
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-3, Issue-1, October 2013

140

Abstract-Security issue represents the main barrier facing the

wide adoption of cloud computing. Encryption is the best method
to mitigate users' concerns. However, this method makes
searching the encrypted data a challenging task. Accordingly,
several approaches have been proposed to enable searching the
encrypted, remotely stored data without decryption. Till now,
almost all these approaches are limited to handle text search but
not multimedia search.

In this paper, we propose an efficient scheme that provides
content based search over encrypted image database. To do so,
we utilize a locality sensitive hashing LSH method to build our
searchable index. LSH index greatly enhances the system
efficiency by returning the matching images in a ranked order
with a minimum number of distance evaluations. For security
purposes, we turn this index into a secure index to prevent the
cloud server from learning any useful information from the
contents of that index. Searchable index along with image
collection are outsourced to the cloud server in their encrypted
format. We provide several empirical experiments to illustrate the
efficiency of our proposed scheme.

Key words: cloud computing, searchable encryption, LSH,
image retrieval.

I. INTRODUCTION

We are living in a highly connected and data intensive
world. The great advances in networking and information
technologies have enabled users to collect and generate large
amounts of data. However, maintaining and storing such
amount of data require additional storage cost and
computational power that may be not available to those
users, especially in case of lightweight device (e.g. mobile
and iPhone devices). Fortunately, cloud computing (utility
computing) has been emerged as a new technology that
offers to its user's attractive financial and technological
advantages [1]. To exploit the benefits of this new paradigm,
users have started moving their data and applications to
cloud servers.
 However moving sensitive data (such as health records,
private photos, and secret documents) to the untrusted cloud
servers poses a great challenge towards the privacy of user's
data. To combat unsolicited access, users usually encrypt
their sensitive data before outsourcing it to the cloud servers.
However, traditional encryption schemes pose a significant
barrier towards searching the encrypted data. Over the years,
several searchable encryption (SE) approaches have been
proposed [2]-[6] to provide the ability for selectively
retrieving the encrypted documents. Typically, these systems
build a secure index structure and outsource it along with the
encrypted documents to the remote server.

Manuscript received October, 2013.

Ayad Ibrahim Abdulsada, Computer Science Department, Basrah
University/ Education College for Pure Science/ Basrah, Iraq.

Aqeel N. Mohammad Ali, Computer Science Department, Basrah
University/ Education College for Pure Science / Basrah, Iraq,

Zaid Ameen Abduljabbar, Computer Science Department, Basrah
University/ Education College for Pure Science / Basrah, Iraq,

Haider Sh.Hashim, , Computer Science Department, Basrah University/
Education College for Pure Science / Basrah, Iraq,

Authorized users submit their requests as secret trapdoors

that are integrated properly with the stored indexing
information. The server uses the received trapdoor to search
over the stored index, and retrieves the matching encrypted
documents.
 Traditionally, almost all the previous searchable
encryption schemes are limited to handle keyword based
search, where a user submits a secure keyword to search an
encrypted text documents. In contrast, modern information
retrieval (IR) [8] systems e.g. Google Goggles1 introduce
new technology that allow their clients to submit a photo as
query and search a database of stored images, where images
with similar visual content in the database are identified.
Such new technology is termed as content based image
retrieval (CBIR). Thus, it is highly recommended to develop
a searchable encryption scheme that handle image based
search in an accurate and efficient way.
 In this paper, we bring together the developments of both
CBIR systems and SE approaches to explore an image-based
searchable encryption scheme over remote cloud servers.
We build a searchable index from the image collection for
speeding the search task. However, unless secured well, such
index leaks important statistical information about the
underlying stored data to the adversary server. Thus, the
main issue here is how we can encrypt this index while
preserving its ability to rank the relevant images.
 The basic building block of our secure index is the locality
sensitive hashing (LSH) [9]. LSH index allows answering
efficiently near neighbor queries in high dimensional spaces
of plain data [10]. In our scheme, we propose to utilize LSH
in the context of the encrypted data. In such a context, it is
critical to ensure the confidentiality of the sensitive data. We
have conducted several empirical analyses on a real dataset
to demonstrate the performance of our proposed scheme.
 Our notable contributions can be summarized as follows.
First, we utilize the appealing features of LSH index in the
context of the encrypted data, and design an image-based
searchable symmetric encryption scheme on top of this
index. Second, our propose scheme indexes huge databases
of images, in such a clever way, that reduce both storage
requirements and run time, thus making one step closer
towards practical deployment of privacy-preserving data
hosting services in cloud computing.
 The rest of this paper is organized as follows. Related
works are reviewed and discussed in section II. Section III
introduces the problem definition and the security
requirements. Section IV provides the proposed scheme.
Performance investigations are provided in section V and
conclusions and future works are drawn in section VI

II. RELATED WORKS

Text based searchable encryption. Prior searchable
encryption systems have focused on retrieving encrypted text

Secure Image Retrieval over Untrusted Cloud Servers

Ayad Ibrahim Abdulsada, Aqeel N. Mohammad Ali, Zaid Ameen Abduljabbar, Haider Sh.Hashim

Secure Image Retrieval over Untrusted Cloud Servers

141

documents, where the data owner is allowed to outsource the
storage of his data into another server and give it the ability
to selectively retrieve the interested document through
keyword-based search, without decryption. Some of these
systems are designed to work in symmetric key setting [2, 3,
4], and the others are based on asymmetric key setting [5, 6].
However, all the above listed schemes are limited to perform
an exact search but not a similarity search. Hence, such
schemes could not be able to recover the typographical
errors that exist frequently in the real world applications. To
handle such problem, Li et al. in [7] used the wildcard
technique for generating and storing a fuzzy set for each
keyword, where fuzzy set incorporates the exact keyword
and the slightly wrong strings that could happen due to the
minor misspelling.
Image based searchable encryption. Shashank et al. [11]
applied the private information retrieval PIR techniques to
protect the privacy of the query image when searching over a
public database, where the images in the database are not
encrypted. However, since the database in PIR is always
unencrypted, any scheme that tries to hide the access pattern
(the IDs of the retrieved images) must touch all data items.
Otherwise, the server learns information: namely, that the
untouched item was not of interest to the user. Thus, PIR
schemes require work which is linear in the database size.
Secure image based search was also applied in the context of
encrypted image databases. Lu et al. proposed in [12] to
extract visual words from images and construct indexes
according to them. They used some cryptographic
techniques, such as order preserving encryption OPE [13]
and randomized hash functions to provide both privacy
protection and rank-ordered search capability. Actually,
OPE primitive leaks to the untrusted server significant
amount of information. Such leakage leads to conduct
serious frequency attacks. In contrast, our proposed scheme
does not leak anything to the untrusted server.

III. SCHEME DESCRIPTION

A. Problem Statement

Suppose that the data owner DO has a database

1 2{ , , ..., }nD Im Im Im= of n sensitive images that she

wants to outsource to a cloud server CS. Data owner extracts
a feature vector iv from each image iIm D∈ and

constructs the dictionary 1 2{ , , ..., }nV v v v= from the

extracted features. Then she uses the dictionary to build the
searchable indexI . For security purposes, DO encrypts
D collection, dictionary ,V and index I before uploading
them into the cloud server. Encryption prevents the cloud
server from learning any useful information about the
outsourced data except for the DO allows to leak. The
encrypted index should enable the cloud server to search
over encrypted data and return the items that are most
similar to the user’s request in a reasonable amount of time.
To search the remotely stored image collection with an
image-based query q , the authorized users generate the

secret trapdoor Tq from the above query, and then send Tq

to the cloud server. Once receiving Tq, the latter searches its
secure index I with the presented trapdoor to retrieve the
candidate list of images, this list identifies the set of the
most similar images. Then, the server refines the candidate
list by performing the Euclidean distance between the secure
feature vector of the provided query and the dictionary
subset corresponding to the candidate list items. Finally,
cloud server selects the top-t image IDs, and sends back
their corresponding encrypted images to the end user. Fig. 1
shows the basic structure of our proposed scheme.

B. Security Definition

To provide practical solutions, the security definition of all
presented searchable encryption schemes allows revealing
access pattern (the identifiers of the relevant documents),
and search pattern (whether the query term has been
searched before). We consider an honest-but-curious server
in our model, which is consistent with most of the previous
searchable encryption schemes. We assume the cloud server
acts in an “honest” fashion and correctly follows the
designated protocol specification, but is “curious” to infer
and analyze the message flow received during the protocol
so as to learn additional information. The formal definition
of our scheme is illustrated below:
Definition 1 (Similarity searchable symmetric encryption).
An index-based SE scheme is a collection of seven
polynomial-time algorithms SE = (Gen, Enc, Trpdr,
IndBuild, Dict, Search, Dec) such that,

1. K ← Gen(1λ): is a probabilistic key generation
algorithm that is run by the data owner to setup the
scheme. It takes λ as a security parameter, and outputs

a secret key {0,1}K λ∈ .

2. (,)C Enc K D← : is a probabilistic algorithm run by

the user to encrypt the image collection. It takes as input
a secret key K and an image collection

1 2{ , , ..., }nD Im Im Im= and output the encrypting

collection 1 2{ , , ..., }nC C C C= .

3. ()V Dict D← : is deterministic algorithm run by data

owner to generate the dictionary V, feature vector set,
from the given image collection D.

4. (,)Tq Trpdr K q← : is a deterministic algorithm run by

the user to generate a trapdoor for a given image. It
takes as input a secret key K and an query image q ,

and outputs a trapdoor .Tq

5. (,) (, ,)I SV IndBuild K D V← : is a deterministic

algorithm run by data owner to generate the secure

Figure 1: Basic architecture of our proposed scheme

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-3, Issue-1, October 2013

142

index I and the secure dictionary SV. It takes as input a
secret key K, the image collection D, the dictionary V.

6. (, ,)Relevant Search I V Tq← : is a deterministic

algorithm run by the cloud server to search the index I.
It takes as input an encrypted index I, the dictionary V,
and the trapdoor Tq and outputs a set Relevant of

encrypted images, such that

1((Re), ())dist V levant v Tq r≤ , where 1r is a user

defined threshold, and dist is a metric distance function.
7. Im (,)i iDec K C← : is a deterministic algorithm run by

the client to recover the plaintext image. It takes as
input a secret key K and the encrypted image Ci, and
outputs an image Imi.

The index-based SE scheme is correct if for all K output by
Gen(1λ), for all (I, C) output by Enc(K, D),

1 ,

(, , (,)) {Im Im |

((Im), ()) Im () }

j j

j j j j

Search I V Trpdr K q D

dist V v Tq r Dec C K C C

= ∀ ∈

≤ ∧ = ∧ ∈

IV. THE PROPOSED SCHEME

In this section we explain the details of our proposed
scheme. We have two phases, the setup phase and the
retrieving phase.

A. Setup Phase

The data owner initiates the scheme by calling Gen(1λ),

generates random keys 1 2, , {0,1}Rk k kcoll λ← .

Furthermore, Do also generate randomly the matrix 1M and

its inverse M2, both of size (d + 2, d + 2), where d is the
size of the feature vector. Do outputs K = {k1, k2, kcoll, M1,
M2}.

1. Feature Vectors Generation

 In order to deal efficiently with a huge amount of images,
while still being able to keep a sizeable portion of the data in
main memory, we need to generate an extremely compressed
feature vector for each image. Such vectors represent images
and potentially enabling fast and scalable search. Data oner
runs the algorithm ()V Dict D← to generate the dictionary

V for the entire image collection. To find the similar images,
it is assumed that Euclidean distance between their feature
vectors is a meaningful measure of similarity.

2. Features Indexing

Once generating image dictionary, Data owner runs the
algorithm (,) (, ,)I SV IndBuild K D V← to build a

searchable index I on top of this entity. A simple method to
index the vectors of dictionary is to store each vector
directly in the index, and then use the brute force search to
determine which images in the database are similar to the
image query. However such naive search method is
completely inefficient due to the high dimensionality and
size of the data. Furthermore, such method is insecure. This
is because feature vectors may leak information about image
content. Thus, it is preferable to use an efficient data
structure to quickly search the huge number of database
features and identify candidate images, while protecting the
security of the underlying data.
 To meet the above listed requirements, namely: efficiency
and security, we utilize the building block of locality

sensitive hashing LSH to construct our searchable index. In
what follows we explain the LSH index and then provide our
methods to turn such efficient index into the context of
encrypted data.

LSH Index
 LSH is an efficient algorithm for near neighbor search in
high dimensional spaces [9], [10]. The key idea of LSH is to
“hash” items several times, in such a way that similar items
are more likely to be hashed into the same bucket than
dissimilar items are. To achieve this goal, LSH uses a set of
hash functions to map items into several buckets, such that
similar items will share a common bucket in high
probability.
 Given the metric space M of real d-dimensional points, a
distance metric dist, a threshold r1, two probabilities P1 and
P2, and the approximation factor c>1. We define the LSH
family H of functions

: dh R N← to be a (r1, cr1, P1, P2)-sensitive family if it

satisfies the following conditions for any two points
,p q M∈ and a function h chosen uniformly at random

from H:
 • if 1 1(,) , then Pr[() ()]dist p q r h p h q P≤ = ≥ .

• if 1 2(,) , then Pr[() ()]dist p q cr h p h q P≥ = ≤ .

Interestingly, LSH is useful for similarity search if P1 > P2.
This is because we want to retrieve all images that are close to
the query point with a reasonable amount of dissimilar
images. The hash function ha,b ,a bh H∈ is defined as :

where <.> is the dot product, p is a vector in d-dimensional

space, a is a vector with components that are selected at
random from a Gaussian distribution, b is a real number
chosen uniformly from the range [0,w], where w is the bin
width. Thus, hash function h(p) projects the feature vector p
onto a random direction and then returns the bin number
where the projection lies. The intuition behind this method is
that nearby items in the original space will fall into the same
bin. Note that each a and b are chosen randomly for each
hash function ha,b(.).

Algorithm 1 Bucket identifier generation.
Input : h1(p), …, hk(p): k independent hash functions.
Output : g(p): the bucket identifier.
Define Prime to be a set of prime numbers of length PL.
Min = minimum(PL, k);
For i=1 to Min
 If (mod(i,2)=1)
 hpos(i) = (i+1)/2;
 Else
 hpos(i) = Min-(i/2)+1;
 End if
End for
 - Compute:

()
1

() (().Pr () 1
Min

hpos i
i

g p h p ime i
=

= +∑

,
.

()a b
a p b

h p
w

< > + =  
 

Secure Image Retrieval over Untrusted Cloud Servers

143

Furthermore, we can use the hash family H to build a new
hash family G of hash functions in the following form:

1 2() ((), (), ..., ())kg p mix h p h p h p= , such that the function
(.)g is constructed by mixing k randomly chosen hash

functions from H. The hash function (.)g represents the
bucket identifier of the point p in the hash table. Algorithm 1
shows our proposed method to generate the bucket identifier,

g(p), from a set of k independent hash functions hj(p).

Moreover, we can choose L different hash functions (.)g to

index the point p into L hash tables. In this case, each

vector (point) of the dictionary V is indexed into a set of L
hash tables. Each table has a set of hash functions h1, h2, …,
hk, which are then mixed by the function g(.) to get the index
of the bucket within the table where the feature should go. All
features with the same hash value go to the same bucket. We
refer to the bucket identifier as BI and bucket content as BC.
 The above construction amplify P1 and P2 into

1 1' 1 (1)LkP P= − − and 2 2' 1 (1) ,k LP P= − − respectively.
Hence, our scheme succeeds in finding a point within distance

1cr from the query q with probability at least P'1. The values
of k and L can be fixed as the follows to push P'1 closer to 1
and P'2 closer to 0:

2

log

log (1/)

n
k

P
=

,
 and

L nρ= ,

where n is the number of indexed points, and.
1

2

log

log

P

P
ρ =

LSH Index Protection
LSH index reveals the number of buckets and the contents of
each bucket to the cloud server. Such leakage may be
employed from the cloud server to infer the entire image
collection. Thus, we have to encrypt LSH index before
moving it to the cloud server. In this case, only the data owner
who generates the secret key or the authorized users who
know the secret key can generate a valid query and searches
the encrypted image database. Our method to protect LSH
index includes the following steps:

1. (Bucket identifier protection): suppose that 1
(.)kπ

is a
collision resistant hash function with the following
parameters: π : {0, 1}λ × {0, 1}∗ → {0, 1}p where p > logn.
In practice, π(.) will be instantiated by off-the-self hash
function like SHA-1, in which case p is 160 bits. We replace

the bucket identifier BI of each hash table with 1
(.)kπ

 before
outsourcing it to the cloud server. Without knowing the secret
key k1, it seems imposable for cloud server to generate valid
bucket identifiers.
2. (Bucket content protection): Let Max_b be the length of
the maximum bucket in LSH. We encrypt the elements of

each bucket under the secret key 2
()kf BI

, where BI is the
bucket identifier corresponding to the bucket that want to be

encrypted and (.)f is a pseudo-random function in the

following form: f : {0, 1}λ × {0, 1}∗ → {0, 1}
l

. To hide the
length of each bucket, we pad each bucket with Max_b –Nj

random values of the same size of the encrypted data, where
Nj is the current length of the bucket j.
3. (Hash table protection): Given Max_t to be the length of
the longest hash table. We unify the length of all the L hash
tables by padding Max_t – Lti fake records, where Lti is
current length of the hash table i.
3. Dictionary Encryption

 Beside the secure index, we outsource the dictionary V of
the feature vectors in order to prune the candidate list. Note
that the additional bytes of the stored dictionary are not a main
issue due to the cheap storage cost on nowadays cloud
servers. However, moving the feature vectors, in its plaintext
format, to the cloud server may reveal important information.
Encryption is considered the best method to preserve data
privacy. However, all the traditional encryption schemes do
not provide the ability to evaluate distance function over the
encrypted data. To cumbersome this problem we utilized the
solution of [14] to perform the distance between the query and
the stored dictionary vectors without know neither the query
nor the dictionary. This method allows performing the
approximate Euclidean distance function among the
encrypted vectors without decryption. We describe it briefly
as follows:
Suppose that v and q are the data point, and the query point,
respectively. Both points are represented as d-dimentional
vectors. The basic idea behind this method is based on the fact

that
1. ().(),T Tv q vM Mv−= where M is an invertible matrix.

Data owner can store
TMq instead of

Tq at cloud server site,
and keeps M secret from the cloud server. DO will send

1vM −
to the server each time she wants to send a query v;

therefore cloud server can compute . Tv q without even

knowing v and q. If we can use .
Tv q to represent

the
2

1
()

d

j jj
v q

=
−∑ , we can make it possible for the cloud sever to

conduct an approximate distance. We suggest augmenting the
original representations of these points to be of d+3
dimensions as follows:

2
1, 21

(, , ..., ,1,)
d

j i d ij
v y R R v v v R

=
= + −∑

, …(1)

1 2(1, 2 , 2 , ..., 2 , ,1)dq q q q Ra= − − − , …(2)
We will have

2

1 1
. 2 ,

d dT
j j jj j

v q v v q R Ra
= =

= − + +∑ ∑
 … (3)

and thus the Euclidean distance will equal to
2

1
. ()

dT
jj

v q q R Ra
=

+ − −∑
. However, since

2

1
()

d

jj
q R Ra

=
− −∑ is a

constant, we can delete it because it does not affect the final
result; therefore the cloud server can use v.q to compute the
closest match.
These points are encrypted as follows:
v'= Ev (v,M-1) = vM-1 …(4)
q' = EQ(q,M) = MqT, …(5)
Notice that we have introduced random numbers R, Ra Ri for
i=1,…,n. The purpose of R is to prevent the cloud server from
knowing the actual distance between q and the items in the
database; the purpose of Ra is to prevent the server from
knowing the relationship between two different queries; the
purpose of Ri is to prevent the server from knowing the
relationship among items in the database. Recall that feature

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-3, Issue-1, October 2013

144

vector encryption is performed just one time in the data owner
side, and thus it does have any effect on the search
performance.
4. Database Encryption

Data owner runs the algorithm (,)C Enc K D← to protect
the privacy of his images contents. DO uses Enckcoll(.) to
encrypt the image collection D before uploading it to the
cloud server, where kcoll is a secret key. Given the image Imi
and its identifier Id(Imi), the encrypted collection will be C =
{(Id(Imi), Enckcoll(Imi)} ∀ Imi∈D. Image encryption can be
done using state-of-the-art ciphers such as AES or RSA
directly by treating images as ordinary data, or using image
specific techniques such as selective and format-compliant
encryption [15], [16], [17] to enable post-processing such as
transcoding on encrypted images. Particularly, we use AES
with counter mode as an instance of Enckcoll(.), with a key of
128-bit length. Algorithm 2 shows our method to generate the
secure LSH index.
B. Retrieval phase
 Once the encrypted database C, secure LSH index I, and
secure dictionary SD are outsourced to the cloud server,
authorized users are able to selectively retrieve images from
the remote server. To do so, DO shares the following
information with data users:
1. Kcoll : secret key of data collection encryption
2. k1, k2: secret keys of index construction.
3. M1: secret key for encrypting the feature vector of the

query.
4. A set of L locality sensitive hash functions g(.).

Given the image query q and the secret keys, authorized
users first generate the feature vector vq from q, and then
extend and encrypt the resulting vector by (2) and (4),
respectively, to get the refining vector QSV. Finally she runs
the trapdoor algorithm Trpdr(K, q) to hash the query q into L
bucket identifiers with the same settings of the index setup.
The secure trapdoor Tq is constructed as Tq={πk1(BI1),
fk2(BI1), πk1(BI2), fk2(BI2),…, πk1(BIL), fk2(BIL), QSV, t}, where
t is a user defined parameter

Algorithm 3 Secure image retrieval.
Input: q: query image, t: the number of retrieved images,
and g1, g2, …, gL: L hash functions.
Output: The set of top-t encrypted images.

{User side}
- Generate the feature vector v for the query image
q.
- Extend and encrypt the resulting vector by (2)
and (5), respectively, to get the refining vector QSV.

- For each hash table j, 1≤ j ≤ L
 - Use Algorithm 1 to compute the bucket identifier:
BIi=gj(v).
 End for
- Set Tq={πk1(BI1), fk2(BI1), πk1(BI2),
fk2(BI2),…, πk1(BIL), fk2(BIL), QSV, t}.
- Send Tq to cloud server.

{Cloud server side}

 - Candidate=φ ;

 - For all πk1(BIi) ∈Tq, 1,...,i L∀ =
 - Search (πk1(BIi), BCi) in hash table i.
 - Decrypt BCi with the secret key fk2(BIi)
 - Remove the random values from BCi.

 - Candidate= iBC∪
 End for
 - Remove the duplicate elements in Candidate list.
 - For each Id(Imj) ∈Candidate
 - Calculate the Euclidean distance as in (3)
between QSV and SV(Id(Imj)).
 End for
 - Set HS vector to capture the image IDs of the
minimum t distances, HS = {hs1, hs2, …, hst}
 - Set Retrieve = {Retimage(hs1), Retimage(hs2), …,
Retimage(hst)} be the set of the top-t encrypted images.
 - Send Retrieve to the end user.

Algorithm 2 Secure LSH index building.
Input : λ : the security parameter, D: image collection, L: the
number of resulting hash tables, g1, g2, …, gL: L hash functions,
MAX_b: the maximum bucket, Max_t: the length of the longest
hash table.
Output : the secure index I, in the form of L hash tables and the
secure dictionary SV.
{Key generation}
- Use λ to generate k1, k2 and Kcoll secret keys.
{Index construction}
For each Imi D∈

 - Let Id(Imi) be the identifier of the image Imi.

- Generate the feature vector iv from the image Imi.

- For each hash table j, 1 ≤ j ≤ L
 - Use Algorithm 1 to compute the bucket identifier:
BIj=gj(vi).

 - Store Id(Imi) in the bucket BIj of table j.
End for

End for
{Index protection}

 - For each hash table i I∈ , 1 ≤ i ≤ L
 - For each bucket BIj, 1 ≤ j ≤ BLj
 - Encrypt the Nj elements of the bucket BIj with the key
fk2(BIj).

- Pad the remaining (Max_b - Nj) entries, if any, with
fake random values of the same size of the existing
Nj entries.

 - replace BIj with πk1(BIj).
 End for
- Pad the hash table i with (Max_t - Lbi) fake records.

End for
{Dictionary encryption}
For each vector vi, 1 ≤ i ≤ n

- Expand and encrypt the vector vi by using (1) and (4),
respectively, to generate the refining vector Svi.

End for

- Set SV={Svi} 1,...,i n∀ =

Secure Image Retrieval over Untrusted Cloud Servers

145

controlling the number of retrieved images. The trapdoor Tq
is sent to the cloud server.

1. Searching and Retrieving

 Cloud server accepts the trapdoor Tq from the authorized
users and use the secure element πk1(BIi) to scan the hash
table i for each1 i L≤ ≤ , and then retrieve the bucket
content BCi corresponding to the bucket BIi. The cloud
server uses the key fk2(BIj) to decrypt the bucket j, and then
removes the fake random values. All the image identifiers
Id(Im) resulting from decryption of the buckets' contents are
merged together into a single list which is called as the

candidate list. The cloud server removes the duplicate
elements in the candidate list. The next step is refining the
candidate list. To do so, cloud server measures the
Euclidean distance between the
provided refining vector QSV and the refining vectors Svi
belonging to the image identifiers that are reside in the
candidate list. Such process is conducted securely by using
Theorem 1. Finally, the cloud server returns the encrypted
images of the t lower distance to the end user. Algorithm 3
shows our proposed protocol for retrieving the top-t images
from the remote cloud server.

2. Image Decryption

 Once the encrypted images corresponding to the search
request are retrieved, user decrypts them with the key Kcoll
to obtain their plain versions.

V. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation of the
proposed scheme. To perform our evaluation, we used a
database of 59500 motorcycle images. These images are all
of grey level format. Since this paper is focusing on security
issue, we do not pay more attention on generating the feature
vectors. Instead, we resize each image into 20*20
dimensions and then reshape the result into 400-dimensional
vector to be the feature vector. We built a secure LSH index
on the dictionary of feature vectors. Our experiments have
been conducted on a 2.61GHz Pentium processor, Windows
7 operating system, with a RAM of 1GB. We use MATLAB
R2008a to implement our experiments. Table I shows the set
of symbols that are used in our experiments.

A. Retrieval Evaluation

To evaluate the retrieval success, we initially selected 1000
random images from the original database. Trapdoors are
generated with the same settings that are used to generate the
secure LSH index. Retrieval performance is evaluated using
precision-recall curves, where precision and recall of the
image query q are defined as:

Pr ()
R A

ecision q
A

∩
= , ()

R A
recall q

R

∩
= ,

where A is the set of retrieved images during our proposed
protocol, R is the set of relevant images. Given the set Q
={q1, q2, …, qm} of m queries, we can compute the average
of precision and recall as:

1

()

_

m

i
i

precision q

avg press
m

==
∑

, 1

()

_

m

i
i

recall q

avg recall
m

==
∑

Once a query is issued, retrieved images are ranked
according to their distances. Then, images with top t lower
distances are requested from the cloud server. Average

Figure 2: Image retrieval evaluation

Table II: LSH bucket distribution

k 10 15
Hash table No. buckets Max. bucket Avg. bucket No. buckets Max. bucket Avg. bucket

1 1137 6939 2976 4435 6176 2204
2 1245 10935 3097 5273 6278 1566
3 1133 9989 4407 5780 6198 1184
4 1693 9359 2659 4705 4934 1058
5 1313 8272 4244 4350 7579 2185
6 1337 6364 2194 4357 7541 2063
7 1220 9362 3575 4720 8650 2758
8 1454 6171 1851 4250 5275 1378
9 1258 14142 5980 5001 5377 1498
10 1440 5795 2039 4623 3675 1121

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-3, Issue-1, October 2013

146

precision and recall for issued 1000 queries with changing t
is demonstrated in Fig. 2. As expected, less similar items are
retrieved with increasing t.

B. LSH Index Efficiency

In this part, we test the efficiency of the LSH index to enhance
the search time. We compare LSH index against the scan
index, which use brute force search to get the nearest neighbor
for each query image. Fig. 3 shows that our proposed index is
much faster than the scan index. This is because our scheme
measures the distance of only the candidate list, which is
much smaller than the total number of the stored images.

C. Performance Evaluation

In this part, we evaluated the performance of our proposed
index. We evaluate the effect of LSH index parameters (k and
L), number of indexed images n on the indexing and search
times. To do so, we measure the average indexing time,
average search time for 1000 queries with distinct settings.
Search time is simply the time between the search request and
the identification of the image identifiers. To observe the
effect of distinct settings, we modify a single parameter at a
time and used the default values for the others. We use k = 10,
L = 10, w=4, n = 59500 and d = 400 as default values. Figure
4 shows the effect of changing k value on both indexing and
search times. Unsparingly, increasing the k value increases the
indexing time. This is because more costly hashing operations
are conducted in case of using large k values. Search time, on
contrast, decrease as k values increase.

The main reason for this situation is that using small k value
yields a low number of buckets in each table and this would
mean that there are, necessarily, some huge buckets, and at
search time those would cancel the efficiency effect of LSH
index. See experiment 4.5 for more details about the
relationship between the value of k and the distribution of
items among the buckets. The effect of L and n values is
demonstrated in Fig. 5 and figure 6, respectively. As
expected, the indexing time increases as the values of L and n
increases. This is due to the increased number of costly hash
functions evaluations. It is also easy to see that search time
increases as L increased. Moreover, increasing L has an
additional cost of larger trapdoor. Fig. 6 shows that large
number of indexed images leads to large search time. This can
be interpreted as follows: increasing the indexed images n
results in more items in the candidate list that satisfy the
search request.

D. LSH Distribution

In this experiment, we show the effect of k value on the
distribution of stored items among the buckets of the
individual hash tables. Table II shows that using larger k will
increase the number of buckets in each hash table. This
situation leads to distribute the stored items among a larger
number of buckets. This is amazing feature to improve the
search time. This is because small buckets lead to small
candidate list.

VI. CONCLUSIONS

In this paper, as an initial attempt, we address and solve
the problem of supporting efficient content-based image
retrieval over encrypted data in cloud computing. We
utilized locality sensitive hashing which is widely used for
fast similarity search in high dimensional spaces for plain
data. We proposed LSH based secure index and a search
scheme to improve the search time in the context of
encrypted data. In such a context, it is very important to
preserve the privacy of the outsourcing data without
sacrificing functionality. We conduct eexperimentaresults on
a real data to demonstrate the efficiency of our solution.
 Following the current research, we propose several
possible ideas for future work on ranked image search over
encrypted data. The most promising one is the support for
searching color images. In this case, advanced techniques
are used to extract the feature vector for each image like
local feature descriptors (SIFT) [18]. Another idea is to use
a bag of words approach to build visual words from the
feature vectors and use inverted index [19] or min hash [20]
data structures to perform faster search through the visual
features.

 REFERENCES

[1] Reese, G. (2009) Cloud Application Architectures: Building
Applications and Infrastructure in the Cloud. O'Reilly.

[2] Song, D. X., Wagner, D., and Perrig, A. (2000) Practical techniques
for searches on encrypted data. Proceedings of the 2000 IEEE
Symposium on Security and Privacy, Berkeley, CA, 14-17 May, pp.
44-55. IEEE Computer Society, Washington, DC, USA.

[3] Goh, E.-J. (2003). Secure indexes. Cryptology ePrint Archive, Report
2003/216.

[4] Curtmola, R., Garay, J., Kamara, S., and Ostrovsky, R. (2006)
Searchable symmetric encryption: improved definitions and efficient
constructions. Proceedings of the 13th ACM conference on
Computer and communications security (CCS '06), Alexandria,
Virginia, USA, 30 October, pp. 79-88. ACM, New York, NY, USA.

Secure Image Retrieval over Untrusted Cloud Servers

147

[5] Boneh, D., Crescenzo, G. D., Ostrovsky, R., and Persiano, G. (2004)
Public key encryption with keyword search. Proceedings of the 24th
international conference on cryptology (CRYPTO'04), Santa
Barbara, California, pp. 506-522. LNCS 3027.

[6] Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange,
T., Malone-Lee, J., Neven, G., Paillier, P., and Shi, H. (2008)
Searchable encryption revisited: Consistency properties, relation to
anonymous ibe, and extensions. Cryptology, 21, 350-391.

[7] Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., and Lou, W. (2010)
Fuzzy keyword search over encrypted data in cloud computing.
Proceedings of the 29th conference on Information communications
(INFOCOM'10), San Diego, California, 15-19 March, pp. 441-445.
IEEE Press, Piscataway, NJ, USA.

[8] Manning, C. D., Raghavan, P., and Schutze, H.(2008), Introduction
to Information Retrieval. Cambridge UP.

[9] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in 30th STOC, 1998, pp.
604–613.

