
International Journal of Software Engineering and Its Applications

 Vol. 7, No. 3, May, 2013

117

A Meta-Model Transformation between DDS and DBMS

Representation of Data for DDS-DB Integration

Hyung-Jun Yim
1
, Yun-Hee Son

2
, Chan-Ho Song

1
, Chumsu Kim

2
, Gyoonjung Lee

2

and Kyu-Chul Lee
1†

1
Department of Computer Engineering, Chungnam National University

220 Gung-Dong, Yuseong-Gu, Daejeon, Korea
2
Naval Combat Systems PEO, Agency for Defense Development,

Jinhae-Gu, Changwon-Si, Gyeongnam, Korea
1
{hyungjun25, mellow211, chanho, kclee}@cnu.ac.kr

,

2
{chskim, gjlee}@add.re.kr

Abstract

Data Distribution Service for Real-Time Systems (DDS) is the OMG publish/subscribe

standard that aims to enable scalable, real-time, dependable, high performance and

interoperable data exchanges. DDS introduces a virtual Global Data Space where

applications can share information by simply reading and writing data-objects addressed by

means of an application-defined name (Topic) and a key. Large numbers of publishers and

subscribers on DDS can create huge amounts of Topic data. The commonly accepted

approach to large-scale real-time data management is to use a database for persistence.

This paper provides an integral solution for data distribution and database management in

the real-time applications space. This paper outlines a mapping between DDS and DBMS

meta-model and DDS-DB integration mechanism for supporting data persistence. The

prototypes of mapping tools have been implemented. This paper also concludes with general

remarks and a discussion of future works.

Keywords: Data Distribution Service, DBMS, Integration, Meta-Model, IDL, mapping

1. Introduction

Data Distribution Service (DDS) [1] is a Publish/Subscribe technology for real-time,

dependable and high-performance data exchanges. Publish/Subscribe is an abstraction for

one-to-many communication that provides anonymous, decoupled, and asynchronous

communication between a publisher and its subscribers.

The Object Management Group (OMG) DDS standards family is today composed by the

DDS v1.2 API and the DDS Interoperability Wire Protocol (DDSI v2.1), supporting the Data

Centric Publish/Subscribe (DCPS) layer, and the Data Local Reconstruction Layer (DLRL).

DDS applications can communicate even if they are written in different programming

languages or running on different operating systems or processor architectures. And because

DDS defines standard programming interfaces, application software is also portable across

different DDS implementations. The DDS API standard defines several different profiles that

enhance real-time Publish/Subscribe with content filtering, persistence, automatic fail-over,

and transparent integration into object-oriented languages.

Real-time data in DDS must be captured, stored, retrieved, queried, and managed such that

† Corresponding Author

International Journal of Software Engineering and Its Applications

Vol. 7, No. 3, May, 2013

118

the proper information can be quickly accessed by all interested participants within the

system. This data management capability can be viewed as, but is not limited to, a distributed

real-time database where peer-to-peer (P2P) networking and in-memory data management

systems are leveraged to provide a solution that manages storage, retrieval, and distribution of

fast changing data in dynamic network environments [2].

One of the main characteristics of DDS, in addition to ensuring deterministic data

exchange, is providing mechanisms for the management of many Quality of Service (QoS)

aspects to meet application requirements. DDS features fine and extensive control of QoS

parameters, including reliability, bandwidth, delivery deadlines, and resource limits. In

contrast with message-oriented paradigms, instead of exchanging data in the form of

messages, DDS uses a platform independent way to define the data to be sent inherited from

the CORBA specification known as Interface Definition Language (IDL) [3]. This approach

allows the automatic generation of communication source code for specific target platforms

[4].

In this paper, we provide a mapping to bridges the impedance mismatch between DDS and

DBMS representation of data. The DDS-DB integration can bridge data from the DDS

domain to the DBMS domain and vice versa. In DDS, data is represented by topics, while in

DBMS data is represented by tables. With DDS-DB integration, a mapping between a topic

and a table can be defined. A topic in DDS will be mapped to a table in DBMS. When data in

the DDS domain has to be available in the DBMS domain, the DDS-DB integration can be

configured to facilitate that functionality.

To support these functions, we propose a real-time data communication and management

mechanism for database. DDS implements some of the best practices followed by specific

real-time data distribution middleware products developed by companies like RTI DDS [5]

and Thales. Although initially there were few DDS products, nowadays the number of DDS

vendors is increasing and there even exist some open source products, such as PrismTech

OpenSplice [6], OpenDDS [7], BEE DDS [8], ETRI DDS (EDDS), Twin Oaks CoreDX DDS

[9] and Real-Time Communication Middleware (ReTiCom) [10]. We refer our proposed

framework to DB-ReTiCom based on ReTiCom with FastDB [11]. DB-ReTiCom is built as a

highly modular collection of pluggable service that provide database integration with any

ODBC-compliant DBMS.

This paper is organized as follows: the next section introduces the related works and a

mapping between DDS and DBMS meta-model is given in Section 3. In Section 4, we

propose a description of DDS-DB integration mechanisms. Lastly, in Section 5, the

conclusions and future works related to this paper.

2. Related Works

RTI and OpenSplice support a bridge to integrate representation of global data space in

DDS and DBMS. RTI Real-Time Connext [12], as seen in Figure 1, is the integration of two

complementary technologies: DDS and DBMS. This powerful integration allows your

applications to uniformly access data from real-time/embedded and enterprise data sources

via the DDS API (such as with RTI DDS) or via the SQL API. Since both these technologies

are data-centric and complementary, they can be combined to enable a new class of

applications. In particular, DDS can be used to produce a truly decentralized distributed

DBMS, while DBMS technology can be used to provide persistence for DDS data.

International Journal of Software Engineering and Its Applications

 Vol. 7, No. 3, May, 2013

119

Figure 1. RTI Real-Time Connect Bridges Embedded and Enterprise
Applications

The OpenSplice DbmsConnect [13] Module is a pluggable service of OpenSplice that

provides a seamless integration of the real-time DDS and the non-/near-real-time enterprise

DBMS domains, as shown in Figure 2. It complements the advanced distributed information

storage features of the OpenSplice Persistence Module (and vice versa). Where (relational)

databases play an essential role to maintain and deliver typically non- or near-real-time

‘enterprise’ information in mission systems, OpenSplice targets the real-time edge of the

spectrum of distributing and providing ‘the right information at the right place at the right

time’ by providing a QoS aware ‘real-time information backbone’.

Figure 2. DDS to DBMS Scenario

International Journal of Software Engineering and Its Applications

Vol. 7, No. 3, May, 2013

120

3. Mapping between DDS and DBMS Meta-Model

This section describes the meta-model and data type mapping that DDS-DB integration

uses to connect DB-ReTiCom to FastDB databases. In DDS data is called a "Topic" and

represents the unit of information that can be produced or consumed by a DDS application. A

Topic is defined as a triad composed of by a type, a unique name, and a set of QoS policies

which are used to control the non-functional properties associated with the Topic. Topic

Types can be represented with the subset of the OMG IDL standard that defines struct types,

with the limitations that Any-types are not supported. The only thing that DDS has in

common with CORBA is that it uses a subset of IDL. FastDB is a highly efficient object

relational in-memory database system with real-time capabilities and convenient C++

interface.

3.1. Meta-Model Transformation between DDS and DBMS

The DDS concept of a keyed topic and a type is mapped to the DBMS notion of a keyed

table and schema representing data-object instances. Rules are specified for translating

between a DBMS table record and the DDS wire format representation as listed in Table 1.

Table 1. DDS-DBMS Meta-Model

 DB-ReTiCom FastDB

API Accessed via DDS API

(C/C++ language bindings)

Accessed via SQL-like syntax

API (C/C++ language bindings)

Data Structure IDL Table Schema

Identification Topic

(identified by a name string)

Table

(identified by a name string)

Data Values Typed Data Rows in Table

Key Instance Key Special Field (using as

Primary Key)

Write DDSDataWriter::write() SQL INSERT or UPDATE

Dispose DDSDataWriter::dispose() SQL DELETE

The complex data types available in both domains map onto each other as listed in Table 2.

A Topic type is a struct that can contain as fields nested structures, unions, enumerations,

template types as well as primitive types. The sequence type with respect to its length and

contained type.

Table 2. Complex Data Type Mapping

IDL XSD C++ FastDB

interface mapping to get, set class class

Struct complex type struct struct

Enum simple type enum enum

sequence complex type class dbArray<t>

array complex type array dbArray<t>

inheritance ○ ○ ○

International Journal of Software Engineering and Its Applications

 Vol. 7, No. 3, May, 2013

121

Data in FastDB is stored in tables which correspond to C++ classes whereas the table

records correspond to class instances. C++ types described in [11] are accepted as atomic

components of FastDB records. The basic data types available in both domains map onto each

other as listed in Table 3. The string and wstring can be parametrized only with respect to

their maximum length.

Table 3. Basic Data Type Mapping

IDL XSD C++ FastDB

short (2byte) short (2byte) short (2byte) Int2 (2byte)

unsigned short (2byte) unsigned short (2byte) unsigned short (2byte) Nat2 (2byte)

long (4byte) int (4byte) int (4byte) Int4 (4byte)

unsigned long (4byte) unsigned int (4byte) unsigned int (4byte) Nat4 (4byte)

long long (8byte) long (8byte) long long (8byte) Int8 (8byte)

unsigned long long

(8byte)

unsigned long (8byte) unsigned long (8byte) Nat8 (8byte)

float (4byte) float (4byte) float (4byte) Real4 (4byte)

double (8byte) double (8byte) double (8byte) Real8 (8byte)

long double (10byte) double (8byte) long double (10byte) Real8 (8byte)

char (1byte) string char (1byte) char const*

wchar (2byte) string wchar_t (2byte) wchar const*

string string string std::string

wstring string wstring std::wstring

boolean (1byte) boolean (1byte) boolean (1byte) char (1byte)

octet (1byte) unsigned byte (1byte) unsigned char (1byte) Byte (1byte)

3.2. Mapping Tools

This paper describes the 3 mapping tools for meta-model transformation between DDS and

DBMS as seen in Figure 3 and Figure 4.

Figure 3. The Steps of Meta-Model Mapping Tools

Our preprocessor is a program that processes its input data (user-defined IDL) to produce

output that is used as input to IDL2XSD tool. IDL2XSD is an IDL compiler to W3C XML

Schema. IDL2XSD generates the XML schema for the supplied IDL. XSD2FastDB is an

XSD compiler to FastDB schema. XSD2FastDB generates an identified by a name string

(Topic.cpp) template, to demonstrate how generated source can consumed.

International Journal of Software Engineering and Its Applications

Vol. 7, No. 3, May, 2013

122

Figure 4. Radar Topic Example of Mapping Tools

4. DDS-DB Integration Mechanism

We propose a DB-ReTiCom based on the DDS and persistent data space with functional

capability of dynamic reconfiguration. Data space is built on an in-memory database system

in order to provide high-performance and real-time support. The DDS-DB Integration

mechanism not only manages the automatic publication of changes made to tables in the

DBMS but also apply changes received via DDS to tables in the DBMS. DDS Topic in

database, making it available to late-joining subscribers even if the original publisher is no

longer accessible. And web and enterprise applications can interface to real-time applications

through a database or using web services interfaces, including WSDL/SOAP and REST.

Figure 5. DDS-DB Integration Mechanism

International Journal of Software Engineering and Its Applications

 Vol. 7, No. 3, May, 2013

123

4.1. DDS-DB Integration Mechanism

The DDS-DB integration mechanism contains a publication and subscription component

with the four components being as seen in Figure 5.

DDS2DBMS Publication is a collection of functionality that disseminates topic

instances as well as propagates the outgoing DDS samples to a DBMS table.

DDS2DBMS Subscription is a collection of functionality that can propagate an

incoming DDS sample to a table managed within the DBMS.

DBMS2DDS Publication is an enterprise application can change data within a DBMS

table and ultimately have the table update information published, via a DDS DataWriter.

DBMS2DDS Subscription will be associated with a table and will subscribe to

associated DDS topics to capture.

4.2. Scenario of DDS-DB Integration

DDS2DBMS Publication/Subscription. When data in the DDS domain has to be available

in the DBMS domain, the DDS-DB integration can be configured to facilitate that

functionality. A topic in DDS will be mapped to a table in DBMS. The scenario is shown in

Figure 6.

1. DDS application writes the temperature topics

2. Data is published using DDS and propagates the outgoing DDS samples to a DBMS

table

3. DDS DataReaders receive data in same domain

4. DDS DataReaders store data in database

5. Data is accessible via SQL

Figure 6. The Scenario of DDS2DBMS Publication/Subscription

International Journal of Software Engineering and Its Applications

Vol. 7, No. 3, May, 2013

124

DBMS2DDS Publication/Subscription. When data in the DBMS domain has to become

available in the DDS domain, this can be achieved by configuring the DDS-DB integration to

map a table to a topic. The scenario is shown in Figure 7.

1. Table is changed using SQL

2. DB-ReTiCom detects change and the data is published using DDS

3. DDS DataReaders receive data in same domain

4. DDS DataReaders store data in database

5. Data is accessible via SQL

Figure 7. The Scenario of DBMS2DDS Publication/Subscription

5. Final Remarks

DDS-DB integration is an important issue with a growing interest. This paper introduced a

mapping between DDS and DBMS meta-model and DDS-DB integration mechanism for

supporting data persistence. The DDS-DB integration can bridge data from the DDS domain

to the DBMS domain and vice versa. A topic in DDS will be mapped to a table in DBMS.

When data in the DDS domain has to be available in the DBMS domain, the DDS-DB

integration can be configured to facilitate that functionality. In the future, the authors intend

to continue to work on bridge to incorporate real-time communication with persistence.

Acknowledgements

Authors are gratefully acknowledging the financial support by Defense Acquisition

Program Administration and Agency for Defense Development under the contract

UD100003KD.

International Journal of Software Engineering and Its Applications

 Vol. 7, No. 3, May, 2013

125

References

[1] Object Management Group, “Data Distribution Service for Realtime Systems”, v1.2, (2007).

[2] Mark A. Hamilton, Real-Time Innovations, “Embedded to Enterprise Application Bridging (e2E) Utilizing

DDS & RDBMS Technologies”, (2009).

[3] Object Management Group, “Common Object Request Broker Architecture (CORBA)”, v3.0, (2002).

[4] Ismael Etxeberria-Agiriano, Isidro Calvo, Federico Pérez and Oier García de Albeniz, “Mapping Different

Communication Traffic over DDS in Industrial Environments”, Information Systems and Technologies,

(2011).

[5] RTI DDS, http://www.rti.com/.

[6] OpenSplice, http://www.opensplice.com/.

[7] OpenDDS, http://www.opendds.org/.

[8] BEE DDS, http://www.beedds.com/.

[9] Twin Oaks CoreDX DDS, http://www.twinoakscomputing.com/coredx.

[10] K. -J. Kwon, C. -B. Park and H. Choi, “DDSS: A Communication Middleware based on the DDS for Mobile

and Pervasive Systems”, The 10th International Conference on Advanced Communication Technology,

(2008).

[11] FastDB, http://www.garret.ru/fastdb/FastDB.htm.

[12] Real-Time Innovations, “RTI Real-Time Connect for RTI Data Distribution Service User’s Manual”, v 4.5,

(2011).

[13] PrismTech, “OpenSplice DDS Development Guide”, v 4.1, (2009).

Authors

Hyung-Jun Yim is a Ph.D. Candidate in Chungnam National

University, Daejeon, Korea. His current research interests are in the areas

of Internet of Things, Cloud Connected Car and Data Distribution

Service.

Yun-Hee Son is a Ph.D. Candidate in Chungnam National University,

Daejeon, Korea. His current research interests are in the areas of Data

Distribution Service and Linked Open Data.

Chan-Ho Song is a MS Candidate in Chungnam National University,

Daejeon, Korea. His current research interests are in the areas of Internet

of Things and Data Distribution Service.

International Journal of Software Engineering and Its Applications

Vol. 7, No. 3, May, 2013

126

Chumsu Kim is a senior researcher in Agency for Defense

Development, Changwon, Korea. His current research interests are in the

areas of computer engineering including distributed system, database and

communication for naval combat management system development.

Gyoonjung Lee is a principal researcher in Agency for Defense

Development, Changwon, Korea. His current research interests are in the

areas of integration for naval combat management system and small

target detection in sea environment.

Kyu-Chul Lee is a professor in the Dept. of Computer Engineering in

Chungnam National University, Daejeon, Korea. He received his Ph.D.

from Seoul National University in 1989. His current research interests are

in the areas of XML, Web Services, Cloud Computing and Internet of

Things. He has been responsible for several industrial projects and

published numerous papers.

