
Dynamic Topology Configuration in Service Overlay
Networks: A Study of Reconfiguration Policies

Jinliang Fan Mostafa H. Ammar
College of Computing, Georgia Institute of Technology Atlanta, GA 30332-0280

{jlfan,ammar}@cc.gatech.edu

Abstract— The routing infrastructure of the Internet has be-
come resistant to fundamental changes and the use of overlay
networks has been proposed to provide additional flexibility and
control. One of the most prominent configurable components
of an overlay network is its topology, which can be dynami-
cally reconfigured to accommodate communication requirements
that vary over time. In this paper, we study the problem of
determining dynamic topology reconfiguration for service overlay
networks with dynamic communication requirement, and the
ideal goal is to find the optimal reconfiguration policies that
can minimize the potential overall cost of using an overlay. We
start by observing the properties of the optimal reconfiguration
policies through studies on small systems and find structures in
the optimal reconfiguration policies. Based on these observations,
we propose heuristic methods for constructing different flavors of
reconfiguration policies, i.e., never-change policy, always-change
policy and cluster-based policies, to mimic and approximate the
optimal ones. Our experiments show that our policy construction
methods are applicable to large systems and generate policies
with good performance. Our work does not only provide solutions
to practical overlay topology design problems, but also provides
theoretical evidence for the advantage of overlay network due to
its configurability.

I. I NTRODUCTION

While the Internet has been fully commercialized and
evolved into a ubiquitous medium of communication, its
native routing infrastructure has become resistant to funda-
mental changes. This hinders the development of new net-
work functionality (e.g., multicast, QoS) that heavily rely on
such fundamental changes. The use ofoverlay networkshas
been proposed as an alternative solution that can potentially
provide the desirable flexibility and control of the routing
infrastructure [1], [2], [3], [4]. Researchers have successfully
used overlay networks to solve problems in various areas. For
example, overlay networks have been employed to implement
application layer multicast [5], [6], [7], [8], provide testbeds
for new technologies [9], [10], [11], circumvent BGP faults
and constraints [12], and provide countermeasures to DoS
attacks [13]. In this paper, we focus our discussion onservice
overlay networks [14], [12], [15] that are deployed and
maintained byoverlay network providers. Overlay network
providers deploy a number of specially designedoverlay nodes
across the Internet. As third-party service providers these
overlay network providers contract with underlying ISPs and
buy network bandwidth between these overlay nodes. They,
in turn, provide value-added network services to end-systems,
which access the overlay networks through one of the overlay
nodes. Traffic between end-systems is carried by and routed
through the overlay networks instead of the native networks.

B

D

A

C

B

D

A

C

A B

DC

4

3

3

22

10

3

10

2

4

(b) Application’s Communication Requirement

(c) Overlay Network (a) Underlying Network

Internet

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

Fig. 1. Factors in Overlay Topology Design

B

D

A

C

B

D

A

C

B

D

A

C

10

10

4

2

2

(a) Routing Over Overlay (b) Routing Over Overlay (c) Another Pattern of

Topology A Topology B Communication Requirements

Fig. 2. Routing Data Through Overlay Networks

One of the most important issues in the design of a service
overlay network is the configuration of its overlay topology.
Positioned between the native networks and the ultimate cus-
tomers, an overlay topology constructed in favor of both could
significantly improve the performance or reduce the operation
cost of the whole system. Consider the four-node example
overlay network shown in Fig. 1. Fig. 1.a characterizes the
service agreement between the overlay network provider and
the underlying ISPs; the labels on the dashed lines show the
operation costs of the potential overlay links between every
pair of nodes — the price ISPs charge the overlay network
provider for shipping one unit of data over these overlay links.
Fig. 1.b shows a snapshot of the communication requirements
aggregated over all customers; the labels on the lines (or the
thickness of the lines) denote the data rates between every pair
of overlay nodes, on behalf of the customers. Fig. 1.c shows a
candidate overlay topology (Topology A); each edge denotes
an overlay link. Provided that the overlay network ships data
over the overlay paths that incur the minimum operation cost,
the flow of data is shown in Fig. 2.a. Fig. 2.b presents the flow
of data if another topology (Topology B) is adopted instead.

In terms of operation cost, Topology B is not as good as A —
although some data can now take a lower-cost path, a higher
volume of data have to take a higher-cost path. Generally, the
operation cost of an overlay varies when it runs on different
overlay topologies and this raises the problem of finding the
overlay topology that minimize the operation cost for given
communication requirements.

If the communication requirement is constant over time,
the optimal choice of overlay topology is static. If commu-
nication requirements change over time, for example, from
the ones shown in Fig. 1.b to the ones shown in Fig. 2.c,
the overlay topology may need to be reconfigured. While the
static topological design problem has been extensively studied
for native networks, the design of dynamic topology did not
receive the same attention because hard-wired native networks
are usually not reconfigurable over small time scales. For
overlay networks, however, topology reconfigurability is one
of their most appealing features and the dynamic topology
design problem becomes interesting. For overlay networks a
small or moderate number of overlay nodes, it is feasible for a
provider to monitor and statistically model the communication
requirements in the system. The topology reconfigurability
allows an overlay network to be tuned dynamically when the
communication requirements change [16], [17].

A question needs be answered, however, namely,when
and how the overlay topology should be reconfigured un-
der dynamic communication requirements. One may suggest
that whenever the communication requirements change, the
topology of the overlay network should be immediately re-
configured to the topology that minimizes the operation cost
for the new communication requirements (and the dynamic
overlay design problem is reduced to the static one). However,
while overlay topology is reconfigurable in small time scale,
changing overlay topology is not cost-free; it may incur both
management overhead as well as potential disruption of end-
to-end flows: overlay links need to be established or torn
down; routing tables need to be updated; data in transit may
get lost, delayed, or erroneously routed. In the presence of
these costs, changing the overlay topology for every change
in communication requirements may not be the best policy.
Intuitively, if in the long run the benefits of making a change
in the overlay topology cannot justify the costs of the change,
the overlay topology should not be changed. Even if a change
is favorable, the next overlay topology should take into account
the long-term changes in communication requirements.

In this paper, we are most interested in the dynamic overlay
topology design problem, i.e., the problem of determining
dynamic topology reconfiguration in the presence of dynamic
communication requirements. In the process of solving this
problem, we also study the static overlay topology design
problem, the solution to which is used as a subroutine in the
solution to the dynamic problem. Particularly, we concentrate
on reconfiguration policies that guide the topology selection
any time the communication requirements change. Similar
problems have been previously studied for the design of optical
networks [18], [19] but have not been systematically studied

in the context of service overlay networks. In this paper,
we formulate both the static and dynamic overlay topology
problem. To solve the dynamic topology design problem, we
systematically observe how optimal reconfiguration policies
are affected by the reconfiguration overhead, through case
studies on small systems. Based on the observation, we
propose heuristic methods for constructing different flavors
of reconfiguration policies for large systems. In the process,
we also describe a simulated-annealing based solution for the
static overlay topology design problem, which is also used
as a subroutine in solving the dynamic problem. Our work
does not only provide solutions to practical overlay topology
design problems, but alsoprovides theoretical evidence for the
advantage of overlay network due to its configurability.

The remainder of this paper proceeds as follows. In Sec-
tion II, we identify the costs that could be incurred in a
service overlay network, and formally define the static and
dynamic overlay topology design problems. In Section III, we
observe the structure of the problem, as well as the properties
and structures of the optimal reconfiguration policies, through
experiments on small systems. In Section IV, we use these
observations as heuristics and propose methods for construct-
ing good reconfiguration policies that approximate the optimal
ones for large systems. We evaluate our methods in Section V
and conclude in Section VI.

II. PROBLEM FORMULATION

As shown in Fig. 1, once an overlay topology is established
the operation cost for carrying traffic over a service overlay
network depends on three factors: the operation cost for ship-
ping data over overlay links, the aggregated communication
requirements over all customers and the overlay topology. In
this paper, we assume the overlay network provider is charged
by the underlying ISPs an operation cost proportional to the
amount of traffic carried on an overlay link once the overlay
link is established. We use alink cost matrix, d, to denote
the operation cost per unit of data rate(e.g., bits per second or
bytes per second) for the overlay link between every pair of
nodes. The aggregated communication requirements over all
customers are characterized with a matrix of end-to-end traffic
rates between every pair of overlay nodes, namedcommuni-
cation patterns. We denote the communication requirements
at time t by X(t) and assumeX(t) takes on values from a
set of distinct communication patterns,{C1, C2, . . . , Cs}.

The overlay topology, is a graphG =<V, E>, whereV
includes all the overlay nodes andE includes all the estab-
lished overlay links between the nodes. Theoretically, there are
a total of2n(n−1)/2 possible overlay topologies overn nodes.
However, not all of these topologies are desirable in practice.
An overlay topology is usually required to beconnectedso
that every node remains contact with the rest of the overlay
network. Furthermore, while some research work in overlay
networks assumes fully-meshed overlay topology, in this paper
we consider more general cases where the overlay topology
is degree-bounded, i.e., the number of direct neighbors of a
node is limited by an upper bound. Service overlay network

providers may prefer a degree-bounded topology over a fully-
meshed one for several reasons. First, underlying ISPs may
charge the overlay network providers for a certain amount
of fixed maintenance cost for an overlay link in addition to
operation cost proportional to the actual bandwidth usage.
Second, maintaining an overlay link between two overlay
nodes incurs control overhead to the overlay network provider
themselves(e.g., link condition probing overhead [12], [20]).
The above types of overlay link maintenance costs are not
directly related to the consumption of link bandwidth for deliv-
ering user data and are not formulated in the link cost matrix.
Instead, we characterize these types of link maintenance costs
using the degree bounds on the overlay topologies — a higher
degree bound implies more overlay links and potentially more
maintenance cost1, and a degree bound serves to reflect an
overlay network provider’s aversion to these types of cost.
In this paper, we consider only overlay topologies that are
connected and degree-bounded. We assume for simplicity that
all nodes are subject to the same degree boundK, 2 ≤ K ≤
n − 1. (Note that the caseK = n − 1 corresponds to the
scenario where node degree is not constrained.) We denote the
set of feasible overlay topologies by 0-1 adjacency matrices
{T1, T1, . . . , Tr}.

Finally, anoverlay topology reconfiguration policyis the se-
quence of overlay topologies used by an overlay network over
time, Y (t), in response to the communication requirement,
X(t), changing over time. The problem we are addressing
in this paper is finding the optimal reconfiguration policy
Y (t) for a given communication requirementX(t). This
determination is guided by the cost functions which we discuss
later in the section.

A. Static Overlay Topology Design Problem

In an overlay network with topologyT , the cost of deliv-
ering a unit of data from one nodeu to another nodev is
the sum of the operation costs of all overlay links on their
overlay routing path. Formally, assume the overlay routing
path betweenu and v is Pu,v, then the cost of delivering
one unit of data fromu to v through the overlay network is:

Lu,v(T) =
∑

(u,v)∈Pu,v

d(u, v) (1)

Then an overall operation cost to support a communication
patternC on this topology is

f(C, T) =
∑

u,v∈V

Lu,v(T) · C(u, v) (2)

in every unit of time. Obviously, functionf(C, T) is mini-
mized for a givenC and a givenT if the data are routed
through the overlay using minimum-operation-cost paths,
which are equivalent to shortest paths if we considerd(u, v)
as the distance betweenu andv. In this paper, we assume the
data are always routed through the overlay network following
the minimum-operation-cost paths.

1According to the handshaking lemma, if the degree bound isK, then the
maximum number of overlay links isnK

2
.

The static overlay topology design problem is the problem
of finding an overlay topologyT , under the constraints of
connectivity and degree-bound, that can minimize the cost
function f(C, T) for a communication patternC. We term
such a topologyoptimal-static topologyfor C and denote it
by T ∗(C). Similar to most other topological design problems,
the static overlay topology design problem can be modeled
as an integer linear programming problem and is an NP-hard
problem. For an ILP formulation of the problem and a proof
of its NP-Hardness, please refer to [21].

If the communication requirementX(t) is constant over
time, i.e., X(t) = C for any t, then the optimal overlay
topology reconfiguration policy is one that always uses the
optimal-static topology forC, i.e., Y (t) = T ∗(C) for all t.

B. Dynamic Overlay Topology Design Problem

The problem formulation in Section II-A applies when the
communication requirements do not change over time. In this
paper, we are most interested in the more general cases where
the communication requirements change over time.

We consider two categories of costs in an overlay network:
Occupancy Costand Reconfiguration Cost. The occupancy
cost is incurred while the overlay network is configured
in a particular topology whereas the reconfiguration cost is
incurred whenever the overlay topology is reconfigured.
Occupancy Cost:The occupancy cost is the total operation
cost for the overlay network to deliver the traffic specified by
the dynamic communication requirementsX(t) over the dy-
namic overlay topologyY (t) specified by the overlay topology
reconfiguration policy. That is

COSTo(∆t) =
∫ ∆t

0

f(X(t), Y (t))dt (3)

where ∆t is the time horizon of interest and the function
f(C, T) is defined in Eq.2.
Reconfiguration Cost: Every time the system reconfigures
its overlay topology to adapt to changes in communication
requirements, a reconfiguration cost is incurred. This cost is
the overhead or the impairment to performance incurred by
the transition from one overlay topology to another.

Various costs could be incurred during a topology recon-
figuration, depending on the implementation details of the
overlay. For example, establishing and tearing down overlay
links incurcontrol and management overhead, especially when
underlying ISPs are involved in the processes. Furthermore,
data in transit during topology reconfiguration is subject to
routing disturbance that incursrerouting overhead. Depending
on the overlay implementation, when overlay topologies and
routing tables change, data in transit could be simply dropped
by intermediate nodes and requires end-to-end retransmission,
or be rerouted, maybe several times, wandering through a path
with a high operation cost. Finally, rerouting overhead can
be magnified at the end-systems. Data loss and misordering
caused by overlay topology reconfiguration are much more
significant than those caused by factors in underlying net-
works. They last longer and their impact is system wide. End-
systems’ flow control mechanisms that assume low loss rate

 0 5 10 15 20From NodeID
 5

 10
 15

 20

To NodeID

 0

 20

 40

 60

of Misorderings

 0 5 10 15 20From NodeID
 5

 10
 15

 20

To NodeID

 0

 20

 40

 60

of Misorderings

(a) Protocol A (b) Protocol B

Fig. 3. Flow Disturbance Caused by Topology Reconfiguration

and short misordering sequence, e.g., TCP’s window control
system, the impact of overlay topology reconfiguration can be
very disruptive.

Fig.3 gives evidence to the existence of reconfiguration cost,
e.g., data misordering. The experiments are conducted over
the PlanetLab [11] using 20.edu nodes in North America,
which form a simple overlay. Each node runs a UDP-based
routing daemon and is remotely controlled from a monitor
in Georgia Tech using XML-RPC remote function calls. To
conduct the experiment, we let each node generate one packet
per 10 milliseconds to every other nodes and count the
pairs of misordered packets caused by an overlay topology
reconfiguration. To reconfigure the topology, the monitor sends
out XML-RPC calls simultaneously to all nodes, commanding
them to update their neighboring status and routing tables,
using one of two protocols. In Protocol A, each nodes updates
its routing table immediately after receiving the XML-RPC
calls. Due to variation in their network distance from the
monitor, the routing tables are actually updated at different
times at different nodes. In Protocol B, the monitor provides a
future time point in the XML-RPC calls and asks all nodes to
synchronize their updating to that time point. The figures show
the resulting amount of misordering for each end-to-end flow
when the overlay makes transition from one degree-4 topology
to another one. The figures show that Protocol A incurs less
flow disturbance than B. But in both protocols, the disturbance
on flows is significant and system-wide.

The formulation of the reconfiguration cost in topology
transition naturally varies for different overlay network imple-
mentations (e.g., protocol for the transition), and it is not our
goal to deal with each specific implementation in this paper.
Instead, at this stage, we are most interested in understanding
the dynamic overlay topology design problem in a more
general manner. We use the total number of overlay links that
need to be changed during a overlay transition as a general
approximate metric for the reconfiguration cost. Formally, the
topology reconfiguration cost metric is

g(Told, Tnew) =
∑
u,v

|Told(u, v)− Tnew(u, v)| (4)

where Told, Tnew are the old and new overlay topology re-
spectively2. The total reconfiguration cost over a time horizon

2System specific weighting factors are absorbed inβ in Eq.5.

∆t, denoted byCOSTr(∆t), is the sum of the reconfiguration
costs incurred for all overlay topology transitions that happen
during ∆t. The reconfiguration policy construction methods
developed in this paper allows plugging in other formulations
of the functiong(·). In Section V-B, we test the use of some
other formulations on the performance of our policy con-
struction methods and find that the performance of resulting
reconfiguration policies remains unchanged.
Overall Cost: The overall cost of using the overlay over a
time horizon∆t is the sum of both the occupancy cost and
the reconfiguration cost incurred in the period. Formally,

COST (∆t) = COSTo(∆t) + β · COSTr(∆t) (5)

where factorβ ∈ [0, 1] reflects the relative weight of recon-
figuration cost and occupancy cost; its actual value depends
on the implementation details, particularly how the topology
transitions are performed and how different performance/cost
factors (e.g., data loss rate, retransmission, performance of
end-systems) are evaluated against each other. The long-run
average of the overall cost is

lim inf
∆t→∞

COST (∆t)

∆t
(6)

Topology Reconfiguration Policy:Given the communication
patterns,X(t), a reconfiguration policy, Y (t), is essentially
a set of rules specifying when and how the overlay topology
should be reconfigured. The following are three examples.

• Policy 1: Whenever the communication pattern changes,
the overlay topology should be reconfigured to a random
one.

• Policy 2: Every 10 minutes, the overlay topology should
be reconfigured to the static-optimal one for the current
communication pattern.

• Policy 3: Whenever the communication pattern changes,
the overlay topology should be reconfigured to static-
optimal one for the new communication pattern.

In this paper, we concentrate on the class of reconfiguration
policies with the following properties:

• Reactive. A change in overlay topology can only be
triggered by a change in communication pattern. Policies
1 and 3 have this property while Policy 2 does not.

• Memoryless. Assume the overlay topology changes at
time t, the choice of the new overlay topologyY (t +
δ) depends only on the current communication pattern
X(t), the current overlay topologyY (t) and the new
communication patternX(t + δ). All the three example
policies above have this property.

• Deterministic. GivenX(t), Y (t) andX(t+δ), the choice
of Y (t + δ) is deterministic rather than probabilistic.
Policies 2 and 3 have this property while Policy 1 does
not.

A reconfiguration policy in this class is essentially a func-
tion that maps each possible triple of current communication
patternCold, current overlay topologyTold and new communi-
cation patternCnew to a new topologyTnew. It is possible that

1

4

2 3

5

1 1

11

C1

1

2

5 4

3

1 1

11

C2

C1

C2

11

Fig. 4. X(t) With Two Communication Patterns

Tnew = Told, in which case the overlay topology remains the
same despite a change in communication pattern. The ideal
goal is to find theoptimal reconfiguration policythat can
minimize Eq.6 for a given model ofX(t). The problem is NP-
hard because even the static version of the problem (described
in Section II-A) is NP-Hard. Please refer to Appendix A and
[21] for a detailed discussion.

C. Methodology

Our methodology is, therefore, to start by observing the
general properties and structures of the optimal reconfiguration
policy on small, solvable cases, and then use the observations
as heuristics to solve the problem for large cases. Particularly,
in Section III, we study systems that have a small number
of nodes and in whichX(t) is a continuous Markov process,
intending to understand, for example, how the optimal policies
are affected by various characteristics ofX(t) and the level
of reconfiguration cost. Then in Section IV, we use our ob-
servations as heuristics and propose heuristic-based solutions
that are applicable to problems with large number of nodes or
with non-MarkovianX(t).

Note that for systems whereX(t) is a continuous Markov
decision process, the dynamic topology design problem can be
modeled as a continuous timeMarkov decision process[22].
Each state in the decision process consists of one commu-
nication pattern fromX(t) and a feasible overlay topology.
A policy of the Markov decision process, corresponding to
a topology reconfiguration policy in the original problem, is
composed of a set of decisions, one at each state. When
the number of nodes in the system is small (e.g., no more
than 7), the number of states is still manageable and the
decision process can be practically solved using Howard’s
policy iteration algorithm [22]. Please refer to [21] for a
detailed discussion.

III. PROPERTIES ANDSTRUCTURE OFOPTIMAL

RECONFIGURATIONPOLICIES

Our goal in this section is to understand the structure and
properties of the optimal overlay reconfiguration policies. To
that end, we experiment on a sample network overlay with5
nodes and present our findings in this section.
Reconfiguration Aggressiveness:Fig. 4 shows a simple com-
munication requirement transition model with two communi-
cation patternsC1 andC2. We setd(ui, uj) = 1 for any pair of
nodesui and uj . The degree bound of the overlay networks
is set to2, so there are12 feasible topologies3. We find that

3There are actually 72 overlay topologies that are connected and with degree
bound 2. For simplicity of presentation, we only count the topologies in which
each node’s degree isexactly2.

the system keeps the same optimal policy when we gradually
increase the weight of reconfiguration cost(β in Eq. 5), until
it reaches certain thresholds. Fig. 5 shows the optimal policies
when we set theβ to different values. The system’s state
is denoted by a tuple of a communication pattern and an
overlay topology. An arrow pointing from<Cold, Told> to
<Cnew, Tnew> indicates that the optimal policy reconfigures
the overlay topology toTnew when it is in state<Cold, Told>
and the communication pattern changes toCnew. We observe
that the system, starting from any state, steers itself into a
recurrent chain of states, possibly after a few steps of initial
topology reconfiguration, and stays within the chain (The
corresponding chains are shown Fig. 6. We omit the figure for
β = 10000000 since it is the same as Fig. 5.(d).) We term the
chain anoptimal reconfiguration chainof the optimal policy.
Note that an optimal policy could have more than one chain.

Not all feasible overlay topologies show up in the chains.
The number of distinct topologies in a chain generally indi-
cates the system’s aggressiveness. When the weight of recon-
figuration cost is low (e.g.,β = 0 or β = 0.3), each optimal re-
configuration chain has two distinct topologies and the system
always reconfigures the topology whenever the communication
pattern changes. When the weight is high (e.g.,β = 0.4 or
β = 10000000), the system becomes conservative and tries to
avoid reconfiguration cost, and each optimal reconfiguration
chain, therefore, contains only one topology. The existence of
more one than chain in an optimal reconfiguration policy is
also related to the system’s aggressiveness: the system prefers
the “nearest” optimal reconfiguration chain that it can reach
with minimum initial reconfiguration cost. Our calculation
shows that the initial reconfiguration cost for different initial
states varies little unless the value ofβ is high. In the extreme
case whereβ = 10000000, the potential initial reconfiguration
cost is so high that the system simply sticks with its initial
overlay topology.

Fig. 7 presents a more complex system whoseX(t) has six
communication patterns. Fig. 8.a plots the number of distinct
overlay topologies in the optimal reconfiguration chains, the
reconfiguration cost (after weighting withβ), the occupancy
cost and the overall cost, respectively4. The figure shows that
the system’s sensitivity to the weight of transition cost is
discrete and threshold-based: the whole range ofβ is divided
into ranges by some thresholds; the system’s strategy stays
basically the same when the value ofβ stays within the same
range but changes abruptly when the value ofβ crosses into
another range. Within the same range, the system’s aggressive-
ness remains at the same level, the occupancy cost remains at
the same level, and the reconfiguration cost (before weighting
with β) remains the same. When the value ofβ crosses up into
another range, however, the system’s aggressiveness drops into
a lower level, the occupancy cost jumps up to a higher level,
and the reconfiguration cost drops to a new level. The plot for
the overall cost, however, is always continuous and monotonic.

4If there are multiple optimal reconfiguration chains in the optimal policy,
we take the expected value, assuming the system starts from a random state
with equal probability for all states.

<C1,T10> <C2,T10>

<C1,T11> <C2,T11>

<C1,T8> <C2,T8>

<C1,T6> <C2,T6>

<C1,T7> <C2,T7>

<C1,T3> <C2,T3>

<C1,T1> <C2,T1>

<C1,T4> <C2,T4>

<C1,T2> <C2,T2>

<C1,T5> <C2,T5>

<C1,T9> <C2,T9>

<C1,T12> <C2,T12>

<C1,T10> <C2,T10>

<C1,T11> <C2,T11>

<C1,T8> <C2,T8>

<C1,T6> <C2,T6>

<C1,T7> <C2,T7>

<C1,T5> <C2,T5>

<C1,T9> <C2,T9>

<C1,T12> <C2,T12>

<C1,T2> <C2,T2>

<C1,T1> <C2,T1>

<C1,T3> <C2,T3>

<C1,T4> <C2,T4>

<C1,T10> <C2,T10>

<C1,T11> <C2,T11>

<C1,T8> <C2,T8>

<C1,T6> <C2,T6>

<C1,T7> <C2,T7>

<C1,T3> <C2,T3>

<C1,T4> <C2,T4>

<C1,T5> <C2,T5>

<C1,T9> <C2,T9>

<C1,T12> <C2,T12>

<C1,T2> <C2,T2>

<C1,T1> <C2,T1>

<C1,T10> <C2,T10>

<C1,T11> <C2,T11>

<C1,T8> <C2,T8>

<C1,T6> <C2,T6>

<C1,T7> <C2,T7>

<C1,T3> <C2,T3>

<C1,T1> <C2,T1>

<C1,T4> <C2,T4>

<C1,T2> <C2,T2>

<C1,T5> <C2,T5>

<C1,T9> <C2,T9>

<C1,T12> <C2,T12>

(a)β = 0 (b) β = 0.3 (c) β = 0.4 (d) β = 10000000

Fig. 5. Optimal Policies. Solid arrows and dashed arrows show how the overlay topology is reconfigured when the communication pattern changes fromC1
to C2 and fromC2 to C1, respectively.

<C1,T12> <C2,T1> <C2,T6> <C1,T12>

<C1,T5> <C2,T1>

<C2,T6> <C1,T6>

<C1,T2> <C2,T2>

(a) β = 0 (b) β = 0.3 (c) β = 0.4

Fig. 6. Optimal Reconfiguration Chains. Solid arrows and dashed arrows have the same meanings as in Fig. 5.

C1

C4C6

C2 C3

C5

γ

γ

γγ

γ γ

γγ

γ

γ

Fig. 7. X(t) with Six Communication
Patterns

 2

 4

 6

 0 0.2 0.4 0.6 0.8 1
 8

 9

 10

8

9

10

0

1

2

N
um

be
r

O
f T

op
ol

og
ie

s

C
os

ts

Weight of Reconfiguration Cost (β)

Number of Topologies
Reconfiguration Cost

 Occupancy Cost
 Overall Cost

 2

 4

 6

 0 0.2 0.4 0.6 0.8 1
 8

 9

 10

8

9

10

0

1

2

N
um

be
r

O
f T

op
ol

og
ie

s

C
os

ts

Weight of Reconfiguration Cost (β)

Number of Topologies
Reconfiguration Cost

 Occupancy Cost
 Overall Cost

 2

 4

 6

 0 0.2 0.4 0.6 0.8 1
 8

 9

 10

8

9

10

0

1

2

N
um

be
r

O
f T

op
ol

og
ie

s

C
os

ts

Weight of Reconfiguration Cost (β)

Number of Topologies
Reconfiguration Cost

 Occupancy Cost
 Overall Cost

(a) γ = 0.5 (b) γ = 1 (c) γ = 2

Fig. 8. Trends of Aggressiveness and Costs

<C1,T12> <C2,T1>

<C6,T8> <C4,T7>

<C3,T10>

<C5,T7>

<C1,T8> <C2,T1>

<C6,T8> <C4,T7>

<C3,T10>

<C5,T7>

<C1,T8> <C2,T1>

<C6,T8>

<C3,T8>

<C5,T7>

<C3,T10>

<C4,T7>

(a)γ = 0.5, β = 0.26 (b)γ = 0.5, β = 0.7 (c) γ = 0.5, β = 0.73

Fig. 9. Optimal Reconfiguration Chains. Solid arrows represent transitions between states with different overlay topology, while dashed arrows represent
transitions between states with the same overlay topology.

We also find that the thresholds and the division ofβ
ranges depend on the level of transition rates between the
communication patterns. Fig. 8.b and c presents the graphs
when the transition rates are at two other levels. They show
that the β thresholds move to the left when the transition
rates are scaled up; the higher the transition rates are, the less
aggressive the system is.

Internal Structure of Optimal Reconfiguration Chains: The
optimal reconfiguration chains also have internal structure.

Fig. 9 presents some optimal reconfiguration chains for the
communication requirement transition model shown in Fig. 7.
In Fig. 9.a,C4 and C5 share the same overlay topology and
therefore there is no topology reconfiguration when the system
make a transition between them. In Fig. 9.b,C6 andC1 are also
sharing the same overlay topology. Informally, we refer to the
set of all communication patterns that share the same overlay
topology in the optimal reconfiguration chain as acluster.
When each communication is associated with only one overlay

topology in the optimal reconfiguration chain, the clusters are
mutually exclusive, as those in Fig. 9.a and b. In such cases,
the formation of clusters in an optimal reconfiguration chain
can exactly define the chain: the system keeps its overlay
topology when making a transition between communication
patterns in the same cluster and reconfigures when it crosses
clusters; when a reconfiguration occurs, the system always
reconfigures to the overlay topology shared by the next cluster.
There are cases, however, that a communication pattern may
be associated with multiple overlay topologies in the optimal
reconfiguration chain. Fig. 9.c shows an example in whichC3

belongs to two clusters, one including only itself, another one
including alsoC1, C6. When clusters overlap, the formation
of clusters in an optimal reconfiguration chain cannot exactly
define the chain. Our experiments, though, show that most
communication patterns are associated with only one overlay
topology in optimal reconfiguration chains.

We observe that the formation of clusters within an optimal
reconfiguration chain is affected by two categories of factors.
Global factors, such as the weight of the reconfiguration cost
and the level of transition rates, affect the number of distinct
overlay topologies, as previously discussed, and, therefore, the
number of clusters. In another category are local factors that
affect whether two given individual communication patterns
will be put into the same cluster. We identify three important
local factors in our experiments, namely, theimbalance of the
occupancy timeof two communication patterns, theirlevel of
couplingand theirsimilarity. Due to space limitations, we skip
detailed discussion. Please refer to [21] for the definitions of
these factors and their effects.
Summary In summary, from the case studies we understand
the structure of the optimal policy: The optimal policies are
composed of one or more optimal reconfiguration chains. The
system steers itself into one of the optimal reconfiguration
chains after a few steps of initial reconfiguration if it follows
the optimal reconfiguration policy. Within an optimal reconfig-
uration chain, communication patterns form clusters, defined
by a distinct topology in the chain. Clusters can be overlapping
or exclusive but most communication patterns are associated
with only one overlay topology. Topology reconfiguration is
triggered only when the system makes a transition across
clusters. Two categories of factors affect the formation of
clusters: global factors affect the number of clusters while local
factors affect whether two individual communication patterns
fall into the same cluster.

From the above case studies, we also learn thestructure of
the problemof constructing an optimal reconfiguration policy,
which roughly divides the whole range ofβ into three areas:

1) Lower Extreme Area:β is lower than a thresholdβ0. The
reconfiguration cost is trivial and the optimal policy is
the one that always reconfigures the overlay topology
to the static-optimal one for the next communication
pattern. We call this policy theAlways Change Policy
(ACP).

2) Upper Extreme Area:β is lower than another threshold
β1. The system is extremely conservative and always

keeps its overlay topology unchanged (or at least after
an initialization period). The reconfiguration cost is zero
and the optimal policy is the one that minimize the
overall occupancy cost. We call this policy theNever
Change Policy (NCP).

3) Middle Area: β is betweenβ0 and β1. The system’s
behavior is fine tuned. This area can be divided into
more threshold-based ranges. Simple policies, such as
ACP and NCP policies, are not good and we need a
more complicated method for constructing the optimal
policy when the value ofβ is in this area.

IV. CONSTRUCTINGRECONFIGURATIONPOLICIES FOR

LARGE SYSTEMS

When the system has a large number of nodes or the process
of transition among communication patterns is not Markovian,
we cannot obtain the optimal reconfiguration policies by
solving a Markov decision process. In this section, we propose
methods for constructing good reconfiguration policies for
these more general systems. We develop heuristic methods
that reflect the properties and conform to the structures we
observed in the optimal policies in Section III.

A. Always-Change Policy and Never-Change Policy

The Always-Change Policy is simple: the system always re-
configures to the static-optimal topology for the next commu-
nication pattern whenever the communication pattern changes.
The subroutine for finding the static-optimal topology is
discussed in Appendix A.

The Never-Change Policy never changes the overlay topol-
ogy. Since the reconfiguration cost is zero, the optimal policy
is one that minimizes the overall occupancy cost. Assume
there areN distinct communication patterns inX(t) and the
percentage of occupancy time for communication patternCi

is πi, then the long-run average of the overall cost is:

lim inf
∆t→∞

COST (∆t)

∆t
=

N∑
i=1

πi · f(Ci, T)

=

N∑
i=1

πi

∑
u,v∈V

Lu,v(T) · Ci(u, v) = f(

N∑
i=1

πiCi, T) (7)

whereT is the common overlay topology in the NCP policy.
Eq.7 shows that to minimize the long-run average of the
overall cost,T is actually the static-optimal topology for a
virtual communication pattern

∑N
i=1 πiCi and can be found

using the subroutine in Appendix A.

B. Cluster-Based Policies

Inspired by the properties we observed in Section III, we
propose Cluster-Based Policies(CBP) as heuristic approxima-
tion to the optimal reconfiguration policy. The basic idea of
constructing CBP policies is to mimic the structure of the
optimal ones:

1) We group the communication patterns into non-
overlapping clusters and find a common overlay topol-
ogy for each cluster; the common overlay topology for

a cluster is one that can minimize the overall occupancy
cost for the whole cluster.

2) Whenever the a communication pattern transition occurs,
if the next communication pattern is in the same cluster
as the old one, the system keeps the current overlay
topology, otherwise it switches to the common overlay
topology of the newly entered cluster.

The CBP policies maintain the essential structure of the real
optimal policy but simplify it in the following terms: first, there
is only one optimal reconfiguration chain in the CBP policies;
second, every communication pattern is associated with only
one overlay topology (and therefore only one cluster) and
all clusters in CBP policies are non-overlapping. The simpli-
fication allows us to construct the CBP policies efficiently.
Performance evaluation in Section V, however, shows that
CBPs are almost as good as the real optimal policies.

Fig. 10 sketches the algorithm for constructing CBP poli-
cies. The algorithm needs three types of input aboutX(t): the
set of distinct communication patterns,{Ci|1 ≤ i ≤ N}; the
average percentage of occupancy time that the system runs
with Ci, denoted byπi; and the average number of transition
from Ci to Cj per unit of time, denoted bybij . The value of
πi’s andbij ’s can be estimated in a real system via statistical
modeling methods. Specially, for applications in which the
transitions between communication patterns can be modelled
with Markov or Semi-Markov processes,πi’s andbij ’s can be
derived from the transition model by calculating the stationary
probabilities of the processes.

As most k-means style clustering algorithms, the proper
number of clusters needs to be estimated beforehand, based
on the weight of reconfiguration cost. The proper number can
also be found by trying out all numbers in a certain range
(in worst case, from1 to the total number of communication
patterns) and choosing the one that generates the best result.

Assume we are clusteringN communication patterns into
L clusters. The algorithm starts by randomly assigning theN
communication patterns intoL clusters. During each iteration,
the algorithm reassigns each communication pattern to the
cluster that is most ”suitable” for it. The iterations stop when
the clustering converges and the policy corresponding to the
final clustering is returned as the result of the algorithm.

In Fig. 10, lines (a1) and (a2) involve a procedure that con-
verts a clustering to its corresponding cluster-based reconfigu-
ration policy and line (b) involves a procedure that calculates
the cost of the policy. We describe the two procedures in detail
in the remainder of this section.

Converting Clustering To Policy The major task in this
procedure is to find one common overlay topology for each
cluster. Once the common overlay topologies are decided, the
policy is fully defined by the following rule: whenever the
system makes a transition between communication patterns
within the same cluster, the overlay topology is not changed;
whenever it makes a transition across clusters, it reconfigures
the overlay topology to the common overlay topology for the
newly entered cluster.

PROCEDURE CONSTRUCT-CBP-POLICY
Initialize-Clusters :

randomly assignC1, CN , ... CN to S1, S2, ... SL ;
Adjust-Clusters :

for each communication patternCi, 1 ≤ i ≤ N :
find the most suitable clusterS∗ for Ci:

for each clusterSj , 1 ≤ j ≤ L:
temporarily moveCi to Sj ;
convert the clustering (S1, S2, ... SL) to policy P ; — line (a1)
evaluate the cost of policyP ; — line (b)

Let S∗ is the clustering with the least cost in the above loop;
moveCj to S∗;

Loop-Back :
go back to Adjust-Clusters until the clustering does not change;

Post-Handle:
convert the clustering (S1, S2, ... SL) to policy P ; — line (a2)
return policyP ;

Fig. 10. Pseudo-code of Constructing Cluster-Based Polices

The common overlay topology for a cluster is one that
can minimize the total occupancy cost of the cluster. For-
mally, consider a cluster containing communication patterns
C1, C2, . . . , Cs, the common topology of the cluster is an
overlay topologyT that minimizes the occupancy cost of the
whole cluster:COSTc(∆t) =

∑s
i=1 πi∆t · f(Ci, T). Similar

to the logic in Section IV-A, this optimal common overlay
topology is actually the optimal-static topology for a virtual
communication pattern

∑s
i=1 πiCi and can be found using the

subroutine in Appendix A.
Calculating Policy Cost: AssumeTi is the topology assigned
to communication patternCi by the policy. Because in a CBP
policy, each communication pattern is associated with only
one overlay topology, we have:lim inf∆t→∞

COSTp(∆t)
∆t =∑N

i=1 πif(Ci, Ti) + β ·∑N
i=1

∑N
j=1 g(Ci, Ti, Cj , Tj) · bij .

V. PERFORMANCEOF APPROXIMATE POLICIES

A. Performance of Constructed Policies — Small Networks

Table I shows the actual experimental parameters we use to
generate a typical case problem.

Fig. 11.a compares the cost of the optimal policy, the ACP
policy, the NCP policy and thebestCBP policy for the same
case constructed using the parameters in Table I. Among all
CBP policies resulting from using different number of clusters
in the clustering algorithm (K in Fig. 10), the best CBP policy
is defined as the one whose cost is most close to that of the
optimal policy. The y-axis represents the policy cost. The x-
axis represents the spectrum of the weight assigned to the
reconfiguration cost. The figure shows that the cost of the NCP
policy does not change when the weight of reconfiguration
cost is increased because the policy operate with a single
policy and does not incur a reconfiguration cost. The cost of
the NCP policy coincides with that of the optimal policy for
a largeβ, which means that NCP policy is actually optimal
when the weight of the reconfiguration cost is beyond a certain
threshold. The figure also shows that the ACP policy is actually
optimal when the weight of the reconfiguration cost is below a
certain threshold but its cost increases very quickly when the
weight of the reconfiguration cost is large. Finally, the figure
shows that the CBP policies approximate well the optimal

parameters small network large network
underlying native network - Internet graph generated using GT-ITM, 1400 nodes: 1

transit domain(200 nodes), 20 stub domains(60 nodes
in each stub)

number of overlay nodes 5 40, randomly selected from the stub domains
overlay link cost matrix random value in range [10,15] number of hops in native network
number of communication patterns 10 10
number of transitions from each communication patternrandom integer in range [1,3] random integer in range [1,3]
transition rates between communication patterns random value in range [2,6] 1
data demand between pairs of overlay nodes in com-
munication patterns

random value in range [0.1, 100] 1 for 15 percent of total pairs (randomly chosen), 0 for
other pairs

degree bound on feasible overlay topologies 2 4
number of feasible overlay topologies 72 -

TABLE I

EXPERIMENT PARAMETERS

17800

17900

18000

18100

18200

18300

18400

18500

18600

18700

18800

0.001 0.01 0.1 1 10 100 1000

P
ol

ic
y

C
os

t

Weight of Reconfiguration Cost

Best Cluster-Based Policy
Optimal Policy

Never-Change Policy
Always-Change Policy

17800

17900

18000

18100

18200

18300

18400

18500

18600

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10
O

ve
ra

ll
C

os
t o

f R
es

ul
tin

g
C

lu
st

er
-B

as
ed

 P
ol

ic
y

A
ct

ua
l N

um
be

r
of

 C
lu

st
er

s
in

 R
es

ul
tin

g
C

lu
ts

er
in

g

Number of Clusters Given to Clutsering Algorithm

Policy Cost vs Given #Clusters
Resulting #Clusters vs Given #Clusters

Cost of Optimal Policy

18200

18250

18300

18350

18400

18450

18500

18550

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

O
ve

ra
ll

C
os

t o
f R

es
ul

tin
g

C
lu

st
er

-B
as

ed
 P

ol
ic

y

A
ct

ua
l N

um
be

r
of

 C
lu

st
er

s
in

 R
es

ul
tin

g
C

lu
ts

er
in

g

Number of Clusters Given to Clutsering Algorithm

Policy Cost vs Given #Clusters
Resulting #Clusters vs Given #Clusters

Cost of Optimal Policy

(a) Policies (b)β = 0.1 (c) β = 10

Fig. 11. Performance of Approximate Policies Against Optimal Policies — Experiment With 5 Nodes

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 0.001 0.01 0.1 1 10 100 1000

P
ol

ic
y

C
os

t

Weight of Reconfiguration Cost

Best Cluster-Based Policy
Never-Change Policy

Always-Change Policy
Never-Change + Random Topology

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 0.001 0.01 0.1 1 10 100 1000

P
ol

ic
y

C
os

t

Weight of Reconfiguration Cost

Best Cluster-Based Policy
Never-Change Policy

Always-Change Policy
Never-Change + Random Topology

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 10
 0

 2

 4

 6

 8

 10
P

ol
ic

y
C

os
t

A
ct

ua
l N

um
be

r
of

 C
lu

st
er

s
in

 B
es

t-
C

B
P

Weight of Reconfiguration Cost

Best Cluster-Based Policy
Never-Change Policy

Always-Change Policy
Never-Change + Random Topology

#Clusters in Best-CBP Policy

(a) Markovian Cases (b) Non-Markovian Cases (c) Magnification of (b)

Fig. 12. Performance of Approximate Policies Against Optimal Policies in — Experiment With 40 Nodes

policy when the weight of the reconfiguration cost is in its
middle range.

For the same cases, figures Fig.11.(a)-(b) show how the
resulting clustering and the performance of corresponding
CBP policies are affected by the number of clusters input to the
clustering algorithm. Figures (a) and (b) are for two different
weights on reconfiguration cost (β in Eq. 5), respectively. The
x-axis represents the number of clusters,K, that we input to
the algorithm. The right y-axis represents the actual number of
non-emptyclusters in the resulted clustering; the figure shows
that clustering algorithm does not necessarily use up all the
clusters if it finds that less clusters give better result. The right
y-axis represents the cost of resulting cluster-based policy. The
figures show that a good estimation of the proper number of
clusters can help the algorithm to find the best cluster-based

policy whose cost is most close to that of the optimal policy.

B. Performance of Constructed Policies — Large Networks

We also experiment on problems with a larger number of
nodes. We generate a native network using GT-ITM topology
generator [23] and select some native nodes from the stub
domains as overlay nodes. We assume the transitions between
communication patterns are Markovian. Table I shows the
actual experimental parameters we use to generate a typical
case problem.

Fig. 12.a presents the costs of different policies for this
problem. The plots of NCP, ACP and best-CBP are very
similar to those in Fig. 11.a. The figure also presents the cost
of a naive policy that randomly chooses a feasible overlay
topology and sticks with it, a policy that is actually used

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 0.001 0.01 0.1 1 10 100 1000

P
ol

ic
y

C
os

t

Weight of Reconfiguration Cost

NCP + Random Topology
NCP

Best CBP
ACP

New Formulation: Best CBP
New Formulation: ACP

Fig. 13. Using Other Formulations of Reconfiguration Cost

by many overlay applications. The cost is the mean over20
random feasible overlay topologies. The figure shows that
NCP, ACP and CBP policies perform much better than the
naive policy in their applicable ranges.

Our policy construction methods are applicable to non-
Markovian cases. Fig. 12.b presents the performance of NCP,
ACP, best-CBP and the naive policy for a non-Markovian
problem. Most parameters for the experiment are the same as
those given in Table I. The transitions between communication
patterns, however, are semi-Markovian this time: we first
randomly assign the transition probabilities in the embedded
Markov chain, and then, for each transition, we assign the
average pre-transition occupancy time to a random value in
the range[0.2, 1].

The plots in the figure are very similar to those in Fig. 11.b:
the NCP, ACP and CBP policies perform much better than
the naive policy in their applicable ranges and the CBPs
adapt well when the weight of reconfiguration cost varies.
Fig. 12.c magnifies Fig. 12.b for the portion whereβ is in
range [2,16] and CBPs outperform both NCP and ACP. Both
the policy-cost and the number-of-cluster plots for the best-
CBPs show general trends similar to those in Fig. 8. This
reaffirms our belief that the way we construct CBPs reflects
the basic structures of the optimal policies and manages to
achieve the essential tradeoff between the occupancy cost
and the reconfiguration cost inherent in the dynamic overlay
topology reconfiguration problems. Note that there are ”rip-
ples”, however, in both plots. This is due to the fact that
the constructed CBPs are merely approximate alternatives to
the optimal policies and the fact that our clustering algorithm
and simulated annealing algorithm are also approximate. The
ripples, however, are minor; the constructed CBPs perform
consistently in approximating the optimal policies.

Finally, in our policy construction methods, the formulation
of function g(·) in Eq.4 can be substituted with other formu-
lations without affecting the applicability of the algorithms.
Fig. 13 shows the cost of resulting policies when another
formulation

∑
u,v

w(u, v) · |Told(u, v)− Tnew(u, v)|

is used, wherew(u, v) weights the overlay link(u, v) with
the number of end-to-end minimum-operation-cost paths that

 2000

 2500

 3000

 3500

 4000

 4500

 0.001 0.01 0.1 1 10 100 1000

P
ol

ic
y

C
os

t

Weight of Reconfiguration Cost

Best Cluster-Based Policy
Never-Change Policy

Always-Change Policy

 2000

 2500

 3000

 3500

 4000

 4500

 0.001 0.01 0.1 1 10 100 1000

P
ol

ic
y

C
os

t

Weight of Reconfiguration Cost

Best Cluster-Based Policy
Never-Change Policy

Always-Change Policy

(a) Degree = 4 (b) Degree = 6

 2000

 2500

 3000

 3500

 4000

 4500

 0.001 0.01 0.1 1 10 100 1000

P
ol

ic
y

C
os

t

Weight of Reconfiguration Cost

Best Cluster-Based Policy
Never-Change Policy

Always-Change Policy

 2000

 2500

 3000

 3500

 4000

 4500

 0.001 0.01 0.1 1 10 100 1000

P
ol

ic
y

C
os

t

Weight of Reconfiguration Cost

Best Cluster-Based Policy
Never-Change Policy

Always-Change Policy

(c) Degree = 8 (d) Degree = 12

Fig. 14. Degree of Overlay Networks versus Cost of Reconfiguration Policies

cross the link in topologyTold. For NCP and random-NCP
policies, the use of a new formulation does not affect the
resulting policies and their cost. For ACP, the policies them-
selves are not affected; their costs changed, reflecting the new
formulation, but the difference is trivial whenβ is in its lower
range (where ACP policies are applicable). So only CBPs are
affected. Fig. 13 compares the experiment results from the
new formulation (Formulation 2) to those in Fig. 12.a (the
two sets of experiments use the same set of parameters except
for the reconfiguration cost formulation). The figure shows
that the CBPs perform similarly under the new formulation.
They generally become less aggressive though, because the
new formulation numerically generates higher reconfiguration
cost than the old one.

C. Effect of Degree Bound

As discussed in Section II, the degree bound of an overlay
characterize the types of link maintenance costs that are not
directly related to the bandwidth consumption for delivering
user data. It reflects an overlay network provider’s aversion
to these types of cost. In this section, we are interested in
understanding how dynamic topology reconfiguration policies
are affected by the degree bound, and the other way, what
dynamic topology reconfiguration implies to the choice of
degree bound.

Fig. 14 shows how the degree of an overlay network affects
the cost of the reconfiguration policies. Most parameters for
the experiment are the same as those given in Table I. The
transitions between communication patterns are Markovian.
From each communication pattern, the system can make up
to 4 transitions and the transition rates are random values in
range [1,5].

The four figures show the cost of the NCP, ACP and
best-BCP policies when we set the degree bound of the
overlay network to4,6,8, and12, respectively. We have three

interesting observations from these experiments. First, the cost
of the policies decreases when the degree bound increases.
Intuitively, on one hand, with larger degree bound, there are
more feasible overlay topologies; the system may be able
to find better overlay topologies with lower occupancy cost.
On the other hand, with larger degree bound, the system
may be able to establish new overlay links without having
to tear down the old ones; this reduces the reconfiguration
cost. This suggests the overlay network designers use larger
degree bound when possible. Second, however, the gain of
using a larger degree bound varies. In Fig. 14, when the
degree bound is increased from4 to 6, both the cost of ACP
and that of the NCP decrease significantly. When the degree
bound is increased from6 to 8, however, only the cost of the
NCP decreases significantly. This suggest that overlay network
designers should not pursue larger degree bounds blindly.
The benefit may be limited, especially when the weight of
reconfiguration cost is at its low range — by allowing the
overlay topology to be dynamically reconfigured, the need for
a higher degree bound can be reduced. Finally, consider the
space below the plot of the best-CBP and above the plot of the
ACP in the figures. The space indicates how much the CBPs
can outperform the ACP and the NCP in their applicable range.
Notice that the space becomes narrower when the degree
increases. This suggests that the CBPs outperform ACP and
NCP most when the overlay networks have a very restrictive
degree bound.

VI. CONCLUDING REMARKS

We have studied the problem of dynamically reconfiguring
the topology of an overlay network in response to the changes
in the communication requirements. We have considered two
costs of using an overlay: the occupancy cost and the re-
configuration cost. The ideal goal is to find the optimal
reconfiguration policies that can minimize the potential overall
cost of using an overlay. The problem is NP-hard and good
approximate policies are called for. We have studied the
properties of the optimal policies through experiments on
small systems. We then used our observations as heuristics
and proposed methods of constructing approximate policies.

Our studies have shown that dynamic overlay topology
reconfiguration can significantly reduce the overall cost of
using an overlay. It allows an overlay network provider to take
advantage of the superior configurability generally provided
by the overlay networks. Our studies have also shown that the
optimal reconfiguration policies have structure and this allows
us to construct good-performance approximation policies by
mimic the observed structure of the optimal reconfiguration
policies. In many scenarios, a simple topology reconfiguration
policy (ACP or NCP) can actually serve as a optimal policy.
In other scenarios, the more complicated CBP policies can be
used to approximate the optimal policies. Our studies have
shown that our methods of constructing ACP, NCP and CBP
policies are applicable to various models for the dynamics
of the communication requirements and formulations for the
reconfiguration cost, and the resulting policies have good

performance. Finally, our studies have shown that, dynamic
topology reconfiguration helps to reduce the need to very high
node-degrees in overlay topologies, which potential incurs
high overlay link maintenance cost.

REFERENCES

[1] Larry Peterson, Scott Shenker, and Jonathan Turner, “Overcoming the
Internet Impasse Through Virtualization,” inProceedings of the 3rd
ACM Workshop on Hot Topics in Networks (HotNets-III), November
2004.

[2] J. Touch, Y. Wang, L. Eggert, and G. Finn, “A virtual internet
architecture,” Technical report, ISI, ISI-TR-2003-570, March 2003.

[3] Nick Feamster, Hari Balakrishnan, Jennifer Rexford, Aman Shaikh, and
Jacobus van der Merwe, “The case for separating routing from routers,”
in FDNA ’04: Proceedings of the ACM SIGCOMM workshop on Future
directions in network architecture. 2004, ACM Press.

[4] Micah Beck, Terry Moore, and James S. Plank, “An end-to-end
approach to globally scalable programmable networking,” inFDNA ’03:
Proceedings of the ACM SIGCOMM workshop on Future directions in
network architecture. 2003, ACM Press.

[5] Yang-Hua Chu, Sanjay G. Rao, and Hui Zhang, “A case for end system
multicast,” in ACM SIGMETRICS 2000, Santa Clara, CA, June 2000,
ACM, pp. 1–12.

[6] S. Banerjee, B. Bhattacharjee, C. Kommareddy, and G. Varghese,
“Scalable application layer multicast,” inProceedings of the ACM
SIGCOMM 2002, New York, 2002, pp. 205–220.

[7] Dimitris Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel Waldvogel,
“ALMI: An application level multicast infrastructure,” inProceedings of
the 3rd USNIX Symposium on Internet Technologies and Systems (USITS
’01), San Francisco, CA, USA, Mar. 2001, pp. 49–60.

[8] Jorg Liebeherr and Tyler K. Beam, “Hypercast: A protocol for main-
taining multicast group members in a logical hypercube topology,” in
NGC ’99: Proceedings of the First International COST264 Workshop on
Networked Group Communication. 1999, pp. 72–89, Springer-Verlag.

[9] Robert Fink, “Network integration — boning up on IPv6 — the 6bone
global test bed will become the new Internet,”Byte Magazine, vol. 23,
no. 3, pp. 96NA–3–96NA–8, Mar. 1998.

[10] Hans Eriksson, “Mbone: the multicast backbone,”Commun. ACM, vol.
37, no. 8, pp. 54–60, 1994.

[11] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe,
“A blueprint for introducing disruptive technology into the internet,”
SIGCOMM Comput. Commun. Rev., vol. 33, no. 1, pp. 59–64, 2003.

[12] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert
Morris, “Resilient overlay networks,” inProceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP-01), New York,
2001, pp. 131–145.

[13] A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure overlay
services,” inProceedings of the ACM SIGCOMM 2002, New York,
2002, pp. 61–72.

[14] Zhenhai Duan, Zhi-Li Zhang, and Yiwei Thomas Hou, “Service overlay
networks: Slas, qos, and bandwidth provisioning,”IEEE/ACM Trans.
Netw., vol. 11, no. 6, pp. 870–883, 2003.

[15] S. L. Vieira and J̈org Liebeherr, “Topology design for service overlay
networks with bandwidth guarantees.,” inIWQoS, 2004, pp. 211–220.

[16] A. Sundararaj, A. Gupta, and P. Dinda, “Dynamic topology adaptation
in virtual networks of virtual machines,” inLCR 2004: Proceedings of
the Seventh Workshop on Langauges, Compilers and Run-time Support
for Scalable Systems.

[17] Joe Touch, “Dynamic internet overlay deployment and management
using the x-bone,”Computer Networks, vol. 36, no. 2-3, pp. 117–135,
2001.

[18] G. N. Rouskas and M. H. Ammar, “Dynamic reconguration in multihop
WDM networks,” Journal of High Speed Networks, 1995.

[19] I. Balldine and George Rouskas, “Dynamic load balancing in broadcast
WDM networks with tuning latencies,” inProceedings of the Conference
on Computer Communications (IEEE Infocom), March/April 1998.

[20] Zhi Li and Prasant Mohapatra, “Impact of topology on overlay routing
service.,” inINFOCOM, 2004.

[21] Jinliang Fan and Mostafa H. Ammar, “Dynamic topology reconfigura-
tion of overlay networks: Structure and approximation of optimal poli-
cies. http://www.cc.gatech.edu/˜ jlfan/policy-techreport.pdf,” Technical
report, Georgia Institute of Technology, 2004.

[22] Ronald A. Howard,Dynamic Programming and Markov Processes, The
MIT Press, Cambridge, Massachusetts, 1960.

[23] Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zegura, “Modeling
internet topology,”IEEE Communications Magazine, vol. 35, no. 6, pp.
160–163, June 1997.

[24] S. Kirkpatrick, “Optimization by simulated annealing: quantitative
studies,”Journal of Statistical Physics, vol. 34(5/6), pp. 975–986, 1984.

[25] A. Anagnostopoulos, L. Michel, P. Van Hentenryck, and Y. Vergados,
“A simulated annealing approach to the traveling tournament problem,”
in Proceedings CPAIOR’03, Montreal, Canada, 2003.

PROCEDURE FIND-OPTIMAL-TOPOLOGY
Initialize :

construct a random initial point and calculate its cost;
let Optimal-Topologybe the current topology;
let Optimal-Costbe the current cost;
estimate the initial temperatureT0 and let current temperatureT = T0;

Repeat phases untilT is close enough to zero:
set the stop temperatureTe of this phase to1

φ
T ; — φ > 1

Repeat moves untilT reachesTe:
randomly mutate the current topology using one of the operations;
repeat the above step until the resulting topology is a connected one;
evaluate the cost functionf of the new topology
calculate the change of cost,∆f ;

if ∆f < 0, accept the new topology; else accept with probabilitye
∆f
T ;

if ∆f < 0, updateOptimal-TopologyandOptimal-Cost;
let T = ρT ; — geometric cooling;ρ is typically in [0.95,1)

let T = ςTe; — reheating;φ > ς > 1
OutputOptimal-TopologyandOptimal-Cost;

Fig. 15. Pseudo-code of Finding Optimal-Static Topology Using Simulated
Annealing

APPENDIX A: FINDING STATIC-OPTIMAL OVERLAY

TOPOLOGY FORA SINGLE COMMUNICATION PATTERN

In this appendix, we present a Simulated Annealing based
algorithm for solving the problem of finding the static-optimal
topology for a given single communication pattern. The prob-
lem is previously formulated in Section II-A and is NP-
hard [21]. An heuristic algorithm for solving this problem is
a necessary subroutine for constructing the NCP, ACP and
CBP policies discussed in section IV. We only sketch the
algorithm here. Please refer to [21] for a complete treatment
(i.e., literature and performance evaluation).

Simulated Annealing is a global optimization meta-
algorithm. Starting from an initial solution and an initial
temperature, the meta-algorithm walks randomly in the so-
lution space. Cost-decreasing moves are certainly accepted
while cost-increasing ones are accepted only with a probability
P = e

∆f
T , where ∆f is the increase in the cost function

f and T is the temperature. By decrementing and possibly
incrementing the temperature following a deliberateannealing
schedule, this probabilistic process will finally stabilize at a
final solution. The overall structure of our algorithm is shown
in Fig. 15.
Initial Point The algorithm starts from a random overlay
topology that is connected and subject to degree boundK.
Searching for a Solution Finding another feasible solution
in the neighborhood of the current feasible solution is the key
task in the probabilistic walk-around. We accomplish the task
by first mutating the current feasible overlay topology into a

slightly differenttopology that still satisfies the degree bound
and then verifying the connectivity of the new topology. We
use the following mutating operations in the algorithm.
• Operation 1: This operation randomly chooses two nodes

A and B whose degrees are less thanK and adds an
overlay link between the two nodes.

• Operation 2: This operation randomly chooses four nodes
that form a local setup like Fig. 16.a and converts it to
either Fig. 16.b or Fig. 16.c.

A

C

B

D

a.

A

C

B

D

b.

A

C

B

D

c.

Fig. 16. Mutating Operation 2

• Operation 3: This is a derivative of Operation 2. This
operation randomly chooses four nodes that form a local
setup like Fig. 17.a and converts it to either Fig. 17.b or
Fig. 17.c.

A

C

B

D

a.

A

C

B

D

b.

A

C

B

D

c.

Fig. 17. Mutating Operation 3

These operations allow the algorithm to move towards
any feasible solution gradually and continuously without ever
leaving the space of feasible solutions.
Initial Temperature Kirkpatrick [24] suggested to set the
initial temperature to one that results in an average acceptance
probability of about 0.8 for uphill moves from the initial point.
We estimate the initial temperatureT0 in the following way:
we attempt a number of random cost-increasing moves, all
from the initial point, observe the average increase in cost,∆f ,
and then calculate the initial temperatureT0 by: T0 = ∆f

ln(0.8)
.

Annealing ScheduleIn the literature, the choice of annealing
schedule is quite problem specific. In several large combinator-
ial problems, researchers use geometric cooling for expediency
yet get good result with the help of reheating [25]. We follow
the same direction. We try different types of schedules and find
the following one is good for our problem. The schedule is
composed of phases. In thepth phase, starting from the initial
value T p

0 , the temperature is multiplied byρ each time the
algorithm attempts a move (no matter if the move is accepted
or rejected), i.e.,T p

k+1 = ρT p
k , where ρ is typical a value

between 0.95 and 1. When the temperature reaches down1
φT p

0 ,
whereφ > 1, the algorithm ends the current phase. It reheats
the system by multiplying the temperature byς, whereς > 1,
and enters the(p + 1)th phase with a starting temperature
T p+1

0 = ς
φT p

0 . By choosingφ > ς, e.g.,φ = 3 and ς = 2,
the temperature goes down after each phase and eventually
gets close to zero, where the annealing schedule ends and the
algorithm exits.

