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Abstract

The goal of this paper is to present a weighted likelihood
discriminant for minimum error shape classification. Dif-
ferent from traditional Maximum Likelihood (ML) methods,
in which classification is based on probabilities from inde-
pendent individual class models as is the case for general
Hidden Markov Model (HMM) methods, proposed method
utilizes information from all classes to minimize classifica-
tion error. The proposed approach uses a HMM for shape
curvature as its 2-D shape descriptor. In this contribu-
tion we introduce a weighted likelihood discriminant func-
tion and present a minimum error classification strategy
based on Generalized Probabilistic Descent (GPD) method.
We believe our sound theory based implementation reduces
classification error by combining HMM with GPD theory.
We show comparative results obtained with our approach
and classic ML classification alongwith Fourier descriptor
and Zernike moments based classification for fighter planes
and vehicle shapes.

1. Introduction

Object recognition is classic problem of computer vi-
sion. Among others, object recognition based on shape is
widely used. The problem of general shape recognition can
be classified into two categories:

1. Cluster shapes which are similar to each other.

2. Classify the given shape into one of the pre-defined
classes.

Category 1 and Category 2 will be referred asshape recog-
nition andshape classificationproblem, respectively. The
fundamental difference between the two is that classifica-
tion problem has a set of pre-defined classes while recogni-
tion problem does not. In this paper, we will concentrate on
shape classification.

First step towards the design of a shape classifier is fea-
ture extraction. Shape can be represented either by its con-
tour or by its region [17]. Curvature, chain codes, Fourier
descriptors, etc. are contour based descriptors while medial
axis transform, Zernike moments, etc. are region based fea-
tures. Contour based descriptors are widely used as they
preserve the local information which is important in classi-
fication of complex shapes.

Feature extraction is followed by shape matching. In re-
cent years, dynamic programming (DP) based shape match-
ing is being increasingly applied [11],[12],[7],[1]. DP ap-
proaches are able to match the shapes part by part rather
than point by point, and are robust to deformation and oc-
clusion. Hidden Markov Models (HMMs) are also being
explored as one of the possible shape modeling and classifi-
cation frameworks [2],[3],[4],[8],[5]. Apart from having all
the properties of DP based matching, HMM also provides a
probabilistic framework for training and classification.

The authors in [8] were the first to apply HMM to shape
classification. They used autoregressive model for shape
representation. Results were presented for stationary as
well as non-stationary HMMs with 2 to 6 states. Arica and
Vural [2] applied a circular HMM topology with 8 states
to model the shape. The shape was expressed in terms of
8-directional Freeman’s code. This model topology is in-
sensitive to starting point and the sequence length. Their
work presented results for Content Based Image Retrieval
(CBIR) rather than shape classification.

Cai and Liu [4] applied a Fourier descriptor based HMM
topology to classify the shapes. They modified HMM pa-
rameter re-estimation procedure to deal with the proposed
HMM structure. Recently Bicego and Murino [3] proposed
a curvature descriptor based HMM. Curvatures are treated
as mixtures of Gaussian and consequently an ergodic HMM
is developed. The approach also applied Bayesian Infer-
ence Criterion (BIC) to select optimum number of HMM
states. Their work provides comprehensive results for clas-
sification with deformation, noise and occlusion. These ap-
proaches presented classification results for very dissimilar



shapes. However, in practical situations shapes to be clas-
sified are generally very similar. To handle such situation
modifications to existing approaches is mandatory.

Apart from the obvious advantages of HMM like robust-
ness and time warping capability, it provides two levels of
descriptions. Hidden state sequence can be considered as
a simple description and the likelihood description can be
considered as a more detailed description. We use the state
sequence description for the invariant starting point detec-
tion and likelihood description for the classification. The
HMM approaches discussed above apply maximum like-
lihood (ML) as their classification criterion. Due to good
generalization property of HMM, applying ML criterion to
similar shapes does not provide good classification. Also,
ML criterion is evaluated using information from only one
class and does not take advantage of information from the
other classes. Generally shapes can be discriminated using
only parts of the boundaries rather than comparing whole
boundary. ML criterion does not provide such mechanism.

To overcome these shortcomings, we propose a weighted
likelihood discriminant for shape classification. The
weighting scheme emulates comparison of parts of shape
rather than the whole shape. The weights are estimated by
applying Generalized Probabilistic Descent (GPD) method.
Unlike ML criterion, GPD uses information from all the
classes to estimate the weights. As GPD method is designed
to minimize the classification error, the proposed classifier
gives good classification performance with similar shapes.

This paper is organized as follows: Section 2 and Sec-
tion 3 give overview of Hidden Markov Model and General-
ized Probabilistic Descent method, respectively. The shape
description phase of the proposed method is discussed in
Section 4, while Section 5 formulates the weighted likeli-
hood discriminant function. GPD method based training al-
gorithm for the proposed discriminant function is described
in Section 6. Experimental results are presented in Section 7
and the paper ends with the conclusions in Section 8.

2. Hidden Markov model

HMM is a stochastic signal model widely used in the
field of speech processing. Recently many researchers have
applied ideas of HMM to shape recognition [2], [3], [4],
[8], [5]. HMM can explain an observation sequenceO =
O1O2 . . . OT in terms of an underlying state sequenceQ =
q1q2 . . . qT . In this section we review HMM briefly. The
details of HMM and its applications can be found in [13].

HMM is characterized by following parameters:

1. S, set of states.S = {S1, S2, . . . , SN}, whereN is
number of states. State of HMM at instancet is de-
noted byqt.

2. A, state transition probability distribution.A = {aij},
aij denotes the probability of changing the state from

Si to Sj .

aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N. (1)

3. B, observation symbol probability distribution.B =
{bj(o)}, bj(o) gives probability of observing the sym-
bol o in stateSj at instancet.

bj(o) = P [o at t|qt = Sj ], 1 ≤ j ≤ N. (2)

4. π, initial state distribution.π = {πi}, πi gives proba-
bility of HMM being in stateSi at instancet = 1.

πi = P [q1 = Si], 1 ≤ i ≤ N. (3)

For convenience, HMMλ can be compactly denoted as,

λ = (A, B, π). (4)
In order to apply HMMs to a real world situation, following
three problems must be solved:

1. Likelihood problem: Given a modelλ, how to ef-
ficiently calculate probability of the observation se-
quenceO = O1O2 . . . OT , i.e.,P (O|λ)?

2. Optimal path problem: For a given modelλ, how to
choose a state sequenceQ = q1q2 . . . qT , which best
explains the observation sequenceO?

3. Training problem: How to estimate the parameters of
modelλ such thatP (O|λ) is maximized?

The likelihood problem is solved by “forward procedure”
while the optimal path problem is resolved with “dynamic
programming”. Due to a finite number of observations,
there is no optimal way to solve the training problem.
The parameters are chosen to locally maximizeP (O|λ) by
applying iterative techniques such as “Baum-Welch algo-
rithm” which is a special case of Expectation Maximization
(EM) algorithm.

Consider a classification problem to be solved with
HMM. An unknown observation sequenceO can be clas-
sified into one of theM classes,Cj , j = 1, 2, . . . , M as,

C(O) = Ci, iff i= argmax
j

P (O|λj), (5)

whereλj is HMM for classCj . This can be expressed in
terms of basic problems of HMM. Firstλj can be estimated
by solving the training problem. ThenP (O|λj) can be de-
termined by solving the likelihood problem.

EM based training procedure for HMM utilizes informa-
tion from single class to train the HMM parameters. This
allows one to easily add more classes to the classifier with-
out any need to train the entire classifier again. Training for
only the newly added class is necessary to incorporate the
class. On the other hand, ML trained HMM classifier can-
not discriminate between similar shapes due to its ability to
generalize. In practical situations, classification problems
generally involve similar shape classes. A better training
strategy is thus required to handle such situations. In the fol-
lowing section we give an introduction to the GPD method
for training of a discriminant function which performs bet-
ter in this condition.



3. Generalized probabilistic descent method

The formulation of GPD [9], [10] is closely related to the
concept of minimum classification error learning. Consider
a problem of classifying an observation vectorO into one of
theM classes,Cj , j = 1, 2, . . . , M, by discriminant func-
tion approach. According to probabilistic descent theorem,
the classifier parametersΛ can be iteratively re-estimated to
minimize a cost function. This cost function is represen-
tation of classification error, which means minimization of
the cost function leads to the minimum classification error.

Minimum classification error formulation is a three step
procedure. The first step is to select a discriminant func-
tion gj(O; Λ). This can be any conventional discriminant
function such as a distance measure, maximum likelihood
or a discriminant function can be designed to suit the clas-
sification scheme under consideration. A misclassification
measure is introduced in second step to embed the decision
process in a continuous differentiable functional form. One
way of defining such measure is,

dj(O; Λ) = −gj(O; Λ) +





1
M − 1

∑

k,k 6=j

gk(O; Λ)η





1
η

(6)
whereη is a positive smoothing factor. In Eq.(6),η controls
the degree to which maximum of the discriminant func-
tion for incorrect classes dominates the expression in the
bracket. Negativegj indicates correct classification and
positivegj indicates classification error. In extreme case,
whenη →∞,

dj(O; Λ) = −gj(O; Λ) + gk′(O; Λ). (7)

Herek′ is the maximum of the discriminant functions for
incorrect classes. This is equivalent to ideal classification
similar to shown in Eq.(5).

In the third step, a cost function is defined which maps
the misclassification measure between zero and one. Given
below is one of the possible cost functions,

lj(dj) =
1

1 + e−ξdj
, ξ > 0. (8)

It is required that the discriminant function, the misclassi-
fication measure, and the cost function are continuous and
differentiable functions ofΛ. This ensures that numerical
methods like gradient search can be applied to optimize the
parametersΛ. According to probabilistic descent theorem,
parameter re-estimation rule for above formulation is given
as,

Λn+1 = Λn − εU∇lj(O; Λ) (9)
whereU is a positive definite matrix andε is small real
number.ε is called learning factor and it controls the speed
and accuracy of convergence of the parameters.

GPD method uses information from all the classes for
training and can be directly used to train the HMM dis-
criminant function i.e. the ML criterion. Other training ap-
proaches like Maximum Mutual Information (MMI) based

training which use information from all the classes, also ex-
ist. However, the classification performance of properly de-
signed and ML trained HMM cannot be improved signifi-
cantly with MMI or GPD training of HMM [10]. Therefore
in our paper, we stay with the optimally designed HMM
as described in Section 4 and make our contributions in de-
signing a robust discriminant functions to achieve minimum
error.

4. Shape description with HMM

4.1. HMM topology

To achieve good classification results, ML approaches
need carefully designed HMM topology with a large num-
ber of Gaussian mixtures. For the proposed approach in this
paper, the description phase employs HMM topology pro-
posed by Bicego and Murino [3]. The curvature of the shape
is used as the descriptor. Any shape can be assumed to be
formed by various segments, each of which has a constant
curvature. Any deviation from the constant curvature can be
due to the noise or due to the details of the shape. Each of
these segments are treated as the states of the HMM. Each
state is modeled as Gaussian distribution with mean repre-
senting the constant curvature of the segment and standard
deviation representing the deviation from constant curva-
ture of the segment. In the rest of the section we discuss the
formulation of HMM for the shape.

The shape is first filtered with large variance Gaussian
filter to reduce the effect of noise in curvature estimation.
The filtered shape is normalized to a fixed length to make
the curvature invariant of the scale. Let the normalized
shape be indicated byD = {Dn} andDn = (xn, yn) for
1 ≤ n ≤ T , whereT is the normalized length of the shape,
andDn indicates the coordinates ofnth point of the shape.
Finally, approximate curvature at each point is calculated as
the turn angle at that point. The turn angleθn at pointDn

is defined as,

θn = arctan
yn − yn−1

xn − xn−1
− arctan

yn − yn+1

xn − xn+1
(10)

The turn angleθn is treated as the observationOn for the
HMM. Each shape class is modeled by aN -state ergodic
HMM and observation symbol probability distribution, i.e.,
bj of each state is modeled by a one-dimensional Gaussian
distribution. Gaussian Mixture Model (GMM) [14] forN
clusters estimated from unrolled values of curvature ofL
samples of the shape, is used to initializeB = {bj} =
{(µj , σj)}. Baum-Welch algorithm is then applied to es-
timate the parameters of the HMMλj = (Aj , Bj , πj). For
every example sequence of same class, separate HMMs are
built. These models are combined to form a single HMM
to represent the shape class. Assuming each observation se-
quence has equal probability, we can express the combined
HMM parameters as,



πj =
L∑

i=1

πi
j/L, (11)

Aj =
L∑

i=1

Ai
j/L, (12)

µj =
L∑

i=1

µi
j/L, (13)

σj =

√∑L
i=1

(
σi

j

)2

L
+

∑L
i=1

(
µi

j

)2

L
− (µj)

2
, (14)

whereλi
j = (Ai

j , B
i
j , π

i
j) represents the HMM forith ex-

ample fromL examples ofjth class. In addition to these
parameters, the number of HMM statesN , is another im-
portant parameter. AsN increases, computational complex-
ity involved in the training and the classification increases.
As likelihood of the model increases withN , ML criterion
cannot be used to select optimalN . We choose optimum
N for the HMM by applying the Bayesian Inference Crite-
rion (BIC) [15]. BIC penalizes the likelihood of the HMM
according to its complexity. In [3] BIC is applied to GMM
to select optimalN , but this gives optimalN for the GMM
and not for the HMM. In our approach, BIC is applied to
the HMM to ensure proper model selection. For the HMM
topology discussed, BIC can be written as,

BICN (λj) = logP (O|λj)− N2 + 2N − 1
2

log(T ). (15)

Penalty term in Eq.(15) is derived from number of free pa-
rameter of the model and the observation sequence length.
Number of statesN is selected to maximize the BICN (λj).

4.2. Invariant starting point detection

Before we propose the weighted discriminant function,
it is important to detect the starting point of a closed shape
invariantly as formulation depends on it. For open shapes
this step is not required. Major axis based rotation similar
to that of He and Kundu [8] can be used to achieve this.
However in case of some shapes, slight change in the shape
results in a large change in the major axis. Shapes with
high degree of symmetry cannot be aligned properly with
the method. This method cannot detect reflection of shape.
To overcome this, we apply state sequence based rotation to
detect the starting point of the shape. Recall that the shape
is modeled as constant curvature segments. Comparison be-
tween these segments gives the criterion for alignment for
our method. These segments are nothing but optimum state
sequence for the HMM.

Consider a closed shapēO = Ō1Ō2 . . . ŌT modeled
by HMM λ = (A, B, π) and another closed shapeO =
O1O2 . . . OT to be aligned with the shapēO. The best path
sequence for̄O is given byQ̄ = q̄1q̄2 . . . q̄T .

Q̄ = arg max
q1q2...qT

P (q1q2 . . . qT |Ō, λ) (16)

Similarly, best pathQ = q̃1q̃2 . . . q̃T for O is,

Q = arg max
q1q2...qT

P (q1q2 . . . qT |O, λ) (17)

Mismatch between these descriptions is defined as,

∆Q(k) =
T∑

t=1

δ(t, h(t− k)) (18)

where,
δ(n1, n2) =

{
0, if q̄n1 = q̃n2 ;
1, if q̄n1 6= q̃n2 .

(19)

and
h(n) =

{
n, if n > 0;
n + T, if n ≤ 0.

(20)

Let O′ = {O′1O′2 . . . O′T } indicate the reflection of shapeO
and∆Q′ be the corresponding mismatch with respect to the
reference shape. The aligned shape is given as,

O∗ =





Ok∗+1Ok∗+2 . . . OT O1O2 . . . Ok∗ ,
if ∆Q(k∗) < ∆Q′(k∗);

O′k∗+1O
′
k∗+2 . . . O′

T O′
1O

′
2 . . . O′

k∗ ,
otherwise.

(21)

where,

k∗ = arg min
0≤k≤T−1

{min(∆Q(k),∆Q′(k))} (22)

Any of the example shapes can be treated as the refer-
ence shape for starting point detection. In the following
sections, we assume that starting point is already detected
using this method and use the obtained HMM description
for minimum error classification formulation.

5. Discriminant function formulation

In this section, we formulate a minimum error classi-
fier with a weighted likelihood discriminant function. The
discriminant function is derived from the intuitive idea that
similar shapes can be discriminated by comparing the parts
of their boundaries. Meaning, some parts of the shape con-
tour play important role in classification than the others. We
signify the importance of part of shape in classification by
assigning weights to it. The weights introduced in the dis-
criminant function will be trained with GPD method.

Consider observation sequence to be classified,O =
O1O2...OT . We model the sequence with HMMλ =
(A,B, π). One of the possible state sequences for the given
observation sequence is given by,Q = q1q2...qT . The prob-
ability of observation sequenceO given the state sequence
Q and modelλ is,

P (O|Q,λ) = bq1(O1) · bq2(O2) . . . bqT (OT ). (23)

Probability of state sequenceQ can be written as,

P (Q|λ) = πq1 · aq1q2 . . . aqT−1qT
. (24)

Then probability of the bothO andQ occurring simultane-
ously is given by,

P (O, Q|λ) = P (O|Q,λ) · P (Q|λ)



The probability ofO is obtained by summing the above
joint probability over all possible state sequences.

P (O|λ) =
∑

all Q

P (O|Q,λ) · P (Q|λ)

=
∑

q1,q2...qT

πq1bq1(O1) aq1q2bq2(O2) . . .

. . . aqT−1qT
bqT

(OT ). (25)

Eq.(25) is nothing but ML criterion which is widely applied
in classification problems. However, our goal is to weight
the observations individually and the individual observation
probabilities cannot be extracted from Eq.(25). To achieve
this, we express the ML criterion in terms of a forward vari-
ableαt(i). Forward variable is defined as,

αt(i) = P (O1O2 . . . Ot, qt = Si|λ). (26)

Values of the forward variable can be calculated with the
forward procedure [13]. Probability of partial observation
sequenceO1O2 . . . Ot given the modelλ can be written as,

P (O1O2 . . . Ot|λ) =
N∑

i=1

αt(i). (27)

For t = 1 above equation reduces to,

P (O1|λ) =
N∑

i=1

α1(i). (28)

Similarly for t = 2,

P (O1O2|λ) =
N∑

i=1

α2(i). (29)

As observationsO1 and O2 are independent, from
Eqns.(28) and (29),

P (O2|λ) =
∑N

i=1 α2(i)∑N
i=1 α1(i)

. (30)

Repeating the above procedure, it can be shown that
for t > 1,

P (Ot|λ) =
∑N

i=1 αt(i)∑N
i=1 αt−1(i)

. (31)

Now, logarithm of the ML criterion can be expressed in
terms of observation probabilities as,

logP (O|λ) =
T∑

t=1

logP (Ot|λ). (32)

This function gives equal importance to every point of the
shape in the classifications. Hence, we introduce a new dis-
criminant function which weights the curvature likelihood
of shape points according to their importance in classifica-
tion.

The new discriminant function,gj is given by,

gj =
T∑

t=1

wj(t).logP (Ot|λj), (33)

wherewj is weighting function for classCj . wj provides
additional discrimination among the classes. These weights
will be tuned by applying GPD method to minimize the
classification error. Weighting function at individual ob-
servation can be estimated by applying GPD to the current
formulation. But due to the large number of parameters
(equal toT ), the convergence of GPD will be slower and
will need a large number of observation sequences for train-
ing. As mentioned previously in the section, to discriminate
between similar shapes, comparison between parts of their
contour is sufficient. As a result, shape can be weighted
segment by segment instead of being weighted pointwisely.
Following this idea, weighting functions are chosen to be
windows which can adapt their position, spread and height.
Although any smooth window function can be selected, our
approach uses weighting function given in Eq.(34), which
is sum ofS Gaussian shaped windows.

wj(t) =
S∑

i=1

hi,j · e
− (t−µi,j)2

s2
i,j . (34)

Parameterhi,j governs the height,µi,j controls the position,
while si,j determines spread ofith window of jth class. In
this case, we have only3S parameters to estimate. The dis-
criminant function can now be written as,

gj =
T∑

t=1

S∑

i=1

hi,j · e
− (t−µi,j)2

s2
i,j · logP (Ot|λj). (35)

In the next section, GPD method is applied to above dis-
criminant function to formulate the training algorithm.

6. GPD algorithm

To complete the formulation of GPD, we introduce a
misclassification measure for observation sequence ofjth

class as,

dj = −gj +
1
η

log


 1

M − 1

∑

k,k 6=j

eη.gk


 (36)

and corresponding cost function as,

lj =
1

1 + e−ξ.dj
(37)

As discussed in Section 3, the probabilistic descent re-
estimation rule for parametersΛ is given as,

Λn+1 = Λn − εU∇lj . (38)

For the proposed method,U is chosen to be identity matrix
and the learning factor,ε is chosen to be a small number
compared to the dynamic range of the parameter. The re-
estimation rules in iterationn, for ith window parameters
of kth class whenCj is the correct class are given by,



hn+1
i,k = hn

i,k − εh · ∂lj
∂hi,k

, (39)

µn+1
i,k = µn

i,k − εµ · ∂lj
∂µi,k

, (40)

sn+1
i,k = sn

i,k − εs · ∂lj
∂si,k

, (41)

for 1 ≤ i ≤ S, 1 ≤ k ≤ M. Partial derivatives appearing
in Eqns.(39)-(41) can be calculated by chain rule as,

∂lj
∂hi,k

=
∂lj
∂dj

· ∂dj

∂gk
· ∂gk

∂hi,k
, (42)

∂lj
∂µi,k

=
∂lj
∂dj

· ∂dj

∂gk
· ∂gk

∂µi,k
, (43)

∂lj
∂si,k

=
∂lj
∂dj

· ∂dj

∂gk
· ∂gk

∂si,k
, (44)

where,
∂lj
∂dj

=
ξe−ξ.dj

(1 + e−ξ.dj )2
, (45)

∂dj

∂gk
=

{
−1, j = k;

eη.gk∑
k′,k′ 6=j eη.g

k′ , j 6= k. (46)

∂gk

∂hi,k
=

T∑
t=1

e
− (t−µi,k)2

s2
i,k logP (Ot|λk), (47)

∂gk

∂µi,k
=

T∑
t=1

2hi,k(t− µi,k)e
− (t−µi,k)2

s2
i,k

s2
i,k

logP (Ot|λk), (48)

∂gk

∂si,k
=

T∑
t=1

2hi,k(t− µi,k)2e
− (t−µi,k)2

s2
i,k

s3
i,k

logP (Ot|λk). (49)

Note that in above formulation logP (Ot|λk) is treated as a
constant, as the HMM parameters are not affected by the
change inΛ.

7. Experimental results

As mentioned before, we focus on shape classification
problem where shapes are similar. This is an application of
wide interest for surveillance e.g. separating vehicle types
(civilian surveillance application), classifying aeroplane or
tank views (military surveillance applications) etc. Most
public benchmark databases are designed to test the shape
clustering or similarity based shape retrieval. As we deal
with the shape classification problem where shape classes
are predefined and are very similar, these data sets are not
appropriate for this problem . The proposed method was
tested with two different data sets specially designed to test
our method. First data set was aeroplane shapes and the
second data set included shapes of vehicles.

7.1. Fighter plane shapes

The fighter aeroplane shape database included Mirage,
Eurofighter, F-14, Harrier, F-22 and F-15. Since F-14 has
two possible shapes, one when its wings are closed and an-
other when its wings are opened, total number of shape
classes are seven. Each class includes 30 shape samples.
Shape database was created by taking digital pictures of die-
cast replica models of these aeroplanes from top. Pictures
were captured at 640×480 resolution, and were segmented
using Spedge and Medge [6] color image segmentation al-
gorithm. Contours of the segmented planes were used for
training and testing of the classifier. Figure 1 shows the ex-
tracted shapes for different classes. The extracted shapes
exhibit deformation due to varying view points and noise
due to automatic segmentation.

Shapes were filtered with Gaussian filter (standard devi-
ation = 10) and shape length was normalized to 512 points.
The normalized shapes were split randomly into training
and testing samples. For the training samples of each class,
HMM was built as explained in Section 4. Optimum num-
ber of HMM states were selected by applying BIC to mod-
els with 3 to 6 states. Sum of 20 Gaussian windows was
used for formulation and training of the discriminant func-
tion. The window parameters were initialized to spread the
windows uniformly over the shape. The training vectors
were used to train the classifier withξ = 1 andη = 10.
Once the training was complete, testing samples were used
to determine the classification performance. For compari-
son, ML classification was carried out with optimal HMM
after application of BIC. Also Fourier descriptor (FD) and
Zernike moments (ZM)(up to order 30) based classification
was carried out to compare our method with conventional
shape classification methods.

Training and classification of the shapes was carried out
with 15 training samples and 15 testing samples per class.
The classification results were averaged over 20 runs of the
classifier design, each time with different combination of
training and testing samples. Figure 2 shows the ML dis-
criminant functions and weighted likelihood discriminant
functions for the test vectors. The test vectors are grouped
in sets of 15. Labels just above the x-axis indicate the
correct class for the test vector and dotted lines separate
the correct classes. For correct classification, discriminant
function of correct class should be maximum. Difference
between the discriminant function of correct class and the
other classes is not clear in ML for all the classes. As a
result, the classification accuracy is not satisfactory. For
weighted likelihood discriminant, this difference is large
and clearly separable. This large difference results into very
high accuracy for the proposed classifier.

Table 1 compares classification accuracy GPD based
weighted likelihood classification (WtL) with Fourier de-



(a) (b) (c) (d) (e) (f) (g)
Figure 1. Aeroplane shape classes: (a) Mirage, (b) Eurofighter, (c) F-14 wings closed, (d) F-14 wings
opened, (e) Harrier, (f) F-22, (g) F-15.

scriptor (FD) classification, Zernike moments (ZM) classi-
fication and HMM classification with maximum likelihood
(ML).

Table 1. Classification accuracy in % for aero-
plane shapes

Class FD ZM ML WtL
Mirage 87.00 83.00 49.33 100.00

Eurofighter 34.00 97.00 88.67 99.00
F-14 Close 56.00 90.33 100.00 98.67
F-14 Open 100.00 100.00 26.67 96.67

Harrier 75.33 78.33 92.00 100.00
F-22 72.67 94.67 96.00 100.00
F-15 60.33 76.33 71.67 99.00

7.2. Vehicle shapes

(a) (b)

(c) (d)

Figure 3. Vehicle shape classes: (a) Sedan,
(b) Pickup, (c) Minivan, (d) SUV.

In the second experiment, we classified the vehicles
shapes extracted from traffic videos using the motion in-
formation. Approach discussed in [16] was implemented
and applied to outdoor videos to extract these shapes. The
vehicles were classified into one of the four class: sedan,
pickup, minivan or SUV.

Videos were captured at resolution of320× 240. As ob-
ject extraction approach used does not deal with shadows,
the extracted car shapes are distorted in the bottom half due
to shadow. 30 samples for each class were extracted from
the video. Extracted shapes were filtered with Gaussian fil-
ter (standard deviation = 5) to reduce the effect of the noise
and shape length was normalized to 128 points. The nor-
malized shapes were split randomly into training and testing
samples similar to first experiment. After training HMM for
all the classes, optimum number of HMM states were se-
lected by applying BIC to models with 3 to 6 states. Sum of

16 Gaussian windows was used for formulation and train-
ing of the discriminant function withξ = 10 andη = 10.
Once the training was complete, testing samples were used
to determine the classification performance. The process
was repeated 20 times.

Comparative classification performance for individual
class can be seen in Table 2. In this experiment, the clas-
sification accuracy was lower than the first experiment due
the reasons, (1) Shape samples within the class show larger
variation, as shape of vehicles of different makes and mod-
els vary. (2) The contours extracted show higher degree of
deformation due to the shadow problem in object extrac-
tion. Despite of these, overall classification accuracy of the
scheme was found to be 87% compared to ML classification
accuracy of 72%.

Table 2. Classification accuracy in % for vehi-
cle shapes

Class FD ZM ML WtL
Sedan 58.33 98.00 93.00 92.33
Pickup 62.33 29.67 69.33 87.33

Minivan 25.33 46.00 90.33 94.33
SUV 24.67 53.67 33.33 75.00

8. Conclusion

In this paper, we proposed a weighted likelihood dis-
criminant function for shape classification by the combi-
nation of GPD theory and HMM. HMM was applied as a
robust descriptor for individual classes and the weighted
likelihood discriminant function was used to discriminate
amongst them. The weighting emulates feature selection
scheme which selects features required to correctly classify
the shapes. A training algorithm based on GPD method to
estimate the optimal weights to minimize the classification
error was formulated.

The performance of the proposed shape classification
scheme was tested with two different shape data sets. As
these data sets were not generated synthetically, the results
obtained for the classification are reliable in practical sce-
narios. In the first experiment, ML based classification ac-
curacy of 75% was improved to 99% by proposed method
and in second experiment it was improved from 72% to
87%. Improvement over conventional classification with
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Figure 2. (a) ML discriminant functions, (b) Weighted likelihood discriminant functions.

Fourier descriptors and Zernike moments is also seen from
the results.

Currently the weighting windows are spread uniformly
over the shape contour. But these windows can used as ex-
pert input to the classification system. One such example
would be, weighting only top parts of vehicle shapes as bot-
tom parts of the vehicles are very similar and thus are not
important for classification. In our experiments however we
avoid this to show generality of our approach.
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