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Abstract: This paper presents a new approach to trusted Grid computing in a Peer-to-
Peer (P2P) setting. Trust and security in P2P Grids are essential to establish lasting 
working relationships among the peers joining collective Grid applications. A P2P 
reputation system is thus needed to collect peer trust scores and aggregates them to yield 
a global reputation. We use a new trust overlay network (TON) to model the trust 
relationships among the peers. After analyzing the eBay transaction trace data, we 
discover a power-law distribution in user feedbacks. This power law is proven applicable 
to any dynamic P2P systems. We develop a new P2P reputation system, PowerTrust, to 
leverage on the power-law feedback characteristics.   

            The PowerTrust system is built with locality-preserving hash functions and a 
lookahead random walk strategy. Dynamic system reconfiguration is enabled by the use 
of power nodes with well-established reputations. This power-node approach 
significantly reduces the aggregation overhead. Through P2P simulation experiments on 
distributed file sharing and Grid parameter-sweeping applications (PSA) applications, we 
demonstrate the advantages of fast reputation convergence and accurate ranking of peer 
reputations. Simulated P2P Grid performance results are reported with enhanced P2P 
query success rate, job makespan and job success rate, after security binding with the 
reputation system in scalable P2P Grid applications 

 
Keyword: Peer-to-Peer systems, Grid computing, overlay network, trust  
                    management,  distributed hash table,  reputation system, distributed file 
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1. Introduction 

 Peer-to-Peer (P2P) systems and computational Grids are two popular distributed computing 
paradigms that are converging in recent years. The P2P systems like the Gnutella, SETI@home and 
FightAIDS@home are client-oriented with scalable connectivity to serve millions of clients in 
commercial/information service settings [6], [19], [20]. Existing computational Grids like the NSF 
TeraGrid and UK e-Science Grid are most supercomputer-oriented with limited connectivity to serve a 
handful (say hundreds) of scientific users [3], [8]. These two distributed systems have some 
commonalities as well as some conflicting goals as discussed in [9], [10], [28], [30]. 

P2P Grids are a natural merger of the above two prominent distributed computing technologies. 
The resources in a P2P Grid are mainly contributed by the participating peers, which could be desktop 
clients [6] or deskside servers in a much larger quantity than existing Grids [30]. The P2P Grids intend 
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to merge the positive features from both P2P system and Grids. In particular, the in-and-out flexibility 
and fast search mechanisms [17] in P2P systems are explored for collective Grid computing. The 
ultimate goal of building P2P Grids is to integrate the P2P, Grid, and web services [10]. 

Killer applications of P2P Grids include both scientific computing and web services. Jobs can 
be executed at local client machines or outsourced to remote peer machines on a P2P interaction basis. 
The P2P operation is inherently insecure due to the anonymity among the peers [24], [26]. Peers are 
autonomous, self-organizing, and thus are less structured, less secure, and less controllable than client-
server or Grid systems. The Grid security level is higher due to its accountability in resource 
registration and certified services provided [3], [8]. 

Table 1 compares the architecture, control, security, and applications of the three distributed 
computing models. This paper considers mainly structured P2P Grids with decentralized resources 
from either participating peers or brokered Grid resources. The P2P Grids may be built from extending 
existing desktop Grids or scale up from existing supercomputing Grids. This leads two classes of P2P 
Grids: Grids formed with PC desktops like the Entropia [6] and PC Grid [20] versus established Grids 
operating in a P2P setting like community Grids [10] and other emerging Grids [8]. 

Table 1   Comparison of P2P Systems, Computational Grids, and P2P Grids 

Features P2P Systems Computational Grids P2P Grids 

Architecture and 
Connectivity  

 Flexible topology, scalable to 
millions of autonomous users 

Static configuration with limited 
scalability  

P2P flexibility with Grid 
resource sharing initiatives  

Control and  
Operation Model 

Distributed control, client-
oriented, free in and out, and 
self-organizing peers 

Centralized control, server or 
supercomputer-oriented with 
registered participants 

Policy-based control, operating 
with both P2P and Grid 
resource management 

Security, Privacy 
and Reliability 

Distrusted peers, insecure 
P2P interactions, and 
anonymity among peers  

Guaranteed trust, more secure 
with federated users and 
accountability 

Peer-layer reputation system   
and Grid-layer security 
infrastructure in a hierarchy  

Applications and  
Job Management 

General and commercial, 
self-organizing, peer initiated 
download services  

Scientific computing, global 
problem solving, and centralized 
or hierarchical job management 

Support desktop, distributed 
Grid computing, and 
community services 

Representative 
Systems  

Chord (DHT) [27], CAN, 
Pastry, Tapestry, etc.  

NSF TeraGrid , e-Science in UK 
[3], China Vaga Grid [29]  

PC Grid [20], Entropia [6] 
Community Grid [10]  

The remainder of the paper is organized as follows: Section 2 reviews existing work on trust 
management in P2P systems and introduce the TON model for P2P reputation systems. We analyze in 
Section 3 the eBay trace data to reveal the power-law distribution of peer feedbacks. Section 4 
introduces two mechanisms needed to build the global reputation system. We describe the PowerTrust 
system construction and its configuration and updating algorithms in Section 5. We report extensive 
simulation results on P2P Grid performance in Section 6. Finally, we conclude with discussions and 
suggestions for further research work needed towards trusted P2P Grid computing. 

2. Trusted P2P Grid Computing 

In this section, we consider the trust management issues that are specific to both P2P systems 
and P2P Grids. We introduce a new trust overlay approach to model the trust relationship among peers.  

2.1 Trust Management in P2P Systems  
In a P2P system or a P2P Grid, peers act as both clients and servers. Distributed resource 

registry/discovery and Grid job scheduling are supported by Grid middleware. Security in P2P Grids is 
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managed at the local level as well as at the global level in a hierarchical manner. Policy-based control 
and peer participation are assumed. Special P2P reputation systems are needed to support trusted peer 
operations. The P2P reputation system must have low-cost to build, easy to update, and fast in score 
dissemination and global reputation aggregation [26]. All peers have the freedom to interact with other 
peers freely and selectively. Grid-layer security are enforced by special middleware such Globus GSI 
and PKI services [2]. Peer-layer security relies on using reputation systems. 

In the past, trust management in P2P systems was mainly supported by reputation systems built 
on top of peer feedbacks [1], [4], [7], [12], [14]. For P2P Grids, the reputation systems must be 
modified to deal with the collective resources put together by peer contributions. Building trust among 
the peers in a P2P Grid may encounter malicious [23] and selfish peers [13] in some P2P applications 
for e-commerce and on-line transactions and content delivery services. Most contemporary P2P 
reputation systems are based on collecting, aggregating and disseminating feedbacks [4], [12], [18], 
[26], [32] among the peers, since a peer’s past history is informative to predict its future behavior. 
Mining a large amount of P2P exchanges in P2P file sharing, collaborations, or distributed parallel 
computing, we will be able to reveal crucial features of peer feedbacks towards trusted P2P Grid 
computing [10].  

Buchegger and Budded [4] presented a reputation evaluation scheme based on Bayesian 
learning technique. The EigenTrust mechanism [12] aggregates global reputation by a distributed 
calculation of the Eigenvector of the trust matrix over the peers. Song, et al [25], [26]suggested to use 
a fuzzy-logic trust management system to model the uncertainties involved in P2P transactions. Xiong 
and Liu [32] have developed the PeerTrust system for e-commerce applications. Our new approach is 
inspired by the above approaches. However, most trust management systems ignored the feedback 
properties of P2P systems by assuming an arbitrary feedback distribution among peers, which may not 
agree with the reality in a P2P or P2P Grid environments.  

2.2 A Trust Overlay Approach 
We introduce a new concept of trust overlay network (TON) to amend this ignorance. A TON 

is a virtual network on top of the P2P system. We represent a TON by a directed graph exemplified in 
Fig.1. The graph nodes represent peers and directed edges are the feedbacks between peers. The edge 
label represents local trust score between the source and destination peers. This example TON has 5 
nodes. The node N5 downloads files from node N2 and node N7. The outgoing edges from N5 
represent the feedbacks N5 left for N2 and N7. The global reputation is aggregated from all incoming 
local trust scores as shown for node N2.  

In a TON, the number of feedbacks a user sent to others is indicated by the out-degree of the 
peer node. The number of feedbacks a user received from others is represented as the in-degree of a 
peer node. We created the TON for modeling the operations of the eBay reputation system during the 
past five years. We find that the eBay TON exhibits a power-law distribution in its node degrees. The 
power-law distribution is driven by two fundamental causes: the dynamic growth and preferential node 
attachment [19]. The former allows the network to expand with any newly added nodes. The later 
allows the new node to interact selectively with existing reputable nodes in the system. These are 
common in any dynamic P2P systems.  

We propose a dynamic trust management system, called PowerTrust, which leverages the 
power-law TON characteristics in dynamic P2P systems. This system uses a look-ahead random-walk 
(LRW) strategy to aggregate global reputation from local trust scores. Our scheme dynamically selects 
some power-nodes using a fully distributed sorting mechanism. This will ensure fast reputation 
convergence and defend against collusions by malicious peers. The simulation results show that 
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PowerTrust aggregates the global reputation faster with high accuracy and leads to higher success rates 
than the EigenTrust system in typical distributed job execution. 
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Figure 1.  Graphical representation of the trust overlay network (TON) for a P2P Grid, where  

 the nodes represent the peers and directed edges are labeled with local trust scores.    
 The global reputation is aggregated from scores received on all incoming edges. 

Unfortunately, there is no feedback information available in existing P2P systems. To model 
the properties of feedbacks in a real-life environment, we study the public-domain eBay reputation 
system. Although the trust management in eBay is centralized, we argue that the user behaviors are 
decentralized by nature and the feedback properties are user driven. We extend the distributed hash 
table (DHT) [24] and locality preserving hashing (LPH) [5] concepts to build our PowerTrust system 
by leveraging on the feedback properties. 

3.  Implications from eBay Reputation Trace Data  

Power-law distribution is an inherent property of P2P systems. For example, the content 
distribution in Gnutella is power-law distributed [21]. We study the public-domain eBay reputation 
system to verify the conjecture that the feedback distribution of a typical P2P reputation system may 
also follow the power-law. In the following sections, we study the distribution of received feedbacks, 
or the node in-degree distribution in TON. Three important key parameters are identified in our study. 
The feedback amount of node i is denoted by di. Feedback frequency fd represents the number of nodes 
with feedback amount d. The ranking index θd indicates the order of d in the decreasing list of 
feedback amounts. 

3.1 Collection Procedure of eBay Reputation Data 
The eBay is by far the most successful cyber-exchange platforms based on a simple reputation 

mechanism [18]. The exchanging eBay users provide feedback to a centralized reputation center and 
report their experiences in eBay transactions. The scoring scheme in eBay is simple: positive 1 for a 
good feedback, negative 1 for a poor feedback, and zero for a neutral feedback. Every eBay user has an 
overall reputation by summing up all transaction scores periodically. 

It is difficult to collect all user feedbacks from eBay since the total number of eBay users is 
estimated to exceed 100 millions. We apply a sampling technique and collect 108MB feedback data. 
We start from an arbitrary power user in eBay who has a global reputation score higher than 10,000. In 
order to infer the received feedback distribution (i.e. in-degree distribution) in TON, we gather a list of 
users to whom the power users left feedbacks from July 1999 to March 2005 and extract related 
information such as feedbacks received by those users.  
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The above simple crawling method turns out to be inherently biased due to the sampling error. 
Apparently, the more feedback a user receives from others, the easier he or she will be crawled since 
the crawling process is random. Let pd denotes the probability that the node with received feedback 
amount d is discovered by a given random crawl, we have pd = ∑n

i=1di, where di is the received 
feedback amount of node i and n  is the network size of TON. For a power node that leaves k 
feedbacks for others, the probability that the node with received feedback amount d can be crawled 
from the power node is  

                                      ( ) ( )1
1 1 1 1 /

knk
d d ii

P p d d
=

= − − = − − ∑ .                                      (1) 

Let nd  be the original number of nodes with received feedback amount d in TON, and ˆdn  be the 
number of nodes with received feedback amount d in the sampling dataset, we have: ( )ˆd d dn E n P= ×  
or the following expected value: 
                                                       ( ) ˆ /d d dE n n P=                                                                        (2) 

Equation (2) implies that we can estimate nd from Pd  and ˆdn  to give more accurate account of the  
original feedback distribution in eBay. We call the this procedure recovery process. 

3.2 Feedback Distribution in eBay  
 Initially, we start with the sampling eBay trace over 11 thousands users (nodes). The eBay 

authority claims there are over 100 million users. Considering unregistered users and obsolete users, 
we assume that eBay has 80 million stable users. The average feedback amount per user in our trace 
data is 68. So we approximate the total sum ∑n

i=1di by 80,000,000×68 = 5.24×109. We apply the 
recovery process to the sample eBay trace data and draw the original feedback distribution in Fig.2 (a). 
Only the nodes with received feedback amount larger than 10 were included, because users with less 
than 10 feedbacks are considered inactive. The figure plots the distribution of feedback frequency fd. 
This quantity is proportional to the feedback amount d raised to the power of a feedback exponent 
factor β ≈ 2.4, defined by Pr(deg(X) = d) =Cd -β, where X refers a node and C is a constant. 

  
(a) Feedback frequency vs. feedback amount (b) Feedback amount vs. rank index  

Figure 2.  Power-law feedback distribution of eBay reputation system estimated from sampled 
eBay trace data over 10,000 users from July 1999 to March 2005  

We plot in Fig.2 (b) the variation of the pairs (θd, d) using the recovered data, where θd is the 
ranking index of feedback amount d in the decreasing order. The plot is approximated well by a linear 
regression and the correlation coefficient is higher than 0.92, which implies that the feedback amount d 
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is proportional to the feedback index θd in log-log scale. The distribution of the feedbacks in eBay 
transactions follows a power-law distribution as shown in Fig.2. In other words, the node with a small 
number of feedbacks is common whereas the node with a large number of feedbacks is extremely rare. 
In a general dynamic P2P system, the corresponding TON follows this power-law connectivity, 
because the reputation system grows with new nodes that preferentially interact with the more 
reputable nodes.  

4.  Global Reputation Aggregation  

Now, we are ready to specify the global reputation aggregation process in terms of the 
generation of initial reputation vectors, TON construction procedure, and reputation updating 
algorithm. We will prove the optimality of the algorithms under specific network conditions.   

4.1 Lookahead Random Walk (LRW) 
In a TON, every node keeps local trust scores for its neighbors. Traditional method generates 

local trust scores using the sum of both positive ratings for successful requests and negative ratings for 
unsuccessful queries [18].  In our PowerTrust system, every node normalizes the local trust scores. 
Consider the trust matrix R=(rij) defined over an n-node TON, where rij represents the local trust score 
that node i rates for node j. If there is no link in TON from node i to node j, the entry rij is set to 0. So 
for any ,,1 nji ≤≤  we have 10 ≤≤ ijr and 1,

1
=∀ ∑ =

n

j ijri . 

We define the global trust score as a global reputation vi for node i, suppose the global 
reputations for all nodes are stored in a vector V

r
, which is a normalized vector with ∑ vi =1. The 

reputation vector V
r

is computed by initializing the (0)V
r

 and setting up an error threshold ε . For all i = 

1, 2, …., n,  while 
)1()( −

−
ii

VV  > ε , we compute the successive trust vectors recursively by:  

                                                        
)()1( ii

VRV ⋅=
+

                                                     (4) 
This approach is motivated by the Markov random walk, which is widely used in ranking web 

pages. Imagine a random knowledge-surfer hopping from nodes to nodes in a TON to search for a 
reputable node. At each step, the surfer selects a neighbor according to the current distribution of local 
trusts. After hopping for a while, the surfer is more likely located at some more reputable nodes. We 
define a greedy factor α as the eagerness probability of a random walker to link itself with a reputable 
power node. The higher is the value of α, the keener the peer wants to connect itself to a power node.  

We propose the lookahead random walk (LRW) strategy to efficiently aggregate global 
reputations. Each node in the TON not only holds local trust scores for its neighbors but also 
aggregates its neighbors first-hand local trust scores. As described in Section 3, the TON is a sparse 
power-law graph, the LRW does not cause heavy overhead because the resulting replication overhead 
is limited by the number of edges in a TON, which is linear in a sparse power law graph [15].  

We analyze the aggregation convergence time by checking the number of iterations of Eq.(4). 
We generated 100 random graphs and 100 power-law graphs for each size to get the average speedup 
factor. The node degree distribution in the random graph is specified as follows: 

                                         ( )( ) 11
deg (1 )k n k

rob

n
P x k p p

k
− −−⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

                             (5) 

where x is an arbitrary node, n  is the graph size,  and  p = (Number of edges)/n2. 
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Our experiment results show the LRW strategy greatly improves the convergence rate of both 
power-law graph and random graph, especially for power-law graph. The improvement comes from 
the random walker in a power-law graph can quickly hop towards highly reputable nodes, which keep 
a lot of trust information about their neighbors. 

4.2 Locality Preserving Hashing (LPH)  
Since node degrees in a typical TON are power-law distributed, there are some power nodes 

that have higher degree than others. These power nodes typically correspond to the most reputable 
peers in a P2P system. A distinction of our PowerTrust system is to leverage more on the power nodes 
to aggregate the global reputations. Considering a large-scale P2P system with poor reliability and 
frequent dynamic changes in its configuration, we propose a fully distributed sorting mechanism to 
dynamically select the m most reputable power nodes in the system.  

PowerTrust uses a Distributed Hash Table (DHT) such as Chord [27] that offers scalable key-
based lookup for distributed resources. As in EigenTrust [11], every node has a score manager that 
accumulates its global reputation. We first hash the unique identifier of node i to a hash value ki in the 
DHT hash space. Node j is assigned as the score manager of node i if node j is the successor node of ki. 
All other nodes can access the global reputation of node i by issuing a lookup request with key equal to 
ki. Different hash functions can be used to have multiple score managers for each node in case the 
malicious score manager reports wrong global reputations.  

To select the m most reputable nodes, our distributed sorting mechanism applies locality 
preserving hashing (LPH) to sort all nodes w.r.t their global reputations. Cai, et al [5] suggested to use 
LPH for resolving range queries in Grid information services. Hash function H is a locality preserving 
hash function if it has the following two properties: (1) H(vi) < H(vj), iff vi < vj, where vi and vj are the 
global reputations of node i and j respectively; and (2) if an interval [vi, vj] is split into [vi, vk] and [vk, 
vj], the corresponding interval [H(vi), H(vj)] must be split into [H(vi), H(vk)] and [H(vk), H(vj)]. 

Suppose node j is the score manager of node i, it stores a pair (vi, i) for node i, where vi is the 
global reputation of node i. Node j hashes the reputation value vi using a LPH function H  to a hash 
value H(vi) and inserts the triplet (vi, i, j) to the successor node of H(vi). The triplets are stored in the 
ascending order of their reputation values in the DHT hash space due to the property of LPH. Assume 
node x is the successor node of the maximum hash value and it stores k triplets with highest reputation 
values. If k is less than m, node x sends a message to its predecessor node y to find the next m-k highest 
reputation triplets. This process repeats recursively until the m highest reputation triplets are found. 

Figure 3 presents an example 5-node PowerTrust system built on top of Chord with 4-bit 
circular hash space. Node N15 is the score manager of node N2 whose global reputation is 0.2. Node 
N15 hashes the reputation value 0.2 using a simple LPH function H(x) = 32x. The resulted hash value 
is 6.4. Node N15 sends out a Sort_Request{key=6.4, (0.2, N2, N15)} message as a Chord insert request, 
which is routed to node 8N . Node N8 stores the triplet (0.2, N2, N15), since it is the successor node of 
hash value 6.4. All the pairs and triplets stored on different nodes are shown in Fig.4. For simplicity, 
we illustrate how to find the highest reputation node corresponding to the case of m = 1.  

Node N2 is the successor node of the maximum hash value 15 and is responsible for hash 
values in the range (15, 16] ∪ [0,2]. Since it has no corresponding triplets within the range (15, 16], it 
stores zero triples with highest reputation values, i.e. k=0. Therefore, it sends a Top_M_Request(m=1, 
k=0) message to its predecessor node N15, which finds its stored triplet with value 0.4 being the 
highest one. So node N8 is the most reputable node in this example system. Multiple LPH functions 
could be used to prevent cheating by the participating peers. 
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Figure 3   Distributed sorting based on locality preserving hashing over a DHT-based  

P2P system with 5 nodes (peers) in the PowerTrust system 

5. P2P Reputation System Construction 

Inspired by EigenTrust [12], the PowerTrust system is improved from using the LRW and 
distributed sorting mechanisms. This system provides a fully distributed solution to aggregate the 
global reputations of peers, such as millions of eBay users, simultaneously.  

5.1 Initial PowerTrust System Construction  
Algorithm 1 specifies the construction of the PowerTrust system in the first round of global 

reputation aggregation.  

           Algorithm 1 Initial PowerTrust Construction  
Input: Local trust scores stored among nodes 
Output: Global reputation for every node 
for each node i do 
       forall node j, which is an out-degree neighbor of node i do 
            Send the score message (rij, i) to the score manager of node j 
       end forall 
       if node i is the score manager of node k,  then 
              forall node j, which is an in-degree neighbor of node k do 
                    Receive the score message (rjk , j)  from node j  
                    Locate the score manager of node j 
               end forall 
               Set a temporary variable pre=0; initialize the error threshold ε  

                              and global reputation vk of node k  
               Repeat 
                    Set pre= vk;  vk =0 
                    Forall received score pair (rjk, j), where  j is an in-degree neighbor of node k do 
                           Receive the global reputation vj  from the score manger of node j 
                           vk =  vk  + vj rjk 
                    end forall 
                    Compute δ = | vk – pre| until δ < ε                                                                               
       end if 
end for 
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In algorithm 1, each node i sends the local trust scores to the score managers of its out-degree 
neighbors. If node i is the score manager of another node j, node i aggregates the local trust scores 
received from the in-degree neighbors of node j.  

The convergence overhead is measured as the number of iterations in algorithm 1. This rate is 
upper bounded by λ2 / λ1, where λ1 and λ2  are the first and second largest eigenvalues of the trust matrix 
R defined over the TON. Thus, the bigger is the gap between λ1 and λ2, the faster is the rate of 
convergence. Fortunately, the power law property in a TON leads to a tight bound on the ratio λ2 / λ1 
[11]. In other words, the power-law distribution of TON will guarantee the convergence at the very 
first round of global reputation aggregation. After first round aggregation, the score managers 
collaborate with each other to find the power nodes using the distributed sorting mechanism. Because 
the trust matrix R is dynamically changing with new peers joining and new transactions performed, the 
global reputation should be updated periodically, especially more often on the power nodes. 

5.2 Global Reputation Updating Procedure 
The distributed updating of global reputation aggregation leverages on the use of the power 

nodes. Our PowerTrust scheme works as random walks on a Markov chain. The random surfer starts 
its journal on any node with the same probability. At any given node, the surfer selects a neighbor 
according to the local trust scores with a probability 1- α, where α is the greedy factor of the random 
walker. With a probability α, the surfer attaches itself with a power-node.  

   Algorithm 2:  Distributed global reputation updating procedure 
Input: Local trust scores stored among nodes 
Output: Global reputation for every node 
for each node i  do 
           forall node j, which is an out-degree neighbor of node i do 
                  Aggregate local trust scores from node j 
                  Send the score message (rij, i) to the score manager of node j 
            end forall 
            If node i is the score manager of node k, then 
                  forall node j, which is an in-degree neighbor of node k do 
                          Receive the score message (rjk, j) from node j 
                          Locate the score manager of node j 
                   end forall 
                   Set a temporary variable pre=0; initialize the error threshold ε  

                                 and global reputation  vk  of node k 
                   repeat 
                         Initialize pre= vk;  vk =0 
                         forall received score pair (rjk, j), where  j is an in-degree neighbor of node k do 
                                    Receive node j global reputation vj  from score manager of node j 
                         end forall   
                          if node k being a power node,  
                               then  vk=(1-α)∑ (vj × rjk) +α/m 
                               else  vk=(1-α)∑ (vj ×rjk) 
                       end if  
                       compute δ = | vk – pre|  , until δ < ε 
              end if   
end for 

The power-nodes are re-elected based on new global reputation value after each round because 
power-nodes are also dynamically changing over time. The transition matrix T is defined as: 

                                            (1 ) T TT R Pα α= − +                                                                 (6) 
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The matrix P is a rank-one matrix with most entries are zero except the entries with value 1/m in the 
columns associated with m power-nodes. The R is the trust matrix defined in Section 4.1. The purpose 
of the update is to control the gap between the first and second largest eigenvalues of the transition 
matrix T, given the largest eigenvalue λ1 = 1 and the second largest eigenvalue as λ2  ≤ 1- α [16]. 

6.   Simulated P2P Grid Performance Results 

          We have evaluated the PowerTrust system. Performance results are reported below in three 
aspects: reputation convergence rate, query success rate in distributed file sharing, and PSA benchmark 
results on simulated P2P Grid performance. 

6.1 Simulation Setup and Experiments Performed 

Three sets of simulation experiments were performed. The first experiment evaluates the 
aggregation efficiency of global reputation by studying the convergence overhead. The second one 
demonstrates the transaction success rate in P2P file sharing application. The third one shows the 
performance of job execution in a P2P Grid by measuring the makespan and job success rate Our 
simulation experiments were implemented on a dual-processor Dell server with 2GB of RAM running 
the Red-hat 9.0 Linux/OS with kernel 2.4.20. Each data point reported represents the average of at 
least 10 simulation runs. Our discrete-event driven simulator was written in C.  

We adjust the simulator with varying parameters to run different experiments. Our initial 
simulated TON for the P2P Grid system was a fully connected power-law graph, consisting of 1,000 
nodes with the maximum node degree dmax = 200 and exponent factor β = 2.4. We assume 80% honest 
peers and 20% malicious peers in the P2P system. We model two types of malicious users: one type 
reports dishonest trust scores (such as reporting low local trust scores for good peers and vice versa). 
Another type collaborates with users to boost up their own ratings. They may rate the peers in their 
collusion group very high and rate other peers very low.  

We select 1% power-nodes over the total number of nodes in a TON. Convergence overhead, 
makespan, job success rate are chosen as the metrics for performance evaluation. We compare below 
the performance between our PowerTrust system and Stanford EigenTrust system [12] over the P2P 
file sharing application and PSA workload, where The PSA (Parameter-sweep application (PSA) 
benchmark [3] is often used in Grid simulations on large number of independent jobs in parallel. The 
execution model processes M independent jobs (each has the same task over different dataset) on N 
distributed sites, where the job number M (say 4,000) is much larger than the site number N (say 100). 

6.2 Reputation Convergence Overhead 
The convergence overhead is measured as the number of iterations before the global 

reputations converging. The EigenTrust approach relies on a few pre-trust nodes to compute the global 
reputations. They assumed that some peers are known trustworthy, essentially the very first few peers 
joining the system. This assumption may not agree with the reality of decentralized P2P computing. 
We randomly choose some reputable nodes as pre-trust nodes in our simulation experiments. We 
report in Fig.4 the effects of different greedy factor α and system sizes n on the variation of the 
convergence overhead.  

In most P2P systems, peers are dynamically joining and leaving. We simulated the case of 1 
power-nodes and pre-trust nodes leaving from PowerTrust and EigenTrust system, respectively. For all 
fairness, we choose the same number of pre-trust nodes for EigenTrust as the number of power nodes 
in our simulation experiments. Figure 4(a) shows the convergence overhead for the two reputation 
systems, when pre-trust or power node is allowed to leave the P2P network. We observe a sharp drop 
of iteration count in Fig.4 (a), when α increases from 0.15 to 1. Figure 4(b) shows that our PowerTrust 
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system has almost a flat small convergence overhead, as the greedy factor α is maintained small with a 
default value of 0.15, regardless of the system sizes. The EigenTrust system has high overhead 
exceeding 200 iterations under such a condition. 
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Figure 4.   Convergence overhead of two P2P reputation systems: PowerTrust  
and EigenTrust under variable greedy factor and system sizes 

In both plots, the PowerTrust system outperforms the EigenTrust system sharply. The 
EigenTrust system converges very slowly or even cannot guarantee its convergence when pre-trust 
nodes are allowed to leave the system freely. In the PowerTrust system, the power nodes will be re-
elected after each aggregation round. Based on the distributed sorting mechanism, when some power 
nodes leave, the score managers of the departing power nodes notify the system to replace them with 
other qualified power nodes.  The low and almost constant overhead in using the PowerTrust system 
makes it attractive in performing highly scalable P2P Grid applications. 

6.3 Query Success Rate in Distributed File Sharing  
We have applied the PowerTrust system on simulated P2P file-sharing applications. The query 

success rate in these P2P applications was evaluated here. The query model is the same as the one 
proposed in [12]. There are over 100,000 files being simulated in the P2P system. The number of 
copies of each file in the system is determined by a power-law distribution with β  = 1.2. Each peer is 
assigned with a number of files. Figure 5 shows the query success rate in using the two systems. 

When a query for a file is issued, the list of nodes having this file is generated and the one with 
the highest global reputation is selected to download the desired file. The query success rate is 
measured by the percentage of success queries over the total number of queries issued. For simplicity, 
the node dropping rate is modeled inversely proportional to its actual global reputation, given the zero 
dropping rate for the most reputable node and 100% dropping rate for the worst reputable nodes. 

We consider the cases of using power nodes or pre-trust nodes. Figure 5(a) plots the result 
against increasing value of greedy factor α with only one round of aggregation. Figure 5(b) shows the 
results after ten rounds of aggregation. The PowerTrust outperforms the EigenTrust in almost all cases. 
In the best case after 10 rounds with a fixed low α = 0.15, the PowerTrust has 92% query success rate, 
about 39% higher than 65% query success rate of the EigenTrust system. This result implies that the 
PowerTrust has higher sustained performance in distributed file sharing applications than that of the 
EigenTrust system. When the peer greedy factor increases to a high value α = 0.45, both systems drop 
to less than 50% query success rate. 
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(a) After the first round global reputation aggregation (b) After ten rounds of global reputation aggregation 

Figure 5.   Query success rates of two P2P reputation systems: DynaTrust vs. EigenTrust,  
 after 1 or 10 rounds of global reputation aggregation 

6.4 Performance Result over the PSA Workload 
In this section, we use the following two metrics to simulate the PowerTrust performance in 

large-scale P2P Grid job execution: The makespan is measured by the maximum time, Max{ci}, to 
execute M jobs in parallel, where ci is the completion time of job Ji. The job success rate is measured 
by Srate= 1- Mfail /M, where Mfail accounts the number of failed jobs. The job arrivals assumed a random 
Poisson distribution on each Grid site. We have simulated up to 4,000 jobs distributed over 100 Grid 
peer sites.  The results are plotted in Figure 6. 
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Figure 6.  PSA benchmark performance results on a simulated P2P  
Grid configuration with 100 peer-contributed resource sites 

A heuristic Min-Min scheduling is used for job scheduling. Per each job, the Grid sites having 
the shortest expected time-to-completion (ETC) is selected. The ETC = real_etc/(1- fail_rate), where 
the real_etc is the actual ETC of the Grid site and the fail_rate is the failing rate associated with the 
Grid site as defined in section 6.3. Then the job with the minimum ETC is selected and assigned to the 
Grid site selected. After each job execution, the Grid sites update the trust score of other sites. These 
trust scores will be incremented by 1 for job successfully executed or 0 if failed. Therefore, the edges 
on the TON overlay will be relabeled with new scores periodically.  
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We have assumed an average job execution time 5 sec/job and an average 2 jobs/sec arrival rate. 
A job is executed if it is rejected no more than 3 times. Figure 6 shows the performance results of 4 
different reputation systems over the PSA workload. The NoTrust in black bars corresponds to the 
worst case that the Grid site reputations are not considered in job scheduling. The IdealTrust in dark-
gray bars corresponds to the ideal situation, where all Grid peers’s real global reputations are 
accessible. The light-gray bars and white bars correspond to using the PowerTrust and EigenTrust 
systems, respectively. 

In Fig.6 (a), the job makespan of all 4 reputation systems increases with the job number. Figure 
6(b) shows the average job success rate, which drops slowly with the workload size. As predicted, the 
NoTrust has the longest makespan performance and significantly lower job success rate among the 4 
systems. Both PowerTrust and EigenTrust have comparable makespan performance and job success 
rates. The job makespan of both systems are close to the ideal performance of the IdealTrust system.  

In all cases, the PowerTrust slightly outperforms the EigenTrust system by about 2% and they 
both converge to the ideal performance with less than 4% of from the optimal value. Without trust, the 
job makespan increases 30% and the job success rate drops by 46%, compared with the fully trusted 
case. These results prove the effective of using global reputation aggregation in establishing trust 
among the participating peer machines in a P2P Grid system. 

7   Conclusions and Further Work 

In this paper, we developed a trust overlay network model for analyzing the feedback 
properties of P2P reputation systems. By collecting real-life data from eBay, we confirmed the power-
law connectivity in the overlay graph.  This power-law distribution is not restricted to eBay reputation 
data, but applicable to general dynamic P2P systems that allows free joining and departure of user 
nodes. Our prototype PowerTrust system offers the very first approach to aggregate local trust scores 
to yield global reputations by leveraging on the power-law property. The system is built with locality 
preserving hash (LPH) functions, which can be easily implemented over a DHT-based P2P system.  

The performance of the PowerTrust was evaluated by measuring the convergence overhead of 
global reputation, query success rate in P2P file sharing, and job makespan and success rate in 
simulated PSA Grid benchmark experiments.  The PowerTrust advantages come mainly from the use 
of LPH function and the LRW strategy in system construction and update processes. These advantages 
help accelerate the reputation aggregation, responses to trust enquiries , and security binding in both  
P2P systems and P2P Grids, significantly.   

Based on the results reported, we reveal the following advantages of structured P2P Grids with 
distributed control over the computational Grids with centralized management. 

� P2P Grids are more efficient in the way that it broadcast messages and offers higher 
scalability, and application flexibility than the static Grid configurations.  

� The OGSA protocols have been partially developed for Grids under the assumption of 
uniform trust and reliability. For P2P Grids, this assumption should be extended to follow the 
Power-law distribution in peer feedbacks.  

� P2P Grids have to deal with changing IP addresses like roaming users or even unknown IP 
addresses from firewalls. This may give more protection in privacy and anonymity [31]. 

� P2P Grid resources are autonomous, self-organizing, decentralized at user-space based 
network environments. These properties could be used to achieve higher client interactivity 
and fault tolerance in case of node failures.  



Page 14 of 15 

 

For further research, we suggest to extend the work along three orthogonal dimensions: First, 
different threat models should be investigated to secure P2P applications. We need to explore new 
mechanisms to build more secure and robust systems against malicious intrusions, especially 
collusions [33]. Second, we need to explore new killer applications of the P2P Grids beyond the file 
sharing and PSA applications reported here [30]. Third, the distrust problem will become even more 
complex in real-life selfish Grids [13], [25].  These three issues all demand the upgrade of existing P2P 
reputation systems in scalable P2P Grid applications, which may involve millions of participating 
peers that may join and leave freely in a global scale. 
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