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ABSTRACT

Microarrays measure values that are approximately
proportional to the numbers of copies of different mMRNA
molecules in samples. Due to technical difficulties,
the constant of proportionality between the measured
intensities and the numbers of mMRNA copies per cell
is unknown and may vary for different arrays. Usually,
the data are normalized (i.e., array-wise multiplied by
appropriate factors) in order to compensate for this effect
and to enable informative comparisons between different
experiments. Centralization is a new two-step method
for the computation of such normalization factors that is
both biologically better motivated and more robust than
standard approaches. First, for each pair of arrays the
quotient of the constants of proportionality is estimated.
Second, from the resulting matrix of pairwise quotients an
optimally consistent scaling of the samples is computed.

cates of experiments, see e.g. (Lee et al., 2000).
Correctness is closely related to the question of the
interpretation of the data: how can signal intensities be

translated into levels of mMRNA within the cells? This
fundamental challenge equally applies to arrays, Northern
blotting experiments and quantitative PCR (qPCR). The
relation of measured intensities to the cellular amounts
of MRNA molecules is obscured by multiplicative noise
(i.e., errors proportional to the measured value) thatdead
to systematic inconsistencies. The most important sources
of such problems are listed in Table 1. Some of these
influences lead to systematic biases with respect to genes
or spots, see e.g. Li and Wong (2001), while others
lead to different scalings for the individual arrays or
samples. Many expression analyses are not disturbed by
gene-specific multiplicative errors, since they are easily
eliminated by taking ratios between different samples.

Contact: Alexander.Zien@gmd.de This paper deals with the proper treatment of array-

dependent incorrectness. Obviously, it is important to
INTRODUCTION control this type of error, since it may otherwise lead
Microarrays, like any other technology for measuringto false conclusions about the regulation of individual
RNA expression levels, are subject to errors that arise frongenes in different cellular conditions (as measured from
various sources. According to their nature, these errorglifferent samples). In fact, normalization methods have
counteract one of the two main attributes of accuracybeen standard procedures in mRNA biology from its
precision or correctness. If a source of error is modeled very beginning. Also, improvements to the technology are
as a random variable, it is the variance that hampersuggested, like furnishing arrays with control spots that
precision, while a non-zero expectation value impedesan help to compensate for spot variability (Schuchhardt
correctness by introducing a bias. et al., 2000). Most of the error-introducing variables

Precision is dealt with in a variety of ways. First of all, might potentially be controllable with the help of internal

much work is devoted to the development and manufactuistandards, which, however, are not yet readily availabie fo
ing of more precise hardware, including robots and sentaboratory use (Ke et al., 2000; Vu et al., 2000). However,
sors. Computational contributions to increasing the prethis approach is laborious and costly, and it still might be
cision of measurements include oligonucleotide selectioimpossible to account for all variables at the same time.
strategies; precise image analysis; determination and ap-There are three practical approaches to normalization
propriate computational treatment of background intenthat are presently in common use: the total RNA approach,
sity; compensation for non-linearity of signal intensity; the housekeeping gene approach, and the globalization
and more. Generally, the highest noise to signal ratios arapproach. Each approach is based on an assumption about
observed for low intensities. An important way to improve cellular gene expression. In particular, in each case some
the significance of measurement values is to perform replipopulation of RNA molecules is assumed to be present at
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variable dependson remedy possible
gene/ spotted sequence  sample  experimental protocol

number of cells in sample - ++ - in some cases (cell counting)
RNA isolation efficiency ? + ++ principally yes (e.g. intehséandards)
RT / labelling efficiency + - ++ in part (e.g. internal standsy
spot size and density ++ - - yes (e.g. multiple standardipedtiag)
hybridization / washing efficiency ++ - ++ yes (two-channetasurements)
exposure time; detection sensitivity - - ++ trivial

Table 1. Overview of contributions to multiplicative gene expressimeasurement errors. Errors that depend on the sample exgerimental protocol are
called array- or sample-dependent, since they affect alisggenes of an array equally. Errors depending on sequeitoer the expressed mRNA or the
spotted cDNA/oligonucleotide) are called gene-dependenshort; they vary in magnitude on the same array. Adeligwors are assumed to be negligible or
to be corrected for by subtraction of background intensityhe image analysis software. When the true interest isprd¢vels, additional gene-dependent
effects enter: translation efficiency, efficiency of pastaslational modifications, transport efficiency and agergrotein life span.

| method assumption scaling of expression levels
total RNA Constant expression of total RNA (or, almost equivalemtyppsomal RNA). Use fixed amount of total RNA for measureraen
housekeeping  Housekeeping genes are constitutively expressed (i.enatant level). Divide by intensity of housekeeping genes.
globalization The total number of mMRNA molecules per cell is constant. vy sum (or mean) of all intensities.
ANOVA Different models are possible. Errors are always normaljrithuted. Leads to globalization or related procedure.
centralization  Regulation is well-behaved (e.g., most genes are not signily regulated Find most probable consistent pairwise scaling
OR about equal numbers of genes are up- and downregulated). based on central tendency of expression ratios.

Table 2. Overview over common normalization methods in comparisothé proposed method, centralization.

a constant level in all investigated cells. Therefore, thisassumption is wrong (Suzuki et al., 2000; Velculescu et al.,
population can serve as a biological internal standardl999; Goldsworthy et al., 1993), although regulation of
An overview over the discussed normalization methods ishese genes appears to be low compared to other genes. In
given in Table 2. fact, for defined cell types analyzed in rather comparable
Thetotal RNA approach rests on the assumption that, cell states (e.g. isolated cells of a certain type with and
at every time point, each cell carries the same amounwithout stimulation) it might still be a suitable method (in
of total RNA. More than 90% of the total RNA is 18S particular for techniques which do not allow to determine
and 28S ribosomal RNA (rRNA), which was believed by gene expression levels for a high number of different genes
some people to be constitutively expressed, even whein parallel, such as qPCR, Northern blotting and RNAse-
the amount of mRNA varies. Consequently, by using grotection assays). Overall, however, if one is interested
fixed amount of total RNA for measurements, the firstin smaller changes in gene expression levels (less than
problem mentioned in Table 1 would be circumventediten-fold) or in comparing rather different probes, which
However, it is erroneous to assume that total RNA levelss the case in many applications, the housekeeping gene
or rRNA levels are constant (Suzuki et al., 2000). Byapproach no longer can be considered appropriate.
now, it is well known that different cell types and cells The globalization method is the most commonly used
in different conditions produce different amounts of totalnormalization heuristic in large-scale gene expression
(and ribosomal) RNA, ranging from less than 2mg to morebiotechnology: for each array, all measured values are
than 100mg total RNA per(? cells. divided by their sum (or average). Such a kind of protocol
The housekeeping gene approach assumes that the is, among others, implemented in the array analysis
expression of housekeeping genes, e.g. GAPDH}or program (Atlasimage 1.101 by ClonTech, Germany) that
actin, is not significantly regulated. This approach hasvas used for generation and primary evaluation of the
been used in molecular biology for over two decadedata that are discussed in the results. A similar approach
now (in Northern blotting and PCR experiments etc.).of estimating total RNA was suggested for Northern
However, it becomes more and more clear that thiBBlotting experiments by probing with a poly-dT probe for
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total mMRNA (Goldsworthy et al., 1993). The globalization notable exception. Given this assumption, the central ten-
method implicitly rests on the assumption that the amountdlency of the expression level ratios of two measurements
of MRNA per cell is constant. This assumption is theo-is a good estimate of the their relative scaling, i.e. the
retically questionable for several reasons. First, addingjuotient of the experiment-dependent multiplicative erro
the intensities of different genes is not per se meaningful\fter computing probability distributions for the pairves
since they occur at different scales due to gene-dependestaling for every pair of measurements, we employ a max-
multiplicative errors (c.f. Table 1). Second, and of higherimum likelihood approach to find the most probable con-
practical importance, often the sum of all expressiorsistent scaling vector. These factors can then be applied to
signals is dominated by the strongest signals (Velculescanable a meaningful comparison of all the measurements
et al. (1999); see also results). But strongly expressedmong each other.

genes are most likely to be regulated as they represent

the major expression products of specialized cells, e. gETHODS

immunoglobulin chains for plasma cells, hemoglobingq, the description of our procedure we will use the
for erythroblasts, etc. Finally, as long as not the wholeioying notation and conventions. We consider the
genome is covered by an array, the question remaing,easurement of biological sampleds’ = (k... ko).
whether the set of screened genes forms a representgs, clarity we assume that each sample € K is

tive sample that resembles the behavior of the entirgneasyred once and with a separate array. Generalizations

transcriptome. _ _ _ to other settings are straightforward. E.g., it is common
RecentlyANOVA (analysis of variance) was introduced , nerform multiple measurements (on multiple arrays)

to the field of expression data analysis (Z(_)Iotukhin antyf the same sample in order to reduce the measurement
Lange, 2000; Kerr et al., 2001). ANOVA is a general oo sych replicate measurements should first be brought
purpose data analysis technique that leaves certain d89r&g scale by normalizing. Here, stronger assumptions may
of freedom for this specific application. The eXpressiong|q since the samples are identical. Then, averages can

measurement can be modelled differently, for examplg,q computed and subsequently be treated as a single

with respect to the potential sources of error. Of coursey;iy,a| array with reduced variances of the associated-erro

different models are necessary for one- and two-channglbms.
arrays. The application of ANOVA to single-channel  rqr gimplicity we also assume that for each sample
measurements as described in (Zolotukhin and Langgne same set; — {01 g} of |G| different
2000) recovers the usual globalization method. Saturateéienes is measured. Mul’tiple’ measurements of a gene
ANOVA models of the type described in (Kerr et al., jn the same array can most easily be modeled by
2001) Ieaq to a kind of globalizati(_)n of log-intensities. 4 single average intensity value and an appropriately
However, it seems to be too early to judge the performancg, g ced associated variance. If different clones or oligo-
of ANOVA for the analysis of gene expression data. nucleotides are used for populating the redundant spots,
Given the limitations of the available solutions, a more;; ig again advantageous to rescale the measured values
sophisticated but still feasible normalization method isyefore averaging. Proper treatment of the case that some

of high priority. An appropriate normalization method yenes are measured for some but not all samples will be
should fulfill the following criteria: (i) it should not be explicitly described below.

based on single or few pre-defined genes (as often no | o ;- . denote the true expression level of ganén
specific gene can be named that is expressed at a constgg;npléé, i.e.l* , isthe (average) number of MRNA copies
absolute number of mRNA copies per cell), rather itper cell in the sample. Letn, , denote the measured
should take into account that a large and variable set alue, i.e. a number proportignal to the signal intensity

genes can be significantly regulated; (ii) it should only b&yq 45 red at the spot fgion the array for sample. In this
based on fairly reliable measurements (to ensure stalistlcpaper’ we assume that the main sources of measurement

soundness); (iii) it should be inv_ariant with respect ©0gpror can be modeled by three independent terms and a
the absolute values of detected signals. In this paper, Wgmall residuak”* as follows:

describe a new algorithm for computing normalization
factors that satisfies these requireme_nts._ Mg = byx + cudyll , + €™ (1)

The proposed method — calleentralization — rests on
the weak assumption that the regulation of gene expresdere,b, , is the so-called background noise. We assume
sion iswell-behaved. By this we mean that either of two that resonable estimatesigf;, are supplied by the image
conditions is fullfilled: (i) most genes are not or only mod- analysis software. The background noise can, e.g., be
erately regulated; or (ii) approximately equal numbers ofestimated globallyt, , := b), per array §, . = b;)
genes are upregulated as are downregulated. In most situay measuring blind spots on the array, or individually for
tions, this seems to be the case, with cell activation being aach spot (gene) on each arrdy ), by measuring the
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signal on the area surrounding the hybridization spotsfor ¢; ;. However, care must be taken whenever values
crd, quantifies the constant of proportionality betweenare averaged: in order to keep the symmetry of up- and
the measured intensity value and true number of mMRNAdownregulation, the arithmetic mean should be computed
copies per cell. We assume that this multiplicative errorin the space of log ratios. Recently, this approach was also
can be separated into one part that depends only on tleiggested by (BeiRbarth et al., 2000). Alternatively, the
array (), and a second part that depends only on theslope obtained by (possibly weighted) linear regression of
gene {,). Of course, there may be some residual erroithe two sets of intensities may be used. Even a clustering
e left over, which may depend on all 4y, k.7 ,).  of the (log) ratios can be considered.
However since the most important known sources of error The median of); ; is a particularly trustworthy estimate
are explicity modeled by the other terms;*® can be ¢;;, since it is very robust with respect to outliers. In
expected to be relatively small. order to also obtain a robust estimation of the standard
L . deviation, we apply the following iterative strategy: Eirs
Pairwise scalings we compute empirical median and standard deviation
Let k;, k; € S be two samples, with unknown constantsof all log ratios, using the median as the estimate of the
of proportionalityc;, c; (short forc, , c,). Thus, the true  expected valug; ;. Second, we mark as outliers all values
quotient of the constants of proportionality of the two g, that show improbably high deviations with respect to
samples isy;; := <. Let G, ; be the set of genes that the imposed normal distribution, usir@5/|Q; ;| as a
are considered to be expressed and reliably measured ({areshold probability. As long as the set of outliers is
the linear part of the dynamic range) in both sampleschanged and does not exceed 10%:9f, we re-estimate
The other genes are excluded, since ratios of values that,; ando; ; on the set of non-outliers (instead of the entire
are dominated by background noise (as well as saturate@®t@; ;) and repeat the second step. Otherwise, we retain
intensities) are incorrectly biased towards one. In order t the latest estimates of mean and standard deviation. This

estimata];jj, we will use the set of quotients procedure is guaranteed to provide symmetrical estimates,
satisfyingj; ; = —/i;; and&” 0; .. Later, the implied
9.k normal distributionV (fi; ;, 67 ;) will be used in order to
Qij = {q9 4y = I S GW’} : estimate the probability of; ; fo take on a certain value.
S e Both estimating the mean by the median, estimating
The idea is to regard each of the ratigs € Q; ; the standard deviation, and parameterizing a normal

an estimate of; ;; a related approach was also suggeste(dirstrlbutlon to the log ratios only make sense if the values
by (Chen et al., 1997). These estimates are subject to tware approximately normal distributed. Most important,
sources of noise: first, the residual error and, second, thine empirical density function should be approximately
amount of gene expression regulation. We assume botinimodal and symmetric (thus, the distribution function
errors to be unbiased. This is relatively safe for the remidu should be approximately sigmoid). In an effort to justify
error, since the main sources of bias are explicitly takerthe log normal distribution theoretically, we follow a
into account by the other error terms. For the biology, thesimilar line of reasoning as (Chen et al., 1997). They
absence of bias comes back to our main assumption thabnsider the stochastic fluctuations of the number of
gene regulation is ‘well-behaved'. In particular, the two mRNA copies of each gene, that arise solely from
alternative conditions (see introduction) map well to tworandomness in molecular motions. In (Chen et al., 1997),
properties of the distribution of the valugs this is modelled by a normal distribution that is truncated
Condition (i): If the number and extent of upregulation to confine non-vanishing probability to positive numbers.
of genes inG; ; in k; in comparison tok; is similar to  This appears to lead to an asymmetric distribution of
number and extent of downregulation, the distribution oflog ratios for the comparison of two probes in the same
log ratios is symmetric. At least in the case of the absenceegulatory state, contrasting the symmetry of the situatio
of any residual erroe”**, the median of), ; is a perfect Here, we assume that the number of mMRNA copies of
estimate ofj; ;. This holds even if the average fold changeeach particular gene (or sequence) is Poisson distributed.
is asymmetrrc with respect to up- and downregulation.The Poisson distribution arises naturally when events
Condition (ii): If more than half of the genes ifi; ; are  are counted that occur independently and with constant
expressed at the same levels in both sambjeand k;,  probability. However, the process of transcription in sell
the distribution of ratios is sharply peaked aroufidand ~ most probably has some amount of memory, e.g. due
thus unimodal. Again, the median is a perfect estimate ofo mechanisms of re-initiation. But this situation may
q; ;» atleast fore™* = 0. be seen as independent production events of batches of
In general, any measure of central tendency of theranscripts of typical size. Also, for an approximately tixe
values in@Q); ;, including median, mean, trimmed mean number of mRNA copies and if saturation is avoided,
and weighted mean, may yield a sensible estingate the number of hybridizations to the corresponding spot
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may be argued to follow a Poisson distribution. Finally, invalues{ s, |k € K}, calledscaling factors, such that
contrast to the normal distribution, the Poisson assumptio

naturally assigns positive probability to positive intege sper =~ kforallk € K (2)
numbers (representing counts of events) only. Figure 1

shows example distributions of Poisson variables and th#r some constant (but possibly unknown)Given such
corresponding log ratios. Although the support of thevalues, we can make the measured e_xpression level values
log ratios is a set of measure zero, their distributiongs,» Mutually comparable between different sampldxy
can be proved to converge against a normal distributiofiescaling them accordingly via

with zero mean an@\~! variance for\ — oo (Rudolf

Grilbel and Niklas vor©hsen, personal communication). (M5 = byk) = sk (Mg k= byi),

Figure 1 shows this convergence to be extremely rapi%ecause the resultin .

g values are all subject to the same
and accurate for reasonable values of herefore, the log multiplier . l.e., while we still do not know the true
ratio densities of unregulated (Poisson distributed) §ene. | ber of mRNA molecules for a aene in the samoled
will behave like a superposition of concentric normal g P

” ) . ) . cells, we obtain consistent multiples of this number.
densities, thereby directly leading to unimodality and ) . I
Applying a maximum likelihood approach, we seek

symmetry. scaling factors that are most probable, given the esti-
o 0 . mated probabilities of pairwise scalings;. Under the

o assumption of complete independence of all estimated
o probabilities N'(fi; ;, 6% ), the probability of a scaling

oo oe vectors can be written as:

0 5 10 15 20 25 0 50 100 : 150 0 500 /100&; 1500 n % S Z
P(s)=[] P (== (3)
J

i,j=1

This assumption is obviously violated, since gieﬂ —n)
different pairs of parameter§i; ;,d; ;) are computed
from only n independent sets of values. On the other
hand, the dependencies among the values are symmetrical,
thus we can expect to obtain a close to optimal solution
Fig. 1. Densities of Poisson variables (upper row) and distrimsio When we maximize the product probability. Lét =

of log ratios of two such variables with superimposed normalarg max, P(s) be the maximum likelihood scaling. By
distribution (lower row), shown for three different paramigations:  inserting the log-normal distribution into Eq. 3, we get

left, A = 10; middle,A = 100; right, \ = 1000. Y-axes: probability

density. X-axes of upper figures: realization of Poissoriatde n log % — ﬂij 2
(event count); of lower figures: base-two logarithms ofasibf two § = arg min Z si i
independent Poisson variables with equal expectatioresalu S i 0i,j

By visual inspection of a large number of examples, wef‘ mlnlmumr::_aﬂ b_e foun_d by_ settrt]mg all partlafl (?erlvatlt\_/es
judge these conditions to be met to a sufficient extento 2870, WHICH IS €asier in the space ot log ratios.
lending support to our basic assumption. Examples of botl§Ubsmu“ngtl = log 51, we get
empirical values and the estimated parameterization of the

n ~ 2 ~
normal distribution are shown in Figure 2. Even if the o — 0 Z (M) - 42 be =t = fir

values are not perfectly normally distributed or if the fit is oty el 0ij 12k i
not accurate, the estimated mean and variance will supply
a reasonable estimatg; := exp(j; ;) of the relative foreachk = 1,...,n. Fortunately, the resulting equality
scalingqg; ; and a useful quantification® of the degree system is linear it and can thus easily be solved by stan-
of confidence in that estimation. dard methods i) (n?) time. However, the corresponding

) ) matrix has rank: — 1, since the value of in Eq. 2 leaves
Most consistent sample scaling factors one degree of freedom to the solution. In order to restore

We assume that by some means, e.g. in the fashion d&ill rank, we can simply add any constraint on the abso-
scribed above, we are able to obtain reasonable estimatkge values of to any row of the matrix. Here, we choose

q;,; of the true quotients; ; for any two sample measure- > it = 0, keeping the normalized expression levels
mentsk;, k; € K. Now the task is to determine a set of as close to the raw intensities as possible.
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T190-TNF-24 vs. T190-TNF-48 T190-1L1-01 vs. c2812-b T190:H5*01 vs. SG
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Fig. 2. Empirical distributions ofy, for the example pairwise comparisons of samples and supesed normal distributions. From left to
right, showing the cases with the lowest, a typical (medianjl the highest estimated variance observed on our d&agselts). Estimated
mean and standard deviation are indicated by vertical lines

RESULTS

100 Hl MMP3
At the moment, it is virtually impossible to finally validate 90 5 gﬁfglgha

[ fibronectin (FN)

any method for normalizing gene expression values since, brone:
Hl vimentin (VIM)

currenly, there is no practical way of obtaining the
true numbers of mMRNA molecules within the cell by
direct measurement. However, we provide experimental
evidence which supports centralization by demonstrating
its superior robustness on a real life gene expression
data set. The data are generated from a total of 89 gene
expression measurements, several of which are replicate
hybridizations of the same sample, each comprising the
same set of 1185 genes as represented on the ClonTech
Cancer 1.2 chip. Of the 63 samples, 21 are in vivo
samples (Aigner et al., 2001), 21 are human isolated
primary chondrocytes cultured under various conditiondig. 3. Intensity fractions of those five genes that contribute rmst
(McKenna et al., in preparation) and the remainingthe s_ignal intensity. Left to right: 21 in vivo, 21 culturedl; and 21
21 are different chondrocytic cell lines (transformed orce" line samples.
neoplastic; Aigner et al., in preparation).

Figure 3 shows that the contributions of individual genesH ousekeeping
to the observed overall signal intensity differ dramatical o
between the different types of samples. In the in vivoS c@n be seen in Figures 4 and 5, the so-called house-

samples, the examined five genes account for abodf€eping genes are _not synchronously reg_ulated.This dis-
30% of the overall intensity, with quite large individual proves the assumption that all housekeeping genes are ex-

. . ressed at a constant level. While the choice of a single

variations. In most of the cultured cell samples, the singl . .

ene MMP3 is responsible for more than 50% of the ou_sekeeplng gene from the glven set appears to be rather
g L In th 0 MMP3 d ¢ titut arbitrary, one could argue for a kind of housekeeping glob-
signal. in the cell lines, 0€s not constitute a,i75ti0n. The assumption would be that the sum of all
significant fraction at all, Whereas GAPDH accounts forhousekeeping genes remains constant within cells. How-
the largest part of the overall signal. _ ever, most arguments against globalization (see introduc-

Various analyses of the centralized data yield resultgjon) also apply to this approach. Furthermore, a tradi-
that are both biologically plausible and consistent withtional procedure in this spirit would require a suitable set
previous observations, as will be detailed elsewhere. If housekeeping genes to be known in advance. The ob-
the following sections, we try to show that alternative served high variations suggest that no such fixed set exists.
normalization methods are less appropriate for the data. Thus, it would be most appealing to base normalization on

fraction of total intensity (%)

sample
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a flexibly determined set of ‘housekeeping’ genes that apvalue is limited. In particular, the assumption that the3.18
pear to be unregulated as judged from the measurementgenes assayed by the ClonTech arrays are representative in
In fact, centralization can be interpreted to implement exthis context is shown to be very questionable.
actly this strategy. For both globalization and centralization, we compute
normalization factors for all samples based on 200 random
107 subsets of genes. We repeat this for three different sizes
x of random subsets: one half, a quarter, and one eighth
x * x* of the 698 genes that are observed at least one in vivo
sample. For centralization, we exclude intensities below
x x 10 and above 1000, since they appear to be unreliable.
The computed scales are then set in relation to the
, , normalization factors computed with the same method
based on all 698 genes. As can be seen in Figure 6,
for globalization the scalings depend heavily on the
particular subset, indicating low reliability of the metho
B In contrast, the centralization strategy is much more stabl
10, 5 10 15 20 25 with respect to gene selection. This suggests that the
sample resulting scalings should lead to more reproducible and
biologically meaningful results.
Fig. 4. Ratio of expression levels of the two most prominent FOr our data, globalization is particularly sensitive to
housekeeping genesi-actin over GAPDH, for the 21 in vivo Whether MMP3 is included in the set of examined genes,
samples. The range of relative regulation is more than I-fote  as is manifest in the bifurcation in Figure 6. Thus, at
that these ratios are independent from normalization. least for chondrocytes, globalization seems completely
inappropriate for the comparison of in vivo samples to
cultured cells (e.g., serving as disease models), which is a
pharmaceutically relevant application of gene expression

e _ profiling. In order to evaluate globalization in a simpler
iy M setting, we repeated the above experiment on the in vivo
20 samples only; see Figure 6. Again, centralization shows
- superior reliability.

o) ?ﬂ DISCUSSION

iy Since a gold standard for the evaluation of normalization is
20 unavailable, we demonstrated the robustness of centraliza

®DeltaCl(TNF)  ®DeltaCt(GF)  ODelta Gt {I-15) tion and the weaknesses of common competing methods
on a real life gene expression data set. But still we believe
that the strongest argument for centralization is that the
approach is biologically well motivated.

Fig. 5. Demonstration of the variation in expression levels of a First th . i id that the traditi |
panel of housekeeping genes (Perkin Elmers ‘Human endageno Irst, there 1S su_ppor Ing evidence tha . e tra '_ lona
control plate’) in three stimulation experiments as meagduwith methods to normalize RNA-values contradict the biolog-

the high-precision TAQMAN device. IPC: internal positiventrol;  iCal rationale to a large extent, as explained in the intro-
18S: 18S rRNA; PO: acidic ribosomal protejpia: g-actin; CyC:  duction and substantiated by our results. All of these ap-
cyclophilin; GAPDH: GAPDH; PGK: phophoglycerokinaseg2m:  proaches are based on rather strong biological hypotheses
2-microglobulin; GUS: g-glucoronidase; HPRT: hypoxanthine which do not withstand scrutiny. However, as long as no
ribosyl transferase; TBP: transcription factor [ID, TATAnding direct measurements are possib|e1 some assumption on bhi-
protein; TfR: transferrin receptor. Y_-axis: differer_u:e rimmber of ological properties is needed for calculation. Giving this
PCR rounds, corresponding lieg, ratio of expression. we have chosen a biological assumption which is substan-
tially weaker, and based our method on the sole assump-
o tion that the regulation of genes in cells is well-behaved.
Globalization This way, we are finally coming back to a kind of house-
The basic assumption of globalization, constant amount dfeeping approach, but not in terms of a fixed pre-defined
mRNA in cells, can not be disproved from gene expressioset of ‘housekeeping’-genes. Instead, we employ a dynam-
data, in principle. However, we can show that its practicaically determined set of genes with sound evidence from
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Fig. 6. Variability of the results of globalization (left) and cealiza- Fig. 7. Same sceme as Figure 6, but restricted to the in vivo samples
tion (discarding genes with intensity below 10 or above 10igt) (the leftmost 21 samples of Figure 6).

on differently sized random subsets of genes. Rows: toppkesnof

size 349 genes (half of the in vivo expressed genes); middia;

ples of size 174 genes (quarter); bottom, samples of sizeeB&gy T : )
(eighth). Each position on the x-axis corresponds to ondeft3 capacity in the body form polykaryons (e.g. syncytiotro

measured conditions. The y-axis is in logarithmic scalerateoto phpraSt’ OSFeOCIaStS’ giant cells, striated muscle)agls
symmetrically represent up- and down-scaling. Each thay dine gain polyploidy _(hEP_atOCYte_S’ I_(aryocy_tes)' In fact, th(_ere
represents the scaling computed from one random gene saiiiple S€€ms to be a biological limitation of single karyons with
values are shown relative to the scaling computed from &ligghes  diploid genomes to support the expressional machinery,
that have a positive intensity value in at least one in vivasuee-  limiting the systematic error introduced by activation of
ment, thus unifying this scaling with the horizonal line aaking  cells into any normalization procedure. On the other hand,
one. The fat black line indic_ates _the mean relative scaliray c_aII if a cell doubles the expression of all its genes, it should
200 random samples, the thiner lines bound the one standaiad  gtj|| hehave similar to two cells at the original expression
tion area. level, rendering complete activation irrelevant for most
biological questions (e.g., the response to drug treafment
Similarly, if all genes but one are upregulated, it may be
the experimental data to behave in a largely non-regulategqually or even more useful to say that the one gene is
manner. Also, we eliminate distortions from gene-specificdownregulated.
multiplicative errors by relying on ratios of intensitiemf  As a last point of discussion, we want to indicate that
the same gene. the popular two-channel measurements do not eliminate
One problem for all computational normalization the need for proper normalization. There, the idea is to
methods remains the possibility of cell activation, im- measure on the same array each sample simultaneously
plying the amplification of most cellular gene productstogether with a reference sample, using two different flu-
(including housekeeping genes and ribosomal RNA). Aorescent dyes. The intensity ratios of each probe against
proportional increase of the expression of all genes cannahe corresponding reference are invariant with respect to
be distinguished from an upscaling of all intensities duesome, but not all multiplicative errors. In particular, lifet
to any multiplicative error that takes effect on all spotsnumber of cells from which the mRNA was isolated or the
of an array. However, though such activation is likely toextraction or RT efficiency is unknown, the need for nor-
occur to a certain degree, this appears to be limited withimalization remains. To demonstrate this point in practice,
the body. It is known that cells requiring high expressionwe applied normalization to the background-subtracted in-
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Fig. 8. Ratios of normalization factors between red and green chan-
nel for each of the 7 two-channel arrays of the yeast diauxiit s
time course (DeRisi et al., 1997) as computed with centtitin
and globalization. In this case the two methods agree quete but
normalization appears to be advisable.
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