requirements of each server suggests a level of detail describing the following:

• Service name.

• Service description.

• Propagation interval.

• Data format.

• Target location.

• Generated files.

• File description.

• Queries used to generate the file (including fields queried).

• How the file is modified (application interface).

• Example of file contents.

5.8.2. Server Descriptions

Service: Hesiod

Description: The hesiod server is a primary source of contact for many athena
operations. It is reponsible for providing information reliably and
quickly. Moira’s responsibility to hesiod is to provide authoritative data.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 15

Hesiod uses a BIND data format in all of it’s data files. Moira will
provide BIND format to hesiod. There are several files which hesiod
uses. To date, they are known to include the following:

• cluster.db
• filsys.db
• gid.db
• group.db
• grplist.db
• passwd.db
• pobox.db
• printcap.db
• service.db
• sloc.db
• uid.db

Each of these files are described in detail below. The hesiod server uses
these files from virtual memory on the target machine. The server
automatically loads the files from disk into memory when it is started.
Moira will propagate hesiod files to the target disk and the run a shell
script which will kill the running server and then restart it, causing the
newly updated files to be read into memory.

With hesiod, all target machines receive identical files. Practically,
therefore, the DCM will prepare only one set of files and then will
propagate to several target hosts.

For additional technical information on hesiod, please refer to the
Hesiod technical plan.

Propagation interval:
6 Hours

Data format: tar file of several BIND files

Target locations:
SUOMI.MIT.EDU: /tmp/hesiod.out

Files:

CLUSTER.DB Cluster data

Description: Cluster.db holds the relationships between machines, clusters, and
services to service clusters. It must be possible to look up a cluster by
name, and find all of the cluster data. It must also be possible to look up
a machine by name, and get the union of all of the cluster data for each
cluster the machine is a member of.

Queries used:

Client(s): save_cluster_info

Example contents:

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 16, Section E.1 Athena Technical Plan

; lines for per-cluster info (both vs and rt) (type UNSPECA)
; and a line for each machine (CNAME referring to one of the lines
; above)
;
bldge40-vs.cluster HS UNSPECA "zephyr neskaya.mit.edu"
bldge40-rt.cluster HS UNSPECA "zephyr neskaya.mit.edu"
bldge40-vs.cluster HS UNSPECA "lpr e40"
bldge40-rt.cluster HS UNSPECA "lpr e40"
TOTO.cluster HS CNAME bldge40-vs.cluster
SCARECROW.cluster HS CNAME bldge40-rt.cluster

Note that a machine may be in more than one cluster. In this case, a
pseudo-cluster will be made by Moira which has as its cluster data, the
union of the data of each of the other clusters this machine is in. Then
the machine in question will be CNAME’d into this pseudo-cluster.

FILSYS.DB filesystems

Description These are all of the filesystem entries needed to find and attach NFS
lockers and RVDs by name. Each entry contains the name of the
filesystem, its name on the fileserver (directory name for NFS
filesystems, or packname for RVDs), the name of the server, the default
attach mode (r = read-only, w = read/write), and the default client
mount point.

Queries used:

Clients(s): attach

Example contents:

aab.filsys HS UNSPECA "NFS /mit/aab charon w /mit/aab"
aabiyaba.filsys HS UNSPECA "NFS /mit/aabiyaba eurydice w /mit/aabiyaba"
ade.filsys HS UNSPECA "RVD ade helen r /mnt/ade"

GID.DB group IDs

Description: This file maps group ID numbers to the group names. There is an entry
in this file for each entry in the group.db file, pointing to a
corresponding entry in the group.db file.

Queries used:

Clients(s):

Example contents:

10914.gid HS CNAME babette.group
10915.gid HS CNAME 14.31.group
10916.gid HS CNAME abarba.group
10917.gid HS CNAME mga.group
10918.gid HS CNAME rs1maint.group
10919.gid HS CNAME pjd.group

GROUP.DB unix groups

Description: This file maps group names to their unix group ID numbers. The
returned entries are of the same form as lines in an /etc/group file,
although none of the members are actually filled in. An entry is only
placed in this file if the group is marked active in the Moira database.

Queries used:

Clients(s):

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 17

Example contents:

babette.group HS UNSPECA "babette:*:10914:"
14.31.group HS UNSPECA "14.31:*:10915:"
abarba.group HS UNSPECA "abarba:*:10916:"
mga.group HS UNSPECA "mga:*:10917:"
rs1maint.group HS UNSPECA "rs1maint:*:10918:"
pjd.group HS UNSPECA "pjd:*:10919:"

GRPLIST.DB group lists

Description: This file lists the groups that each user is a member of. Each entry
consists of a colon-separated list of colon-separated pairs of groupname,
group id. No meaning is placed on the order of the groups listed. Only
users whose status is active will have entries generated, and only groups
that are marked active in Moira will be output.

Queries used:

Clients(s): login

Example contents:

mtalford.grplist HS UNSPECA "mtalford:5904:3_d0004:689"
mswelsh.grplist HS UNSPECA "mswelsh:5901:13_461t:867:13_461sa:868:13_012t:800"
mstai.grplist HS UNSPECA "mstai:5899"

PASSWD.DB password entries

Description: This file contains lines similar to those found in /etc/passwd for each
active user of Athena. Only users whose status is active will have
entries generated.

Queries used:

Clients(s): login

Example contents:

babette.passwd HS UNSPECA "babette:*:6530:101:Harmon C Fowler,,,,:/mit/babette
:/bin/csh"
abarba.passwd HS UNSPECA "abarba:*:6531:101:Angela Barba,,,,:/mit/abarba:/bin
/csh"
mga.passwd HS UNSPECA "mga:*:6532:101:Gerhard Messmer,,,,:/mit/mga:/bin/cs
h"
kazimi.passwd HS UNSPECA "kazimi:*:6533:101:Martin Zimmermann,,,,:/mit/kazimi
:/bin/csh"
pjd.passwd HS UNSPECA "pjd:*:6535:101:Peter J Delaney,,,,:/mit/pjd:/bin/cs
h"

POBOX.DB Post Office Box locations

Description: This file locates each user’s post office box. Only active users whose
pobox type is "POP" will have entries output.

Queries used:

Clients(s): inc, movemail

Example contents:

babette.pobox HS UNSPECA "POP ATHENA-PO-2.MIT.EDU babette"
abarba.pobox HS UNSPECA "POP ATHENA-PO-1.MIT.EDU abarba"
mga.pobox HS UNSPECA "POP ATHENA-PO-1.MIT.EDU mga"
kazimi.pobox HS UNSPECA "POP ATHENA-PO-2.MIT.EDU kazimi"

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 18, Section E.1 Athena Technical Plan

PRINTCAP.DB printer capability entries

Description: This file contains the information from the standard /etc/printcap file.

Queries used:

Clients(s): lpr, lpq, lprm

Example contents:

linus.pcap HS UNSPECA "linus:rp=linus:rm=BLANKET.MIT.EDU:sd=/usr/spool/pri
nter/linus"
la-pika.pcap HS UNSPECA "la-pika:rp=la-pika:rm=EVE.PIKA.MIT.EDU:sd=/usr/spoo
l/printer/la-pika"
ln03-pika.pcap HS UNSPECA "ln03-pika:rp=ln03-pika:rm=EVE.PIKA.MIT.EDU:sd=/usr/
spool/printer/ln03-pika"
helios.pcap HS UNSPECA "helios:rp=helios:rm=M16-034-P.MIT.EDU:sd=/usr/spool
/printer/helios"

SERVICE.DB network service map

Description: This file contains the information from the standard /etc/services file. It
comes from the services relation of the database, and the aliases.

Queries used:

Clients(s):

Example contents:

gdb_test3.service HS UNSPECA "gdb_test3 tcp 2253"
qotd.service HS UNSPECA "qotd tcp 17"
rpc_ns.service HS UNSPECA "rpc_ns udp 32767"
smtp.service HS UNSPECA "smtp tcp 25"
X1.service HS UNSPECA "X1 tcp 5801"

SLOC.DB service location information

Description: This file identifies which hosts support which services. It is a listing of
DCM service/host tuples, indexed by service.

Queries used:

Clients(s): zhm, chpobox, get_message

Example contents:

ATHENA_MESSAGE.sloc HS UNSPECA BITSY.MIT.EDU
FOO.sloc HS UNSPECA TOTO.MIT.EDU
GMOTD.sloc HS UNSPECA BITSY.MIT.EDU
HESIOD.sloc HS UNSPECA KIWI.MIT.EDU
HESIOD.sloc HS UNSPECA SUOMI.MIT.EDU
LOCAL.sloc HS UNSPECA HACTAR.MIT.EDU

UID.DB user ID mappings

Description: This file maps unix user IDs to the user password entries. There is a
corresponding entry in this file for every entry in the passwd.db file.

Queries used:

Clients(s):

Example contents:

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 19

6530.uid HS CNAME babette.passwd
6531.uid HS CNAME abarba.passwd
6532.uid HS CNAME mga.passwd
6533.uid HS CNAME kazimi.passwd
6535.uid HS CNAME pjd.passwd

Service: NFS

Description: Moira supports three files which are necessary components of NFS
operation. These files are:

• /usr/etc/credentials
• The quotas file
• The directories file

The credentials file determines access permissions to files on the NFS
server. It contains mappings from user name to unix UID and a group
list. This file can be generated from a list in the Moira database, or may
contain all active users. Which credentials file is loaded on a particular
server is determined by the value3 field of the serverhost relation. If
this field is non-blank, it specifies the list whose membership will
appear in the credentials file. If the field is blank, then all active users
will appear in the credentials file.

The quotas and directories files are in a private format to Moira, which
is understood by the shell script which updates quotas and creates
directories. The quotas file contains many tuples matching a unix UID
with a quota. The directories file lists directory name, owning user,
owning group, and directory type. The type is used to control the
directory mode and which init files are loaded into it.

These files reside on the NFS target machine and are used to allocate
NFS directories on a per user basis. The mechanism employed is for all
programs to communicate to the Moira database, and then for the dcm
to handle the propagation and creating of NFS lockers. The best
illustration of this process is indicated by the following example:

During new user registration, a person will sit down to a workstation
and type ’userreg’ for his login name. When validated the user will type
a ’real’ login name and a password. In addition, the userreg program
will allocate, automatically, for the user a post office and an NFS
directory. However, the user will not benefit from this allocation for a
maximum of six hours. This lag time is due to the operation of Moira
and its creation of NFS lockers. During registration, the userreg
program communicates exclusively with the Moira database for NFS
allocation. Since the NFS file generation is started by the DCM every 6
hours, the real change is not noticed for a period of time. When the 6
hour time is reached the DCM will create the above two files and send
them to the appropriate target servers. Once on the target machine, the
dcm will invoke a shell script which reads the /mit/quota file and then
creates the NFS directory. The basic operation of the script is:

mkdir <username>, chown, chgrp, chmod - using directories file
setquota <quota> - using quotas file

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 20, Section E.1 Athena Technical Plan

Propagation interval:
12 hours

Data Format: ASCII

Client(s):

NFS server
Moira shell script for creating directories and user quotas.

Files updated:

CREDENTIALS username to uid/gid mapping.

Description: This file is used for both the NFS server information and for the Moira
shell script. It provides a username to uid/gid mapping. A master
credentials file is generated which contains all active users. In addition,
smaller credentials files may be produced if necessary, with their
membership taken from an Moira list. Each line is an entry consisting
of the username, uid, and the gid of each group the user is in. Each field
is separated by a colon.

Queries used:

Contents example:

mtarriol:15786:5905
mtalford:14956:5904:689
mswelsh:13764:5901:867:868:800
mstai:9296:5899

QUOTAS file containing user to quota mapping.

Description: This file contains the mapping between username and quota. The file
is distributed to each filesystem on the recipient machine. Each entry
contains a unix uid and a quota. Each of the file’s contents is unique to
the filesystem which it represents.

Queries used:

Contents example:

219 600
567 600
1251 600
1282 600
1312 600

DIRECTORIES file containing info for creating NFS lockers

Description: This file contains the info necessary to create lockers. Only lockers with
the autocreate flag set will be output. The file is distributed to each
filesystem on the recipient machine. Each entry contains a directory
name, owning uid and gid, and a locker type. If the directory does not
already exist, it will be created with the specified ownership. If the type
is "HOMEDIR", it will be loaded with the default init files as well.

Queries used:

Contents example:

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 21

/mit/lockers/test1 6526 10912 HOMEDIR
/mit/lockers/babette 6530 10914 HOMEDIR
/mit/lockers/kazimi 6533 10923 HOMEDIR
/mit/lockers/mastein 14489 10928 HOMEDIR

Service: Mail

Description: The /usr/lib/aliases file is created and propagated to athena.mit.edu.
Only one file and one propagation is required. This file is not
automatically installed on the mailhub because the mail spool must be
disabled during the switchover. A second file is also propigated to the
mail hub. This is a complete password file so that the finger server on
the mailhub will know about everybody.

Data Type: ASCII (sendmail aliases format)

Propagation interval:
24 hours

Target: ATHENA.MIT.EDU

File(s):

/USR/LIB/ALIASES
mail forwarding information

Description: This file contains both mailing lists and post office boxes. Mailing lists
are output only if the list is marked active in the Moira database.
Poboxes are only output if the user’s account is active.

Queries Used:

Contents example:

Video Users
owner-video-users: paul
video-users: smyser, paul, mwsmith, davis, rubin@media-lab.mit.edu,

gid@media-lab.mit.edu, danapple, agarvin

babette: babette@ATHENA-PO-2.LOCAL
yvette: yvette@ATHENA-PO-2.LOCAL
test1: test1@ATHENA-PO-2.LOCAL

/ETC/PASSWD user account file

Description: This is a standard format unix password file. It contains an entry for
every active account at Athena.

Queries Used:

Contents example:

test1:*:6526:101:Test One,,,:/mit/test1:/bin/csh
babette:*:6530:101:Harmon C Fowler,,,:/mit/babette:/bin/csh
abarba:*:6531:101:Angela Barba,,,:/mit/abarba:/bin/csh
mga:*:6532:101:Gerhard Messmer,,,:/mit/mga:/bin/csh
kazimi:*:6533:101:Martin Zimmermann,,,:/mit/kazimi:/bin/csh
pjd:*:6535:101:Peter J Delaney,,,:/mit/pjd:/bin/csh

Service: ZEPHYR

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 22, Section E.1 Athena Technical Plan

Description: The zephyr system has access control lists associated with some actions
on some classes of message. Moira updates these access control lists on
the zephyr servers from lists stored in Moira.

Data Type: A tar file of ASCII acl files.

Propagation interval:
24 hours

Target:each of the zephyr servers.

File(s):

*.ACL zephyr ACL file

Description: For each existing ACE (even if it is empty), the membership will be
output, one entry per line. Recursive lists will be expanded.

Queries Used:

Contents example:

.@*

5.9. Moira-to-Server Update Protocol

Moira provides a reliable mechanism for updating the servers it manages. The use of an
update protocol allows the servers to be reliably managed. The goals of the server update
protocol are:

• Completely automatic update for normal cases and expected kinds of failures.

• Survives clean server crashes.

• Survives clean Moira crashes.

• Easy to understand state and recovery by hand.

General approach: perform updates using atomic operations only. All updates should be
of a nature such that a reboot will fix an inconsistent database. (For example, the RVD
database is sent to the server upon booting, so if the machine crashes between installation
of the file and delivery of the information to the server, no harm is done.) Updates not
received will be retried at a later point until they succeed. All actions are initiated by the
DCM.

Strategy

A. Transfer phase. This step puts all of the files on the server.

1. Connect to the server host and send authentication.

2. Transfer the data files to be installed to the server. These are stored in the
target as recorded for the service in the Moira database. The file transfer
includes a checksum to insure data integrity. Only one file is transferred,
although it may be a tar file containing many more.

3. Transfer the installation instruction sequence to the server. This is the
script as recorded for the service in the Moira database. It will be stored in a
temporary file on the server.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 23

4. Flush all data on the server to disk.

B. Execution phase. If all portions of the preparation phase are completed
without error, the execution phase is initiated by the DCM. On a single command
from the Moira, the server begins execution of the instruction sequence supplied.
These can include the following:

1. Extract data files from the tar file. Rather than extract all of the files at
once, only the ones that are needed are extracted one at a time.

2. Swap new data files in. This is done using atomic filesystem rename
operations. The cost of this step is kept to an absolute minimum by keeping
both files in the same partition and by not changing the link count on any
files during the rename.

3. Revert the file -- identical to swapping in the new data file, but instead
puts the old file back. May be useful in the case of an erroneous installation.

4. Send a signal to a specified process. The process_id is assumed to be
recorded in a file; the pathname of this file is a parameter to this instruction.
The process_id is read out of the file at the time of execution of this
instruction.

5. Execute a supplied command.

C. Confirm installation. The server sends back a reply indicating that the
installation was successful, or what error occurred. The DCM then records this
information in the database.

Trouble Recovery Procedures

A. Server fails to perform action.

If an error is detected in the update procedure, the information is relayed back to
the DCM. The ’success’ flag is cleared, and the error code and message are
recorded in the update table. The error value returned is logged to the
appropriate file; zephyr is used to notify the system maintainers a failure occured.

A timeout is used in both sides of the connection during the preparation phase,
and during the actual installation on the Moira. If any single operation takes
longer than a reasonable amount of time, the connection is closed, and the
installation assumed to have failed. This is to prevent network lossage and
machine crashes from causing arbitrarily long delays, and instead falls back to
the error condition, so that the installation will be attempted again later. (Since
the all the data files being prepared are valid, extra installations are not
harmful.)

B. Server crashes.

If a server crashes, it may fail to respond to the next attempted Moira update. In
this case, it is (generally) tagged for retry at a later time, say ten or fifteen
minutes later. This retry interval will be repeated until an attempt to update the
server succeeds (or fails due to another error).

If a server crashes while it is receiving an update, either the file will have been
installed or it will not have been installed. If it has been installed, normal system
startup procedures should take care of any followup operations that would have
been performed as part of the update (such as [re]starting the server using the

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 24, Section E.1 Athena Technical Plan

data file). If the file has not been installed, it will be updated again from the
Moira, and the existing filename.moira_update file will be deleted (as it may
be incomplete) when the next update starts.

C. Moira crashes.

Since the Moira update table is driven by absolute times and offsets, crashes of
the Moira machine will result in (at worst) delays in updates. If updates were in
progress when the Moira crashed, those that did not have the install command
sent will have a few extra files on the servers, which will be deleted in the update
that will be started the first time the update table is scanned for updates due to
be performed. Updates for which the install command had been issued may get
repeated if notification of completion was not returned to the Moira.

Considerations
What happens if the Moira broadcasts an invalid data file to servers? In the case of name

service, the Moira may not be able to locate the servers again if the name service is lost.
Also, if the server machine crashes, it may not be able to come up to full operational
capacity if it relies on the databases which have been corrupted; in this case, it is possible
that the database may not be easily replaceable. Manual intervention would be required
for recovery.

5.9.1. Catastrophic Crashes - Robustness Engineering

In the event of a catostrophic system crash, Moira must have the capability to be brought
up with consistent data. There are a list of scenarios which indicate that a complete set of
recovery tools are needed to address this isssue. Thought will be given in order that the
system reliably is restored. In many cases, the answer to a catastrophic crash will be
manual intervention.

5.9.2. Data Transport Security

Kerberos is used to verify the identity of both ends at connection set-up time. The data
will not be encrypted. Since a TCP stream is used, the connection should be secure from
tampering. This will allow detection of lost or damaged packets, as well as detection of
deliberate attempts to damage or change data while it is in transit.

5.10. New User Registration

A new student must be able to get an athena account without any intervention from
Athena user accounts staff. This is important, because otherwise, the user accounts people
would be faced with having to give out ~1000 accounts or more at the beginning of each
term.

With athenareg, a special program (userreg) was run on certain terminals connected to
timesharing systems in several of the terminal rooms. It prompted the user for his name
and ID number, looked him up in the athenareg database, and gave him an account if he
did not have one already. Userreg has been rewritten to work with Moira; in appearance, it
is virtually identical to the athenareg version (except in speed).

Athena obtains a copy of the Registrar’s list of registered students shortly before
registration day each term. Each student on the registrar’s tape who has not been
registered for an Athena account is added to the "users" relation of the database, and

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 25

assigned a unique userid; the student is not assigned a login name, and is not known to
kerberos. An encrypted form of the student’s ID number is stored along with the name; the
encryption algorithm is the UNIX C library crypt() function (also used for passwords in
/etc/passwd); the last seven characters of the ID number are encrypted using the first letter
of the first name and the first letter of the last name as the "salt". No other database
resources are allocated at that time.

The Moira database server machine runs a special "registration server" process, which
listens on a well known UDP port for user registration requests. There are currently three
defined requests:

Verify User This operation take the user’s first name, last name, and authenticator
as arguments. The return value will indicate if the user is found in the
database, and if so the user’s current status.

Grab Login This operation takes the user’s first name, last name, and authenticator
with desired login name as arguments. It will attempt to assign the
user that login name, and reserve the name in the kerberos database.
Expected results are success or login name already taken.

Set Password This operation takes the user’s first name, last name, and authenticator
with desired password as arguments. It will attempt to set the user’s
password in kerberos.

The authenticator used in the protocol is an encrypted form of the ID number and any
additional arguments. The simple authenticator is the ID in plaintext with hyphens
removed, with the encrypted ID number appended to it, and this whole quantity DES
encrypted using the encrypted ID number as a key. This DES encryption is the error
propagating cypher-block-chaining mode of DES, as described in the Kerberos document.

{IDnumber, hashIDnumber}hashIDnumber
where

IDnumber is the student’s id number (for example: 123456789)
hashIDnumber is the encrypted ID number (for example: lfIenQqC/O/OE)

For the second and third request types, the login or password is also encrypted:

{IDnumber, hashIDnumber, login}hashIDnumber
{IDnumber, hashIDnumber, password}hashIDnumber

The registration server communicates with the kerberos admin_server, and sets up a
secure communication channel using "srvtab-srvtab" authentication. In all cases, the
server first verifies the request by decrypting the ID number.

When the student decides to register with athena, he walks up to a workstation and logs
in using the username of "register", password "athena". This pops up a forms-like interface
which prompts him for his first name, middle initial, last name, and student ID number. It
calculates the hashed id number using crypt(), and sends a verify_user request to the
registration server. The server responds with one of already_registered, not_found, or OK.

If the user has been validated, userreg then prompts him for his choice in login names. It
then goes through a two-step process to verify the login name: first, it tries to get initial
tickets for the user name from Kerberos; if this fails (indicating that the username is free
and may be registered), it then sends a grab_login request. On receiving a grab_login
request, the registration server then proceeds to register the login name in the Moira
database. If this succeeds, it then reserves the name with kerberos as well.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 26, Section E.1 Athena Technical Plan

Userreg then prompts the user for an initial password, and sends a set_password request
to the registration server, which decrypts it and forwards it to Kerberos. At this point,
pending propagation of information to hesiod, the mail hub, and the user’s home fileserver,
the user has been established.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 27

6. Data Fields and Relationships

The knowledge base of Moira enables system services and servers to be updated with
correct information. The database has the reponsibility of storing information which will be
transmitted to the services. The database will not, however, be responsible for knowing the
format of data to be sent. This information will be inherent to the Data Control Manager.
Specific fields of the database are organized to represent the needs of system. The current
Moira database is comprised of the following tables:

Table Fields and Description

USERS User Information. There are two types of user required information:
information necessary to identify a user and enable a user to obtain a
service (e.g. to login), and personal information about the user (finger).

login a unique username, equivalent to the user’s Kerberos
principal name.

users_id an internal database indentifier for the user record.
This is not the same as the Unix uid.

uid Unix uid. Temporarily necessary due to NFS client
code problems. Ultimately, this field will be removed
and uids will be assigned arbitrarily for each client-
server connection.

shell the user’s default shell.

last, first, middle The user’s full name, broken down for convenient
indexing.

status contains the user’s account status. Currently defined
statuses are:

0 - Not registered, but registerable
1 - Active account
2 - Half-registered
3 - Marked for deletion
4 - Not registerable

Only accounts in state 1 will have their information
show up in database extracts for system services.

mit_id the user’s encrypted MIT id.

mit_year a student’s academic year, not modifiable by the
student. Used for Athena administrative purposes.

modtime the time that this record was last modified (or
created).

modby the person who modified this record last.

modwith the service that modified this record last.

fullname the user’s full name.

nickname the user’s nickname.

home_addr home address.

home_phone home phone.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 28, Section E.1 Athena Technical Plan

office_addr office address.

office_phone office phone.

mit_dept MIT address; this is for on-campus students’ living
addresses.

mit_affil one of undergraduate, graduate, staff, faculty, other.

fmodtime time finger record was last modified.

fmodby person who made this modification.

fmodwith service that made this modification.

potype mailbox type: one of POP, SMTP, or NONE.

pop_id Machine ID of current or last known POP server.

box_id String ID of box name if type is SMTP.

pmodtime time pobox record was last modified.

pmodby person who made this modification.

pmodwith service that made this modification.

gid [unused] intended for optimized user groups, but
never implemented.

uglist_id [unused] intended for optimized user groups, but
never implemented.

ugdefault [unused] intended for optimized user groups, but
never implemented.

See Section 7.0.1 for the list of queries associated with this table.

There is no entry for a password because it is being subsumed by
another service (Kerberos).

MACHINE Machine Information.

name the canonical hostname.

mach_id an internal database id for this record.

type machine type: VAX, RT

modtime the time that this record was last modified (or
created).

modby the person who modified this record last.

modwith the service that modified this record last.

See Section 7.0.2 for the list of queries associated with this table.

CLUSTER Cluster Infomation. There are several named clusters throughout
Athena that correspond roughly to subnets and/or geographical areas.

name cluster name.

clu_id internal database identifier for this record.

desc cluster description.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 29

location cluster location.

modtime the time that this record was last modified (or
created).

modby the person who modified this record last.

modwith the service that modified this record last.

See Section 7.0.2 for the list of queries associated with this table.

MCMAP Machine-Cluster Map. This tables is used to assign machines to
clusters.

mach_id machine id.

clu_id cluster id.

See Section 7.0.2 for the list of queries associated with this table.

SVC For each cluster there is a set of services that serve the machines in that
cluster. These services are described by an environment variable (to be
set on client workstations at login) and a service cluster name. Use of
the service cluster name is service dependent but in general refers to a
group of entities that provide the named service in the particular
cluster.

clu_id references an entry in the cluster table.

serv_label label of a service cluster type (e.g. "usrlib", "syslib",
"zephyr")

serv_cluster specific service cluster data (e.g. "bldgw20-vssys")

See Section 7.0.2 for the list of queries associated with this table.

LIST Lists are used as a general purpose means of grouping serveral objects
togther. This table contains descriptive information for each list; the
MEMBERS table contains the the list of objects that are in the list. The
ability to add or delete objects in a list is controlled by an access control
entity associated with the list. The access control entity may be a
USER, a LIST, or NONE. An access control entity names the user or
list of users who have the capability to manipulate the object specifying
the access control list.

name list name.

list_id internal database id for this list.

active Indicates this list should be extracted in service
updates.

public Indicates any user may add or delete themselves as
members of this list.

hidden Indicates that neither the list information or
membership may be divulged to anyone who is not
an administrator of this list.

maillist Indicates that this list is a maillist.

group Indicates that this list is a unix group.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 30, Section E.1 Athena Technical Plan

gid Unix GID, if this list is a unix group. This will have
value -1 to indicate: assign a unique GID if this list is
ever made a unix group.

desc description of list.

acl_type Type of access control entity: LIST, USER, or NONE.

acl_id Access control entity identifier; a list ID, user ID, or
ignored if type is NONE.

modtime the time that this record was last modified (or
created).

modby the person who modified this record last.

modwith the service that modified this record last.

See Section 7.0.3 for the list of queries associated with this table.

MEMBERS List members. Members are specified by a member type and a member
id pair.

list_id id of a list.

member_type member type: one of USER, LIST, STRING.

member_id id of a member (a USERS id, LIST id, or STRING id.)

See Section 7.0.3 for the list of queries associated with this table.

SERVERS Server Information. This table contains information needed by the Data
Control Manager or applications for each known service to be updated.

name name of service.

update_int server update interval in minutes (for DCM).

target_file where on the server being updated to put the file
generated by the DCM.

script where on Moira to find the shell script which will
install new configuration files on a server.

dfgen time of last server file generation.

dfcheck time of last check to see if server files needed to be
generated.

type service type: UNIQUE or REPLICAT(ed).

enable Enable switch for DCM. This switch controls
whether or not the DCM generates files for this
service. (0 - Do not Update, 1 - Update)

inprogress indicator that a DCM is generating new
configuration files for this service right now.

harderror indication that an error has occured while generating
files (or while propogating files is service type is
replicated). This is not a boolean, but the actual
error number.

errmsg a text description of the harderror reported above.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 31

acl_type type of access control entity for this service.

acl_id id of access control entity for this service.

modtime the time that this record was last modified (or
created).

modby the person who modified this record last.

modwith the service that modified this record last.

See Section 7.0.4 for the list of queries associated with this table.

SERVERHOSTS Server to Host mapping table. Used by the Data Control Manager to
map a server to a list of server hosts.

service name of service.

mach_id Machine id for a host containing the service.

success Flag indicating successful completion of most recent
server update.

enable Enable switch for DCM. This switch controls
whether or not the DCM updates a server. (0 - Do not
Update, 1 - Update)

override Override flag. Used by DCM and update mechanism
to indicate that it should attempt to update this host,
even if the necessary time interval has not elapsed.

inprogress indicator that a DCM is updating this host right
now.

hosterror indication that an error has occured while updating
this host. This is not a boolean, but the actual error
number.

hosterrmsg a text description of the hosterror reported above.

ltt Last time tried. Used by the DCM, this field is
adjusted each time a service is attemted to be
updated, regardless of success or failure.

lts Last time successful. This records the last time the
DCM successfully updated the server.

value1 server-specific integer data used by applications (i.e.,
number of servers permitted per machine).

value2 additional server-specific integer data.

value3 additional server-specific string data.

modtime the time that this record was last modified (or
created).

modby the person who modified this record last.

modwith the service that modified this record last.

See Section 7.0.4 for the list of queries associated with this table.

FILESYS File System Information. This section desribes the file system

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 32, Section E.1 Athena Technical Plan

information necessary for a workstation to attach a file system.

label a name for an attachable file system. This is not
necessarily unique.

order an integer used to indicate sort-order for multiple
filesystems with the same label. Also, (label, order)
tuples are unique among filesystems.

filsys_id internal database identifier for the filesystem record.

phys_id internal database identifier for the phsical partition
containing the logical filesystem. For filesystems of
type NFS this is an nfsphys_id. For other types, it is
unused.

type currently one of RVD, NFS, or ERR.

mach_id file server machine.

name name of file system on the server. For type RVD,
this is the pack name. For type NFS, this is the
directory name on the server.

mount default mount point for file system.

access default access mode for file system.

comments any special notes about the filesystem.

owner this is the users_id of the owner of the filesystem. If
the filesystem is automatically created, this user will
own it.

owners this is the list_id of the owning group of the
filesystem. If the filesystem is automatically created,
this group will own it.

createflg indicates that the filesystem should be automatically
created if it does not already exist.

lockertype one of HOMEDIR, PROJECT, COURSE, SYSTEM,
etc. This may affect what is done when a filesystem
is automatically created.

modtime the time that this record was last modified (or
created).

modby the person who modified this record last.

modwith the service that modified this record last.

See Section 7.0.5 for the list of queries associated with this table.

NFSPHYS NFS Server Information. This table contains for each nfs server
machine a list of the physical device partitions from which directories
may be exported. For each such partition an access control list is
provided.

nfsphys_id internal database identifier of this parition.

mach_id server machine.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 33

dir top-level directory of device.

device partition name.

status a bit field encoding what the parition is used for.
Current assignments are:

bit 0 (LSB) - Student lockers
bit 1 - Faculty lockers
bit 2 - Staff lockers
bit 3 - Miscellaneous

allocated number of quota units allocated to this device.

size capacity of this device in quota units.

modtime the time that this record was last modified (or
created).

modby the person who modified this record last.

modwith the service that modified this record last.

See Section 7.0.5 for the list of queries associated with this table.

NFSQUOTA NFS Server Quota Information. This table contains per user per server
quota information.

users_id user id of account this quota belongs to.

filsys_id filesys_id of logical filesystem this quota applies to.

phys_id nfsphys_id of partition that filesystem resides on.
This is redundant information, here for performance
reasons.

quota user quota in quota units.

modtime the time that this record was last modified (or
created).

modby the person who modified this record last.

modwith the service that modified this record last.

See Section 7.0.5 for the list of queries associated with this table.

ZEPHYR Zephyr class access control list information. This table contains an
entry for each controlled class. Each records records an access control
entity for each of the four functions of that class.

class name of the zephyr class.

xmt_type access control entity type for transmit

xmt_id access control entity id for transmit

sub_type access control entity type for subscriptions

sub_id access control entity id for subscriptions

iws_type access control entity type for instance wildcard
specification

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 34, Section E.1 Athena Technical Plan

iws_id access control entity id for instance wildcard
specification

iui_type access control entity type for instance UID identity

iui_id access control entity id for instance UID identity

modtime the time that this record was last modified (or
created).

modby the person who modified this record last.

modwith the service that modified this record last.

See Section 7.0.6 for the list of queries associated with this table.

HOSTACCESS This table contains the necessary information for Moira to be generating
/.klogin or /etc/passwd files. It associates an access control entity with a
machine.

mach_id machine.

acl_type access control entity type

acl_id access control entity id

modtime the time that this record was last modified (or
created).

modby the person who modified this record last.

modwith the service that modified this record last.

See Section 7.0.7 for the list of queries associated with this table.

STRINGS Used for list members of string type. An optimization for dealing with
foreign mail addresses in poboxes or as list members.

string_id member id.

string string.

See Section 7.0.7 for the list of queries associated with this table.

SERVICES TCP/UDP Port Information. This is the information currently in
/etc/services. In a workstation environment with Moira and the Hesiod
name server, service information will be obtained from the name server.

name service name.

protocol protocol: one of TCP, UDP.

port port number.

desc description of service.

modtime the time that this record was last modified (or
created).

modby the person who modified this record last.

modwith the service that modified this record last.

See Section 7.0.7 for the list of queries associated with this table.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 35

PRINTCAP Printer capability table. This contains the information currently in
/etc/printcap.

name a unique printer name.

mach_id server machine.

dir spooling directory

rp remote printer name

comments description of service.

modtime the time that this record was last modified (or
created).

modby the person who modified this record last.

modwith the service that modified this record last.

See Section 7.0.7 for the list of queries associated with this table.

CAPACLS This table associates access control lists with particular capabilities. An
important use of this table is for defining the access allowed for
executing each of the Moira predefined queries. Each query name
appears as a capability name in this list.

capability a string, usually the full name of a query.

tag four character tag name for this capability, usually
the short name of a query.

list_id a list id.

See Section 7.0.7 for the list of queries associated with this table.

ALIAS Aliases are used by several different services to provide alternative
names for objects or a mapping one type of object and another. They are
also used to record legal values for type-checked fields, and type
translations of some type fields.

Some examples of alias usage are file system aliases, service aliases,
and printer aliases. Each alias of this form will have the alias as the
name, a type of PRINTER, SERVICE, or FILESYS, and a trans of the
real name of the object.

All type-checking aliases are of type TYPE. The name is the name of the
type-checked field, and the trans is a possible value for that field. Some
type-checked fields are "alias", "boolean", "class", "filesys", etc. For
example, alias types themselves are typechecked, so that one cannot
store an alias of type aliastype unless there is an alias entry of the
form (alias, TYPE, aliastype).

Type translations are used to record things like the data stored with an
SMTP pobox is of type string. These aliases have a name which is the
type string the user enters, a type of TYPEDATA, and a trans of the
actual data type, i.e. user, list, string, machine, etc.

name alias name.

type alias type: currently one of TYPE, PRINTER,

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 36, Section E.1 Athena Technical Plan

SERVICE, FILESYS, TYPEDATA.

trans alias translation.

See Section 7.0.7 for the list of queries associated with this table.

VALUES Values needed by the server or application programs. These are hints
for the next ID number to assign, some state variables such as the dcm
enable flag, and values such as the default quota for new users.

name value name.

value value.

See Section 7.0.7 for the list of queries associated with this table.

TBLSTATS Table Statistics. For each table in the Moira database statistics are
kept for the number of appends, updates, and deletes performed on the
table. In addition, the last modification time of the table is kept.

table table name.

modtime time of last modification (append, update, or delete).

retrieves obsolete count of retrievals on this table. This is
unused now for performance reasons.

appends count of additions to this table.

updates count of updates to this table.

deletes count of deletions to this table.

See Section 7.0.7 for the list of queries associated with this table.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 37

7. Predefined Queries - List of Database Interfaces

All access to the database is provided through the application library/database server
interface. This interface provides a limited set of predefined, named queries, which allows
for tightly controlled access to database information. Queries fall into four classes: retrieve,
update, delete, and append. An attempt has been made to define a set of queries that
provide sufficient flexibility to meet all of the needs of the Data Control Manager and each
of the indivual application programs. However, since the database can be modified and
extended in the future, the server and application library have been designed to allow for
the easy addtion of queries.

Providing a generallized layer of functions affords Moira the capability of being database
independent. Today, we are using INGRES; however, in the future, if a different database
is required, the application interface will not change. The only change needed at that point
will be a new Moira server, linking the pre-defined queries to a new set of data
manipulation procedures.

The following list of queries are a predefined list. This list provides the mechanism for
reading, writing, updating, and deleting information in the database.

In each query description below there are descriptions of the required arguments, the
return values, integrity constraints, possible error codes, and side effects, if any. In
addition to the error codes specifically listed for each query, any query may return:
MR_PERM "Insufficient permission to perform requested database access" or MR_ARGS
"Incorrect number of arguments". Any retrieval query may return MR_NO_MATCH "No
records in database match query". Any add or update query may return MR_BAD_CHAR
"Illegal character in argument" if a bad character is in an argument that has character
restrictions, or MR_EXISTS if the new object to be added or new name of existing object
conflicts with another object already in the database. Other errors are listed with each
query.

7.0.1. Users, Finger, and Post Office Boxes

get_all_logins

Args: none

Returns: {login, uid, shell, last, first, mi}

Returns info on every account in the database. The returned info is a summary of the
account info, not the complete information.

get_all_active_logins

Args: none

Returns: {login, uid, shell, last, first, mi}

Returns info on every account for which the status field is non-zero. The returned info is a
summary of the account info, not the complete information.

get_user_by_login

Args: login

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 38, Section E.1 Athena Technical Plan

Returns: {login, uid, shell, last, first, mi, state, mitid, class, modtime, modby, modwith}

Returns complete account information on the named account. Wildcards may be used in
the login name specified. If the person executing the query is not on the query ACL, then
the query only succeeds if the only retrieved information is about the user making the
request.

get_user_by_uid

Args: uid

Returns: {login, uid, shell, last, first, mi, state, mitid, class, modtime, modby, modwith}

Returns complete account information on any account with the specified uid. If the person
executing the query is not on the query ACL, then the query only succeeds if the only
retrieved information is about the user making the request.

get_user_by_name

Args: {first, last}

Returns: {login, uid, shell, last, first, mi, state, mitid, class, modtime, modby, modwith}

Returns complete account information on any account with matching first and last name
fields. Either or both names may contain wildcards, so that this query can do the
equivalent of lookup by firstname or lookup by lastname.

get_user_by_class

Args: class

Returns: {login, uid, shell, last, first, mi, state, mitid, class, modtime, modby, modwith}

Returns complete account information on any account with a matching class field. The
given class may contain wildcards.

get_user_by_mitid

Args: crypt(id)

Returns: {login, uid, shell, last, first, mi, state, mitid, class, modtime, modby, modwith}

Returns complete account information on any account with a matching MIT ID field. The
given id may contain wildcards.

add_user

Args: {login, uid, shell, last, first, mi, state, mitid, class}

Returns: none

Adds a new user to the database. login must not match any existing logins. uid and state
must be integers. If the given uid is UNIQUE_UID as defined in <moira.h>, the next
unused uid will be assigned. If login is UNIQUE_LOGIN as defined in <moira.h>, the
login name will be a "#" followed by the uid. For example, when adding a person so that
they may register later, the query ausr(UNIQUE_LOGIN, UNIQUE_UID, /bin/csh, Last,

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 39

First, M, 0, [encrypted ID, class) is used. The class field must contain a value specified as a
TYPE alias for class. This query also initializes the finger record for this user with just
their full name, and sets their pobox to NONE. It updates the modtime on the user, finger
and pobox records. Errors: MR_NOT_UNIQUE "Arguments not unique" if the login name
is not unique, or MR_BAD_CLASS "Specified class is not known" if the class is not in the
alias database.]

register_user

Args: {uid, login, fstype}

Returns: none

Registers a user. This consists of changing their username, and creating a pobox, a group
list, a filesystem, and a quota for them. The user is identified by uid, which must match
exactly one existing user. Further, this user must currently have a status of 0. The user
will be left with a status of 2. The pobox created will be of type POP on the least loaded
post office. The group list will have the user as an owner, and a unique GID will be
assigned. The filesystem will be allocated on the least loaded fileserver which supports
fstype, where fstype is MR_FS_STUDENT, MR_FS_FACULTY, MR_FS_STAFF, or
MR_FS_MISC as defined in <moira.h>. A quota will be assigned to the user on his
filesystem with the value taken from def_quota in the values table. Errors:
MR_NO_MATCH, MR_NOT_UNIQUE "Arguments not unique" if the uid does not specify
exactly one user; MR_IN_USE "Object is in use" if the login name is already taken.

update_user

Args: {login, newlogin, uid, shell, last, first, mi, state, mitid, class}

Returns: none

Updates the info in a user entry. login specifies the existing login name, the remaining
arguments will replace the current values of those fields. This is not equivalent to deleting
the user and adding a new one, as all references to this user will still exist, even if the login
name is changed. All fields must be specified, even if the value is to remain unchanged.
login must match exactly one user in the database. newlogin must either match the
existing login or be unique in the database. The class field must contain a value specified
as a TYPE alias for class. uid and state must be integers. The modtime fields in the user’s
record will be updated. Errors: MR_USER "No such user" if the login name does not match
exactly one user, MR_NOT_UNIQUE "Arguments not unique" if the new login name is not
unique, or MR_BAD_CLASS "Specified class is not known" if the class is not in the alias
database.

update_user_shell

Args: {login, shell}

Returns: none

Updates a user’s shell. login must match exactly one user. The modtime fields in the user’s
record will be updated. This query may be executed by the target user or by someone on
the query ACL. Errors: MR_USER "No such user" if the login name does not match exactly
one user.

update_user_status

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 40, Section E.1 Athena Technical Plan

Args: {login, status}

Returns: none

Updates a user’s status. login must match exactly one user. The modtime fields in the
user’s record will be updated. Errors: MR_USER "No such user" if the login name does not
match exactly one user.

delete_user

Args: login

Returns: none

Deletes a user record. login must match exactly one user. The user must have a status
of zero, or MR_IN_USE will be returned. This will only be allowed if the user is not a
member of any lists, has any quotas assigned, or is the owner of an object. It will also
delete associated finger information, post office box, and any quotas the user has. Errors:
MR_USER "No such user" if the login name does not match exactly one user, MR_IN_USE
"Object is in use" if the user is a member of a list, has a quota or is an ACE.

delete_user_by_uid

Args: uid

Returns: none

Deletes a user record. uid must match exactly one user. This will only be allowed if the
user is not a member of any lists or is the owner of an object. It will also delete associated
finger information and post office box. Errors: MR_USER "No such user" if the uid does not
match exactly one user, MR_IN_USE "Object is in use" if the user is a member of a list or is
an ACE.

get_finger_by_login

Args: login

Returns: {login, fullname, nickname, home_addr, home_phone, office_addr, office_phone,
department, affiliation, modtime, modby, modwith}

Gets all of the finger information for the specified user. login must match exactly one user.
The target user may retrieve his information. It is safe to point the query ACL at the list of
all users. Errors: MR_USER "No such user" if the login name does not match exactly one
user.

update_finger_by_login

Args: {login, fullname, nicname, home_addr, home_phone, office_addr, office_phone,
department, affiliation}

Returns: none

Allows any part of the finger information to be changed for a specified account. login must
match exactly one user. The remaining fields are free-form, and may contain anything.
The modtime fields in the finger record will be updated. A user may update his own
information. Errors: MR_USER "No such user" if the login name does not match exactly

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 41

one user.

get_pobox

Args: login

Returns: {login, type, box, modtime, modby, modwith}

Retrieves a user’s post office box assignment. The login name must match exactly one user.
See set_pobox for a summary of the returned fields. The owner of the pobox may perform
this query. Errors: MR_USER "No such user" if the login name does not match exactly one
user.

get_all_poboxes

Args: none

Returns: {login, type, box}

Retrieves all of the post office boxes from the database. See set_pobox for a summary of the
returned fields.

get_poboxes_pop

Args: none

Returns: {login, type, machine}

Retrieves all of the post office boxes of type POP from the database. See set_pobox for a
summary of the returned fields.

get_poboxes_smtp

Args: none

Returns: {login, type, box}

Retrieves all of the post office boxes of type SMTP from the database. See set_pobox for a
summary of the returned fields.

set_pobox

Args: {login, type, box}

Returns: none

Establishes a user’s post office box. The given login must match exactly one user. The type
will be checked against the alias database for valid pobox types. Currently allowed types
are POP, SMTP, and NONE. If the type is POP, then box must name a machine known
by Moira. If the type is SMTP, then box is the user’s mail address with no other
interpretation by Moira. A type of NONE is the same as not having a pobox. The modtime
fields on the pobox record will be set. The owner of the target pobox may perform this
query. Errors: MR_USER "No such user" if the login name does not match exactly one
user, or MR_TYPE "Invalid type" if the type is not POP, SMTP, or NONE.

set_pobox_pop

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 42, Section E.1 Athena Technical Plan

Args: login

Returns: none

Forces a user’s pobox to be type POP. The login name must match exactly one user. If the
user’s pobox is already of type POP, nothing will be changed. If the user has previously
had a pobox of type POP, then the previous post office machine assignment will be
restored. If there was no previous post office assignment, the query will fail with
MR_MACHINE "Unknown machine" since it will be unable to choose a post office machine.
The modtime fields on the pobox record will be set. The owner of the target pobox may
perform this query. Errors: MR_USER "No such user" if login does not match exactly one
user, or MR_MACHINE.

delete_pobox

Args: login

Returns: none

Effectively deletes a user’s pobox, by setting the type to NONE. The login name must
match exactly one user. The modtime fields on the pobox record will be set. The owner of
the target pobox may perform this query. Errors: MR_USER "No such user" if login does
not match exactly one user.

7.0.2. Machines and Clusters

get_machine

Args: name

Returns: {name, type, modtime, modby, modwith}

Get all the information on the specified machine(s). Wildcarding may be used in the
machine name. All machine names are case insensitive, and are returned in uppercase. It
is safe for the query ACL to be the list containing everybody.

add_machine

Args: {name, type}

Returns: none

Enters a new machine into the database. The given name will be converted to uppercase.
Then it will be checked for uniqueness in the database. The type field will be checked
against the aliases database for valid mach_types. Currently defined mach_types are
RT and VAX. The modtime fields will be set. Errors: MR_NOT_UNIQUE "Arguments not
unique" if a machine with the given name already exists, or MR_TYPE "Invalid type" if the
given type is not in the alias database.

update_machine

Args: {name, newname, type}

Returns: none

Update the information on a machine. The name must match exactly one machine. The

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 43

newname must either be the same as the old name, or must be unique among machine
names in the database after being converted to uppercase. The type field will be checked
against the aliases database for valid mach_types. The modtime fields will be set. Errors:
MR_MACHINE "No such machine" if the old name does not match exactly one machine,
MR_NOT_UNIQUE "Arguments not unique" if the newname does not either match the old
name or is unique, or MR_TYPE "Invalid type" if the given type is not in the alias database.

delete_machine

Args: name

Returns: none

Delete a machine from the database. The given name must match exactly one machine. A
machine that is in use (post office, file system, printer spooling host, server_host_access, or
DCM service update) cannot be deleted. Errors: MR_MACHINE "No such machine" if the
name does not match exactly one machine, or MR_IN_USE "Object is in use" if the machine
is being referenced as a post office, filesystem, spooling host, or server updated by the DCM.

get_cluster

Args: name

Returns: {name, description, location, modtime, modby, modwith}

Returns all the information in the database about one or more clusters. The cluster name
may contain wildcards. It is safe for the query ACL to be the list containing everybody.

add_cluster

Args: {name, description, location}

Returns: none

Adds a new cluster to the database. The name must be unique among the existing cluster
names. The names are case sensitive. There are no constraints on the remaining data.
The modtime fields will be set. Errors: MR_NOT_UNIQUE "Arguments not unique" if the
cluster name is not unique.

update_cluster

Args: {name, newname, description, location}

Returns: none

Changes the information about a cluster. The old name must match exactly one cluster.
The newname must either match the old name or be unique among the existing cluster
names. The names are case sensitive. There are no constraints on the remaining data.
The modtime fields will be set. Errors: MR_CLUSTER "Unknown cluster" if the old cluster
name does not match exactly one cluster, or MR_NOT_UNIQUE "Arguments not unique" if
the new name does not either match the old name or is unique.

delete_cluster

Args: name

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 44, Section E.1 Athena Technical Plan

Returns: none

Removes a cluster from the database. The name must match exactly one cluster. The
cluster must not have any machines assigned to it. Any service cluster information
assigned to the cluster will be deleted. Errors: MR_CLUSTER "Unknown cluster" if the old
cluster name does not match exactly one cluster, or MR_IN_USE "Object in use" if the
cluster has machines assigned to it.

get_machine_to_cluster_map

Args: {machine, cluster}

Returns: {machine, cluster}

Retrieves machine to cluster mappings for the specified machine(s) and cluster(s). Either of
the fields may contain wildcards. It is safe for the query ACL to be the list containing
everybody.

add_machine_to_cluster

Args: {machine, cluster}

Returns: none

Add a machine to a cluster. The machine name must match exactly one machine. The
cluster name must match exactly one cluster. The machine’s modtime fields will be
updated. Errors: MR_MACHINE "No such machine" or MR_CLUSTER "No such cluster" if
one of them does not match exactly one object in the database.

delete_machine_from_cluster

Args: {machine, cluster}

Returns: none

Delete a machine from a cluster. The machine name must match exactly one machine. The
cluster name must match exactly one cluster. The named machine must belong to the
named cluster. The machine’s modtime fields will be updated. Errors: MR_MACHINE "No
such machine" or MR_CLUSTER "No such cluster" if one of them does not match exactly
one object in the database.

get_cluster_data

Args: {cluster, label}

Returns: {cluster, label, data}

Retrieve all cluster data matching the named cluster and label. Either or both may use
wildcards. Thus all data for a cluster may be retrieved with gcld(cluster, *), and all data of
a particular type may be retrieved with gcld(*, label). It is safe for the query ACL to be the
list containing everybody.

add_cluster_data

Args: {cluster, label, data}

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 45

Returns: none

Add new data to a cluster. The cluster name must match exactly one cluster. The service
label must be a registered slabel in the alias database. The data is an arbitrary string.
The cluster’s modtime fields will be updated. Errors: MR_CLUSTER "No such cluster" if
the cluster name does not match exactly one cluster, or MR_TYPE "Invalid type" if the label
is not in the alias database.

delete_cluster_data

Args: {cluster, label, data}

Returns: none

Delete the specified cluster data. The cluster name must match exactly one cluster, and the
remaining two arguments must exactly match an existing service cluster. The cluster’s
modtime fields will be updated. Errors: MR_CLUSTER "No such cluster" if the cluster
name does not match exactly one cluster, or MR_NOT_UNIQUE "Arguments not unique" if
the label and data do not match exactly one existing piece of data for the cluster.

7.0.3. Lists

get_list_info

Args: list

Returns: {list, active, public, hidden, maillist, group, gid, ace_type, ace_name, description,
modtime, modby, modwith}

Returns information about the named list. The list name may contain wildcards. active,
public, hidden, maillist, and group are booleans returned as integers (0 is false, non-zero is
true). The ace-type is either USER, LIST, or NONE, and the ace_name will be either a
login name, a list name, or NONE, respectively. This query is allowed if the list is not
hidden or the user executing the query is on the ACE of the target list. If the user
executing this query is on the query ACL, he may use wildcards in the list name, otherwise
wildcards are not allowed.

expand_list_names

Args: list

Returns: {list}

Expands wildcards in a list name. A name is passed which may contain wildcards, and a
set of matching names are returned.

add_list

Args: {list, active, public, hidden, maillist, group, gid, ace_type, ace_name, description}

Returns: none

Creates a new list and adds it to the database. The list name must be unique among
existing list names. active, public, hidden, maillist, and group are booleans passed as
integers (0 is false, non-zero is true). If group is true and gid is UNIQUE_GID as defined
in <mr.h>, a new unique group ID will be assigned, otherwise the integer value given for

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 46, Section E.1 Athena Technical Plan

gid will be assigned to the GID. The ace-type is either USER, LIST, or NONE, and the
ace_name will be either a login name, a list name, or NONE, respectively. The access list
may be the list that is being created (self-referential). The list modtime will be set. Errors:
MR_EXISTS "Record already exists" if a list already exists by that name, MR_ACE "No
such access control entity" if the ace_type is not USER, LIST, or NONE, or if the ace_name
cannot be resolved relative to the ace_type.

update_list

Args: {list, newname, active, public, hidden, maillist, group, gid, ace_type, ace_name,
description}

Returns: none

Allows the list information and attributes to be changed. This is not equivalent to deleting
the list and creating a new one, since references to the old name will still apply to the new
name if it is renamed. The list name must match exactly one list. The new name must
either match the old name or be unique among list names in the database. The active,
public, hidden, maillist, and group flags should be 0 if the flag is false, or non-zero if it is
true. The gid may be UNIQUE_GID as defined in <mr.h>, in which case a new unique
GID will be assigned. The ace-type is either USER, LIST, or NONE, and the ace_name
will be either a login name, a list name, or NONE, respectively. The list modtime will be
set. This query may be executed by anyone on the ACE of the target list. Errors: MR_LIST
"No such list" if the named list does not match exactly one list, MR_NOT_UNIQUE
"Arguments not unique" if the new list name doesn’t either match the old one or is unique,
MR_ACE "No such access control entity" if the ace_type is not USER, LIST, or NONE, or if
the ace_name cannot be resolved relative to the ace_type.

delete_list

Args: list

Returns: none

Deletes a list from the database. A list may only be deleted if it is not in use as a member
of any other list or as an ACL for an object, and the list itself must be empty. This query
may be executed by someone who is on the current ace of the target list. Errors: MR_LIST
"No such list" if the named list does not exist, or MR_IN_USE "Object is in use" if the list is
still being referenced.

add_member_to_list

Args: {list, type, member}

Returns: none

Adds a member to a list. The specified list must match exactly one list. Type must be
either USER, LIST, or STRING. member is either a login name, a list name, or a text
string, respectively. The modtime on the list is updated. This query may be executed by:
anyone adding themselves as a USER to a list with the public bit set or anyone on the ACE
of the list being modified. Errors: MR_LIST "No such list" if the named list does not exist,
MR_TYPE "Invalid type" if the member type is not USER, LIST, or STRING, or
MR_NO_MATCH "No records in database match query" if the member name cannot be
resolved with the member type.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 47

delete_member_from_list

Args: {list, type, member}

Returns: none

Deletes a member from a list. The specified list must match exactly one list. The specified
type and member must exactly match an existing member of that list. The modtime on the
list is updated. This query may be executed by anyone deleting themselves as a USER
from a list with the public bit set or anyone on the ACE of the list being modified. Errors:
MR_LIST "No such list" if the named list does not exist, MR_TYPE "Invalid type" if the
member type is not USER, LIST, or STRING, or MR_NO_MATCH "No records in
database match query" if the member name cannot be resolved with the member type or if
there is no such member in the list.

get_ace_use

Args: {ace_type, ace_name}

Returns: {object_type, object_name}

Finds references to an object as an ACE. Valid ace_types are USER, LIST, RUSER, and
RLIST. For types USER and RUSER, the ace_name must be a login name. If the type is
USER, then only objects whose ACE is the named user will be found; if it is RUSER, it will
recursively check down sub-lists of the ACE lists looking to see if the user is a member of
that ACE. The types LIST and RLIST apply to a list name in a similar manner. The
returned tuples will be LIST, list name; SERVICE, service name; FILESYS and a
filesystem label; QUERY, query name; HOSTACCESS, machine name; or ZEPHYR,
zephyr class name. This query may be executed by a user asking about himself or a person
on an ACE of a list asking about that list. Errors: MR_TYPE "Invalid type" if the ace_type
is not one of LIST, RLIST, USER, or RUSER; MR_NO_MATCH "No objects in database
match query" if the ace_name doesn’t match a user or list.

qualified_get_lists

Args: {active, public, hidden, maillist, group}

Returns: {list}

Finds the names of any lists that meet the specified criteria. Each of the inputs may be one
of TRUE, FALSE, or DONTCARE. Any user may execute this query with active TRUE
and hidden FALSE. Errors: MR_TYPE "Invalid type" if one of the arguments is something
other than TRUE, FALSE, or DONTCARE.

get_members_of_list

Args: list

Returns: {type, value}

Retrieves all of the members of the named list. The list must match exactly one list in the
database. The returned pairs consist of the type USER, LIST, or STRING, followed by the
login name, list name, or text string respectively. This query may be executed by anyone if
the list is not hidden; otherwise by someone on the ACE of the list being modified.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 48, Section E.1 Athena Technical Plan

get_lists_of_member

Args: {type, value}

Returns: {list, active, public, hidden, maillist, group}

Retrieves the name and flags of every list containing the named member. The member type
must be one of USER, LIST, or STRING, and the value a login name, list name, or text
string respectively. The type may also be one of RUSER, RLIST, or RSTRING, in which
case it will also find any lists that contain as sublists a list that the target is a member of.
This query may be executed by someone asking about themselves or a person on the ace of
a list asking about that list. Errors: MR_TYPE "Invalid type" if the type is not USER,
LIST, STRING, RUSER, RLIST, or RSTRING; or MR_NO_MATCH "No records in
database match query" if value does not match an existing value for the given type.

count_members_of_list

Args: list

Returns: {count}

Determines how many members are on the specified list. The list name must match exactly
one list. This query may be executed by a anyone on a visible list, or someone on the ACE
of the target list. MR_LIST "Invalid list" if the list name does not match exactly one list.

7.0.4. Servers and Serverhosts

get_server_info

Args: name

Returns: {service, interval, target, script, dfgen, dfcheck, type, enable, inprogress,
harderror, errmsg, ace_type, ace_name, modtime, modby, modwith}

Retrieves service information from the database. This is the per-service information used
by the DCM for updates. The service name may contain wildcards. Note that all service
names are stored in uppercase, and the passed name will be upper-cased before comparing
it. The returned interval is in minutes. dfgen is the data files were last generated, and
dfcheck is the date we last checked to see if we needed to generate them. These are passed
as integers (unix format date). The type must be a service-type as stored in the aliases
database. enable, inprogress, and harderror are booleans (0 = false, non-zero = true).
ace_type is either USER, LIST, or NONE, and ace_name is a login name, a list name, or
NONE, respectively. This query may be executed by someone on the service ace if only one
service is retrieved.

qualified_get_server

Args: {enable, inprogress, harderror}

Returns: service

Finds the names of any services that meet the specified criteria. Each of the inputs may be
one of TRUE, FALSE, or DONTCARE. Errors: MR_TYPE "Invalid type" if any of the
flags are not one of the three legal values.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 49

add_server_info

Args: {service, interval, target, script, type, enable, ace_type, ace_name}

Returns: none

Adds a new service to the database. This is the per-service information used by the DCM
for updates. Note that only a subset of the information is added in this query, as the
remaining fields are only changed by the DCM with the set_server_internal_flags query.
The service name will be converted to uppercase. The interval is in minutes. The type must
be a service-type as stored in the aliases database. Enable is a boolean (0 = false, non-
zero = true). ace_type is either USER, LIST, or NONE, and ace_name is a login name, a
list name, or NONE, respectively. The service modtime will be set. Errors: MR_TYPE
"Invalid type" if the type field is not a valid service-type in the alias database, or MR_ACE
"No such access control entity" if the ace_type is not USER, LIST, or NONE or the
ace_name cannot be resolved based on the ace_type.

update_server_info

Args: {service, interval, target, script, type, enable, ace_type, ace_name}

Returns: none

Updates a service in the database. This is the per-service information used by the DCM for
updates. Note that only a subset of the information can be modified with this query, as the
remaining fields are only changed by Moira itself. The service name must match exactly
one existing service after being converted to uppercase. The interval is in minutes. The
type must be a service-type as stored in the aliases database. Enable is a boolean (0 =
false, non-zero = true). Ace_type is either USER, LIST, or NONE, and ace_name is a login
name, a list name, or NONE, respectively. The service modtime will be set. This query
may be used by someone on the ACE of the target service. Errors: MR_TYPE "Invalid
type" if the type field is not a valid service-type in the alias database, or MR_ACE "No
such access control entity" if the ace_type is not USER, LIST, or NONE or the ace_name
cannot be resolved based on the ace_type.

reset_server_error

Args: service

Returns: none

Updates the specified service by changing the harderror flag from TRUE to FALSE, and
sets dfcheck to be the same as dfgen. The service name must match exactly on existing
service after being converted to uppercase. The service modtime will be set. This query
may be executed by someone on the ACE of the target service.

set_server_internal_flags

Args: {service, dfgen, dfcheck, inprogress, harderr, errmsg}

Returns: none

Updates the specified service. This is intended to only be used by the DCM, as it changes
flags that the user should not have control over. The service name must match exactly one
existing service after being converted to uppercase. dfgen and dfcheck are unix format

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 50, Section E.1 Athena Technical Plan

dates (long integers). inprogress and harderr are booleans (0 = false, non-zero = true). The
service modtime will NOT be set.

delete_server_info

Args: service

Returns: none

Deletes a set of service information from the database. The service name must match
exactly one service in the database after being converted to uppercase. A service may not
be deleted if there are any server-hosts assigned to that service, or if the inprogress bit is
set for that service. Error: MR_IN_USE "Object is in use" if there are hosts assigned to
that service.

get_server_host_info

Args: {service, machine}

Returns: {service, machine, enable, override, success, inprogress, hosterror, errmsg, lasttry,
lastsuccess, value1, value2, value3, modtime, modby, modwith}

Retrieves server-host information from the database. This is the per-host information used
by the DCM for updates. The given service and machine names may contain wildcards.
Enable, override, success, inprogress, and hosterror are booleans (0 = false, non-zero = true).
lasttry and lastsuccess are unix format dates (long integers). This query may be executed
by someone on the ACE for the target service.

qualified_get_server_host

Args: {service, enable, override, success, inprogress, hosterror}

Returns: {service, machine}

Finds the names of any machine/services pairs that meet the specified criteria. The service
name may contain wildcards. Each of the remaining inputs may be one of TRUE, FALSE,
or DONTCARE. Errors: MR_TYPE "Invalid type" if any of the flags are not one of the
three legal values.

add_server_host_info

Args: {service, machine, enable, value1, value2, value3}

Returns: none

Adds information for a new server-host to the database. This is the per-host information
used by the DCM for updates. Note that only a subset of the information is dealt with in
this query, as the remaining fields are only changed by the DCM with the
set_server_host_internal query. Service and machine must each match exactly one existing
service and machine, respectively. Enable is a boolean (0 = false, non-zero = true). The 3
values are service specific in function; value1 and value2 are integers, value3 is a string.
The server-host’s modtime will be set. This query may be used by someone on the ACE for
the target service. Errors: MR_SERVICE "Unknown service" if the service name does not
match exactly one existing service, or MR_MACHINE "Invalid machine" if the machine
name does not match exactly one machine.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 51

update_server_host_info

Args: {service, machine, enable, value1, value2, value3}

Returns: none

Updates information for a server-host in the database. This is the per-host information
used by the DCM for updates. Note that only a subset of the information is dealt with in
this query, as the remaining fields are only changed by the DCM with the
set_server_host_internal query. Service and machine must each match exactly one existing
service and machine, respectively. Enable is a boolean (0 = false, non-zero = true). The 3
values are service specific in function; value1 and value2 are integers, value3 is a string.
The server-host’s modtime will be set. This query may only be executed when the
inprogress bit is not currently set for the specified server_host. This query may be used by
someone on the ACE for the target service. Errors: MR_SERVICE "Unknown service" if the
service name does not match exactly one existing service, or MR_MACHINE "Invalid
machine" if the machine name does not match exactly one machine.

reset_server_host_error

Args: {service, machine}

Returns: none

Resets the hosterr flag for the specified server_host. The service and machine must each
match exactly one service and host. The server_host’s modtime will be updated. This
query may be used by someone on the ACE for the target service. Errors: MR_SERVICE
"Unknown service" if the service name does not match exactly one existing service, or
MR_MACHINE "Invalid machine" if the machine name does not match exactly one
machine.

set_server_host_override

Args: {service, machine}

Returns: none

This will set the override flag for a server_host, and start a new DCM running. The service
and machine must each match exactly one service and host. The server_host’s modtime
will be updated. This query may be used by someone on the ACE for the target service.
Errors: MR_SERVICE "Unknown service" if the service name does not match exactly one
existing service, or MR_MACHINE "Invalid machine" if the machine name does not match
exactly one machine.

set_server_host_internal

Args: {service, machine, override, success, inprogress, hosterror, errmsg, lasttry,
lastsuccess}

Returns: none

Updates the specified service_host. This is intended to only be used by the DCM, as it
changes flags that the user should not have control over. The service and host names name
must match exactly one existing service and host each. override, success, inprogress and
hosterror are booleans (0 = false, non-zero = true). lasttry and lastsuccess are unix format

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 52, Section E.1 Athena Technical Plan

dates (long integers). The service_host modtime will NOT be set. Errors: MR_SERVICE
"Unknown service" if the service name does not match exactly one existing service, or
MR_MACHINE "Invalid machine" if the machine name does not match exactly one
machine

delete_server_host_info

Args: {service, machine}

Returns: none

Deletes a server-host from the database. The service and machine names each must match
exactly one existing service or host. A server-host may not be deleted if the inprogress bit is
set for that server-host. This query may be used by someone on the ACE for the target
service. Errors: MR_SERVICE "Unknown service" if the service name does not match
exactly one existing service, MR_MACH "Invalid machine" if the machine name does not
match exactly one machine, or MR_IN_USE "Object is in use" if the inprogress bit is set.

get_server_locations

Args: service

Returns: {service, machine}

This query tells which machines support a given service. It does this by listing each of the
server-hosts for that service. The service name may contain wildcards, and will be
converted to uppercase before any comparisons are made. It is safe for this query’s ACL to
be the list containing everybody.

7.0.5. Filesystems

get_filesys_by_label

Args: name

Returns: {name, fstype, machine, packname, mountpoint, access, comments, owner, owners,
create, lockertype, modtime, modby, modwith}

Retrieves all the information about a specific filesystem from the database. The name may
contain wildcards. fstype is one of NFS or RVD, recorded as aliases of filesys. machine
must match exactly one existing machine. owner must match exactly one user, owners
must match exactly one list. create is a boolean (0 = false, non-zero = true) indicating that
the locker should be automatically created. lockertype is a lockertype as recorded in the
alias database, currently one of SYSTEM, HOMEDIR, PROJECT, or OTHER. The
packname, mountpoint, and access vary depending on the filesystem type.

get_filesys_by_machine

Args: machine

Returns: {name, fstype, machine, packname, mountpoint, access, comments, owner, owners,
create, lockertype, modtime, modby, modwith}

Retrieves the information about any filesystems on the named machine. The machine
name must match exactly one machine in the database. The returned information is as

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 53

specified above for get_filesys_by_label. Errors: MR_MACHINE "No such machine" if the
named machine does not match an existing machine.

get_filesys_by_nfsphys

Args: {machine, partition}

Returns: {name, fstype, machine, packname, mountpoint, access, comments, owner, owners,
create, lockertype, modtime, modby, modwith}

Retrieves the information about all NFS filesystems that reside on the specified NFS server
partition. machine must match exactly one machine. partition is the mount point of the
NFS physical partition. Errors: MR_MACHINE "Invalid machine" if the machine name
does not match exactly one machine, or MR_NO_MATCH "No records in database match
query" if the partition does not match anything.

get_filesys_by_group

Args: list

Returns: {name, fstype, machine, packname, mountpoint, access, comments, owner, owners,
create, lockertype, modtime, modby, modwith}

Retrieves the information about all filesystems that have the specified group as the owners
list. The list must match exactly one existing list. This query may be executed by a
member of the target list. Errors: MR_LIST "No such list" if the given list does not match
exactly one list in the database.

add_filesys

Args: {name, fstype, machine, packname, mountpoint, access, comments, owner, owners,
create, lockertype}

Returns: none

Adds a new filesystem to the database. The name must be unique among the existing
filesystems. fstype is one of NFS or RVD. machine must match exactly one existing
machine. owner must match exactly one user, owners must match exactly one list. create is
a boolean (0 = false, non-zero = true) indicating that the locker should be automatically
created. lockertype is a lockertype as recorded in the alias database, currently one of
SYSTEM, HOMEDIR, PROJECT, or OTHER. The packname and access vary depending
on the filesystem type. For an RVD filesystem, they may contain anything. For NFS
filesystems, the packname must match an existing NFS physical filesystem, and access
must be one of r or w. The filesystem’s modtime will be set. Errors: MR_FSTYPE "Invalid
filesys type" if the fstype is not a valid filesys type, MR_TYPE "Invalid type" if the
lockertype is not a valid lockertype, MR_MACHINE "No such machine" if the machine
name does not match exactly one machine, MR_USER "No such user" if the owner does not
match exactly one user, MR_LIST "No such list" if the owners does not match exactly one
list, MR_NFS "Specified directory not exported" if the machine and packname do not match
an existing NFS physical partition, or MR_FILESYS_ACCESS if the fstype is NFS and the
access mode is not r or w.

update_filesys

Args: {name, newname, fstype, machine, packname, mountpoint, access, comments, owner,

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 54, Section E.1 Athena Technical Plan

owners, create, lockertype}

Returns: none

Updates the information about a filesystem in the database. The name must match exactly
one existing filesystem. The new name must either match the existing one or be unique
among the filesystems. fstype is one of NFS or RVD. machine must match exactly one
existing machine. owner must match exactly one user, owners must match exactly one list.
create is a boolean (0 = false, non-zero = true) indicating that the locker should be
automatically created. lockertype is a lockertype as recorded in the alias database,
currently one of SYSTEM, HOMEDIR, PROJECT, or OTHER. The packname and access
vary depending on the filesystem type. For an RVD filesystem, they may contain anything.
For NFS filesystems, the packname must match an existing NFS physical filesystem, and
access must be one of r or w. The filesystem’s modtime will be updated. Errors:
MR_NOT_UNIQUE "Arguments not unique" if the new name does not either match the old
one or is unique among filesystems, MR_FSTYPE "Invalid filesys type" if the fstype is not a
valid filesys type, MR_TYPE "Invalid type" if the lockertype is not a valid lockertype,
MR_MACHINE "No such machine" if the machine name does not match exactly one
machine, MR_USER "No such user" if the owner does not match exactly one user, MR_LIST
"No such list" if the owners does not match exactly one list, MR_NFS "Specified directory
not exported" if the machine and packname do not match an existing NFS physical
partition, or MR_FILESYS_ACCESS if the fstype is NFS and the access mode is not r or w.

delete_filesys

Args: name

Returns: none

Deletes a filesystem from the database. The name must match exactly one existing
filesystem. Any quotas assigned to that filesystem will be deleted, and the allocation count
on the nfs physical partition will be decremented accordingly. Errors: MR_FILESYS "No
such file system" if the name does not match an existing filesystem.

get_all_nfsphys

Args: none

Returns: {machine, dir, device, status, allocated, size, modtime, modby, modwith}

Retrieves information about NFS physical filesystems. These are the filesystems which are
exported by NFS servers.

get_nfsphys

Args: {machine, dir}

Returns: {machine, dir, device, status, allocated, size, modtime, modby, modwith}

Retrieves information about a specific NFS physical filesystem. The machine must match
exactly one existing machine. The directory name may contain wildcards. Errors:
MR_MACHINE "No such machine" if the machine name does not match exactly one
existing machine.

add_nfsphys

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 55

Args: {machine, directory, device, status, allocated, size}

Returns: none

Adds a new NFS physical filesystem to the database. The machine name must match
exactly one existing machine. The directory and device must be unique among existing
NFS physical filesystems for this machine. status is an integer, with bit encodings
MR_FS_STUDENT, MR_FS_FACULTY, MR_FS_STAFF, or MR_FS_MISC as defined
in <mr.h>. allocated keeps track of quota allocation, the initial value should be zero unless
there is something besides lockers on this filesystem. size is the actual size (in blocks) of
the filesystem. The modtime will be set for this filesystem. Errors: MR_MACHINE "No
such machine" if the machine name does not match exactly one existing machine.

update_nfsphys

Args: {machine, directory, device, status, allocated, size}

Returns: none

Changes information about an NFS physical filesystem in the database. The machine
name must match exactly one existing machine. The directory must match an existing NFS
physical filesystem on that machine. The remaining arguments will replace the current
values of those fields. The modtime will be updated for this filesystem. Errors: "No such
machine" if the machine name does not match exactly one existing machine.

adjust_nfsphys_allocation

Args: {machine, directory, delta}

Returns: none

Changes the allocation for an NFS physical filesystem. machine must match exactly one
existing machine. directory must match an existing NFS physical filesystem on that
machine. The current allocation for this filesystem will have delta (which may be positive
or negative) added to it. Errors: MR_MACHINE "No such machine" if the machine name
does not match exactly one existing machine.

delete_nfsphys

Args: {machine, directory}

Returns: none

Deletes an NFS physical filesystem from the database. The machine name must match
exactly one existing machine. The directory name must match exactly one existing NFS
physical filesystem on that machine. The physical filesystem must not be in use with
logical filesystems. Errors: MR_MACHINE "No such machine" if the machine name does
not match exactly one existing machine, or MR_IN_USE "Object is in use" if there are any
filesystems assigned to this partition.

get_nfs_quota

Args: {filesys, login}

Returns: {filesys,login, quota, directory, machine, modtime, modby, modwith}

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 56, Section E.1 Athena Technical Plan

Retrieves the quotas assigned to the named filesystems and user. The filesystem name may
contain wildcards. The login name must match exactly one user. This query may be
executed by the owner of the target filesystem.

get_nfs_quotas_by_partition

Args: {machine, directory}

Returns: {filesys, login, quota, directory, machine}

Retrieves the quotas assigned to a given device. The machine must match exactly one
existing machine. The directory name may contain wildcards. Errors: MR_MACHINE "No
such machine" if the machine name does not match exactly one existing machine.

add_nfs_quota

Args: {filesystem, login, quota}

Returns: none

Adds a new quota to the database. The filesystem name must match exactly one existing
filesystem. The login name must match exactly one existing user. The quota may be any
positive integer. The modtime on the quota record will be set. The allocation count for that
NFS physical filesystem will also be updated. Errors: MR_FILESYS "No such file system"
if the filesystem does not match exactly one existing filesystem, or MR_USER "No such
user" if the login name does not match exactly one existing user.

update_nfs_quota

Args: {filesystem, login, quota}

Returns: none

Changes a quota in the database. The filesystem name must match exactly one existing
filesystem. The login name must match exactly one existing user, and that user must have
a quota assigned on that filesystem. The quota may be any positive integer, and will
replace the existing quota. The modtime on the quota record will be set. The allocation
count for that NFS physical filesystem will also be updated. Errors: MR_FILESYS "No
such file system" if the filesystem does not match exactly one existing filesystem, or
MR_USER "No such user" if the login name does not match exactly one existing user.

delete_nfs_quota

Args: {filesystem, login}

Returns: none

Deletes a quota from the database. The filesystem name must match exactly one existing
filesystem. The login name must match exactly one existing user, and that user must have
a quota assigned on that filesystem. The allocation count for that NFS physical filesystem
will also be updated. Errors: MR_FILESYS "No such file system" if the filesystem does not
match exactly one existing filesystem, or MR_USER "No such user" if the login name does
not match exactly one existing user.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 57

7.0.6. Zephyr

get_zephyr_class

Args: class

Returns: {class, xmttype, xmtname, subtype, subname, iwstype, iwsname, iuitype, iuiname,
modtime, modby, modwith}

Retrieves zephyr class information from the database. The class name may contain
wildcards. There are four pairs of types and names: each type is one of USER, LIST, or
NONE, and each name is a login name, a list name, or NONE, respectively.

add_zephyr_class

Args: {class, xmttype, xmtname, subtype, subname, iwstype, iwsname, iuitype, iuiname}

Returns: none

Adds a new zephyr class to the database. The class name must be unique among the
existing class names. There are four pairs of types and names: each type is one of USER,
LIST, or NONE, and each name is a login name, a list name, or NONE, respectively. The
class’s modtime will be updated.

update_zephyr_class

Args: {class, newclass, xmttype, xmtname, subtype, subname, iwstype, iwsname, iuitype,
iuiname}

Returns: none

Change a zephyr class in the database. The class name must match exactly one existing
class. The new class name must either match the old one or be unique among the existing
class names. There are four pairs of types and names: each type is one of USER, LIST, or
NONE, and each name is a login name, a list name, or NONE, respectively. The class’s
modtime will be updated.

delete_zephyr_class

Args: class

Returns: none

Deletes a zephyr class from the database. The class name must match exactly one existing
class.

7.0.7. Miscellaneous

get_server_host_access

Args: machine

Returns: {machine, ace_type, ace_name, modtime, modby, modwith}

Returns information about who has access to a given machine. This will be used to load the
/.klogin file on that machine. The machine name may contain wildcards. The ace_type is

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 58, Section E.1 Athena Technical Plan

either USER, LIST, or NONE, and the ace_name is either a login name, a list name, or
NONE, respectively.

add_server_host_access

Args: {machine, ace_type, ace_name}

Returns: none

Adds information about who has access to a given machine to the database. The machine
name must match exactly one existing machine. The ace_type is either USER, LIST, or
NONE, and the ace_name is either a login name, a list name, or NONE, respectively. The
modtime on the record will be set. Errors: MR_MACHINE "No such machine" if the
machine name does not match exactly one existing machine, MR_ACE "Invalid access
control entity" if the ace_type and ace_name together do not specify a valid entity.

update_server_host_access

Args: {machine, ace_type, ace_name}

Returns: none

Updates the information about who has access to a given machine. The machine name
must match exactly one existing machine. The ace_type is either USER, LIST, or NONE,
and the ace_name is either a login name, a list name, or NONE, respectively. The modtime
on the record will be updated. Errors: MR_MACHINE "No such machine" if the machine
name does not match exactly one existing machine, MR_ACE "Invalid access control entity"
if the ace_type and ace_name together do not specify a valid entity.

delete_server_host_access

Args: machine

Returns: none

Updates the information about who has access to a given machine. The machine name
must match exactly one existing machine.

add_service

Args: {service, protocol, port, description}

Returns: none

Adds information about a new network service to the database. The service name must not
match any existing services. The protocol must be listed as a "protocol" in the aliases
database, currently "UDP" and "TCP".

delete_service

Args: service

Returns: none

Deletes information about a network service from the database. The service name must
match exactly one existing service.}

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 59

get_printcap

Args: printer

Returns: {printer, spool_host, spool_directory, rprinter, comments, modtime, modby,
modwith}

Retrieves information about a printer. The printer name may contain wildcards. It is safe
for this query’s ACL to be the list containing everybody.

add_printcap

Args: {printer, spool_host, spool_directory, rprinter, comments}

Returns: none

Adds information about a new printer to the database. The printer name must not match
any existing printers. spool_host must name exactly one existing machine in the database.
The printer’s modtime will be set. Error: MR_MACHINE if spool_host does not match
exactly one machine.

delete_printcap

Args: printer

Returns: none

Deletes information about a printer from the database. The printer name must match
exactly one existing printer.

get_alias

Args: {name, type, translation}

Returns: {name, type, translation}

Looks up an alias in the alias database. This database is used both for user information
like alternate names of filesystems, and keyword validation for various queries. Note that
type validation entries are of the form ([type name, usually in lower case], TYPE, [type
string, always in upper case]). Some type validation entries are used to further identify
another field. These have entries of the form ([type string in uppercase], TYPEDATA,
[type, one of: none, user, list, string, machine]). The name, type, and translation may
contain wildcards. It is safe for this query to be the list containing everybody.

add_alias

Args: {name, type, translation}

Returns: none

Adds a new alias to the alias database. The type must be a known type as recorded under
alias in the alias database. Duplicate translations for a given (name, type) pair are
allowed. Note that type validation entries are of the form ([type name, usually in lower
case], TYPE, [type string, always in upper case]). Some type validation entries are used to
further identify another field. These have entries of the form ([type string in uppercase],
TYPEDATA, [type, one of: none, user, list, string, machine]). The name, type, and

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 60, Section E.1 Athena Technical Plan

translation may contain wildcards.

delete_alias

Args: {name, type, translation}

Returns: none

Deletes an alias from the alias database. The combination of all three input arguments
must match exactly one alias.

get_value

Args: variable

Returns: value

Look up a value in the values database. This is used for DCM flags and Moira internal ID
hints. The variable name must match exactly one existing value name in the database. It
is safe for this query’s ACL to be the list containing everybody. Errors: MR_NO_MATCH
"No records in database match query" if the name does not match exactly one variable
name.

add_value

Args: {variable, value}

Returns: none

Adds a new value to the values database. The variable name must be unique among the
variables already in the database. The value is an integer.

update_value

Args: {variable, value}

Returns: none

Changes the value of an existing variable in the values database. The variable name must
match exactly one existing variable. Its value will be replaced with the supplied value.
Errors: MR_NO_MATCH "No records in database match query" if the name does not
match exactly one variable name.

delete_value

Args: variable

Returns: none

Deletes a variable from the values database. The variable name must match exactly one
existing variable. Errors: MR_NO_MATCH "No records in database match query" if the
name does not match exactly one variable name.

get_all_table_stats

Args: none

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 61

Returns: {table, retrieves, appends, updates, deletes, modtime}

Retrieves a summary of the table statistics. Each tuple consists of the table name, how
many retrieves, appends, updates, and deletes have been performed on that table, and the
date of the last change to the table. It is safe for this query’s ACL to be the list containing
everybody.

7.0.8. Build-in Special Queries

_help

Args: query

Returns: help_message

Returns the short name of the query and a list of arguments and return values. The query
name must match an existing query. This query may be executed by anyone.

_list_queries

Args: none

Returns: {long_query_name, short_query_name}

Returns a list of every query name. This query may be executed by anyone.

_list_users

Args: none

Returns: {kerberos_principal, host_address, port_number, connect_time, client_number}

Returns a list of every client currently using the Moira server. This query may be executed
by anyone.

7.1. Errors

General errors (may be returned by all queries):

MR_ARG_TOO_LONG - An argument contains too many characters
MR_ARGS - Incorrect number of arguments
MR_DEADLOCK - Database deadlock; try again later
MR_INGRES_ERR - An unexpected error occured in Ingres, the underlying DBMS
MR_INTERNAL - Internal consistency failure
MR_NO_HANDLE - Unknown query specified
MR_NO_MEM - Server ran out of memory
MR_PERM - Insufficient permission to perform requested database access

Any retrieval query may return

MR_NO_MATCH - No records in database match query

Any add or update query may return

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 62, Section E.1 Athena Technical Plan

MR_BAD_CHAR - Illegal character in argument
MR_EXISTS - new object conflicts with object already in the database
MR_INTEGER - String could not be parsed as an integer
MR_NO_ID - Cannot allocate new ID
MR_NOT_UNIQUE - An attempt to update more than one object at once

Any delete query may return

MR_IN_USE - Object is in use

Query specific errors:

MR_ACE - No such access control entity
MR_BAD_CLASS - Specified class is not known
MR_BAD_GROUP - Invalid group ID
MR_CLUSTER - Unknown cluster
MR_DATE - Invalid date
MR_FILESYS - Named file system does not exist
MR_FILESYS_EXISTS - Named file system already exists
MR_FILESYS_ACCESS - invalid filesys access
MR_FSTYPE - Invalid filesys type
MR_LIST - No such list
MR_MACHINE - Unknown machine
MR_NFS - specified directory not exported
MR_NFSPHYS - Machine/device pair not in nfsphys relation
MR_NO_FILESYS - Cannot find space for filesys
MR_NO_MATCH - Arguments not unique
MR_NO_POBOX - Cannot find space for pobox
MR_NO_QUOTA - No default quota specified
MR_PRINTER - Unknown printer
MR_SERVICE - Unknown service
MR_STRING - Unknown string
MR_TYPE - Invalid type
MR_USER - No such user
MR_WILDCARD - Wildcards not allowed in this case

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 63

8. Specialized Management Tools - User Interface

Moira will include a set of specialized management tools to enable system administrators
to control system resources. As the system evolves, more management tools will become a
part of the Moira’s application program library. These tools provide the fundamental
administrative use of Moira.

In response to complaints about the user interface of current database maintenance tools
such as madm, gadm, and (to a lesser extent) register, the Moira tools will use a slightly
different strategy. To accommodate novice and occasional users, a menu interface similar
to the interface in register will be the default. For regular users, a command-line switch
(such as -nomenu) will be provided that will use a line-oriented interface such as those in
discuss and kermit. This should provide speed and directness for users familiar with the
system, while being reasonably helpful to novices and occasional users. A specialized menu
building tool has been developed in order that new application programs can be developed
quickly. An X interface is being planned, but is of secondary importance to the functioning
of the base system.

Fields in the database will have associated with them lists of legal values. A null list will
indicate that any value is possible. This is useful for fields such as user_name, address,
and so forth. The application programs will, before attempting to modify anything in the
database, will request this information, and compare it with the proposed new value. If an
invalid value is discovered, it will be reported to the user, who will be given the opportunity
to change the value, or "insist" that it is a new, legal value. (The ability to update data in
the database will not necessarily indicate the ability to add new legal values to the
database.)

Applications should be aware of the ramifications of their actions, and notify the user if
appropriate. For example, an administrator deleting a user should be informed of storage
space that is being reclaimed, mailing lists that are being modified. Objects that need to be
modified at once (such as the ownership of a mailing list) should present themselves to be
dealt with.

The following list of programs will be found on subsequent pages:

• BLANCHE - batch list maintanence tool
• CHFN - change finger information
• CHPOBOX - change forwarding post office
• CHSH - change default shell
• REG_TAPE - Registrar’s tape entry program
• MOIRA - administrative client
• MRCHECK - verify that updates have been successful
• USERREG - New user registration.

For clarity, each new program begins on a new page.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 64, Section E.1 Athena Technical Plan

PROGRAM NAME: BLANCHE - Batch list operations

DESCRIPTION: This program allows one to examine a list, and to examine or modify
the membership of a list. Rather than using menus as the other
Moira clients, it takes initial command line arguments, and uses
standard input and standard output.

PRE-DEFINED QUERIES USED:

• get_list_info
• count_members_of_list
• get_members_of_list
• add_member_to_list
• delete_member_from_list

Manipulates the following fields:

• (name, active, public, hidden, maillist, group, gid, desc, acl_type,
acl_id, modtime, modby, modwith) - LIST relation

• (list_id, member_type, member_id) - MEMBERS relation

SUPPORTED SERVICE(S):

• Mailing lists
• Unix groups
• Moira access control lists

END USER: List maintainers

A SESSION USING BLANCHE:

% blanche -info mar
List: mar
Description: User Group
Flags: active, private, and hidden
mar is a maillist and is a group with GID 5271
Owner: LIST mar
Last modified by mar with blanche on 14-sep-1988 14:03:20
% blanche -a carla mar -m
carla
mar
%

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 65

PROGRAM NAME: CHFN - Finger Information.

DESCRIPTION: This program allows users to change their finger information. This is
the information put into the password lines stored in hesiod and the
master password file. It should be functionally equivalent to the
standard Berkeley Unix chfn program.

PRE-DEFINED QUERIES USED:

• get_finger_by_login
• update_finger_by_login

Manipulates the following fields:

• (fullname, nickname, home_address, home_phone, office_phone,
department, year) - FINGER relation

SUPPORTED SERVICE(S):

• User Community - finger

END USER: All.

A SESSION USING CHFN:

% chfn

Changing finger information for pjlevine.
Info last changed on 22-mar-1988 15:13:33 by user pjlevine using chfn
Default values are printed inside of of ’[]’.
To accept the default, type <return>.
To have a blank entry, type the word ’none’.

Full name [Peter Levine]:

Nickname [Pete]:
Home address (Ex: Bemis 304) [24 kilsyth rd Brookline]:
Home phone number (Ex: 4660000) [1234567]:
Office address (Exs: 597 Tech Square or 10-256) [E40-342a]:
Office phone (Ex: 3-1300) [0000]:
MIT department (Exs: EECS, Biology, Information Services) []:
MIT year (Exs: 1989, ’91, Faculty, Grad) [staf]:
%

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 66, Section E.1 Athena Technical Plan

PROGRAM NAME: CHPOBOX - View / change home mail host.

DESCRIPTION: The name service and a mail forwarding service need to know where a
user’s post office is. This program allows the user the capability to
forward his mail to a different machine. This program is a command
line interface. It will report a user’s current mailbox. It can also set a
user’s mailbox.

PRE-DEFINED QUERIES USED:

• get_pobox
• set_pobox
• set_pobox_pop
• get_server_locations

Manipulates the following fields:

• (potype, pop_id, box_id) - USER relation
• (string_id, string) - STRINGS relation

SUPPORTED SERVICE(S):

• Mail forwarding
• Mail reading

END USERS: All.

A SESSION USING CHPOBOX:

% chpobox
User mar, Type POP, Box: mar@E40-PO.MIT.EDU
Modified by mar on 06-oct-1988 17:43:35 with moira

%
% chpobox -s mar@xx.lcs.mit.edu
User mar, Type SMTP, Box: mar@xx.lcs.mit.edu
Modified by mar on 18-oct-1988 17:51:32 with chpobox

%
% chpobox -p
User mar, Type POP, Box: mar@E40-PO.MIT.EDU
Modified by mar on 18-oct-1988 17:52:25 with chpobox

%

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 67

PROGRAM NAME: CHSH - Change shell.

DESCRIPTION: This program allows users to change their default shell.

PRE-DEFINED QUERIES USED:

• get_user_by_login
• update_user_shell

Manipulates the following fields:

• (shell) - USER relation

SUPPORTED SERVICE(S):

• login

END USERS: All

A SESSION USING CHSH:

% chsh

Changing login shell for pjlevine.
Account info last changed on 02-sep-1988 13:56:03 by user pjlevine using moira
Current shell for pjlevine is /bin/csh
New shell: /bin/csh
Changing shell to /bin/csh
%

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 68, Section E.1 Athena Technical Plan

PROGRAM NAME: DBCK - Database consistency checker

DESCRIPTION: This program verifies the internal consistency of the database. It
verifies that there are no duplicates of supposedly unique data, that
all references to other objects are references which actually exist,
there are no unused objects, and that the counts of quotas and
poboxes are correct. This is written in the spirit of the unix filesystem
checker, fsck.

PRE-DEFINED QUERIES USED:
None. It access the database directly.

END USERS: Database administrator

A SESSION USING DBCK:

% dbck
Opening database sms...done
Phase 1 - Looking for duplicates
Phase 2 - Checking references
Phase 3 - Finding unused objects
Warning: List saltzer is empty
Warning: List bug-rt is empty
Warning: List athena-bug-scribe is empty
Warning: List ccref is empty
Warning: List rparmelee is empty
Warning: List alens-testers is empty
Unreferenced string mar@xx.lcs.mit.edu id 77
Delete (Y/N/Q)? y
1 entry deleted
Unreferenced string a random string (with * wildcards) id 76
Delete (Y/N/Q)? y
1 entry deleted
Phase 4 - Checking counts
Done.
%

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 69

PROGRAM NAME: REG_TAPE - Add or remove students from the system using
Registrar’s tape.

DESCRIPTION: Each term, when the Registrar releases a tape of current students,
the system administrator must load the names of new users and
delete all old users. This program will automatically use the
Registrar’s tape as a means of keeping current the Moira database.

The problem of deleting users is a sensitive issue. The removal of a
user will reflect this sensitivity. When deleting a user, the expiration
date field will be set to the current date, but the user will not be
removed. The program db_maint will, among other things, check the
expiration stamp of the users. If a stamp is within critical expiration
time, the program will notify the administrator that a time-to-live
date has been reached. If correct, the administrator will set the user’s
status field to INACTIVE and set the time to some date in the future.
When that date and INACTIVE status are reached, the user is
flushed. If incorrect, the administrator will set the date to some time
in the future and leave the status field ACTIVE.

PRE-DEFINED QUERIES USED:

• update_user
• update_user_status

Manipulates the following fields:

• (status, expdate) - USERS relation.

SUPPORTED SERVICE(S):

• Moira

END USERS: Administrator.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 70, Section E.1 Athena Technical Plan

PROGRAM NAME: Moira - Moira client interface.

DESCRIPTION: This is the primary Moira client. It is capable of examining and
modifying all fields in the database. It is menu based, using the
curses library. For backwards compatability with older clients, it will
look at the name it is invoked with, and start in a sub-menu if it
recognizes a menu name.

SUPPORTED SERVICES:

• All

END USER:

• All
• Operations
• System administrators
• User accounts administrator

MENUS:

MENU: Top Level Menu

DESCRIPTION: This is the main menu of the program. It lists sub menus for each of
the main types of data that Moira handles.

DISPLAY:

Moira Database Manipulation
1. (cluster) Cluster Menu.
2. (filesys) Filesystem Menu.
3. (list) Lists and Group Menu.
4. (machine) Machine Menu.
5. (nfs) NFS Physical Menu.
6. (user) User Menu.
7. (printer) Printer Menu.
8. (dcm) DCM Menu.
9. (misc) Miscellaneous Menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 71

MENU: Cluster Menu

DESCRIPTION: This menu allows the manipulation of clusters. It also has sub-
menus to allow the user to examine machine to cluster mappings
and cluster data.

DISPLAY:

Cluster Menu
1. (show) Get cluster information.
2. (add) Add a new cluster.
3. (update) Update cluster information.
4. (delete) Delete this cluster.
5. (mappings) Machine To Cluster Mappings Menu.
6. (c_data) Cluster Data Menu.
7. (verbose) Toggle Verbosity of Delete.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

show get_cluster
add get_cluster, add_cluster
update get_cluster, update_cluster
delete get_cluster, delete_cluster

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 72, Section E.1 Athena Technical Plan

MENU:
Filesystem Menu

DESCRIPTION: This menu allows the manipulation of filesystems. This includes
both the filesystem themselves and aliases for filesystems. It also
includes a sub-menu for manipulation of quotas.

DISPLAY:

Filesystem Menu
1. (get) Get Filesystem Name Information.
2. (add) Add New Filesystem to Database.
3. (change) Update Filesystem Information.
4. (delete) Delete Filesystem.
5. (check) Check An Association.
6. (alias) Associate with a Filesystem.
7. (unalias) Disassociate from a Filesystem.
8. (quotas) Quota Menu.
9. (verbose) Toggle Verbosity of Delete.

10. (help) Help ...
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

get get_filesys_by_label
add get_filesys_by_label, add_filesys
change get_filesys_by_label, update_filesys
delete get_filesys_by_label, delete_filesys
check get_alias
alias get_alias, add_alias
unalias get_alias, delete_alias

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 73

MENU:
List Menu

DESCRIPTION: This menu allows the manipulation of lists, including retrieval by
name, creation, deletion, and updating the characteristics. Note
that deleting a list will double-check everything to maintain
database consistency, and may prompt the user to take further
actions. There is also an option called query_remove which will find
all of the lists a member belongs to, and ask the user one at a time
which ones the member should be removed from. There are also
sub-menus to manipulate the members of a list and to search though
lists.

DISPLAY:

List Menu
1. (show) Display information about a list.
2. (add) Create new List.
3. (update) Update characteristics of a list.
4. (delete) Delete a List.
5. (query_remove) Interactively remove an item from all lists.
6. (members) Member Menu - Change/Show Members of a List..
7. (list_info) List Info Menu.
8. (quotas) Quota Menu.
9. (verbose) Toggle Verbosity of Delete.

10. (help) Print Help.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

show get_list_info
add get_list_info, add_list
update get_list_info, update_list
delete get_list_info, get_ace_use,

count_members_of_list, get_lists_of_member,
get_members_of_list, delete_list,
delete_member_from_list

query_remove get_lists_of_member, delete_member_from_list

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 74, Section E.1 Athena Technical Plan

MENU:
Machine Menu

DESCRIPTION: This allows for machines to be manipulated. It includes a sub-menu
for machine-to-cluster mapping.

DISPLAY:

Machine Menu
1. (show) Get machine information.
2. (add) Add a new machine.
3. (update) Update machine information.
4. (delete) Delete this machine.
5. (mappings) Machine To Cluster Mappings Menu.
6. (verbose) Toggle Verbosity of Delete.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

show get_machine
add get_machine, add_machine
update get_machine, update_machine
delete get_machine, delete_machine

MENU:
NFS Physical Menu

DESCRIPTION: This allows for NFS physical filesystems to be manipulated. It
includes a submenu for quota manipulation as well.

DISPLAY:

NFS Physical Menu
1. (show) Show an NFS server.
2. (add) Add NFS server.
3. (update) Update NFS server.
4. (delete) Delete NFS server.
5. (quotas) Quota Menu.
6. (verbose) Toggle Verbosity of Delete.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

show get_nfsphys
add get_nfsphys, add_nfsphys
update get_nfsphys, update_nfsphys
delete get_nfsphys, get_filesys_by_nfsphys,

delete_nfsphys

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 75

MENU:
User Menu

DESCRIPTION: This allows for user accounts to be manipulated. Lookup may be
done by login name, real name, or class. Modifications may be of all
fields, or a simple deactivate (changing the account status to indicate
‘‘marked for deletion’’. Registering a user consists of changing the
login name and status, and creating a user group, filesystem, and
pobox. To expunge a user is to actually delete all record of them
from the database (including prompting to delete their filesystem
and user group). Sub-menus for manipulation of poboxes and quotas
are also provided.

DISPLAY:

User Menu
1. (login) Show user information by login name.
2. (name) Show user information by name.
3. (class) Show names of users in a given class.
4. (modify) Change all user fields.
5. (adduser) Add a new user to the database.
6. (register) Register a user.
7. (deactivate) Deactivate user.
8. (expunge) Expunge user.
9. (pobox) Post Office Box Menu.
10. (quota) Quota Menu.
11. (verbose) Toggle Verbosity of Delete.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

login get_user_by_login
name get_user_by_name
class get_user_by_class
modify get_user_by_login, update_user
adduser get_user_by_name, add_user
register get_user_by_name, register_user
deactivate get_user_by_name, update_user_status
expunge delete_user, get_filesys_by_label, delete_filesys,

get_members-of-list, delete_list,
count_members_of_list, get_lists_of_member,
delete_member_from_list, get_list_info,
get_ace_use

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 76, Section E.1 Athena Technical Plan

MENU:
Printer Menu

DESCRIPTION: This allows printcap entries to be manipulated.

DISPLAY:

Printer Menu
1. (get) Get Printcap Entry Information.
2. (add) Add New Printcap Entry to Database.
3. (change) Update Printer Information.
4. (delete) Delete Printcap Entry.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

get get_printcap
add get_printcap, add_printcap
change get_printcap, delete_printcap, add_printcap
delete get_printcap, delete_printcap

MENU:
DCM Menu

DESCRIPTION: This menu allows for the DCM and it’s control information to be
manipulated. Options include enabling the DCM, getting the
current status of updates, and starting an update immediately. Sub-
menus exist for manipulating service information and host/service
tuple information.

DISPLAY:

DCM Menu
1. (enable) Enable/disable DCM.
2. (service) DCM Service Menu.
3. (host) DCM Host Menu.
4. (active) Display entries currently being updated.
5. (failed) Display entries with errors to be reset.
6. (dcm) Invoke a DCM update now.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

enable get_value, update_value
active qualified_get_server, qualified_get_server_host
failed quelified_get_server, qualified_get_server_host
dcm trigger_dcm

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 77

MENU:
Miscellaneous Menu

DESCRIPTION: This menu contains miscellaneous functions which are not
necessary, but may be useful in maintaining the Moira system.
These include fetching the table use statistics, listing currently
active connections to the Moira server, and fetching values and
aliases from the database.

DISPLAY:

Miscellaneous Menu
1. (statistics) Show database statistics.
2. (clients) Show active Moira clients.
3. (getval) Show a database variable value.
4. (getalias) Show an alias relation.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

statistics get_all_table_stats
clients _list_users
getval get_value
getalias get_alias

MENU:
Cluster Data Menu

DESCRIPTION: This menu allows the manipulation of data associated with clusters.

DISPLAY:

Cluster Data Menu
1. (show) Show Data on a given Cluster.
2. (add) Add Data to a given Cluster.
3. (delete) Remove Data to a given Cluster.
4. (verbose) Toggle Verbosity of Delete.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

show get_cluster_data
add add_cluster_data
delete get_cluster_data, delete_cluster_data

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 78, Section E.1 Athena Technical Plan

MENU:
Mappings Menu

DESCRIPTION: This cluster allows the machine to cluster mappings to be
manipulated.

DISPLAY:

Machine To Cluster Mappings Menu
1. (map) Show Machine to cluster mapping.
2. (addcluster) Add machines to a clusters.
3. (remcluster) Remove machines from clusters.
4. (verbose) Toggle Verbosity of Delete.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

map get_machine_to_cluster_map
addcluster get_machine, get_cluster,

add_machine_to_cluster
remcluster get_machine_to_cluster_map,

delete_machine_from_cluster

MENU:
Quota Menu

DESCRIPTION: This menu allows users’ quotas and the default quota to be
manipulated. The default quota is the quota that new users are
assigned when they register for an account.

DISPLAY:

Quota Menu
1. (shdef) Show default user quota (in KB).
2. (chdef) Change default user quota.
3. (shquota) Show a user’s disk quota on a filesytem.
4. (addquota) Add a new disk quota for user on a filesytem.
5. (chquota) Change a user’s disk quota on a filesytem.
6. (rmquota) Remove a user’s disk quota on a filesytem.
7. (verbose) Toggle Verbosity of Delete.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

shdef get_value
chdef get_value, update_value
shquota get_nfs_quota
addquota add_nfs_quota
chquota get_nfs_quota, update_nfs_quota
rmquota get_nfs_quota, delete_nfs_quota

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 79

MENU:
Members Menu

DESCRIPTION: This allows the membership of lists to be manipulated. On entry to
this menu, Moira will prompt for the name of the list to be
manipulated. Membership may be fetched by a specific type.

DISPLAY:

Change/Display membership of ’dbadmin’
1. (add) Add a member to this list.
2. (remove) Remove a member from this list.
3. (all) Show the members of this list.
4. (user) Show the members of type USER.
5. (list) Show the members of type LIST.
6. (string) Show the members of type STRING.
7. (verbose) Toggle Verbosity of Delete.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

add add_member_to_list
remove delete_member_from_list
all get_members_of_list
user get_members_of_list
list get_members_of_list
string get_members_of_list

MENU:
List Information Menu

DESCRIPTION: This menu allows one to get various summaries of lists. They can be
retrieved by membership, administration, groups, or maillists.

DISPLAY:

List Information Menu
1. (member) Show all lists to which a given member belongs.
2. (admin) Show all items which a given member can administer.
3. (groups) Show all lists which are groups.
4. (public) Show all public mailing lists.
5. (maillists) Show all mailing lists.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

member get_lists_of_member
admin get_ace_use
groups qualified_get_lists
public qualified_get_lists
maillists qualified_get_lists

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 80, Section E.1 Athena Technical Plan

MENU:
Post Office Box Menu

DESCRIPTION: This menu allows users’ poboxes to be manipulated. The ‘‘set’’ option
allows the user to return a pobox back from a foreign maildrop to a
previously used pobox server, in addition to allowing changes in
pobox servers or foriegn addresses.

DISPLAY:

Post Office Box Menu
1. (show) Show a user’s post office box.
2. (set) Set (Add or Change) a user’s post office box.
3. (remove) Remove a user’s post office box.
4. (verbose) Toggle Verbosity of Delete.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

show get_pobox
set get_pobox, set_pobox_pop, get_server_locations,

set_pobox
remove delete_pobox

MENU:
DCM Service Menu

DESCRIPTION: This menu allows DCM services to be manipulated. A service may
have an error indicator reset, or its entire state reset, in addition to
the usual updates. Note that reseting a service state is a dangerous
action that should be used carefully.

DISPLAY:

DCM Service Menu
1. (showserv) Show service information.
2. (addserv) Add a new service.
3. (updateserv) Update service information.
4. (resetsrverr) Reset service error.
5. (resetsrvc) Reset service state.
6. (delserv) Delete service info.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

showserv get_server_info
addserv add_server_info
updateserv get_server_info, update_server_info
resetsrverr reset_server_error
resetsrvc set_server_internal_flags
delserv delete_server_info

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 81

MENU:
DCM Host Menu

DESCRIPTION: This menu allows DCM service/host tuples to be manipulated. A
tuple may have an error indicator reset, its entire state reset, or an
override set in addition to the usual updates. Note that reseting a
tuple’s state is a dangerous action that should be used carefully.

DISPLAY:

DCM Host Menu
1. (showhost) Show service/host tuple information.
2. (addhost) Add a new service/host tuple.
3. (updatehost) Update a service/host tuple.
4. (resethosterr) Reset service/host error.
5. (resethost) Reset service/host state.
6. (override) Set service/host override.
7. (delhost) Delete service/host tuple.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

showhost get_server_host_info
addhost add_server_host_info
updatehost get_server_host_info, update_server_host_info
resethosterr reset_server_host_error
resethost set_server_host_internal
override set_server_host_override
delhost delete_server_host_info

MENU:
Zephyr ACL Menu

DESCRIPTION: This menu allows zephyr class access control lists to be manipulated.
The list menu can be accessed as a sub-menu.

DISPLAY:

Zephyr Class ACL Menu
1. (show) Show zephyr class information.
2. (add) Add a new zephyr class ACL.
3. (update) Change a zephyr class ACL.
4. (delete) Delete ACL information for a zephyr class.
5. (list) List Menu.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

show get_zephyr_class
add get_zephyr_class, add_zephyr_class
update get_zephyr_class, update_zephyr_class
delete get_zehpyr_class, delete_zephyr_class

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Page 82, Section E.1 Athena Technical Plan

MENU:
Network Services Menu

DESCRIPTION: This menu allows the network service ports and their aliases to be
manipulated.

DISPLAY:

Network Services Menu
1. (show) Show service information.
2. (add) Add information about a new service.
3. (update) Change information about a service.
4. (delete) Delete information about a service.
5. (alias) Add an alias for a service.
6. (unalias) Remove an alias for a service.
r. (return) Return to previous menu.
t. (toggle) Toggle logging on and off.
q. (quit) Quit.

QUERIES USED:

show get_service
add

get_service, add_service
update get_service, delete_service, add_service
delete get_service, delete_service
alias get_alias, get_service
unalias get_alias, delete_alias

Moira Draft of 2 May 1990: For beta testers reference, not for publication

Athena Technical Plan Section E.1, page 83

PROGRAM NAME: MRCHECK - Check to see if updates have been successful

DESCRIPTION: This program lists any DCM updates which have failed.

PRE-DEFINED QUERIES USED:

• qualified_get_server
• qualified_get_server_host
• get_server_info
• get_server_host_info

SERVICE(S) EXAMINED:

• all

END USERS: Moira system administrator

A SESSION USING MRCHECK:

% mrcheck
Service AFS, error 43: Unable to build archive of config files

last success Jan 4 12:15:13 1989, last try Jan 4 16:30:10 1989
Host HESIOD:KIWI.MIT.EDU, error 44: Unable to open DCM file

last success Jan 11 14:15:18 1989, last try Jan 24 17:40:16 1989
Host AFS:FOO.MIT.EDU, error 31: Kerberos error: Can’t decode authenticator

last success Dec 12 14:51:06 1988, last try Dec 12 19:00:09 1988
Host NFS:CHIROPTERA.MIT.EDU, error 8: Kerberos principal unknown

last success Nov 15 23:44:37 1988, last try Nov 18 03:01:52 1988
4 things have failed at this time
%

References

[1] Noah Mendelsohn.
A Guide to Using GDB
Version 0.1 (DRAFT) edition, MIT Project Athena, 1987.

[2] S. P. Miller, B. C. Neuman, J. I. Schiller and J. H. Saltzer.
Section E.2.1: Kerberos Authentication and Authorization System
M.I.T. Project Athena, December 21, 1987.

Moira Draft of 2 May 1990: For beta testers reference, not for publication

