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Abstract— We consider a source that transmits information
to a receiver by routing it over a communication network
represented by a graph and examine rate benefits that finite
complexity processing at the intermediate nodes may offer. We
show that there exist configurations where the optimal rate
is achieved only when coding across independent information
streams (channel coding and routing cannot be separated); that
optimal processing is function of the particular set of channel
parameters and not only of the network topology; that small
constraint length suffices to achieve a large fraction of the
ultimate network performance; and that there exists a connection
between linear codes and routing for a special class of graphs.

I. INTRODUCTION

The success of the Internet has made large scale communi-
cation networks part of everyday life. In the wireless world,
ad-hoc and sensor networks promise to offer equally exciting
applications. In a network environment the information hops
through a number of intermediate relays before attaining the
final destination, as opposed to a reach it directly through a
single channel. The networked systems today employ tradi-
tional coding schemes for point-to-point connections that only
require end-to-end processing and that are oblivious to the
network environment.

In this paper we consider communication networks rep-
resented as graphs. Each edge in the graph represents an
interference-free directed noisy channels. Relay nodes are
allowed not only to forward the incoming information but also
to process it. We are interested in evaluating possible benefits
of intermediate node processing from an information-theoretic
point of view in terms of overall network throughput.

We distinguish two cases based on whether or not interme-
diate nodes are subject to processing complexity constraints.

Perfect processing implies that intermediate nodes are
allowed to decode and re-encode the information send by
the source, without any complexity and/or delay constraints.
Thus the use of a capacity-achieving channel code at each
node transforms every link in the network into an error-free
channel. It is then well known that for a unicast connection
(a single source destination pair using the whole network) the
min-cut max-flow capacity [?] is achievable [?]. Furthermore
channel coding (how to cope against the channel noise) and
routing (how to find the best way to the destination) can be
separated without loss of optimality.

In the seminal work [?] it was shown that additional coding
over these error-free links allows to better share the available

resources and increase the overall network throughput to the
ultimate min-cut capacity even in multicast connections (many
receivers decoding a single source). This type of coding,
performed across independent information streams, is referred
to as network coding. Again, channel and network coding can
be designed independently without loss of optimality.

Moreover, [?] provides examples of communication scenar-
ios more complex than multicast and networks not restricted
to directed links where channel and network coding can be
separated and yet the ultimate information-theoretic capacity
can be achieved. However, it is still not clear under which
conditions separation is optimal.

Partial processing implies that intermediate nodes have
complexity and delay constraints. We assume that source and
destination can process long sequences of data bits and employ
capacity achieving codes. However, intermediate nodes can
only process “chunks” of N channel symbols. The blocklength
N as measure of complexity allows us to bound the physical
resources necessary for processing such as time and memory
requirements. Moreover, it is well suited to environments
where information is transmitted in packets.

Thus, network links can no longer be considered error-free.
This case is the focus of this work and our main results are
as follows.

• Channel coding and routing cannot be separated without
loss of optimality. In this context, network coding can be
thought of as coding across independent streams, while
channel coding as coding over the same information
stream. Moreover, channel coding is no longer indepen-
dent of the network topology.

• Network coding offers benefits even in unicast connec-
tions over directed graphs. Even in this simple scenario,
linear network codes are not optimal in general. That
is, there exist configurations where non-linear processing
across independent information streams increases the
network throughput.

• Optimal processing at intermediate nodes is not only
function of the network topology and of the commu-
nication scenario, but it also depends on the quality
of the individual links. That is, for unicast connection
over the same graph, changing the value of the channel
parameter, i.e., increasing the noise level, results in a
different optimal processing. A similar observation was
made in [?].



• There exist connections between optimal routing over a
specific class of graphs and linear error correcting codes.
Thus, results from coding theory on the structure of
the generator matrix can be translated into guidelines
for selecting routes, and hence optimally combining,
information streams.

We shall illustrated these points by examining a unicast
connection over an example network configuration. Our results
are to be considered a first step in understanding the ultimate
performance limitations of interference-free multi-hop packet
networks. In this respect, our work differs and departs from
the main network coding streamline of work.

In a recent work [?], we examined how partial processing
affects the achievable throughput of line networks using argu-
ments based on error-exponents and worst-case/Fano channels.
That is, we looked at finite but not too small N . Independently,
a similar problem was also announced to be under examination
for very small N in [?]. In [?] we mentioned the example
network we look at in the present paper as future work.

The paper is organized as follows. Section ?? presents the
network model and discusses known results that we are going
to compare against in subsequent sections. Section ?? analyzes
partial processing and presents results for optimal processing
for a number of cases. Section ?? discusses the connections
of linear error correcting code with routing. Section ?? points
out our conclusions and future directions of work.

II. MODEL AND BACKGROUND RESULTS

Throughout the paper we shall consider the example de-
picted in Fig. ??. The model consists of a source and a
destination node connected through a network represented as
a directed graph.
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Fig. 1. An example of network.

The edges between intermediate nodes correspond to DMC
(Discrete Memoryless Channels) used without feedback, indi-
cated in the following as “(X, W ) physical channels”, where X

denotes the input and the output alphabet and W denotes the
channel transition probability matrix. In the examples, we shall
consider the edges to be BSC(p) (Binary Symmetric Channels
with transition probability p ∈ [0, 1/2]).

The source and the destination, located at nodes A and F in
Fig. ??, are not subject to any processing constraints. That is,
the source can use a channel capacity achieving code and the
destination can perform maximum likelihood decoding. The
intermediate nodes, here B, C and D, are only allowed to
perform memoryless processing over “chunks” of N channel

symbols from their incoming edges and output the same single
block of N channel symbols on their outgoing edges. N
models the delay and memory limitations of the relays nodes.
Depending on the value of N we distinguish three cases:

1) Perfect Processing (N = ∞): Intermediate nodes are
allowed to decode and re-encode the whole codeword
send by the source. We identify this case with N = ∞
as, in general, the capacity achieving code used by the
source has extremely large block length.
Example 1. Consider each edge in the network in
Fig. ?? to be a BSC(p). Fig. ?? shows the min-cut
capacity as a function of p. Capacity is achieved by
sending independent streams of iid equally likely bits
on paths P1 = {AB, BF} and P2 = {AC, CF} (two
parallel channels).
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Fig. 2. Min-cut capacity and capacity with forwarding over the network in
Fig. ?? when each edge represents a BSC(p).

2) Forwarding (N = 0): Each intermediate node is only
allowed to forward the received information. If all edges
of the network correspond to the same channel, then the
length of a path indicates how good the overall channel
is (the shorter the path the less noisy the channel). In
this case the destination can receive multiple noisy ob-
servations of the same information stream from different
incoming edges. It can hence optimally combine them to
increase the overall throughput. That is, at intermediate
nodes forwarding an information stream along branching
paths that independently arrive at the receiver generates
path diversity. Notice that forwarding is different from
one symbol processing. In fact, for N = 1, node D
could perform any operation involving its two inputs.
Example 2. Continuing the previous example, the paths
(AB, BF ) and (AC, CF ) transport the informa-
tion streams X1 and X2 as before. Additionally, path
(BD, DF ) or path (CD, DF ) can be used to provide
the destination with an additional observation of either
X1 or X2. Fig. ?? plots the achievable rate with
forwarding.

3) Partial Processing (N finite): This is the case of interest
in this paper, and that we shall discuss it in detail in



the next section. The motivation of this work is to get
intuitions on how to bridge the gap between perfect
processing and forwarding by using low-complexity
intermediate processing.

Remark: Let (Y1, Y2, Y3) be the output of (BF, CF, DF )
and (X1, X2) be the input of (AB, AC). The overall channel
is described by

PY1,Y2,Y3|X1,X2 =
∑

YB ,XB ,YC ,XC ,YD,1,YD,2,XD

PYB |X1QXB |YB
PY1|XB

PYC |X2QXC |YC
PY2|XC

PYD,1|XB
PYD,2|XC

QXD|YD,1,YD,2PY3|XD

where Yn and Xn are, respectively, the information received
at and sent by node n ∈ {B, C, D}. The processing at
the intermediate node B, C and D are identified by the
“equivalent channels” QXB |YB

, QXC |YC
and QXD |YD,1,YD,2 .

Finding the channel capacity amounts to the maximization
of I(Y1, Y2, Y3; X1, X2) over PX1,X2 and over all possible
matrices Q. Since the mutual information is convex-∪ in the
channel transition matrix, and since we maximize with respect
to the channels Q, it is clear that the optimal Q’s correspond
to deterministic mappings, i.e., each row of Q contains at
most one non-zero element. In the following we shall only
consider deterministic processing.

III. PARTIAL PROCESSING

With N = ∞ (perfect processing) and N = 0 (forwarding),
information streams corresponding to independent data can be
kept separated without loss of optimality when considering
unicast connections. In the first case, because the min-cut
capacity is achievable by routing the information streams
through the paths traversing the graph min-cut. Those paths
are distinct by definition of graph min-cut. In the second case,
because only one information steam can be relayed through
each edge of the graph min-cut due to the impossibility of
processing information at intermediate nodes.

Example 3. In a network of BSC(p) with min-cut M the ratio
between C0, the capacity with forwarding, and C∞, the min-
cut capacity, is

C0

C∞
=

1
M

M∑

m=1

C(pi)
C(p)

where C(x) = 1+x log2(x)+(1−x) log2(1−x) is the capacity
of each BSC(p) and pi = 0.5(1− (1− p)Li) for (L1, ..., LM )
defined as the lengths of the M distinct shortest paths through
the graph min-cut, which can be found, for example, with the
Ford-Fulkerson algorithm.

Interesting questions are whether, given a small processing
capability N , the ratio CN/C∞ can be made close to one and
whether “mixing” independent information streams can be of
any advantage.

To start with, in the example in Fig. ??, assume that the
nodes B, C and D are allowed to process only one bit and

that all links are BSC(p). Without loss of generality, assume
further p < 1/2.

It is easy to see that with N = 1, the optimal processing at
nodes B and C is simply forwarding the incoming bit. At node
D, since two bits are available at its input, one bit processing
amounts to mapping four input values to two output values.
It can be verified that only three functions at node D lead to
different overall channels:

1) f1 = Xi for i = 1 or i = 2, i.e., send one of the inputs.
2) f2 = X1 XOR X2, i.e., send the sum of the inputs.
3) f3 = X1 AND X2, i.e., send the product of the inputs.

Let R1, R2 and R3 denote the achievable rates when using,
respectively, functions f1, f2, and f3 at node D. Fig. ?? plots
the ratios R2/R1 and R3/R1 when all channels introduce
errors. From Fig. ?? it appears that:

• For the same network topology and the same unicast
connection, the optimal one-bit processing is a function
of the channel parameter p. In particular, for small values
of p, superposition (f2) outperforms forwarding (f1) and
non-linear processing (f3). On the other hand, for large
values of p forwarding is better.

• One-bit processing (f2 or f3) is not uniformly superior
to forwarding/no-processing (f1). When the channels are
very noisy, combining different information streams does
not increase the overall throughput.

• Since the network is composed of symmetric channels,
i.e., bit 0 and bit 1 are (mis)treated equally by the
channels, one would expect the uniform input distribu-
tion to result in better performance than a non-uniform
one. However, it turns out that for very noisy channels,
breaking the network “symmetry” by performing non-
linear processing (f3) and using a non-uniform input
outperforms superposition (f2) with uniform input.

In order to understand whether the above observations are
pertinent only for the specific set of network parameters
considered, let us assume that some links in the network in
Fig. ?? are error-free. Fig. ?? plots the ratios R2/R1 and
R3/R1 when all channels, but BD and CD, introduce errors.

Interestingly, from Fig. ?? we observe that for this new set
of channel parameters non-linear processing (f 3) outperforms
linear processing (f1 and f2) for values p roughly larger than
0.3. Furthermore, in this regime, the optimal input is two-
valued, i.e., one input bit mapped either in the pair (00,11) or
in the pair (01,10), and the optimal input distribution is not
uniform.

By performing an exhaustive search among all possible
deterministic mappings at node D, and by considering several
combinations of the channel parameters, we observe that there
exist three regime of operation as observed in Fig. ??. Namely,
superposition is always optimal for relative small values of the
channel parameters (first regime) while non-linear processing
is optimal for relatively large values of the channel parameters
(third regime). In the middle/second regime forwarding is
optimal. Degenerate cases are possible in which the second
and the third regime ‘collapses” to a single value of p (like in



the case considered in Example ??). However, in the example
of Fig. ??, we never observed a different order of optimal
processing.

Thus, unlike the cases N = 0 and N = ∞, the optimal
routing is no longer edge-disjoint for independent information
streams, which has a similar flavor to network coding.

We conclude the section with an example where analytical
computation is easy and straightforward. This example shows
that a simple one bit processing (N = 1) can greatly improve
performance over forwarding (N = 0) in the sense that a given
fraction of the ultimate network capacity (N = ∞) can be
attained over a larger set of channel parameter. This confirms
our intuition that a little increase in complexity at the relay
nodes achieves most of the ultimate network capacity.
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Fig. 3. Performance comparison for the network in Fig. ?? when each edge
represents a BSC(p).
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Fig. 4. Performance comparison for the network in Fig. ?? when every edge,
except BD and CD which error-free, represents a BSC(p).

Example 4. Consider the network in Fig. ?? when only edges
BF , CF and DF are BSC(p) and the others are error-free.
The achievable rate without using node D is R0 = 2C(p). The
rates R1 and R2 achievable, respectively, with forwarding (f1)

and superposition (f2), are

R1 = 3C(p) − C(α), α = 2(1 − p)p

R2 = 3C(p) − C(β), β = (1 − p)3 + 3(1 − p)p2

while the min-cut capacity C∞, is

C∞ = min(2, 3C(p))

Exhaustive search over all possible mappings at node D shows
that superposition is always optimal for N = 1, i.e., C1 = R2.
The capacity with forwarding (N = 0) is C0 = R1.

Fig. ?? plots the ratios R2/R1 and R3/R1 for the scenario
under consideration. We notice that superposition is always
superior to forwarding and non-linear processing. Fig. ??
shows R1, R2, together with R0, and the min-cut capacity C∞.
Fig. ?? plots the ratios C1/C∞ and C2/C∞. Notice that one
bit processing achieves 95% of the ultimate network capcity
C∞ for p > 0.18. On the contrary, forwarding achieves the
same level of performance only for p > 0.3.
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Fig. 5. Performance comparison for the network in Fig. ?? when only edges
BF , CF and DF are BSC(p) and the others are error-free.
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Finding suitable analytical tools of the analysis of the
problem for larger values of N without need of exhaustive
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numerical search is part of on-going work. An approach based
on the error-exponent and on the worst-channel case as in [?]
is under investigation.

The question is whether decoding and re-encoding at in-
termediate nodes is the a good communication strategy. The
answer in not obvious as there are examples in the literature
on relay channels [?] that shows strategies like “amplify and
forward” or “compress and forward” are preferable to “decode
and re-encode”.

IV. CONNECTIONS WITH CODING

From the previous discussion we saw that, for small values
of the noise parameter, it is optimal to perform XOR at node
D. We notice that those value of p are actually the ones at
which commercial networks operate, thus the ones of greater
practical importance. In the scenario analyzed in Example ??
XOR is optimal for all values of p.

In this latter case, the problem is equivalent to the problem
of maximizing the composite capacity of a BSC(p) preceded
by an encoder. The problem can be stated in more generality
as follows. Consider a BSC(p) and design a code with k input
bits and n output bits, such that the composite capacity of
the encoder followed by the BSC(p) is maximized. Our case
corresponds to k = 2 and n = 3. The optimal encoder is
linear. In general, the optimal encoder is non-linear. If we
restrict the intermediate nodes to perform linear operations,
then the capacity is a function of the weight distribution of
the code as discussed in [?].

The interesting point is that even when links AB, AC, BD
and CD do introduce errors, provided that the noise parameter
is small, the same intuition applies. Thus, the connection
with linear coding, may allows us to translate results from
linear code design to network codes and routing strategies,
and to increase our intuition on the observed results. Good
codes described in [?], could be mapped to network codes
that perform linear operations over independent information
streams to maximize the network throughput.

V. CONCLUSIONS

In this work we have shown that

• Network coding (mixing independent information
streams) gives benefits for unicast connections over
noisy channels.

• Channel coding and routing can not be separated. De-
pending not only on the network topology and the
communication scenario, optimal coding and routing de-
pend of the actually noise parameter, i.e., there is not
intermediate processing that is uniformly better for any
combination of channel parameters.

• For the network under investigation, it appears that linear
processing is optimal for relatively small noise parameter
while non-linear processing is optimal for large noise
parameter. In the middle regime, forwarding is best. This
observation suggests that limited complexity processing
can greatly increase the network performance (over for-
warding) for those values of the channel noise that are of
practical importance in commercial network.

• The analysis for large values of N based on arguments
similar to [?] indicates that large value of N are not
needed. However, an open question is to analytically
bound the gain provided by finite complexity process-
ing for limited values of N without exhaustive search.
Interesting approaches based on randomized strategies,
very popular in the statistical physics and algorithmic
communities, are currently under investigation.

• The generalization to other network topologies and other
communication scenarios is currently under investigation.
The interesting question is whether the insights gained
with our small network example are valid for larger
networks.
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