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ABSTRACT
Microarrays measure values that are approximately

proportional to the numbers of copies of different mRNA
molecules in samples. Due to technical difficulties,
the constant of proportionality between the measured
intensities and the numbers of mRNA copies per cell
is unknown and may vary for different arrays. Usually,
the data are normalized (i.e., array-wise multiplied by
appropriate factors) in order to compensate for this effect
and to enable informative comparisons between different
experiments. Centralization is a new two-step method
for the computation of such normalization factors that is
both biologically better motivated and more robust than
standard approaches. First, for each pair of arrays the
quotient of the constants of proportionality is estimated.
Second, from the resulting matrix of pairwise quotients an
optimally consistent scaling of the samples is computed.
Contact: Alexander.Zien@gmd.de

INTRODUCTION
Microarrays, like any other technology for measuring
RNA expression levels, are subject to errors that arise from
various sources. According to their nature, these errors
counteract one of the two main attributes of accuracy:
precision or correctness. If a source of error is modeled
as a random variable, it is the variance that hampers
precision, while a non-zero expectation value impedes
correctness by introducing a bias.

Precision is dealt with in a variety of ways. First of all,
much work is devoted to the development and manufactur-
ing of more precise hardware, including robots and sen-
sors. Computational contributions to increasing the pre-
cision of measurements include oligonucleotide selection
strategies; precise image analysis; determination and ap-
propriate computational treatment of background inten-
sity; compensation for non-linearity of signal intensity;
and more. Generally, the highest noise to signal ratios are
observed for low intensities. An important way to improve
the significance of measurement values is to perform repli-

cates of experiments, see e.g. (Lee et al., 2000).
Correctness is closely related to the question of the

interpretation of the data: how can signal intensities be
translated into levels of mRNA within the cells? This
fundamental challenge equally applies to arrays, Northern
blotting experiments and quantitative PCR (qPCR). The
relation of measured intensities to the cellular amounts
of mRNA molecules is obscured by multiplicative noise
(i.e., errors proportional to the measured value) that leads
to systematic inconsistencies. The most important sources
of such problems are listed in Table 1. Some of these
influences lead to systematic biases with respect to genes
or spots, see e.g. Li and Wong (2001), while others
lead to different scalings for the individual arrays or
samples. Many expression analyses are not disturbed by
gene-specific multiplicative errors, since they are easily
eliminated by taking ratios between different samples.

This paper deals with the proper treatment of array-
dependent incorrectness. Obviously, it is important to
control this type of error, since it may otherwise lead
to false conclusions about the regulation of individual
genes in different cellular conditions (as measured from
different samples). In fact, normalization methods have
been standard procedures in mRNA biology from its
very beginning. Also, improvements to the technology are
suggested, like furnishing arrays with control spots that
can help to compensate for spot variability (Schuchhardt
et al., 2000). Most of the error-introducing variables
might potentially be controllable with the help of internal
standards, which, however, are not yet readily available for
laboratory use (Ke et al., 2000; Vu et al., 2000). However,
this approach is laborious and costly, and it still might be
impossible to account for all variables at the same time.

There are three practical approaches to normalization
that are presently in common use: the total RNA approach,
the housekeeping gene approach, and the globalization
approach. Each approach is based on an assumption about
cellular gene expression. In particular, in each case some
population of RNA molecules is assumed to be present at

c
 Oxford University Press 2001 1



A.Zien et al.

variable depends on remedy possible
gene / spotted sequence sample experimental protocol

number of cells in sample - ++ - in some cases (cell counting)
RNA isolation efficiency ? + ++ principally yes (e.g. internal standards)
RT / labelling efficiency + - ++ in part (e.g. internal standards)
spot size and density ++ - - yes (e.g. multiple standardized spotting)
hybridization / washing efficiency ++ - ++ yes (two-channel measurements)
exposure time; detection sensitivity - - ++ trivial

Table 1. Overview of contributions to multiplicative gene expression measurement errors. Errors that depend on the sample or the experimental protocol are
called array- or sample-dependent, since they affect all spots/genes of an array equally. Errors depending on sequence(either the expressed mRNA or the
spotted cDNA/oligonucleotide) are called gene-dependent, for short; they vary in magnitude on the same array. Additive errors are assumed to be negligible or
to be corrected for by subtraction of background intensity by the image analysis software. When the true interest is protein levels, additional gene-dependent
effects enter: translation efficiency, efficiency of post-translational modifications, transport efficiency and average protein life span.

method assumption scaling of expression levels

total RNA Constant expression of total RNA (or, almost equivalently,ribosomal RNA). Use fixed amount of total RNA for measurements.
housekeeping Housekeeping genes are constitutively expressed (i.e. at constant level). Divide by intensity of housekeeping genes.
globalization The total number of mRNA molecules per cell is constant. Divide by sum (or mean) of all intensities.
ANOVA Different models are possible. Errors are always normally distributed. Leads to globalization or related procedure.
centralization Regulation is well-behaved (e.g., most genes are not significantly regulated

OR about equal numbers of genes are up- and downregulated).
Find most probable consistent pairwise scaling
based on central tendency of expression ratios.

Table 2. Overview over common normalization methods in comparison to the proposed method, centralization.

a constant level in all investigated cells. Therefore, this
population can serve as a biological internal standard.
An overview over the discussed normalization methods is
given in Table 2.

The total RNA approach rests on the assumption that,
at every time point, each cell carries the same amount
of total RNA. More than 90% of the total RNA is 18S
and 28S ribosomal RNA (rRNA), which was believed by
some people to be constitutively expressed, even when
the amount of mRNA varies. Consequently, by using a
fixed amount of total RNA for measurements, the first
problem mentioned in Table 1 would be circumvented.
However, it is erroneous to assume that total RNA levels
or rRNA levels are constant (Suzuki et al., 2000). By
now, it is well known that different cell types and cells
in different conditions produce different amounts of total
(and ribosomal) RNA, ranging from less than 2mg to more
than 100mg total RNA per109 cells.

The housekeeping gene approach assumes that the
expression of housekeeping genes, e.g. GAPDH or�-
actin, is not significantly regulated. This approach has
been used in molecular biology for over two decades
now (in Northern blotting and PCR experiments etc.).
However, it becomes more and more clear that this

assumption is wrong (Suzuki et al., 2000; Velculescu et al.,
1999; Goldsworthy et al., 1993), although regulation of
these genes appears to be low compared to other genes. In
fact, for defined cell types analyzed in rather comparable
cell states (e.g. isolated cells of a certain type with and
without stimulation) it might still be a suitable method (in
particular for techniques which do not allow to determine
gene expression levels for a high number of different genes
in parallel, such as qPCR, Northern blotting and RNAse-
protection assays). Overall, however, if one is interested
in smaller changes in gene expression levels (less than
ten-fold) or in comparing rather different probes, which
is the case in many applications, the housekeeping gene
approach no longer can be considered appropriate.

Theglobalization method is the most commonly used
normalization heuristic in large-scale gene expression
biotechnology: for each array, all measured values are
divided by their sum (or average). Such a kind of protocol
is, among others, implemented in the array analysis
program (AtlasImage 1.101 by ClonTech, Germany) that
was used for generation and primary evaluation of the
data that are discussed in the results. A similar approach
of estimating total RNA was suggested for Northern
Blotting experiments by probing with a poly-dT probe for
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total mRNA (Goldsworthy et al., 1993). The globalization
method implicitly rests on the assumption that the amount
of mRNA per cell is constant. This assumption is theo-
retically questionable for several reasons. First, adding
the intensities of different genes is not per se meaningful
since they occur at different scales due to gene-dependent
multiplicative errors (c.f. Table 1). Second, and of higher
practical importance, often the sum of all expression
signals is dominated by the strongest signals (Velculescu
et al. (1999); see also results). But strongly expressed
genes are most likely to be regulated as they represent
the major expression products of specialized cells, e. g.
immunoglobulin chains for plasma cells, hemoglobin
for erythroblasts, etc. Finally, as long as not the whole
genome is covered by an array, the question remains
whether the set of screened genes forms a representa-
tive sample that resembles the behavior of the entire
transcriptome.

Recently,ANOVA (analysis of variance) was introduced
to the field of expression data analysis (Zolotukhin and
Lange, 2000; Kerr et al., 2001). ANOVA is a general
purpose data analysis technique that leaves certain degrees
of freedom for this specific application. The expression
measurement can be modelled differently, for example
with respect to the potential sources of error. Of course,
different models are necessary for one- and two-channel
arrays. The application of ANOVA to single-channel
measurements as described in (Zolotukhin and Lange,
2000) recovers the usual globalization method. Saturated
ANOVA models of the type described in (Kerr et al.,
2001) lead to a kind of globalization of log-intensities.
However, it seems to be too early to judge the performance
of ANOVA for the analysis of gene expression data.

Given the limitations of the available solutions, a more
sophisticated but still feasible normalization method is
of high priority. An appropriate normalization method
should fulfill the following criteria: (i) it should not be
based on single or few pre-defined genes (as often no
specific gene can be named that is expressed at a constant
absolute number of mRNA copies per cell), rather it
should take into account that a large and variable set of
genes can be significantly regulated; (ii) it should only be
based on fairly reliable measurements (to ensure statistical
soundness); (iii) it should be invariant with respect to
the absolute values of detected signals. In this paper, we
describe a new algorithm for computing normalization
factors that satisfies these requirements.

The proposed method – calledcentralization – rests on
the weak assumption that the regulation of gene expres-
sion iswell-behaved. By this we mean that either of two
conditions is fullfilled: (i) most genes are not or only mod-
erately regulated; or (ii) approximately equal numbers of
genes are upregulated as are downregulated. In most situa-
tions, this seems to be the case, with cell activation being a

notable exception. Given this assumption, the central ten-
dency of the expression level ratios of two measurements
is a good estimate of the their relative scaling, i.e. the
quotient of the experiment-dependent multiplicative error.
After computing probability distributions for the pairwise
scaling for every pair of measurements, we employ a max-
imum likelihood approach to find the most probable con-
sistent scaling vector. These factors can then be applied to
enable a meaningful comparison of all the measurements
among each other.

METHODS
For the description of our procedure we will use the
following notation and conventions. We consider the
measurement ofn biological samplesK = fk1; : : : ; kng.
For clarity we assume that each samplek 2 K is
measured once and with a separate array. Generalizations
to other settings are straightforward. E.g., it is common
to perform multiple measurements (on multiple arrays)
of the same sample in order to reduce the measurement
error. Such replicate measurements should first be brought
to scale by normalizing. Here, stronger assumptions may
hold, since the samples are identical. Then, averages can
be computed and subsequently be treated as a single
virtual array with reduced variances of the associated error
terms.

For simplicity we also assume that for each sample
the same setG = fg1; : : : ; gjGjg of jGj different
genes is measured. Multiple measurements of a gene
on the same array can most easily be modeled by
a single average intensity value and an appropriately
reduced associated variance. If different clones or oligo-
nucleotides are used for populating the redundant spots,
it is again advantageous to rescale the measured values
before averaging. Proper treatment of the case that some
genes are measured for some but not all samples will be
explicitly described below.

Let l�g;k denote the true expression level of geneg in
samplek, i.e.l�g;k is the (average) number of mRNA copies
per cell in the sample. Letmg;k denote the measured
value, i.e. a number proportional to the signal intensity
measured at the spot forg on the array for samplek. In this
paper, we assume that the main sources of measurement
error can be modeled by three independent terms and a
small residualeres as follows:mg;k = bg;k + ckdgl�g;k + eres (1)

Here,bg;k is the so-called background noise. We assume
that resonable estimates ofbg;k are supplied by the image
analysis software. The background noise can, e.g., be
estimated globally (bg;k := b), per array (bg;k := bk)
by measuring blind spots on the array, or individually for
each spot (gene) on each array (bg;k), by measuring the

3



A.Zien et al.

signal on the area surrounding the hybridization spots.ckdg quantifies the constant of proportionality between
the measured intensity value and true number of mRNA
copies per cell. We assume that this multiplicative error
can be separated into one part that depends only on the
array (ck), and a second part that depends only on the
gene (dg). Of course, there may be some residual erroreres left over, which may depend on all of(g; k; l�g;k).
However, since the most important known sources of error
are explicitly modeled by the other terms,eres can be
expected to be relatively small.

Pairwise scalings
Let ki; kj 2 S be two samples, with unknown constants
of proportionalityci; cj (short forcki ; ckj ). Thus, the true
quotient of the constants of proportionality of the two
samples isq�i;j := cicj . Let Gi;j be the set of genes that
are considered to be expressed and reliably measured (in
the linear part of the dynamic range) in both samples.
The other genes are excluded, since ratios of values that
are dominated by background noise (as well as saturated
intensities) are incorrectly biased towards one. In order to
estimateq�i;j , we will use the set of quotientsQi;j := �qg j qg := mg;ki � bg;kimg;kj � bg;kj ; g 2 Gi;j� :

The idea is to regard each of the ratiosqg 2 Qi;j as
an estimate ofq�i;j ; a related approach was also suggested
by (Chen et al., 1997). These estimates are subject to two
sources of noise: first, the residual error and, second, the
amount of gene expression regulation. We assume both
errors to be unbiased. This is relatively safe for the residual
error, since the main sources of bias are explicitly taken
into account by the other error terms. For the biology, the
absence of bias comes back to our main assumption that
gene regulation is ‘well-behaved’. In particular, the two
alternative conditions (see introduction) map well to two
properties of the distribution of the valuesqg.

Condition (i): If the number and extent of upregulation
of genes inGi;j in ki in comparison tokj is similar to
number and extent of downregulation, the distribution of
log ratios is symmetric. At least in the case of the absence
of any residual erroreres, the median ofQi;j is a perfect
estimate ofq�i;j . This holds even if the average fold change
is asymmetric with respect to up- and downregulation.
Condition (ii): If more than half of the genes inGi;j are
expressed at the same levels in both sampleski andkj ,
the distribution of ratios is sharply peaked aroundq�i;j and
thus unimodal. Again, the median is a perfect estimate ofq�i;j , at least foreres = 0.

In general, any measure of central tendency of the
values inQi;j , including median, mean, trimmed mean
and weighted mean, may yield a sensible estimateq̂i;j

for q�i;j . However, care must be taken whenever values
are averaged: in order to keep the symmetry of up- and
downregulation, the arithmetic mean should be computed
in the space of log ratios. Recently, this approach was also
suggested by (Beißbarth et al., 2000). Alternatively, the
slope obtained by (possibly weighted) linear regression of
the two sets of intensities may be used. Even a clustering
of the (log) ratios can be considered.

The median ofQi;j is a particularly trustworthy estimateq̂i;j , since it is very robust with respect to outliers. In
order to also obtain a robust estimation of the standard
deviation, we apply the following iterative strategy: First,
we compute empirical median and standard deviation�̂i;j
of all log ratios, using the median as the estimate of the
expected valuê�i;j . Second, we mark as outliers all valuesqg that show improbably high deviations with respect to
the imposed normal distribution, using0:5=jQi;j j as a
threshold probability. As long as the set of outliers is
changed and does not exceed 10% ofGi;j , we re-estimate�̂i;j and�̂i;j on the set of non-outliers (instead of the entire
setQi;j) and repeat the second step. Otherwise, we retain
the latest estimates of mean and standard deviation. This
procedure is guaranteed to provide symmetrical estimates,
satisfying�̂i;j = ��̂j;i and�̂i;j = �̂j;i. Later, the implied
normal distributionN (�̂i;j ; �̂2i;j) will be used in order to
estimate the probability ofq�i;j to take on a certain value.

Both estimating the mean by the median, estimating
the standard deviation, and parameterizing a normal
distribution to the log ratios only make sense if the values
are approximately normal distributed. Most important,
the empirical density function should be approximately
unimodal and symmetric (thus, the distribution function
should be approximately sigmoid). In an effort to justify
the log normal distribution theoretically, we follow a
similar line of reasoning as (Chen et al., 1997). They
consider the stochastic fluctuations of the number of
mRNA copies of each gene, that arise solely from
randomness in molecular motions. In (Chen et al., 1997),
this is modelled by a normal distribution that is truncated
to confine non-vanishing probability to positive numbers.
This appears to lead to an asymmetric distribution of
log ratios for the comparison of two probes in the same
regulatory state, contrasting the symmetry of the situation.

Here, we assume that the number of mRNA copies of
each particular gene (or sequence) is Poisson distributed.
The Poisson distribution arises naturally when events
are counted that occur independently and with constant
probability. However, the process of transcription in cells
most probably has some amount of memory, e.g. due
to mechanisms of re-initiation. But this situation may
be seen as independent production events of batches of
transcripts of typical size. Also, for an approximately fixed
number of mRNA copies and if saturation is avoided,
the number of hybridizations to the corresponding spot
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may be argued to follow a Poisson distribution. Finally, in
contrast to the normal distribution, the Poisson assumption
naturally assigns positive probability to positive integer
numbers (representing counts of events) only. Figure 1
shows example distributions of Poisson variables and the
corresponding log ratios. Although the support of the
log ratios is a set of measure zero, their distributions
can be proved to converge against a normal distribution
with zero mean and2��1 variance for� ! 1 (Rudolf
Grübel and Niklas von̈Ohsen, personal communication).
Figure 1 shows this convergence to be extremely rapid
and accurate for reasonable values of�. Therefore, the log
ratio densities of unregulated (Poisson distributed) genes
will behave like a superposition of concentric normal
densities, thereby directly leading to unimodality and
symmetry.

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 50 100 150
0

0.01

0.02

0.03

0.04

0 500 1000 1500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

−0.5 0 0.5
0

0.5

1

1.5

2

2.5

3

−0.2 −0.1 0 0.1 0.2
0

2

4

6

8

Fig. 1. Densities of Poisson variables (upper row) and distributions
of log ratios of two such variables with superimposed normal
distribution (lower row), shown for three different parametrizations:
left, � = 10; middle,� = 100; right,� = 1000. Y-axes: probability
density. X-axes of upper figures: realization of Poisson variable
(event count); of lower figures: base-two logarithms of ratios of two
independent Poisson variables with equal expectation values�.

By visual inspection of a large number of examples, we
judge these conditions to be met to a sufficient extent,
lending support to our basic assumption. Examples of both
empirical values and the estimated parameterization of the
normal distribution are shown in Figure 2. Even if the
values are not perfectly normally distributed or if the fit is
not accurate, the estimated mean and variance will supply
a reasonable estimatêqi;j := exp(�̂i;j) of the relative
scalingq�i;j and a useful quantification�2 of the degree
of confidence in that estimation.

Most consistent sample scaling factors
We assume that by some means, e.g. in the fashion de-
scribed above, we are able to obtain reasonable estimatesq̂i;j of the true quotientsq�i;j for any two sample measure-
mentski; kj 2 K. Now the task is to determine a set of

valuesfskjk 2 Kg, calledscaling factors, such thatskck � � for all k 2 K (2)

for some constant (but possibly unknown)�. Given such
values, we can make the measured expression level valuesmg;k mutually comparable between different samplesk by
rescaling them accordingly via(mg;k � bg;k)! sk(mg;k � bg;k);
because the resulting values are all subject to the same
multiplier �. I.e., while we still do not know the true
number of mRNA molecules for a gene in the sampled
cells, we obtain consistent multiples of this number.

Applying a maximum likelihood approach, we seek
scaling factors that are most probable, given the esti-
mated probabilities of pairwise scalingŝqi;j . Under the
assumption of complete independence of all estimated
probabilitiesN (�̂i;j ; �̂2i;j), the probability of a scaling
vectors can be written as:P (s) = nYi;j=1P �q�i;j = sisj� (3)

This assumption is obviously violated, since the12(n2�n)
different pairs of parameters(�̂i;j ; �̂i;j) are computed
from only n independent sets of values. On the other
hand, the dependencies among the values are symmetrical,
thus we can expect to obtain a close to optimal solution
when we maximize the product probability. Letŝ =argmaxs P (s) be the maximum likelihood scaling. By
inserting the log-normal distribution into Eq. 3, we getŝ= argmins nXi;j=1 log sisj � �̂i;j�̂i;j !2
A minimum can be found by setting all partial derivatives
to zero, which is easier in the space of log ratios.
Substitutingtl := log sl, we get0 = ��tk nXi;j=1� ti � tj � �̂i;j�̂i;j �2 = 4Xl6=k tk � tl � �̂k;l�̂2k;l
for eachk = 1; : : : ; n. Fortunately, the resulting equality
system is linear int and can thus easily be solved by stan-
dard methods inO(n3) time. However, the corresponding
matrix has rankn� 1, since the value of� in Eq. 2 leaves
one degree of freedom to the solution. In order to restore
full rank, we can simply add any constraint on the abso-
lute values oft to any row of the matrix. Here, we choosePnk=1 tk = 0, keeping the normalized expression levels
as close to the raw intensities as possible.
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Fig. 2. Empirical distributions ofqg for the example pairwise comparisons of samples and superimposed normal distributions. From left to
right, showing the cases with the lowest, a typical (median), and the highest estimated variance observed on our data (see results). Estimated
mean and standard deviation are indicated by vertical lines.

RESULTS
At the moment, it is virtually impossible to finally validate
any method for normalizing gene expression values since,
currenly, there is no practical way of obtaining the
true numbers of mRNA molecules within the cell by
direct measurement. However, we provide experimental
evidence which supports centralization by demonstrating
its superior robustness on a real life gene expression
data set. The data are generated from a total of 89 gene
expression measurements, several of which are replicate
hybridizations of the same sample, each comprising the
same set of 1185 genes as represented on the ClonTech
Cancer 1.2 chip. Of the 63 samples, 21 are in vivo
samples (Aigner et al., 2001), 21 are human isolated
primary chondrocytes cultured under various conditions
(McKenna et al., in preparation) and the remaining
21 are different chondrocytic cell lines (transformed or
neoplastic; Aigner et al., in preparation).

Figure 3 shows that the contributions of individual genes
to the observed overall signal intensity differ dramatically
between the different types of samples. In the in vivo
samples, the examined five genes account for about
30% of the overall intensity, with quite large individual
variations. In most of the cultured cell samples, the single
gene MMP3 is responsible for more than 50% of the
signal. In the cell lines, MMP3 does not constitute a
significant fraction at all, whereas GAPDH accounts for
the largest part of the overall signal.

Various analyses of the centralized data yield results
that are both biologically plausible and consistent with
previous observations, as will be detailed elsewhere. In
the following sections, we try to show that alternative
normalization methods are less appropriate for the data.
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Fig. 3. Intensity fractions of those five genes that contribute mostto
the signal intensity. Left to right: 21 in vivo, 21 cultured cell, and 21
cell line samples.

Housekeeping
As can be seen in Figures 4 and 5, the so-called house-
keeping genes are not synchronously regulated. This dis-
proves the assumption that all housekeeping genes are ex-
pressed at a constant level. While the choice of a single
housekeeping gene from the given set appears to be rather
arbitrary, one could argue for a kind of housekeeping glob-
alization. The assumption would be that the sum of all
housekeeping genes remains constant within cells. How-
ever, most arguments against globalization (see introduc-
tion) also apply to this approach. Furthermore, a tradi-
tional procedure in this spirit would require a suitable set
of housekeeping genes to be known in advance. The ob-
served high variations suggest that no such fixed set exists.
Thus, it would be most appealing to base normalization on
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a flexibly determined set of ‘housekeeping’ genes that ap-
pear to be unregulated as judged from the measurements.
In fact, centralization can be interpreted to implement ex-
actly this strategy.
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Fig. 4. Ratio of expression levels of the two most prominent
housekeeping genes,�-actin over GAPDH, for the 21 in vivo
samples. The range of relative regulation is more than 10-fold. Note
that these ratios are independent from normalization.
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Globalization
The basic assumption of globalization, constant amount of
mRNA in cells, can not be disproved from gene expression
data, in principle. However, we can show that its practical

value is limited. In particular, the assumption that the 1185
genes assayed by the ClonTech arrays are representative in
this context is shown to be very questionable.

For both globalization and centralization, we compute
normalization factors for all samples based on 200 random
subsets of genes. We repeat this for three different sizes
of random subsets: one half, a quarter, and one eighth
of the 698 genes that are observed at least one in vivo
sample. For centralization, we exclude intensities below
10 and above 1000, since they appear to be unreliable.
The computed scales are then set in relation to the
normalization factors computed with the same method
based on all 698 genes. As can be seen in Figure 6,
for globalization the scalings depend heavily on the
particular subset, indicating low reliability of the method.
In contrast, the centralization strategy is much more stable
with respect to gene selection. This suggests that the
resulting scalings should lead to more reproducible and
biologically meaningful results.

For our data, globalization is particularly sensitive to
whether MMP3 is included in the set of examined genes,
as is manifest in the bifurcation in Figure 6. Thus, at
least for chondrocytes, globalization seems completely
inappropriate for the comparison of in vivo samples to
cultured cells (e.g., serving as disease models), which is a
pharmaceutically relevant application of gene expression
profiling. In order to evaluate globalization in a simpler
setting, we repeated the above experiment on the in vivo
samples only; see Figure 6. Again, centralization shows
superior reliability.

DISCUSSION
Since a gold standard for the evaluation of normalization is
unavailable, we demonstrated the robustness of centraliza-
tion and the weaknesses of common competing methods
on a real life gene expression data set. But still we believe
that the strongest argument for centralization is that the
approach is biologically well motivated.

First, there is supporting evidence that the traditional
methods to normalize RNA-values contradict the biolog-
ical rationale to a large extent, as explained in the intro-
duction and substantiated by our results. All of these ap-
proaches are based on rather strong biological hypotheses
which do not withstand scrutiny. However, as long as no
direct measurements are possible, some assumption on bi-
ological properties is needed for calculation. Giving this,
we have chosen a biological assumption which is substan-
tially weaker, and based our method on the sole assump-
tion that the regulation of genes in cells is well-behaved.
This way, we are finally coming back to a kind of house-
keeping approach, but not in terms of a fixed pre-defined
set of ‘housekeeping’-genes. Instead, we employ a dynam-
ically determined set of genes with sound evidence from
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Fig. 6. Variability of the results of globalization (left) and centraliza-
tion (discarding genes with intensity below 10 or above 1000; right)
on differently sized random subsets of genes. Rows: top, samples of
size 349 genes (half of the in vivo expressed genes); middle,sam-
ples of size 174 genes (quarter); bottom, samples of size 87 genes
(eighth). Each position on the x-axis corresponds to one of the 63
measured conditions. The y-axis is in logarithmic scale in order to
symmetrically represent up- and down-scaling. Each thin gray line
represents the scaling computed from one random gene sample. All
values are shown relative to the scaling computed from all 698 genes
that have a positive intensity value in at least one in vivo measure-
ment, thus unifying this scaling with the horizonal line at scaling
one. The fat black line indicates the mean relative scaling over all
200 random samples, the thiner lines bound the one standard devia-
tion area.

the experimental data to behave in a largely non-regulated
manner. Also, we eliminate distortions from gene-specific
multiplicative errors by relying on ratios of intensities for
the same gene.

One problem for all computational normalization
methods remains the possibility of cell activation, im-
plying the amplification of most cellular gene products
(including housekeeping genes and ribosomal RNA). A
proportional increase of the expression of all genes cannot
be distinguished from an upscaling of all intensities due
to any multiplicative error that takes effect on all spots
of an array. However, though such activation is likely to
occur to a certain degree, this appears to be limited within
the body. It is known that cells requiring high expression
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Fig. 7. Same sceme as Figure 6, but restricted to the in vivo samples
(the leftmost 21 samples of Figure 6).

capacity in the body form polykaryons (e.g. syncytiotro-
phoblast, osteoclasts, giant cells, striated muscle cells) or
gain polyploidy (hepatocytes, karyocytes). In fact, there
seems to be a biological limitation of single karyons with
diploid genomes to support the expressional machinery,
limiting the systematic error introduced by activation of
cells into any normalization procedure. On the other hand,
if a cell doubles the expression of all its genes, it should
still behave similar to two cells at the original expression
level, rendering complete activation irrelevant for most
biological questions (e.g., the response to drug treatment).
Similarly, if all genes but one are upregulated, it may be
equally or even more useful to say that the one gene is
downregulated.

As a last point of discussion, we want to indicate that
the popular two-channel measurements do not eliminate
the need for proper normalization. There, the idea is to
measure on the same array each sample simultaneously
together with a reference sample, using two different flu-
orescent dyes. The intensity ratios of each probe against
the corresponding reference are invariant with respect to
some, but not all multiplicative errors. In particular, if the
number of cells from which the mRNA was isolated or the
extraction or RT efficiency is unknown, the need for nor-
malization remains. To demonstrate this point in practice,
we applied normalization to the background-subtracted in-
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tensity values of the well-studied yeast diauxic shift exper-
iment by (DeRisi et al., 1997). The results, shown in Fig-
ure 8, show that computational normalization might also
be of value for two-channel expression measurement tech-
nology. For these yeast data, the underlying assumption of
globalization seems to be justified, since virtually all genes
are assayed and cell specialization can be excluded.
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Fig. 8. Ratios of normalization factors between red and green chan-
nel for each of the 7 two-channel arrays of the yeast diauxic shift
time course (DeRisi et al., 1997) as computed with centralization
and globalization. In this case the two methods agree quite well, but
normalization appears to be advisable.

In conclusion, we find that centralization reproduces the
results of other normalization methods, where the respec-
tive underlying assumptions are justified, and yields more
robust estimates otherwise. With its power to assay a huge
number of genes at the same time, array technology ap-
pears to be superior to any technology focussing on single
genes in terms of biologically reasonable normalization,
despite the fact that other technologies provide – at least at
the moment – a higher precision. If our assumption holds
then, array technology, providing more diverse gene data,
should allow for more accurate normalization. This effect
may even be expected to even compensate for the reduced
precision of array experiments. We envision that central-
ization might prove most useful for two application sce-
narios. The first is the comparison of cells in significantly
different states, including healthy with diseased cells in
vivo, or in vitro models of diseases with cells in their na-
tive environment. Second, the robustness of centralization
will be most useful for the normalization of low gene num-
ber assays of gene expression, which can be expected to
become popular diagnostic tools in a few years.
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