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Abstract-Security issue represents the main barrier facing the 

wide adoption of cloud computing. Encryption is the best method 
to mitigate users' concerns. However, this method makes 
searching the encrypted data a challenging task. Accordingly, 
several approaches have been proposed to enable searching the 
encrypted, remotely stored data without decryption. Till now, 
almost all these approaches are limited to handle text search but 
not multimedia search. 

In this paper, we propose an efficient scheme that provides 
content based search over encrypted image database. To do so, 
we utilize a locality sensitive hashing LSH method to build our 
searchable index. LSH index greatly enhances the system 
efficiency by returning the matching images in a ranked order 
with a minimum number of distance evaluations. For security 
purposes, we turn this index into a secure index to prevent the 
cloud server from learning any useful information from the 
contents of that index. Searchable index along with image 
collection are outsourced to the cloud server in their encrypted 
format. We provide several empirical experiments to illustrate the 
efficiency of our proposed scheme. 

Key words: cloud computing, searchable encryption, LSH, 
image retrieval. 

I. INTRODUCTION 

We are living in a highly connected and data intensive 
world. The great advances in networking and information 
technologies have enabled users to collect and generate large 
amounts of data. However, maintaining and storing such 
amount of data require additional storage cost and 
computational power that may be not available to those 
users, especially in case of lightweight device (e.g. mobile 
and iPhone devices). Fortunately, cloud computing (utility 
computing) has been emerged as a new technology that  
offers to its user's attractive financial and technological 
advantages [1]. To exploit the benefits of this new paradigm, 
users have started moving their data and applications to 
cloud servers. 
   However moving sensitive data (such as health records, 
private photos, and secret documents) to the untrusted cloud 
servers poses a great challenge towards the privacy of user's 
data. To combat unsolicited access, users usually encrypt 
their sensitive data before outsourcing it to the cloud servers. 
However, traditional encryption schemes pose a significant 
barrier towards searching the encrypted data. Over the years, 
several searchable encryption (SE) approaches have been 
proposed [2]-[6] to provide the ability for selectively 
retrieving the encrypted documents. Typically, these systems 
build a secure index structure and outsource it along with the 
encrypted documents to the remote server.  
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Authorized users submit their requests as secret trapdoors 

that are integrated properly with the stored indexing 
information. The server uses the received trapdoor to search 
over the stored index, and retrieves the matching encrypted 
documents. 
   Traditionally, almost all the previous searchable 
encryption schemes are limited to handle keyword based 
search, where a user submits a secure keyword to search an 
encrypted text documents. In contrast, modern information 
retrieval (IR) [8] systems e.g. Google Goggles1 introduce 
new technology that allow their clients to submit a photo as 
query and search a database of stored images, where images 
with similar visual content in the database are identified. 
Such new technology is termed as content based image 
retrieval (CBIR). Thus, it is highly recommended to develop 
a searchable encryption scheme that handle image based 
search in an accurate and efficient way. 
   In this paper, we bring together the developments of both 
CBIR systems and SE approaches to explore an image-based 
searchable encryption scheme over remote cloud servers. 
We build a searchable index from the image collection for 
speeding the search task. However, unless secured well, such 
index leaks important statistical information about the 
underlying stored data to the adversary server. Thus, the 
main issue here is how we can encrypt this index while 
preserving its ability to rank the relevant images. 
   The basic building block of our secure index is the locality 
sensitive hashing (LSH) [9].  LSH index allows answering 
efficiently near neighbor queries in high dimensional spaces 
of plain data [10]. In our scheme, we propose to utilize LSH 
in the context of the encrypted data. In such a context, it is 
critical to ensure the confidentiality of the sensitive data. We 
have conducted several empirical analyses on a real dataset 
to demonstrate the performance of our proposed scheme.  
   Our notable contributions can be summarized as follows. 
First, we utilize the appealing features of LSH index in the 
context of the encrypted data, and design an image-based 
searchable symmetric encryption scheme on top of this 
index. Second, our propose scheme indexes huge databases 
of images, in such a clever way, that reduce both storage 
requirements and run time, thus making one step closer 
towards practical deployment of privacy-preserving data 
hosting services in cloud computing.  
   The rest of this paper is organized as follows. Related 
works are reviewed and discussed in section II. Section III 
introduces the problem definition and the security 
requirements. Section IV provides the proposed scheme. 
Performance investigations are provided in section V and 
conclusions and future works are drawn in section VI 

II.  RELATED WORKS 

Text based searchable encryption. Prior searchable 
encryption systems have focused on retrieving encrypted text 
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documents, where the data owner is allowed to outsource the 
storage of his data into another server and give it the ability 
to selectively retrieve the interested document through 
keyword-based search, without decryption. Some of these 
systems are designed to work in symmetric key setting [2, 3, 
4], and the others are based on asymmetric key setting [5, 6]. 
However, all the above listed schemes are limited to perform 
an exact search but not a similarity search. Hence, such 
schemes could not be able to recover the typographical 
errors that exist frequently in the real world applications. To 
handle such problem, Li et al. in [7] used the wildcard 
technique for generating and storing a fuzzy set for each 
keyword, where fuzzy set incorporates the exact keyword 
and the slightly wrong strings that could happen due to the 
minor misspelling.  
Image based searchable encryption. Shashank et al. [11] 
applied the private information retrieval PIR techniques to 
protect the privacy of the query image when searching over a 
public database, where the images in the database are not 
encrypted. However, since the database in PIR is always 
unencrypted, any scheme that tries to hide the access pattern 
(the IDs of the retrieved images) must touch all data items. 
Otherwise, the server learns information: namely, that the 
untouched item was not of interest to the user. Thus, PIR 
schemes require work which is linear in the database size.  
Secure image based search was also applied in the context of 
encrypted image databases. Lu et al. proposed in [12] to 
extract visual words from images and construct indexes 
according to them. They used some cryptographic 
techniques, such as order preserving encryption OPE [13] 
and randomized hash functions to provide both privacy 
protection and rank-ordered search capability. Actually, 
OPE primitive leaks to the untrusted server significant 
amount of information. Such leakage leads to conduct 
serious frequency attacks. In contrast, our proposed scheme 
does not leak anything to the untrusted server.  

 

III.  SCHEME DESCRIPTION 

A. Problem Statement 

Suppose that the data owner DO  has a database 

1 2{ , , ..., }nD Im Im Im=  of n  sensitive images that she 

wants to outsource to a cloud server CS. Data owner extracts 
a feature vector iv  from each image iIm D∈ and 

constructs the dictionary 1 2{ , , ..., }nV v v v= from the 

extracted features. Then she uses the dictionary to build the 
searchable indexI . For security purposes, DO encrypts 
D collection, dictionary ,V  and index I before uploading 
them into the cloud server. Encryption prevents the cloud 
server from learning any useful information about the 
outsourced data except for the DO allows to leak. The 
encrypted index should enable the cloud server to search 
over encrypted data and return the items that are most 
similar to the user’s request in a reasonable amount of time.  
To search the remotely stored image collection with an 
image-based query q , the authorized users generate the 

secret trapdoor Tq  from the above query, and then send Tq  

to the cloud server. Once receiving Tq, the latter searches its 
secure index I  with the presented trapdoor to retrieve the 
candidate list of images, this list identifies the set of the 
most similar images.  Then, the server refines the candidate 
list by performing the Euclidean distance between the secure 
feature vector of the provided query and the dictionary 
subset corresponding to the candidate list items. Finally, 
cloud server selects the top-t image IDs, and sends back 
their corresponding encrypted images to the end user. Fig. 1 
shows the basic structure of our proposed scheme.  

B. Security Definition 

To provide practical solutions, the security definition of all 
presented searchable encryption schemes allows revealing 
access pattern (the identifiers of the relevant documents), 
and search pattern (whether the query term has been 
searched before). We consider an honest-but-curious server 
in our model, which is consistent with most of the previous 
searchable encryption schemes. We assume the cloud server 
acts in an “honest” fashion and correctly follows the 
designated protocol specification, but is “curious” to infer 
and analyze the message flow received during the protocol 
so as to learn additional information. The formal definition 
of our scheme is illustrated below: 
Definition 1 (Similarity searchable symmetric encryption). 
An index-based SE scheme is a collection of seven 
polynomial-time algorithms SE = (Gen, Enc, Trpdr, 
IndBuild, Dict, Search, Dec) such that, 

1. K ← Gen(1λ ): is a probabilistic key generation 
algorithm that is run by the data owner to setup the 
scheme. It takes λ as a security parameter, and outputs 

a secret key {0,1}K λ∈ . 

2. ( , )C Enc K D← : is a probabilistic algorithm run by 

the user to encrypt the image collection. It takes as input 
a secret key K  and an image collection 

1 2{ , , ..., }nD Im Im Im=  and output the encrypting 

collection 1 2{ , , ..., }nC C C C= . 

3. ( )V Dict D← : is deterministic algorithm run by data 

owner to generate the dictionary V, feature vector set, 
from the given image collection D.   

4.  ( , )Tq Trpdr K q← : is a deterministic algorithm run by 

the user to generate a trapdoor for a given image. It 
takes as input a secret key K and an query image q , 

and outputs a trapdoor .Tq  

5. ( , ) ( , , )I SV IndBuild K D V← : is a deterministic 

algorithm run by data owner to generate the secure 

Figure 1: Basic architecture of our proposed scheme 
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index I and the secure dictionary SV. It takes as input a 
secret key K, the image collection D, the dictionary V. 

6. ( , , )Relevant Search I V Tq← : is a deterministic 

algorithm run by the cloud server to search the index I. 
It takes as input an encrypted index I, the dictionary V, 
and the trapdoor Tq  and outputs a set Relevant of 

encrypted images, such that 

1( (Re ), ( ))dist V levant v Tq r≤ , where 1r  is a user 

defined threshold, and dist is a metric distance function. 
7. Im ( , )i iDec K C← : is a deterministic algorithm run by 

the client to recover the plaintext image. It takes as 
input a secret key K and the encrypted image Ci, and 
outputs an image Imi. 

The index-based SE scheme is correct if for all K output by 
Gen(1λ), for all (I, C) output by Enc(K, D),  

1 ,

( , , ( , )) {Im Im |

( (Im ), ( )) Im ( ) }

j j

j j j j

Search I V Trpdr K q D

dist V v Tq r Dec C K C C

= ∀ ∈

≤ ∧ = ∧ ∈  

IV.  THE PROPOSED SCHEME 

In this section we explain the details of our proposed 
scheme. We have two phases, the setup phase and the 
retrieving phase. 

A. Setup Phase 

The data owner initiates the scheme by calling Gen(1λ ), 

generates random keys 1 2, , {0,1}Rk k kcoll λ← . 

Furthermore, Do also generate randomly the matrix 1M  and 

its inverse M2, both of size (d + 2, d + 2), where d  is the 
size of the feature vector. Do outputs K = {k1, k2, kcoll, M1, 
M2}. 

1. Feature Vectors Generation 

  In order to deal efficiently with a huge amount of images, 
while still being able to keep a sizeable portion of the data in 
main memory, we need to generate an extremely compressed 
feature vector for each image. Such vectors represent images 
and potentially enabling fast and scalable search. Data oner 
runs the algorithm ( )V Dict D←  to generate the dictionary 

V for the entire image collection. To find the similar images, 
it is assumed that Euclidean distance between their feature 
vectors is a meaningful measure of similarity. 

2.  Features Indexing 

Once generating image dictionary, Data owner runs the 
algorithm ( , ) ( , , )I SV IndBuild K D V←  to build a 

searchable index I on top of this entity. A simple method to 
index the vectors of dictionary is to store each vector 
directly in the index, and then use the brute force search to 
determine which images in the database are similar to the 
image query.  However such naive search method is 
completely inefficient due to the high dimensionality and 
size of the data. Furthermore, such method is insecure. This 
is because feature vectors may leak information about image 
content. Thus, it is preferable to use an efficient data 
structure to quickly search the huge number of database 
features and identify candidate images, while protecting the 
security of the underlying data.  
   To meet the above listed requirements, namely: efficiency 
and security, we utilize the building block of locality 

sensitive hashing LSH to construct our searchable index. In 
what follows we explain the LSH index and then provide our 
methods to turn such efficient index into the context of 
encrypted data.  
 
LSH Index 
     LSH is an efficient algorithm for near neighbor search in 
high dimensional spaces [9], [10]. The key idea of LSH is to 
“hash” items several times, in such a way that similar items 
are more likely to be hashed into the same bucket than 
dissimilar items are. To achieve this goal, LSH uses a set of 
hash functions to map items into several buckets, such that 
similar items will share a common bucket in high 
probability.  
     Given the metric space M of real d-dimensional points, a 
distance metric dist, a threshold r1, two probabilities P1 and 
P2, and the approximation factor c>1. We define the LSH 
family H of functions  

: dh R N← to be a (r1, cr1, P1, P2)-sensitive family if it 

satisfies the following conditions for any two points 
,p q M∈ and a function h  chosen uniformly at random 

from H: 
 • if 1 1( , ) , then Pr[ ( ) ( )]dist p q r h p h q P≤ = ≥ . 

• if 1 2( , ) , then Pr[ ( ) ( )]dist p q cr h p h q P≥ = ≤ . 

Interestingly, LSH is useful for similarity search if P1 > P2. 
This is because we want to retrieve all images that are close to 
the query point with a reasonable amount of dissimilar 
images. The hash function ha,b ,a bh H∈ is defined as : 

 

 

where <.> is the dot product, p is a vector in d-dimensional 

space, a is a vector with components that are selected at 
random from a Gaussian distribution, b is a real number 
chosen uniformly from the range [0,w], where w is the bin 
width. Thus, hash function h(p) projects the feature vector p 
onto a random direction and then returns the bin number 
where the projection lies. The intuition behind this method is 
that nearby items in the original space will fall into the same 
bin. Note that each a and b  are chosen randomly for each 
hash function ha,b(.).   
   

 

Algorithm 1 Bucket identifier generation. 
Input : h1(p), …, hk(p): k independent hash functions. 
Output : g(p): the bucket identifier. 
Define Prime to be a set of prime numbers of length PL. 
Min = minimum(PL, k); 
For i=1 to Min 
  If  (mod(i,2)=1) 
    hpos(i) = (i+1)/2; 
  Else 
    hpos(i) = Min-(i/2)+1; 
  End if 
End for 
 - Compute:  

( )
1

( ) ( ( ).Pr ( ) 1
Min

hpos i
i

g p h p ime i
=

= +∑  

,
.

( )a b
a p b

h p
w

< > + =  
 
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Furthermore, we can use the hash family H to build a new 
hash family G of hash functions in the following form: 

1 2( ) ( ( ), ( ), ..., ( ))kg p mix h p h p h p= , such that the function 
(.)g  is constructed by mixing k randomly chosen hash 

functions from H. The hash function (.)g  represents the 
bucket identifier of the point p in the hash table. Algorithm 1 
shows our proposed method to generate the bucket identifier, 

g(p), from a set of k  independent hash functions hj(p).   

Moreover, we can choose L different hash functions (.)g  to 

index the point p  into L  hash tables. In this case, each 

vector (point) of the dictionary V is indexed into a set of L  
hash tables. Each table has a set of hash functions h1, h2, …, 
hk, which are then mixed by the function g(.) to get the index 
of the bucket within the table where the feature should go. All 
features with the same hash value go to the same bucket. We 
refer to the bucket identifier as BI and bucket content as BC.  
   The above construction amplify P1 and P2 into 

1 1' 1 (1 )LkP P= − −  and 2 2' 1 (1 ) ,k LP P= − −  respectively. 
Hence, our scheme succeeds in finding a point within distance 

1cr  from the query q  with probability at least P'1. The values 
of k and L can be fixed as the follows to push P'1 closer to 1 
and P'2 closer to 0: 

2

log

log (1/ )

n
k

P
=

, 
 and  

L nρ= , 

where n is the number of indexed points, and. 
1

2

log

log

P

P
ρ =

 
LSH Index Protection 
LSH index reveals the number of buckets and the contents of 
each bucket to the cloud server. Such leakage may be 
employed from the cloud server to infer the entire image 
collection. Thus, we have to encrypt LSH index before 
moving it to the cloud server. In this case, only the data owner 
who generates the secret key or the authorized users who 
know the secret key can generate a valid query and searches 
the encrypted image database. Our method to protect LSH 
index includes the following steps: 

1. (Bucket identifier protection): suppose that 1
(.)kπ

is a 
collision resistant hash function with the following 
parameters: π : {0, 1}λ × {0, 1}∗ → {0, 1}p where p > logn.  
In practice, π(.) will be instantiated by off-the-self hash 
function like SHA-1, in which case p is 160 bits. We replace 

the bucket identifier BI of each hash table with 1
(.)kπ

 before 
outsourcing it to the cloud server. Without knowing the secret 
key k1, it seems imposable for cloud server to generate valid 
bucket identifiers. 
2. (Bucket content protection): Let Max_b be the length of 
the maximum bucket in LSH. We encrypt the elements of 

each bucket under the secret key 2
( )kf BI

, where BI is the 
bucket identifier corresponding to the bucket that want to be 

encrypted and (.)f  is a pseudo-random function in the 

following form: f : {0, 1}λ × {0, 1}∗ → {0, 1}
l

. To hide the 
length of each bucket, we pad each bucket with Max_b –Nj 

random values of the same size of the encrypted data, where 
Nj is the current length of the bucket j.  
3. (Hash table protection): Given Max_t to be the length of 
the longest hash table. We unify the length of all the L hash 
tables by padding Max_t – Lti fake records, where Lti is 
current length of the hash table i.  
3.  Dictionary Encryption 

 Beside the secure index, we outsource the dictionary V of 
the feature vectors in order to prune the candidate list. Note 
that the additional bytes of the stored dictionary are not a main 
issue due to the cheap storage cost on nowadays cloud 
servers. However, moving the feature vectors, in its plaintext 
format, to the cloud server may reveal important information. 
Encryption is considered the best method to preserve data 
privacy. However, all the traditional encryption schemes do 
not provide the ability to evaluate distance function over the 
encrypted data. To cumbersome this problem we utilized the 
solution of [14] to perform the distance between the query and 
the stored dictionary vectors without know neither the query 
nor the dictionary. This method allows performing the 
approximate Euclidean distance function among the 
encrypted vectors without decryption. We describe it briefly 
as follows:  
Suppose that v and q are the data point, and the query point, 
respectively.  Both points are represented as d-dimentional 
vectors. The basic idea behind this method is based on the fact 

that 
1. ( ).( ),T Tv q vM Mv−=  where M is an invertible matrix. 

Data owner can store 
TMq instead of 

Tq  at cloud server site, 
and keeps M secret from the cloud server. DO will send 

1vM −
to the server each time she wants to send a query v; 

therefore cloud server can compute . Tv q  without even 

knowing v and q. If we can use .
Tv q to represent 

the
2

1
( )

d

j jj
v q

=
−∑ , we can make it possible for the cloud sever to 

conduct an approximate distance. We suggest augmenting the 
original representations of these points to be of d+3 
dimensions as follows: 

2
1, 21

( , , ..., ,1, )
d

j i d ij
v y R R v v v R

=
= + −∑

,  …(1)                     

1 2(1, 2 , 2 , ..., 2 , ,1)dq q q q Ra= − − − ,                 …(2)                                                                                                
We will have 

 
2

1 1
. 2 ,

d dT
j j jj j

v q v v q R Ra
= =

= − + +∑ ∑
 … (3) 

and thus the Euclidean distance will equal to 
2

1
. ( )

dT
jj

v q q R Ra
=

+ − −∑
. However, since 

2

1
( )

d

jj
q R Ra

=
− −∑ is a 

constant, we can delete it because it does not affect the final 
result; therefore the cloud server can use v.q to compute the 
closest match. 
These points are encrypted as follows: 
v'= Ev (v,M-1) = vM-1                                     …(4)                                                                                   
q' = EQ(q,M) = MqT,                                      …(5)                                                                                          
Notice that we have introduced random numbers R, Ra Ri for 
i=1,…,n. The purpose of R is to prevent the cloud server from 
knowing the actual distance between q and the items in the 
database; the purpose of Ra is to prevent the server from 
knowing the relationship between two different queries; the 
purpose of Ri is to prevent the server from knowing the 
relationship among items in the database.  Recall that feature 
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vector encryption is performed just one time in the data owner 
side, and thus it does have any effect on the search 
performance.   
4.  Database Encryption 

Data owner runs the algorithm ( , )C Enc K D← to protect 
the privacy of his images contents.  DO uses Enckcoll(.) to 
encrypt the image collection D before uploading it to the 
cloud server, where kcoll is a secret key. Given the image Imi 
and its identifier Id(Imi), the encrypted collection will be C = 
{(Id(Imi), Enckcoll(Imi)} ∀ Imi∈D. Image encryption can be 
done using state-of-the-art ciphers such as AES or RSA 
directly by treating images as ordinary data, or using image 
specific techniques such as selective and format-compliant 
encryption [15], [16], [17] to enable post-processing such as 
transcoding on encrypted images. Particularly, we use AES 
with counter mode as an instance of Enckcoll(.), with a key of 
128-bit length. Algorithm 2 shows our method to generate the 
secure LSH index. 
B. Retrieval phase  
   Once the encrypted database C, secure LSH index I, and 
secure dictionary SD are outsourced to the cloud server, 
authorized users are able to selectively retrieve images from 
the remote server. To do so, DO shares the following 
information with data users: 
1. Kcoll : secret key of data collection encryption 
2. k1, k2: secret keys of index construction. 
3. M1: secret key for encrypting the feature vector of the 

query. 
4. A set of L locality sensitive hash functions g(.). 

 

Given the image query q and the secret keys, authorized 
users first generate the feature vector vq from q, and then 
extend and encrypt the resulting vector by (2) and (4), 
respectively, to get the refining vector QSV. Finally she runs 
the trapdoor algorithm Trpdr(K, q) to hash the query q into L 
bucket identifiers with the same settings of the index setup. 
The secure trapdoor Tq is constructed as Tq={πk1(BI1), 
fk2(BI1), πk1(BI2), fk2(BI2),…, πk1(BIL), fk2(BIL), QSV, t}, where 
t is a user defined parameter  

 

 

Algorithm 3 Secure image retrieval. 
Input: q: query image, t: the number of retrieved images, 
and g1, g2, …, gL: L hash functions. 
Output: The set of top-t encrypted images. 
 
{User side} 
- Generate the feature vector v for the query image 
q. 
- Extend and encrypt the resulting vector by (2) 
and (5), respectively, to get the refining vector QSV. 

- For each hash table j, 1≤ j ≤ L 
    -  Use Algorithm 1 to compute the bucket identifier: 
BIi=gj(v). 
        End for 
- Set Tq={πk1(BI1), fk2(BI1), πk1(BI2), 
fk2(BI2),…, πk1(BIL), fk2(BIL), QSV, t}. 
-  Send Tq to cloud server. 
 
{Cloud server side} 

     - Candidate=φ ; 

     - For all πk1(BIi) ∈Tq, 1,...,i L∀ =  
         - Search (πk1(BIi), BCi) in hash table i. 
         - Decrypt BCi with the secret key fk2(BIi) 
         - Remove the random values from BCi. 

         - Candidate= iBC∪  
     End for 
     - Remove the duplicate elements in Candidate list. 
     - For each Id(Imj) ∈Candidate 
            -  Calculate the Euclidean distance as in (3) 
between QSV and SV(Id(Imj)). 
     End for   
     - Set HS vector to capture the image IDs of the 
minimum t distances, HS = {hs1, hs2, …, hst} 
     - Set Retrieve = {Retimage(hs1), Retimage(hs2), …, 
Retimage(hst)} be the set of the top-t encrypted images. 
     - Send Retrieve to the end user. 

Algorithm 2 Secure LSH index building. 
Input : λ : the security parameter, D: image collection, L: the 
number of resulting hash tables,  g1, g2, …, gL: L hash functions, 
MAX_b: the maximum bucket, Max_t: the length of the longest 
hash table. 
Output : the secure index I, in the form of L hash tables and the 
secure dictionary SV. 
{Key generation} 
- Use λ  to generate k1, k2 and Kcoll secret keys.  
{Index construction} 
For each Imi D∈  

       -      Let Id(Imi) be the identifier of the image Imi. 

- Generate the feature vector iv  from the image Imi. 

- For each hash table j, 1 ≤ j ≤ L 
            - Use Algorithm 1 to compute the bucket identifier: 
BIj=gj(vi). 

                   - Store Id(Imi) in the bucket BIj of table j. 
End for 

End for 
{Index protection} 

   - For each hash table i I∈ , 1 ≤ i ≤ L 
         - For each bucket BIj, 1 ≤ j ≤ BLj  
               -  Encrypt the Nj elements of the bucket BIj with the key 
fk2(BIj). 

- Pad the remaining (Max_b - Nj) entries, if any, with 
fake random values of the same size of the existing 
Nj entries. 

           - replace BIj with πk1(BIj). 
 End for 
- Pad the hash table i with (Max_t - Lbi) fake records. 

End for 
{Dictionary encryption} 
For each vector vi, 1 ≤ i ≤ n 

- Expand and encrypt the vector vi by using (1) and (4), 
respectively, to generate the refining vector Svi. 

End for 

- Set SV={Svi} 1,...,i n∀ =  
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controlling the number of retrieved images. The trapdoor Tq 
is sent to the cloud server.     

1.  Searching and Retrieving 

 Cloud server accepts the trapdoor Tq from the authorized 
users and use the secure element πk1(BIi)  to scan the hash 
table i for each1 i L≤ ≤ ,  and then retrieve the bucket 
content BCi corresponding to the bucket BIi. The cloud 
server uses the key fk2(BIj) to decrypt the bucket j, and  then 
removes the fake random values.  All the image identifiers 
Id(Im) resulting from decryption of the buckets' contents are 
merged together into a single list which is called as the 

candidate list. The cloud server removes the duplicate 
elements in the candidate list. The next step is refining the 
candidate list.  To do so, cloud server measures the            
Euclidean distance between the  
provided refining vector QSV and the refining vectors Svi 
belonging to the image identifiers that are reside in the 
candidate list. Such process is conducted securely by using 
Theorem 1. Finally, the cloud server returns the encrypted 
images of the t lower distance to the end user. Algorithm 3 
shows our proposed protocol for retrieving the top-t images 
from the remote cloud server. 

2. Image Decryption  

 Once the encrypted images corresponding to the search 
request are retrieved, user decrypts them with the key Kcoll 
to obtain their plain versions.   

V. EXPERIMENTAL EVALUATION 

In this section, we present the experimental evaluation of the 
proposed scheme. To perform our evaluation, we used a 
database of 59500 motorcycle images. These images are all 
of grey level format. Since this paper is focusing on security 
issue, we do not pay more attention on generating the feature 
vectors. Instead, we resize each image into 20*20 
dimensions and then reshape the result into 400-dimensional 
vector to be the feature vector. We built a secure LSH index 
on the dictionary of feature vectors. Our experiments have 
been conducted on a 2.61GHz Pentium processor, Windows 
7 operating system, with a RAM of 1GB. We use MATLAB 
R2008a to implement our experiments. Table I shows the set 
of symbols that are used in our experiments.   

A. Retrieval Evaluation 

To evaluate the retrieval success, we initially selected 1000 
random images from the original database. Trapdoors are 
generated with the same settings that are used to generate the 
secure LSH index. Retrieval performance is evaluated using 
precision-recall curves, where precision and recall of the 
image query q are defined as: 

Pr ( )
R A

ecision q
A

∩
= , ( )

R A
recall q

R

∩
= , 

where A is the set of retrieved images during our proposed 
protocol, R is the set of relevant images. Given the set Q 
={q1, q2, …, qm} of m queries, we can compute the average 
of precision and recall as: 
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Once a query is issued, retrieved images are ranked 
according to their distances. Then, images with top t lower 
distances are requested from the cloud server. Average 

Figure 2: Image retrieval evaluation 

Table II: LSH bucket distribution 

k 10 15 
Hash table No. buckets Max. bucket Avg. bucket No. buckets Max. bucket Avg. bucket 

1 1137 6939 2976 4435 6176 2204 
2 1245 10935 3097 5273 6278 1566 
3 1133 9989 4407 5780 6198 1184 
4 1693 9359 2659 4705 4934 1058 
5 1313 8272 4244 4350 7579 2185 
6 1337 6364 2194 4357 7541 2063 
7 1220 9362 3575 4720 8650 2758 
8 1454 6171 1851 4250 5275 1378 
9 1258 14142 5980 5001 5377 1498 
10 1440 5795 2039 4623 3675 1121 
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precision and recall for issued 1000 queries with changing t 
is demonstrated in Fig. 2. As expected, less similar items are 
retrieved with increasing t. 

B. LSH Index Efficiency 

In this part, we test the efficiency of the LSH index to enhance 
the search time. We compare LSH index against the scan 
index, which use brute force search to get the nearest neighbor 
for each query image. Fig. 3 shows that our proposed index is 
much faster than the scan index. This is because our scheme 
measures the distance of only the candidate list, which is 
much smaller than the total number of the stored images. 

 

C. Performance Evaluation 

In this part, we evaluated the performance of our proposed 
index. We evaluate the effect of LSH index parameters (k and 
L), number of indexed images n on the indexing and search 
times. To do so, we measure the average indexing time, 
average search time for 1000 queries with distinct settings. 
Search time is simply the time between the search request and 
the identification of the image identifiers. To observe the 
effect of distinct settings, we modify a single parameter at a 
time and used the default values for the others. We use k = 10, 
L = 10, w=4, n = 59500 and d = 400 as default values. Figure 
4 shows the effect of changing k value on both indexing and 
search times. Unsparingly, increasing the k value increases the 
indexing time. This is because more costly hashing operations 
are conducted in case of using large k values. Search time, on 
contrast, decrease as k values increase.  

 

The main reason for this situation is that using small k value 
yields a low number of buckets in each table and this would 
mean that there are, necessarily, some huge buckets, and at 
search time those would cancel the efficiency effect of LSH 
index. See experiment 4.5 for more details about the 
relationship between the value of k and the distribution of 
items among the buckets. The effect of L and n values is 
demonstrated in Fig. 5 and figure 6, respectively. As 
expected, the indexing time increases as the values of L and n 
increases. This is due to the increased number of costly hash 
functions evaluations. It is also easy to see that search time 
increases as L increased. Moreover, increasing L has an 
additional cost of larger trapdoor. Fig. 6 shows that large 
number of indexed images leads to large search time. This can 
be interpreted as follows: increasing the indexed images n 
results in more items in the candidate list that satisfy the 
search request.  

D. LSH Distribution 

In this experiment, we show the effect of k value on the 
distribution of stored items among the buckets of the 
individual hash tables. Table II shows that using larger k will 
increase the number of buckets in each hash table. This 
situation leads to distribute the stored items among a larger 
number of buckets. This is amazing feature to improve the 
search time. This is because small buckets lead to small 
candidate list. 

VI.  CONCLUSIONS 

In this paper, as an initial attempt, we address and solve 
the problem of supporting efficient content-based image 
retrieval over encrypted data in cloud computing. We 
utilized locality sensitive hashing which is widely used for 
fast similarity search in high dimensional spaces for plain 
data. We proposed LSH based secure index and a search 
scheme to improve the search time in the context of 
encrypted data. In such a context, it is very important to 
preserve the privacy of the outsourcing data without 
sacrificing functionality. We conduct eexperimentaresults on 
a real data to demonstrate the efficiency of our solution. 
    Following the current research, we propose several 
possible ideas for future work on ranked image search over 
encrypted data. The most promising one is the support for 
searching color images. In this case, advanced techniques 
are used to extract the feature vector for each image like 
local feature descriptors (SIFT) [18]. Another idea is to use 
a bag of words approach to build visual words from the 
feature vectors and use inverted index [19] or min hash [20] 
data structures to perform faster search through the visual 
features. 
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