1988 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 7, JULY 1999

Redundant Filterbank Precoders and Equalizers
Part I: Unification and Optimal Designs

Anna ScaglioneStudent Member, IEEESeorgios B. Giannakigsellow, IEEE and Sergio Barbarossilember, IEEE

Abstract—Transmitter redundancy introduced using filterbank  viate channel zero restrictions imposed by spatio-temporal
precoders generalizes existing modulations including OFDM, output diversity methods relying on fractional sampling and/or
DMT, TDMA, and CDMA schemes encountered with single- and multiple-antenna reception [22], [33], [34]. As opposed to error

multiuser communications. Sufficient conditions are derived to . . .
guarantee that with FIR filterbank precoders FIR channels are correcting coders, block-precoded transmitters operate in the

equalized perfectly in the absence of noise by FIR zero-forcing complex field rather than the Galois field and explicitly take
equalizer filterbanks, irrespectiveof the channel zero locations. into account the presence of frequency-selective fading.

Multicarrier transmissions through frequency-selective channels Despite the high potential of block transmission systems,
can thus be recovered even when deep fades are present, unifying framework able to encompass existing modula-

Jointly optimal transmitter-receiver filterbank designs are also . o
developed, based on maximum output SNR and minimum tions and equalization schemes, as well as general channel

mean-square error criteria under zero-forcing and fixed identifiability conditions leading to improved optimal design
transmitted power constraints. Analytical performance results alternatives, is lacking. As will be discussed in detail in

are presented for the zero-forcing filterbanks and are compared Sections Il and Ill, a good candidate is the multirate filterbank
with mean-square error and ideal designs using simulations. transceiver model, which has also been considered in [1], [10],
Index Terms—Block transmissions, communications, digital [13], [30]-[32], and [36]-[39]. Perfect reconstruction (PR)
subscriber loops, discrete-multitone and discrete-wavelet mul- synthesis filterbanks at the transmitter and analysis filterbanks
tiplexing, downlink channels, filterbanks, intersymbol and in- at the receiver allow perfect recovery of communication sym-

terchip interference, joint transceiver optimization, minimum bols. but the challenaes arise with I1Sl-inducing channels and
mean-square error receivers, orthogonal frequency-division mul- » bu g ISe wi Inducing

tiplexing, precoding, pre-equalization, time- and code-division NOise, both of which destroy the PR property. Filterbank (FB)
multiple access, zero-forcing. transceivers for ISI and noise mitigation will be our focus

herein. In a different context, PRFB’s have been used also
as data compressing transforms designed to optimize coding
gains and suppress quantization noise (see e.g., [9], [17], and

EDUNDANCY at the transmitter builds diversity in thereferences therein).

input of digital communication systems and is well moti- Building on the filterbank precoding framework, our objec-
vated for designing error correcting codes (see e.g., [2, ch. Qj}e in this paper is threefold: i) to unify the aforementioned
However, especially with block transmissions, where the daigodulation/precoding schemes under the filterbank framework
stream is divided into consecutive equal-size blocks [11], thg Fig. 1 (Section IIl); ii) to develop sufficient conditions for
redundancy added to each block offers also a powerful tool fgkistence of FIR zero-forcing (ZF) filterbanks, which, in the
removing interblock interference and devising Simple yet e&bsence of noise, equa“ze perfecﬂy any FIR channel using
fective schemes for intersymbol-interference (ISI) suppressignRr decoder filterbanks (Section 1V); and iii) to derive jointly
Examples of block transmissions include orthogonal frequengltimal FIR transmitter-receiver filterbank pairs, which, in
division multiplexing (OFDM) [10], coded-OFDM (COFDM) the presence of noise, maximize the output SNR or mini-
[41], discrete multitone (DMT) [3], [19], [25], and pseudo-mize mean-square error under transmitted power constraints

random or wavelet based precoded transmissions for cog@€ection V). Simulations are presented in Section VI and
division or discrete-wavelet multiple access (CDMA/DWMA)concluding remarks in Section VII.

[1], [26], [30], [38]. Recently, input redundancy has also
been eXplOited for blind ISI mltlgatlon [13], [32] to ob- Il. FILTERBANK TRANSCEIVER MODEL
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Fig. 1. Multirate discrete-time baseband equivalent transmitter/channel/receiver model.

transmitted block is measured by the rati® — M)/P, (y(nP), y(nP+1),---, y(nP+ P —1))T, respectively. The
whereas at the receiver, the rate is reduced by the saweetor form of (1) and (3) then becomes

amount restoring the original input data rate. Indicating by

{fm(n)¥M=4 the impulse responses of filters at each branch

of the transmit filterbank, our precoder’s output is u(n) = Z F;s(n—1) 4)
M-1 o . _oo )
=3 3 sGMAm)fuln—iP). Q) 3(n)= > Giyn—j) (5)

m=0 i=—o0 j=—00

From an input-output (I/O) point of view, our transmitwhere the elements of th2 x M and M x P matricesF;
filterbank precoder takes sizé-blocks ofs(n), vector filters and @; are

them, and maps them to siz&blocks ofu(n). After passing

through the linear time-invariant (LTI) channk(!), the data ‘ e ' Ry
received in additive Gaussian noise (AGN)y) are Fidp.m := fn (0P %+ p), {Gikm,pr:= gp(GM +m) (6)
m:()v"'vM_]-v p:()v"'vP_]- (7)

y(n) =z Z h(Du(n 1) +v(n) with the columns of theith (jth) matrix F; (G;) contain-

f==o0 ing the ith (jth) segment of lengthP (M) of the filters’

N &= impulse responsesf,, (n)}? m_o ({gp(n )}p_o) The transmit
Z Z (M +m) and receive filterbanks in the system of Fig. 1 have the same
m_goz__“ structure, contrary to what is usually employed in the perfect
) Z h(1) f(n — 1 — iP) + v(n). @) reconstruction (PR) filterbank literature [35], where filterbanks

have equal nhumber of branches but filters, up/downsamplers,
and delays are located on the opposite side relative to Fig. 1.

A mapping mirror to (1) takes place at the receiver, whefdowever, the two structures can be made equivalent. In

size? blocks ofy(n) are mapped to siza# blocks of 5(n) fact, (6) and (7) establish thdF";},, , = fm(iP + p) and

after being filtered through the receive-filterbank composet&itm.» = 9p(sM +m). Defining P filters ¢,,(n) [M filters

in general, of P branches Ym(n)] such that{F}, ... = ¢p(iM +m) = fo.(iP + p)
{G;tin, p = Y (JP+p) = g,(i M +m)), the I/O relationship
Pel oo remains unchanged. Hence, to preserve the same malfices
= Z Z (jP +p)gp(n — jM). (3) (Gj), the filterbank built with filtersp,(n) (v,,(n)) must have
—0 j=—oo a number of branches equal the number of rowd'pf(G,),
with the P (M) filters ¢,,(n) (vm(n)) in each branch followed
Although (1)—(3) result in a rather cumbersome 1/O rédy the down-upsamplers and delays. Every property derived
lationship, they can be expressed compactly in a mat® matricesF’; and G; applies to both structures, but in this
form. Let s(n) and 3(n) be the M x 1 polyphase vectors paper, we will adopt the one in Fig. 1 and the corresponding
s(n) := (s(nM), s(nM + 1), ---, s(nM + M — 1))T and matrix notation.
(n) == (3(nM), 3(nM + 1), ---, 5(nM + M — 1))T, re-  An FIR filterbank has filters{ f,,,(n)} =3 ({g,(n)}) )

l=—00

spectively. Denote bwy(n), y(n) the P x 1 vectorsu(n ) that are FIR, which renders the infinite sums in (1) and (3)
(w(nP), u(nP + 1), ---, u(nP + P — 1)) and y(n) : finite. In order to generalize our matrix formulation to the
LTI-channel 1/O relationship, let thé” x 1 vector z(n) :=

T ;
1We assume continuous-time Nyquist signaling pulses; hence, their efé@(nP), x(nP +1), ---, x(nP+ P —1))" denote the noise-
disappears in the discrete-time equivalent model [24, pp. 542-547]. free block of the channel output andrn) the corresponding
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Fig. 2. Conventional OFDM transmitter/channel/receiver model (S/P: serial to parallel).

AGN vector. The received data block is then given by definition s,,,(n) := s(nM + m), we find

=) M-1
y(n) = x(n) +v(n) = Z Hu(n =) +o(n) (8) w,(n)= Z S(n)edGT/Mme oy — g 1 ... P -1,
l=—o0 m=0
. . (12)
where theP” x P matricesH; are defined as For each block (fixed:), (12) amounts to taking the inverse
h(iP) oo BIP=P+1) FFT (IFFT) of the M-samples long sequendg,,(n)}Y =}

(see also Fig. 2). Notice though th& samples of the IFFT

: K : ) are taken, and sincB > M, we haveP — M = L samples of
MiP+P—1) --- h(IP) u,(n) that are wrapped around in each block. This portion of
u,(n) is referred to as the cyclic prefix or suffix, depending
on whether the redundant samples are appended at the
o o beginning or the end of the block [5] [filters in (11) correspond

s(n)= > GH[Fis(n—1—i—j)+ Y Gm(n—j). to a cyclic suffix].
j== If, in addition to havingf,,(n) FIR of order P — 1, we

. . . (1_0) also selectL > L, then forp = L,---, P — 1, the only
Using the matrix formulation presented so far, transmit- a nvanishing summand (ové) in (2) corresponds té =
receive-filterbanks deal with data blocks (vectors) as LU,4 e obtain '

filters do over sequences of individual samples. Transmit-
redundancy offers degrees of freedom that one can exploit
to improve system performance. The general problem of Zp(n) i=(nP +p) = D> smn) > h(D) fmlp—1)
block equalization can also be formulated in tBedomain Mot m=0 =0

using vector (matrix)Z-transforms, rendering (10) a ma- - (2 /MY

trix/vector product relationshi(z) = G(z)H(z)F(2)S(z) + = sm(n)e?CMPH(2mm /M) (13)
G(2)V(z), and relevant conditions for the general case of m=0

channel equalization can be found in [30] and [39]. In thi\?/hereH(w) — ZIL:O h(l) exp(—jwl) is the channel transfer
paper, we will concentrate on the FIR channel case, and g qtion, Equation (13) illustrates how multicarrier techniques
will explicitly expl_o_lt the I|m|ted_ |nterblocl_< mterf_erence ©turn a convolutive (or frequency-selective) channel into a
express the conditions on the filterbanks in the time domaghperposition ofM multiplicative (flat fading) channels. At

In particular, it will be shown in Section IV that an FIRy,e oFpM receiver filterbank, the filters,(n) are chosen as
filterbank at the receiver can equalize exactly an FIR channel

Hl =

Based on (4)—(9), we can write

gy 1yi=—o0

M-1 L

(irrespective of its zero locations), provided that- M. The (n) = 1 i@ /M)A Dn £0
next section highlights the importance of this issue for existinggp M
transmission techniques in communication systems that can be forpe[L, P—1]andn € [0, M —1]. (14)

interpreted under the filterbank framework discussed so far.

Note that thel leadingg, () filters are zero. Becaugg(n) =

0 for n ¢ [0, M — 1], the only nonvanishing summand

(over 9) in (3) corresponds tg = n; thus, themth com-
A number of single and multiuser modulation schemes fglbnent of the noise-free output is,(n) := 3(nM + m) =

under the filterbank model of Fig. 1. We outline some in thi P—_Tl z,(n)gp(m). Taking into account (14), the latter corre-

section in order to motivate subsequent results and iIIustra5 oﬁds to discarding the fird samples{z, (n)}2=! of each

their generality. P 9 PeSUEp(7) ip=0

. S . . block. Taking the FFT of the remaining/ samples in each
cognzlzfﬁt'\e{lr/sDMT' Both are multicarrier techniques with P block and using (13) and (14), we arrive at (see also Fig. 2)

I1l. UNIFYING FILTERBANK PRECODERS

. —j(2x/MYLm =1

Fn(n) = I CF/M)mn me[0,M—1],ne[0, P-1] C(n) = & @y (n)e 3w/ M)pm
P=M+T (11) Mo =
— 2

whereL > L is an upper bound of the FIR channel order =H<M7r m) sm(n),
Becausef,,(n) = 0 for n ¢ [0, P — 1], the only nonvanishing
summand (ovet) in computing thepth componenty,,(n) := m(n) :Cm(n)/H<2—7r m)_ (15)
u(nP 4+ p) from (1) corresponds té = »n; hence, using the M
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Fig. 3. Discrete-time baseband equivalent models for (a) output fractional 5 : X
sampling and (b) periodically modulated input.

sM-1(n) z
M-1(1) | : b gri(n)
Equation (15) points out the difficulty in equalizing channels : @ @ -

with unit circle zeros located at (or close to) angbasn /M. £ transmitter % channel —¢&-- receiver
Although this problem is well known to the OFDM com- '

munity [10], the view of Fig. 2 as a special case of Fig. 1

will prove quite insightful in equalizing channels having zeros

on the unit circle. This is very interesting especially for o

OFDM systems whose popularity originates from the ease!NPut s(n) modulated by aP-periodic sequencg(n) =

with which they handle frequency-selective channels. If unft(* + ) yieldsu(n) = f(n)s(n) and has been used in [4]

circle channel zeros are known, the frequencies correspondM! [29] for blind channel estimation. We wish to show that
to channel nulls are avoided in existing approaches so tﬁét'l‘:h sequences can be transmitted also with the precoders of
(15) can be inverted by transmitting information over thEi9- 1 by choosingP = M and fm(n) = f(m)é(n —m),
nonfaded frequencies (subchannels). The resulting so-calféd® [0, M — 1]. Indeed, starting with (2) and plugging these
DMT transmission has been selected by the ANSI-T1E1Rf€coding filters, we find

Committee for ADSL applications [25]. If the channel status

™

>

Fig. 4. Multiuser multirate discrete-time model for the downlink.

is not exactly known at the transmitter side, coded-OFDM oo Dl L

(COFDM) is used to recover the errors arising at the faded (1) = Z Z s(iP +m) Z h(1) f(m)

subchannels at the expense of reduced efficiency. COFDM has i=—o0 m=0 =0

been selected as the standard transmultiplexer for digital audio “6(n =1 —iP —m)

and video broadcasting (DAB-DVB) applications in Europe L 0

5], [8]. = h(l)s(n—nl > fn-1-iP)| (17)
=0 P=—00

With FIR wavelets replacing complex exponentials in (11), !
potential benefits may arise, as reported in [26] and [38].

2) Fractional Sampling/Periodic Input ModulationThese Wwhere the term in square brackets denotes the periodic modu-
schemes have one thing in common: They both induce d§ting sequence (n) with period P [see also Fig. 3(b)].
clostationarity at the received time series without introducing 3) (De-)Interleaving:
redundancy at the input. Let us consider fractional sampling byEspecially when combating fading over channels charac-
a factor P’ of the continuous-time data.(t) = 3, s(i)h.(t — terized by bursty errors [2], it is known that storing blocks
iT, — ¢), where T, denotes symbol period and timing ©Of M data row-wise in ank x C' matrix (M = RC) and

ambiguity. The discrete-time baseband equivalent model fiading the matrix column-wise yields an output less correlated
this case is than the input. Interestingly, such a coding operation is also

possible with the filterbank precoder if we selétt< C and,
z(n) := z.(nT,/P) = Zs(i) hin —iP) (16) form € [0, M — 1], n € [0, P — 1], choose the filters

%

whereh(n) := h.(nT, /P — ). If the continuous-time channel fm(n) = 6(n — (cR+¢q)),  m=qC+c, c€0,C—1].
introduces ISI ofL, symbols, i.e.h.(t) = 0for ¢ ¢ [0, L,T:], (18)
thenh.(nT,/P) = 0for nT,/P ¢ [0, L,T;], and the discrete-
time channel has(n) = 0 for n ¢ [0, L, P]. Hence, fractional ot that while fo(n) = §(n) yields an outputuo(n) —
sampling .by a facto” can pe described py Fig. 3(a), which{s(o)O - 0s(M)0 -- -}, the filter fe(n) = &(n — 1) yields
can be viewed as a special case of Fig. 1 with = 1, ., outputuc(n) = {03(0)0 . 0s(20)0 -+ -}, e, s(0) is
fo(n) = 8(n), and L = L, P (note that hereL, denotes foqwed by s(C) s(2C) --- s((R — 1)C), illustrating the
the §ymbol rate F_IR channel order; see also [15]). interleaving process.

With ¢(n) denoting a pseudo-random sequence ffid) = peinterleaving is achieved similarly by reversing the roles
c(n), the block diagram in Fig. 3(a) also represents directs C(c) and R(r) in (18) as in
sequence spread-spectrum systems with spreading fattor
[31]. A setup with a single user anfl receiving antennas as
in [14] and [22] is also described by Fig. 1 witht = 1 9(n) =6(n—(rC+q),  p=qR+r, ref0, R-1]
defining hy(n) := h(nP + p), where hy(n) denotes the
impulse response of theth channel withp =0, ---, P — 1, 4) TDMA/FDMA/CDMA: For these multiuser schemes, no
n=20,---, L, and L is the maximum channel order. blocking occurs at the precoder, and the receiver filters’
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outputs are properly selected (see Fig. 4). In the uplink, thy H; = Hy6(l) + H16(1 — 1) with
base station receives the signal from each user convolved h(0) 0 0 0
with a different channel impulse respongé.,,()}%,. In
the downlink, themth user receives the multiplexed signal : MO 0 .- 0
convolved with the channél,,,(l) = A(l) Ym € [0, M — 1]. Hy = :
The ability of reconstructing the vector of multiplexed data
s(n) = (so(n) --- sm—1(n))T is a sufficient condition to : .. .0
recover the data stream of, say, user by simply selecting 0 <o h(L) -+ W0)
the mth component of interest fros(»). The downlink single 0 - RL) - h(1)
channel case considered herein applies also when many users i
are multiplexed for a point-to-point relay, where all users S 0
share a common channel (say, from a distant base station to Ho=|o0o .- . ... KL |- (19)
the service provider's central switching office), and in such
a case, the overall vectar(n) has to be recovered by the - : R
receiver. 0 - 0 0

For TDMA transmission, the precoder filterbank usegecause of the finite channel memory and al), maifixhas
fm(n) = 6(n —m) with P = M + L, whereL > 0 is nonzero elements only in its x L top right submatrix, which
the length of the so-called guard intervdl {railing zeros); models the fact that only the fir&tsamples of theth received
see also [18]. In FDMAf,.(n) = exp(j27 f,n), where f,,,  block z(n) will be affected by the ISI of the last samples
is the carrier assigned to theth user. of the (n — 1)st transmitted block(n — 1) = Fos(n — 1).

In CDMA, fin(n) = cn(n), wherec,,(n) denotes then-  Thanks to a0)-a2), the decoded symbols are [cf. (5)]
user’s discrete-time equivalent code (at the chip rate), And

is the so-called processing (or spreading) gain (see [30] and Fa _
[38] for detailed description of the multirate CDMA model 8(n) = Z Gua(n—q) = (Go-1 -~ Go)z(n)  (20)
and [1] for a recent review). =0

wherez?(n) := (#¥(n — Q + 1), ---, x¥(n)), and

z(n) = Hou(n) + Hiu(n — 1)

IV. FIR-ZF EQUALIZING FILTERBANKS
IHQFQS(TL) +H1F03(7’L - 1) (21)

With moderate or large number of filteid in the precoder,
the maximum likelihood receiver implemented with Viterbi'ssrom (20) and (21), we infer tha{n — Q) is the most remote
algorithm has prohibitively large complexity which motivatesransmitted block affecting not only the current bldgk) but
looking for linear (and preferably low order FIR) equalizinghe previous block(n —1) as well. Due to the structure &f
filterbanks. In this section, we will focus on zero-forcing (ZFjn (19), interblock interference (1BI) from(n—Q) is cancelled
solutions because they offer (almost) perfect symbol recovefyand only if Gg 1HFy = 0y For this to hold, it
in (high SNR) noise-free environments, and their performanggffices to choose the rows &1 in the left null space
in terms of error probability is easily computable. Thanks /' (H,). However, from (19), we infer that/(H, ) is spanned
their reduced complexity, linear equalizers are widely used iy the canonical vectorg; := (0 -+ Lithentry =" 0)T for
practice to (re-)initialize decision feedback equalizers (DFE'$)= L + 1, ---, P. Hence, in order to eliminate B, it suffices
that improve performance by capitalizing on the finite-alphabgf choose
of the source. Designs in the presence of noise will be pursued .
in Section V. Based on (10), our goal in this sj\?ction is to Go-1 = (0mxrGg-1) (22)

. ; " o Y
identify the conditions on the transmit fllte{$m(n)}m_:0 that \{yhich clearly impliesGo H, = 0. Unless the precoder
allow for perfect symbol recovery through an FIR filterbank o o . . o .
order @ — 1 {G,}%_}, irrespective of the FIR channel zero Nallix is specially designed, conditidlo_, H, = 0 is also

4 necessary ilGg_1HFy = 0 is to hold for anyF, satisfying
a2).

locations We will adopt the following assumptions.
a0) Channeli(l) is Lth order FIR with/(0), h(L) # 0. In summary, 1Bl is cancelletf F, satisfying a2) under the
equivalent conditions

al) (P, M, L) are chosen such that the tripig®, M, L)
satisfies:P > M and P > L.

a2) Transmit filters{f,.(n)}=} are causal f,.(n) = 0 Go_1H Fo=0p51 ©Go_1Hi = 0ppnr
for n < 0] and of length< P [f,,(n) = 0 for n > P], 5Go, = (OMxLéQA)- (23)

and receive filter§g, (n)})_ are causal and of length
QM. In particular, we select matriky in (6) to be full To capture the channel-equalizer effect in a matrix form, we

column rank, i.e., ranldy) = M. define the(QP — L) x QP Sylvester matrix
Assumptions al) and a2) as well as (6) and (7) imply that hL) - RO) - 0
the transmit filterbank is modeled &; = Fy6(i) and the . ) . ) ) )
receive filterbank a&d; = ZqQ:_Ol G,6(j — q), whereas from H = ( : St oo ) (24)
assumption a0) and (9), we have that the channel is described 0 - (L) - A0)
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the extended@QP x QM precoder matrixF, and theM x pursue first a characterization &f (H). Because of a0), the
(QP — L) equalizer matrix: Sylvester matrixH in (24) has full row rank, implying that
. the dimensionality ofA'(H) is L. Let {p;}2, denote the

Fi=Uaxq@Fo),  G:=(Gg-1 - Go) (25 channel roots (p;) = 0, and for each root, define the x 1

where stands for the Kronecker product, afigy., denotes Vandermonde vectar, i == (1, pi, -+, pf )" and its aug-
the Q x Q identity matrix. We will call P-periodic precoding mentedQP x 1 counterpart y := (1, pi, -+ -, pPlTHT =
the case wherd, is constant for every block =1, ---, Q, (1, pF, ---, ng_l)P)T ® v . It follows by direct sub-
as opposed to the aperiodic precoding, corresponding to gi#ution that Hw, y = 0, and thus,o, y € N(H) for
case where the extended precoder is a block diagonal matfix= 1, ---, L. Hence, the set ofL linearly independent
Vandermonde vecto?s{ﬁlyH: H(p) =0,1=1---,L}
F= diag(F(()l)v R F(()Q))- (26) forms a basis foV(H), i.e., N(H) =V y = Spadw, u:

) H(p))=0,1=1,---, L}. Let us define
We also introduce thextendedQP x 1 and QM x 1 data

— T
blocks as V5 = Spar{ﬁl, v = (1, v, e, UIQP_1>
ET(TL) = (u'T(n - Q + 1)7 Tty uT(n))
() i=(s"(n—Q+1),--, s7(n)) 27) v €C,uy #u, VI #1, 1 €1, L]}
and using (20), we obtain the 1/O relationship where C is the complex field. Note thaV; contains all
5(n) = GHa(n) = GHF5(n) (28) possible collections of_ linearly independent (generalized)
_ o _ Vandermonde vectors and, thus, includes those corresponding
where, in deriving the second equality, we useth) = to roots of anyLth-order FIR channel. Therefore, to guarantee
Fos(n). . ~ that (30) holds truérrespectiveof the channel zero locations,
From (28), the zero-forcing (ZF), or perfect reconstructiogenoting by V; = Unccre N(H), it is necessary and
(PR), conditiod 3(n) = s(n) is equivalent to sufficient that
GHF = (Onrx-1tymd vxnr).- (29) R(F) (| Ve = {0}. (31)

GivenH andF, G exists if and only if it is possible to invert 14 gain insight about (31), it is worthwhile to enlighten the
HF. Invertibility of the (QP — L) x QM matrix HF requires structure of R(F). In force of al),Fé(I) is, in general, a
it to be tall and of full column rank, i.e., for the existence of apy| matrix and assuming w.l.o.g. that its fir8f rows are
FIR'?F equalizing filterbank, we mu_st have@’ — L > QM linearly independent, its las? — M rows can be expressed
and ii) ranKHF) = QM. To satisfy i), we need to adopt the,g 4 jinear combination of the firsf rows, allowing for the

following. _ _ _ decomposition
al.l) For a givenL, select the triple{ P, M, @) to satisfy

al) as well asP > M + [L/Q], with [ ] denoting the F@ I

ceiling-integer. F((J(I) = <q,qF(q)> = <q,q)F(q)’ ¢g=1--,Q (32)
When choosind P, M, @) to satisfy al.1), an upper bound

L > L (rather than exact knowledge) of the channel order is avhere F? is an M x M full-rank matrix, and®, is what we

that is required. Given the transmission block si2end the could term theprefixgenerating P — M) x M matrix. Then,

channel order., al.1) is met easily by selecting appropriatelysing (32), we have

M and/or the matrix equalizer length. Minimum block size _ W @

P requiresP = M + 1, and al.1) is then satisfied with an ]—":d|ag(F0 o By )

equalizer of length > L. On the other hand, simple zero- . T TN &S @)
order(Q = 1) receiver filterbanks satisfy al.1) at the expense _d'ag((Ii’l) oo (120) )dlag(F o F )
of extra redundancy?” = M + L when M is fixed or with = R(F) = R[diag((I‘I)lT)T (I@g)Tﬂ (33)

extra latency if both? and M have to increase in order to

maintain fixed information rate. ;
. : _._where the last equality holds true because @Y,
With R(AN') denoting range (null) space, the rank condition 3 F(Q)) is square and full rank, as per al).

I is satisfied if and only if Therefore, the necessary and sufficient condition for ZF
N(H) ﬂ R(F) = {0} (30) equalization, irrespective of the channnel zeros (31), becomes

. . . - ; T \T v

where( denotes set intersection, afid} is the set containing R(dmg((I@l ) (I2D) )) (Ve ={0}. (34

as unique element the null vector. To explore conditions and . ) ) ) o

precodersF satisfying (30) irrespective of the channel, Wé:ond'ltlon (34) will turn out to be instrumental in establishing
our first basic result.

2In general, the PR condition can be writtendda) = 3(n — d), whered

denotes a delay that affects equalization performance in the presence of noisWe can always find. such vectors, provided thag's are distinct. For

Becaused does not affect existence and uniqueness of linear ZF equalizemsyltiple channel roots, the generalized Vandermonde vectors have to be

w.l.0.g., we take herd = 0. considered (see e.g., [21]).
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Theorem 1—Existence and Uniquene&mder a0) and a2), To satisfy (37),« should lie in the null space&v/([®V ,; —

the following hold. Vp_n] diag[pl@™V" o V) for ¢ = 1,04, Q.

1.1) With P — M < L in al), and Condition al.1) impliesQP — L > QM, and thus,Q(P —
1.1a) using P-periodic precoding, i.e.Féq) = Fo Vg = M) > L. Therefore, the number of equations expressed by

1,---, @ and F as in (25), the ZF equalize§ does not (37) is greater than or equal to the number of unknowns.in

exist, irrespective offy, if the channel has at least one seTo have a nonzero solution, the equations should be dependent
of L(p) £ L rootsw; lying on a circle of radiugp at angles because of the specific structured®fand/or the channel roots

that are multiples or /P, i.e., v; = p exp(j2nk;/P) with v, 1 =1, ---, L. In particular, if there ard.(p) channel roots
K, integer,l =1, ---, L(p) and such that” — M < L(p); such thaty; = p exp(j2nk;/P), with &; integer, then there
1.1b)using P>-periodic precoding for a giveRlo and® ifall  are L(p) elements of dia@vffﬁl)P, e v(qul)P]) that are

the L channel roots are also roots of the polynomials formeéaum to each other, andl(q—l)l’ = pla=UP | independent

by the rows of(®, —Ir_n), linear FIR ZF equalizers do not ot ;- consider w.l.o.g. that these roots define the fitép)

exist, _ _ _ Vandermonde vectors;. If P — M < L(p) < L, the
1.1c) §elgctlngQ to satls'ny(P — M) > P, there eXiStS (p_ 1) x L(p) submatrix of[{®V y; — V p_ ], formed by its

an aperiodic precoder, as in (26), that guarantees existenc;f 1, ,) columns, is fat and, thus, rank deficient, independent

FIR ZF filterbank equalizersirespectiveof the channel zero 4t g Therefore, there is a nontrivial solution of (37) of the

locations. o _ form a = (a1, -+, o, 0, -+, 0)7 that satisfies (37) for
1.2) For any (P, M, L), all P-periodic precoders with  every ¢ because

cyclic prefix and, in particular OFDM, do not admit a ZF
equalizer for channels with one or more zeros located BBV i — V p_p]diag[pl@~ V7, .. pla=DP . U(Lq_l)P])
v = exp(j2nk; /M), with k; integer. h L‘(;)
1.3) With P — M > L in al), the necessary and sufficient T
condition for the existence of a ZF equalizer for any FIR o, s agg), 0,0, 0)
channel is = p 0 VP[BV )y — Vp_yla=0. (38)
a3) R(Fo) ﬂ VYV, = {0}, Y YV = {(1, Ui, Ulel)T’
o # o, VI #1, 1, € (1, L]}

Proof: Consider a vectorp € R(diag(I1®1)7, ---,
(I®%)")) composed ofQ blocks of lengthP, each of the

form (4, quT(I)(IT.)’ g=1,--, Q whereg, is an M x 1 0 mant 1.1a of the theorem.

xeTctor, angi)“/;’l |§the corre;por;dlnTgP—M) <1 prefix, i.e., 1.1b) Denoting byV?%, := (Vi,, VL _,,) the matrix of the

¥ =, P ®) - (’/’Q' '/’Q‘I)Q)]' th v eV, (34) L Vandermonde vectors of length, (37) is equivalent to

states equivalently that(w, 1) # 0 2 ¥ = 4. The structure -

of 7 and# will play a key role in our proof. [®, —Ip_p]V pdiaga) (U%q—l)l’7 . U(Lq—l)P> —0
1.1a) Using P-periodic CodingFéq) = Fy, and thus®, = (39)

@ so that diagUI®1)", - -, (I25)") = (Ioxe®, ®1)T). If the L channel roots are also roots of the rows [d,

Similar to 7, decomposing in blocks of lengthP as (u}f, —Ip_p], then[®, —Ip_y]Vp = 0, and this renders (39)

v,")", wherev, is M x 1 andv) is (P — M) x 1,7 =+ valid V, proving the statement 1.1b.

necessarily implies 1.1c)From (33) and also using (39) with differed,’s, we
obtain the counterpart of (37)

If P— M < L for P-periodic precoding, the intersection Bf
with R(F) contains the vectors = ¢ = > 22 a5, £ 0
with v; = pexp(j2nk,/P), 1 = 1,---, L{(p), and L >
L(p) > P — M. This contradicts (31) and thus establishes

p,=v, and Py = I/; = v, =v (35)

!
q° T
[q)q, —Ip_]w]Vp dlag(a) (U£q_l)P7 e Uéq_l)P)
Recalling thatw is generated by, Vandermonde vectors as

v = Y ,_, ;o and exploiting the structure of7, we can =0 g=1--0Q (40)
write @v, = v/, in the explicit form Introducing the Q(P — M) x P matrix 7 = [(®,
; —Ip_am)t, - (®g, —Ip_m)T] and stacking (40) for
_ _ =1,---, @, we can write
> o B(1, - T ! ¢ @-1)P
=1 1wl oy
L TV diaga) : —0. (41
—1r — . . - .
= Z alvl(q Y (Ul]wv ) Ulp l)T' (36) 1 UP U(Qfl)P
L [

o - ) If ¥V p is full column rank, then there is no possibility to
Defining vectora = (ay, - -, ar)” and matriced s, }\’;I_’IJ\I{ satisfy (41), except for the trivial solutioa = 0. Hence, a
WhoseA;:olumnﬁ_allreT, respectively, vectOtsv,---,v;" ~7)"  gufficient condition for an aperiodic filterbank modulation to
and(v;", -+ vy, )", fori=1,---, L, (36) becomes guarantee existence of the PR filterbank equalizerrespec-

_ (e-1)P (1P tive of the channel zero locations, is to select precoders with
[®V M — Vp_M]dlag( [vlq v Da =0. ®,’s such that rank®) = P. The latter can be assured by
(37) selecting@ such thatQ(P — M) > P and building® with
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at leastP independent columns. This requirement can be m2t precoders with trailing zeros offer a special case, but a3) is
by choosing the matrix®?', - - - Qg)T, whoseM columns also satisfied if thd. zeros are inserted in arbitrary positions
must be independent of each other as well as independentbthe filters f,,.(n).

the columns of I p_y;, ---, Ip_p )T . Insuch a case, the right Theorem 2—Trailing Precoder ZerosSuppose that a0)
null-space of¥ contains only the null vector, and thus, (41holds, al) is satisfied witl? = M + L, and transmitter

is impossible for anyx # 0; hence, we have not only provedmatrix Fy has trailing zeros [and, thus, a3) holds] and also
statement 1.1c but also provided a means of constructiolgeys a2), i.e.Fy assumes the form

aperiodic precoders that guarantee channel-irrespective FIR

equalization. Fo= <FMxM> 43)
1.2) Systems using a cyclic prefix (e.g., OFDM) are char- OLxnm
acterized by® = (I(p—n)x(r-m))- and rankF) = M. Then, for a givenF and channel matrix

In general, the matrix®V s — V p_] diag([vgq_l)P, -+, Hy, there exists a zero-ordé€) = 1) ZF equalizer filterbank

U(Lq_l)P]) has dimensionality” — M) x L and,if P—M < L, S0 thatGz(n) = s(n). With H denoting the first/ columns
matrix [®V 3, — Vp_3] is not full column rank. However, of Hg, the minimum norm ZF filterbank is unique and is given
[®V 3, —V p_ ] may loose rank even faP— M > L. Infact, by
if the channel has at least one zerovat= exp(j2rm;/M),

— T — plgt
with m; integer, then thdth column of [®V; — V p_y/] G=(HoFo)' =F "H'. (44)
vanishes because Proof: From the definition of H; in (19), if Fy is
VT jammy(P—n—1/a\ T selected as in (43), the guard time bftrailing zeros avoids
B(L, v, -, 1) = (17 PR ) interblock interference, i.eH,Fy = 0, and hence
= (63'271'(7711]\4/1\4)7 el ejQW((nll(P—l)/]W)))T .’L'(TL) _ H()F()S(TL) _ HFS(TL) (45)
= (o}, Ull’—l)T_ (42) BecauseHF is a tall matrix, we have
_ i

Therefore,a = (0, ---, 0, oz, 0, ---, 0)T with any «; # 0 s(n) = (HF)'z(n) (46)
will satisfy (37), and the simple structure of makes (37) where (HF)" also gives the minimum norm solution of the
true ¥ ¢. This proves statement 1.2 of our theorem. linear system of equation€z(n) = s(n). Therefore, the

13) If aO) and a2) hold and al) is satisfied with= M+L, minimum norm ZF filterbank is
then Q = 1 is sufficient, andG = Gy = (HF,)' if and
only if rank(MF,) > M. Assumption a3) corresponds to G = (HoFo)' = (HF)' = (F'H"HF)"' FITH" F~ H'
the necessary and sufficient condition (31) for= 1 and (47)
guarantees thatank(HF,) > M, ¥V h. Since the structure of where for the second equality, we relied on (43), for the third,
Fy is arbitrary, we can build it in order to guarantee a3). Fa¥e used the definition of the pseudo-inverse, and for the fourth
one such constructive algorithm, see Theorem 2. m One, we noted thak’ is a square full-rank matrix. u

In words, a3) requireg?o to be designed so that linear It is interesting to note that 33) is also satisfied by the
combinations of its columns are not expressible as linesipecial cases described in Section Ill (some with appropriate
combinations ofL (or less) Vandermonde vectors. Such afodifications). Five remarks are now in order concerning the
interpretation suggests also a Systematic a|gorithm for Cdﬁlplications of Theorems 1 and 2 to multicarrier modulations
structing precoders that satisfy a3) when- M > L: and the FS approaches outlined in Section IlI-A.

Step 1: Select M(L + 1) distinct points {v,, ;}, m € Remark 1: With P—M = 1, the statement 1.1a of Theorem
[0, M — 1], I € [1,L + 1] on the complex plane, andl was also proved in [39]. Notice though that 1.1a is not

corresponding to each point, build?x 1 Vandermonde vector Necessary and sufficient as claimed in [39]. In fact, cases 1.1b

Vot = (1, U1, *+ UZ7I)T and 1.1c confirm that there are pai{iB,, H) where’H does

Step 2: For each of theM possible sets ofL + 1 not meetthe requirements of 1.1a, but still, linear equalization

Vandermonde vectors, construct the corresponding precodifigmpossible.

filter (mth column of Fy) as f,, = l’:ll U1, M = Remark 2:In view of result 1.2 in Theorem 1, OFDM

0,1, ---, M — 1; instead of the sum used here, any linederecoders with cyclic prefix do not satisfy (30, no matter

combination with nonzero coefficients would work as well. low long the cyclic prefix is. Channels with nulls at frequencies
Step 3: With the columns constructed as in Step 2, forrdmm/M do not admit linear equalizers. However, relying on

the precoder matrid’y := (f, f, --- fa_ 1), Which can precoders with trailing zeros and selectid— M > L,

be readily shown to satisfy a3). Theorem 2 suggests a practical modification to the OFDM

For P — M > L, a general class of precoders fulfilling a3pystem, which is important because trailing zeros are adopted
results if we choose the columns,.(n)}* =} of I, from in the DAB standard (ETS 400 301) in the form of guard Bits.

Sm=0 . . . .
the M-dimensional subspace spanned by felimensional Instead of the cyclic prefix (or suffix), we could padtrailing
canonical basis. Becauge> L, each of the canonical vectorszeros (TZ) to theM information bits and thus “break” the
IS given as a linear Comb'”aF'OF‘ of exaCtB’ yande':monde 4We thank Reviewer 4 for bringing up this interesting link with the DAB
vectors, and hence, a3) is satisfied. As we will see in Theoremndard.
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Vandermonde structure of the conventional OFDM precodsatisfy al), implying that Theorems 1 and 2 cannot be applied.
in order to achieve with FIR filterbanks (as per Theorem 2) ZFherefore, extra channel disparity conditions are required with
equalization of FIR channels, irrespective of their zeros. Suclr&-based methods to guarantee FIR equalization.
modification, which we term TZ-OFDM, alters (15) and yields

ZF equalizers even for channels with zeros on the unit circle \; oprvAL ZERO-ORDER FILTERBANK TRANSCEIVERS

located at anglegmm /M. A blind adaptive OFDM equalizer ] ] -
was proposed recently in [6] by forcing zeros in the equalizerHaV'”g established the conditions for perfect channel equal-

output (see also [27]). Our result in Theorem 2 proves that Su@qtion, in thig section, we optimize jointly the trans.mit/rec.eive
blind algorithms guarantee channel identifiability, irrespecti\fgterbank pair When_ chann_el s_tatus _|nfor_mat|0n is available
of the channel zero locations. at the transmitter side, which is a situation that occurs, for

Remark 3: Result 1.1c of Theorem 1 shows that aperiodieX@mPle, in applications such as high bit rate (and asym-

precoding adds robustness against deep frequency-seleciiic) digital subscriber loops (HDSL/ADSL). Specifically,
suppose that the channel as well as the signal and noise

fading. Instead of using purely aperiodic precoders, codir\fbe : X ‘
with period QP, whereQ > P/(P — M), is sufficient. In covariance matricedt, _and R, are given (known or es-
modern systems such as UMTS, for example [23], the codgwaf[ed_ beforehand using €.g., training). In HDSL/ADSL
data are multiplied by a scrambling code of length greater thanpllcatl_ons, reverse links are used_ to feed channel status
the symbol duration to add extra robustness against interd@fprma,‘t'on (namely, H e_md Ry, estl!’nates) ba,Ck to the
interference (different base stations use different scrambliH&nsm'tter' Furthermore, in most practical scenarios, the trans-
codes). Indeed, this operation induces aperiodicity in tﬁ‘%'tted symbols are uncorrelated, and thids, is diagonal _and_
precoding. It is interesting to observe, according to TheorffoWn. When symbols(n) are correlated, source coding is

1, that long period scrambling is also important to guarantd&nerally employed to remove this redundancy and produce
ZF linear equalization, irrespective of the channel zeros. an independent (and thus uncorrelated) data stream. If symbol

Remark 4: For spread-spectrum (SS) and CDMA Systemgprrelaﬁon is due to channel cpding and used for error-
the f,.(n) filters are often selected as pseudo-random codg¥ection purposes, the encoder is known, and the covariance
and satisfy a3) almost surely. The wide spectrum of each cdQatrix 9f the coded symbol; is thus avaﬂak_alepnon.
implies that f,,,(n) can be expressed as the sum of a lar e_we will also adet the choic® = M+ L, which leads to th_e
number of complex exponentials, which illustrates that %mmum order.(l.e..,Q = 1) and, thus, redgced complexity
codes can be constructed using a particular set of Vandermoﬂ grbank equahzayon. In contrast to .Secuon WV, whgre the
vectors. Within the class of Walsh—-Hadamard codes, whi ecodng o was fixed and the equalize&o was qbtglned
is currently considered for third generation cellular syste ra given noiseless channel, here we will optimize both

[23], there are codes that can be decomposed into just a few andf?o thl_ntIy, usn;glt\tl;/o d|ffebre|n(tj ctnte;rla. Tohmlnlmlze
complex exponentials, and for ZF equalization purposes, ISe eliects in a Ssymbol-by-Symbol detection scheme, we are

have to check whether a3) is satisfied. As we mentioned rptivated to minimize the output noise power given by the
Section 1lI-D, TDMA systems usg,(n) = 6(n —m); hence trace of the noise covariance matrix at the equalizer’s output,
S P> L Fo = (Injxnr 0]\4:1(1’7]\4))11 wil oBey a3)., namely, t(GOR_,,.,,,:G{f). C_Iearly, unconst_rained minimization
This fact and Theorem 2 corroborate the result in [13] aAﬁadS to the trivial solutiorGo = 0, which contradicts the

[18], where a TDMA precoder accepts a ZF equalizer Withogpal of symbol recovery, unless infinite power is transmit-
cha;mel zero restrictions faP — M > L ted. Hence, we will generalize existing optimality criteria

Remark 5: The precoder construction algorithms resultin lctioptg:d .for ;:ontmuggs-ﬂTet'transrr:jlt-rzceqlef.lfu:)se ksrt;aplng
from Theorems 1 and 2 introduce structured redundandy ' ¢€si9n 0 our discrete-ime redundant fiterbank-base

parsed into consecutive blocks of data, to allow PR of th ock transmission scheme of Fig. 1 by imposing the ZF or

transmitted data from finite received samples. Thus, infof'EnlteOI transmit-power constraints.

mation symbols arriving at raté /7, are transmitted at a l('; f.tlfge bne>|<(t stubstecnon, dwet \g".l dtﬁta” t?e.astgump?ons
rate P/(MT,) with P > M, utilizing, much like chan- and filterbank structures adopted in the optimization of our

nel encoding, a wider transmission bandwidth. It is usef\tf hsmission system and point out their consequences to the

to compare this precoding strategy with methods based 9 block relatiqnship (10). Our FIR channe_l model co_ntai_ns
fractional sampling (FS) [33], [34]. With FS approaches fFeros only and is commonly adopted in radio communication

is also necessary to use a transmission bandwidth greater t Iae%';nfil;i';:tlijgs%gzvzglﬁfﬁ?sprzngf;ngi‘lé'a':ﬁ vir)tlseerl]zsesa
1/T; (using e.g., root-raised cosine shaping filters with roll-o p pap y

factorsa > 0 [24]) because otherwise, channel disparity an .pole—zero chanqels along the lines of [28], but we will omit
thus, identifiability is impossible [7], [34]. To compare ou is case for brevity.

precoding with FS approaches in terms of excess transmit-

bandwidth, it is fair to choose parametefd, I, and o A Unified TZ/LZ Block Model

so that the bandwidth increase is identical in both caseslLet assumptions a0)—-a2) hold true with = M + L in
Notwithstanding, the two methods differ considerably in thal). As mentioned at the beginning of Section IV, we have
way redundancy is introduced. With reference to the equivalamider a2) tha#"; = F6(¢), G; = Goé(j) and from a0) that
scheme for FS reported in Fig. 3(@)/ =1 and withP? > 1, H; = Hoé(l) + H16(I — 1), which together with al) implies
the channel length becomds, P; hence,M = 1 does not that interblock interference due to the channel entails no more
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than two successive blocks, namedfp) ands(n — 1); thus, GHF = KlI,;«, wWhereas at the same time maximize the

(10) becomes SNR at the equalizer output, which is defined as
SNR=

where, consistent with definitions (6), (7), and (19), malfix tr( E{Gu(n)v(n)HG" )

is PxM,Gyis M x P,andH,, H; are squard’x P matrices. tr(GHFR,, FPH"GY)

Recalling Theorems 1 and 2, for perfect reconstruction (PR) or = tr(GR,,G™)

zero-forcing (ZF) equalization af(n) from 4(n), two options v

can be pursued. and, in view of the ZF condition, becomes

i) Force the lastl. samples of the transmit filters to be

zero so thai, = (F¥' 0)7 with F an M x M matrix SNR— K2 tr(R,,)

and0 an L x M block of zeros, and ley = G, where o tr(GRU,UGH)'

G is aM x P matrix [we term this option the trailing

transmitter zeros (TZ) approachl]. Because the numerator is a constant, we write it as

ii) Force the firstL filters of the receive filterbank to be K2|tr(1 ;)| to point out the dependence on the block-
zero, so thaGy = (0 G), where nowG is anM x M length M and the contribution of the (generally complex)
matrix, wheread’s = F andF" has now dimensionality transmit-amplification gainC whose magnituddX| > 0
P x M [correspondingly, we call this option the leadinglepends on the transmitted power and controls the SNR at the
receiver zeros (LZ) approach]. equalizer output. Because SNR is only magnitude dependent,

Although the dimensionalities of" and G will vary for we take, without loss of generality (w.l.0.gX}, to be real and

options i) and ii), for brevity, we will use a unified notationpositive. Our max-SNR/ZF constrained optimization problem
for both cases becauseff is defined appropriately, (48) hascan now be formulated as

a common form
o [tr(Tarxar)]?

8(n) = GHF's(n) + Gu(n). (49) e tr(GR,,G™) subject to GHF = Kl nxm-

Specifically, for case i) of trailing transmitter zeros, the matrix (52)

H is P x M and is defined as o ) ) )
A related criterion was adopted in the continuous-time scalar

h(0) 0 - 0 pulse-shaper design by [12]. It turns out that (52) is equivalent
: R : to minimizing the output mean square error subject to the ZF
o constraint. To solve (52) in our vector equalizer setup, we
ALYy . . 0 , . :
H=H;; = . . (50) use the trace to define the (weighted) inner-product between
0 R 1(0) two matricesA, B as (4, B)w = tr(A"WB), where W
: I : is a positive-definite Hermitian matrix. Using this definition,
' _ ' Schwartz’s inequality shows that SNR in (52) obeys
0 w0 (L)
whereas for case ii) of LZH denotes thel/ x P matrix tr(Tnrsenn)|® _ (G", R HF)p |?
R(L) --- h(O) O - 0 tr(GR,,G") @", aMp
o . : <(R;'HF, R;'HF)
H=H;;:= 0 ' ‘ T : . R..
oo e e 0 and is maximized if and only if, for some complex constant
0 e 0 h(L) fee ]7,(0) o, we haveGH — CY*RL_LIHF, or

(51)
Moreover, vectow(n) has lengthP in TZ and M in the LZ
case. We will also assume the following.
a4) Input s(n) and AGNw»(n) are mutually uncorrelated, ) ) o ol gy H )
stationary with known covariance matric&s, (M x M) and T #(n) is white, thenG = (a/o;)F""H™, and in order to

R,, (Px Pinthe TZ andM x M in the LZ case), respectively simplify subsequent expressions, we seteet o2. Using this
(02,1 and o2, T when white). choice fore in (53), our ZF constraint in (52) becomes

G=aoaF"H"R]!. (53)

Allowing colored inputs accounts for coded transmissions K
(see e.g., [20]), whereas color at the receiver noise incorporates FUHYR 'HF = — I (54)
cross-talk, interchannel interference, and residual echo. %o

, o Solving for the optimumG,,, and F,,, from (53) and (54)

B. ZF Constrained Output SNR Criterion depends on whether leading or trailing zeros are forced in the
Based on (49), which applies to both TZ and LZ alternaqualizer or in the precoder filterbank. However, adopting the

tives, we formulate our max-SNR/ZF constrained optimizatiacbnventions described in Section V-A, we express the solution

problem as follows. We wish to satisfy the ZF constrairfor both cases in a unified form as follows.
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Theorem 3—Max-SNR/ZF Equalizerket assumptions minimum mean-square error (MMSE) criterion, which mini-
a0)-a2) and a4) hold true, and let the channel matfix mizes€ := E{tr(e(n)e’ (n))}, wheree(n) := §(n) — s(n) is
be as in (50) or (51). Denoting b¥/, V, V, the unitary the error in thenth data block. Based on (49), we find
matrices and byA, A the diagonal matric€sesulting from _ _
the eigendecompositions e(n) = Gy(n) = s(n) = GHFs(n) + Gu(n) — s(n) (58)

R UAUT and using (58), the MSE objective function becomes
VAV (12) E(F,G) =tr((GHF — I)R,,(GHF — )
A O (55) +tr(GR,,G™). (59)

HYR,'H =
R (s o)wev W

Without any constraint, minimizing leads to the trivial so-
'{ution corresponding tdG|| = 0 and requiring infinite power

the output SNR in (52) is maximized by the optimum Zto be transmitted|F|| = oco. A reasonable constraint that

(F, Q) pair of filterbanks

takes into account limited budget resources is the transmitted
VK w2 power, which is expressed &, := tr(FR,,F"). With the
F,, = o VA~ transmit-power constrained, our criterion becomes
Gopt =0, VKA~ WDYVA I R-L (56)  min £(F, G) subjectto C:= tr(FR.,,F') — Py = 0.
’ (60)

i Proof: By direct SUbStitUtion(FOW’ G?Pt) ,Of ,(56) sat- Analogous criteria formulated in the frequency-domain for
isfy (53) and (54) and, thus, achieve optimality in the ien?&nt transmit/receive-filter optimization can be found in the

of (52). . . ) i ) scalar case (e.g., [2, p. 333]) or in the more challenging multi-
Interesting special cases appear whgn) is white With ¢ myiti-output case in [40]. Optimizing our criterion in
varianceo,. In this case, it suffices to replace with oA (g0 follows the steps in [40], but our discrete time-domain
in (56) to obtain matrix formulation will lead to aclosed-formselection of
F,.=VKVA-1/2) G, = VKU" 57 the rgdun(_jant FIR filterbank matrices (redgndangy was not
Pt VK ’ Pt vk h ®7) exploited in [40], and IIR frequency-domain designs were

where U, is found from the SVDH = U,AY2vH . In optimized viaiterative minimization of Lagrange multipliers).
(57), the optimum precoder (equalizer) filterbank matrices areF"0mM (59), using the method of Lagrange multipliers, the
proportional to the left (right) singular vectors of the chann@Pi€ctive function can be written as
n"lncatr:ix. Transmitter fi]Ictef:banks are alzp weighteld by tre inverseg 4 ,C = t((GHF — IR, ,(GHF — I)')
of the square root of the corresponding singular values. o FR.F'Y_p

It is interesting to observe that the matif,,, not only +tr(GR,,G") + p(tr((FR, . F") — Py).  (61)
guarantees (together with',,,) the ZF condition but also Differentiating with respect t@, we find

provides uncorrelated noise samples at its output. Indee _ o " _
the covariance matrix of the output nois8,,v(n) is q7G(8+“C)_2R”’”G +2HFR,,(GHF - 1) =0 (62)

GoptRU'vGoHpt = Ko2I. which can be solved fo€ to obtain
Remark 6: With flat fading (the channel matrix is diagonal) e I oor Hy—1

and white noise, (57) yields precoder and equalizer filterbanks G =R, J""H" (Ryy + HFR,,F"H")".  (63)

with diagonal structure. Recalling from Section Il that TDMApifferentiating with respect td~, we find

corresponds tof,,(n) = §(n — m), we infer that TDMA = .

possesses optimality (in the ZF maximum output SNR sensé) (€ +1C) = 2R..(GHF—I)" GH+2uR..F™ = 0 (64)

when it comes to channels involving flat fading and whitghich can be solved foF to obtain

noise.
F=(H"G"GH + I *H"G". (65)

C. Constrained Mean-Square Error Criterion It is evident that solving (65) and (63) faF" and G and
The ultimate objective in digital communications is taising the constraint (FR,,F”) = P, is not an easy task.
minimize error probability, and although maximizing outpufo tackle the problem, we will simplify the objective function
SNR under the ZF constraint leads to a simple closed-folpy diagonalizing the symmetric matrices involvidg,,, H,
solution, alternative criteria allowing for residual ISI mayR.., all of which are assumed to be available. Toward this
come closer to the desired goal. One such candidate is €éw&l, we first find the unitary matricds, V, and the diagonal
matricesA, A from the eigendecompositions in (55). Next,

5In the LZ case, the matrbH R} H is singular, andA and V' have with appropriately defined matrice® and I', we focus on
to be formed by the nonzero eigenvalues and the corresponding eigenvectort . F and @ that be d d
matrices (of dimensionality/ x M and P x M, respectively), rather than Matfcest  an at can be decomposed as

the full matrices eigendecomposittf’’ R;;,! H. Note that if the optimization - H . _1v7H 7 H p—1
is also constrained by the transmit pow&y, (56) does not provide the max- F=veUu~, G=UrA~V"H Rv'v . (66)
SNR/ZF filterbank transceivers; the optimum pair in this case turns out to . .

Fopi = [Po/t(A=1/2)112VA=1/4 G, = F-LHT (see also Theorem Eﬁearly, whenF and G are M x M square matricesK in

opt

4 for a constrained-power MMSE solution). TZ and G in LZ), the decompositions in (66) impose no
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restriction in our optimization search. However, even wheBubstituting (71) into the constraint, |¢:;|%6;; = Py and
Fistall (P x M in LZ) or when@ is fat (M x P in TZ), solving with respect tq:, we obtain
our decompositions in (66) still impose no loss of generélity

. Lo . tr(A—(l/Q)Al/Q)
when it comes to minimizing under the power constraint i = (72)
C. Indeed, if for the LZ case we augmeht € R(V) by its Fy +tr(A—1)
orthogonal complement inV(V) to obtain the most general

decompositionF = VeU" +Vv,®,U" = F+V,®,U", Plugging (72) back to (71) yields

it follows by direct substitution thalGHF = GHF + -1
H . . . 2 Fy+tr(A™) 1 1
GHV,®,U" = GHF sinceV,, is the right null space |piil” = TA-U2AVD As, b (73)
of H [c.f. (55)]; thus,&(F,G) = £(F,@G), and our choice v e
in (66) does not alter the MSE. However(ERSSFH) — In summary, we have established the following result (and

tr(FR,, F") +-tr(®,R,, &%) > tr(FR,,F"), which implies corresponding design algorithm):

C(F) > C(F), i.e., incorporatingV,,®,U" violates the Theorem 4—Constrained Power-MMSE Equalizéet
power constraint unless®, = 0, which corresponds to a0)-a4) hold true witt? = A+ L. Let also the channel matrix
selecting F' equal to F in (66). Similarly, if for the TZ H be given and the diagonal matricAs(A) determined from
case we add the orthogonal complement?b(fHHR;Ul/Q) (55) have their diagonal entries in decreasing order. Define the
to obtain the most general receive filterbatk = G + diagonal matrix® with (4, ¢) entry as in (73). The optimum
UrA~'v"(r - R}PHHR!H")'HYR,}?)R;?, (F, G) filterbank pair in the sense of (60) is given by [see
then it can be easily verified thabHF = GHF, but also (66)]

tr(@RwaH) > tr(GR,,G") with equality holding if and

only if G = G, i.e., incorporating the null space & R;!/* Fop =VoU"

leads tof(F,G) > £(F,G) unlessG equals ouiG in (66). Gopt =Ry FILHY (R, + HF o, R, FIL HT)™ . (74)
Using (66), we show in the Appendix that the objective
function in (61) can be written as Assumption a2) in Theorem 4 requires rah¥ = M,

which, under the fixed power constraint in (60), imposes the
E(T, @) + puC(®) following lower bound onPy:

=tr(TATITH) + r((T® - AT S - D))

T H(t(BART) — Py (67) P> w —tr(A7Y). (75)
Differentiating with respect td’ and ® and equating the min{Xi;di;)
results to zero, we arrive at In fact, from (7). [éul? > 0 only if
[ =A2(A™ + DA™ (68) 5
‘I’I(FHI‘+MI)—1I‘H, (69) min <Ti:1> > (76)

zﬁ*lnyllri:‘?egnbii) dagg Eﬁz)};nsvzﬁje?géen:g ((izzactig l;\e flg::ﬁ/)\réhich leads to (75). Lower MMSE values may be reached
for groofs)' 9 P only if we use less tha/ branches of the filterbank of Fig. 1

Lemma: MatricesTHT, ®ABH, and BA2&H are diag- for transmission, WhICh (':orr'esponds. to additional redundancy
onal. introduced to the incoming information stream.

Using this Lemma, we prove in the Appendix that, w.l.0.g., It is noteworthy th"f‘t accorgiing to (74), the overall
& can be assumed to be diagonal and that (67) is equivalenp{gcoder/channellequal|zeeratr|x becon@s,. H F_‘)Pt -
UADPA(I + AD?A) 1®U". Therefore, the choice (74)

(€ . bii converts the channel into the cascade of
1251( ) = e Z 1+ |pii| 26 i i) an encoder matrixtU, which decorrelates the input
' symbols;
T “(Z |hsi |65 — p0>> (70) i) a matrix APA(I + A®*A) ', which is clearly
i diagonal;

where ¢,;(6;;, Ai;) denotes the(i, i)th entry of $(A, A). li) a decoder matrle. L L
Settingd(€ +4C) /¢ = 0 and solving with respect tip;; |, Fpr uncgrrelated input symbols, both opt|m|zat|0|_f1 (_:rlterla
we find diagonalize the channel, which renders block transmission over
dispersive channels equivalent to transmission over parallel
nondispersive (flat fading) subchannel—a feature establishing
links of our transceiver designs in (74) with the well known
“water-pouring” principle in information theory (for details
Clarification of these “tallF'/ fat G cases,” as well as our comments Ongee [28] and references therein)_ The main difference between

“channels with repeated eigenvalues” in the footnote of the Appendix, werﬁ t iteria i h th I t th
motivated by questions raised by Prof. P. Stoica, whom we also wish to th WO criteria fies on how they allocate power across the

for his interest in our work. parallel subchannels.

—1 —1
A _ A

442: .
al? = = (71)
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Two additional remarks are now in order: optimal. Becausg!R,.g,, = o2KI in this case, we find

Remark 7:In  the existing modulation schemes ofrom (78) and (79) thaP™ = 0.5erfo(VK /o) = P. Vm.
Section Ill, the precoder matri¥” is fixed, and in order  To illustrate salient features of our designs and to study and
to minimize MSE, the designer is only free to select theompare MMSE designs, we resorted to simulation examples.
equalizer filterbank G. MMSE (or Wiener) equalizing Example 1: To check the validity of Theorem 2, we con-
filterbanks in this case are also given by (74), provided thgidered an OFDM system witl? = A + L. Specifically,
F,,, is replaced by the fixed precodét. Note that in (74), we implemented the system in Fig. 1 withh = 32 and
equalizing filterbanks consist of a prewhitener (given by = 36 for an FIR channel of ordef. = 4 with zeros at
the inverse matrix) followed by a filterbank matched to thg, 0.9 exp(j97/20), 1.1 exp(—;97/20), and —0.8. We used
cascade of the precoder with the channel (correspondingtte OFDM precoder in (11) witld. = 4 and our modifica-
the term#*" H'). Detailed study of such MMSE equalizersion with trailing zeros (term it TZ-OFDM), as described in
will be reported in a companion paper [27], along with blindheorem 2. Fig. 5(a) shows the BER computed for BPSK
synchronization, channel estimation, and direct equalizatign) using (78) and (79), which is achieved by using the
algorithms. standard OFDM receiver [which assumes perfect knowledge

Remark 8: In this section, joint optimization was carriedof the channel and inverts (15)] and our TZ-OFDM receiver
out in the discrete-time equivalent model assuming transmis-(44). The BER is sketched as a function Bf/N, (dB),
sion with Nyquist pulses. However, from o¥,,:, Go,t) where E, = E, is the average energy per symbol (bit), i.e.,
pairs, the continuous-time pulse shaping and receiving filteks = (1/M)°Y_ f2f  and N, is the noise spectral
{fm(t), gp(t)} are not specified uniquely. Nevertheless, iflensity. As expected, the presence of the channel zero on the
the {fim, opt(t), gp,opt(t)} filters are constrained to be banwnit circle degrades performance of OFDM when compared
dlimited over[—7P/(MT}), mP/(M1})], they can be recon- with TZ-OFDM, which, according to Theorem 2, guarantees
structed by interpolating our discrete-time optimal solutionfe ZF property, irrespective of the channel zeros. In fact,
{fm, opt(1), gp, opt(n)} using the sinc functions. On the otheffrom Fig. 5(a), we notice that ak, /N, increases, TZ-OFDM
hand, selecting{f..(t), g,(t)} in the general case requireSmproves its performance, whereas conventional OFDM incurs
separate optimization in the continuous-time (or frequency)consistent number of symbol errors due to the channel fades
domain similar to that in [40]. This could be an interestingo that the corresponding curve in Fig. 5(a) levels off.
direction for future research, but the solution may not lead to To verify results 1.1a and 1.1c of Theorem 1, we considered

the simple closed-form FIR designs of this section. thecasel, = 2, M =7, andP = M+1 < M+ L and
simulated a channel with zeros at 1 aadp(j27/P). We
VI. PERFORMANCE AND SIMULATIONS used aP x M precoding matrix with itsM columns given

When w(n) in (49) is Gaussian, theoretical probability oPy the Pth-order Hadamard vectors (the first Hadamard code,

error expressions can be derived for the FIR ZF equaliZef- the constant one has been discarded). The corresponding
filterbanks. Withn(n) = Gu(n) denoting the noise at the BER, averaged over all the users, is reported in Fig. 5(b)
equalizer output and g-level symbol constellation, detection(S0lid lin€) where, as predicted by Theorem 1, we observe
based on (49) amounts taz& -ary hypotheses testing problemthat the BER curve levels off, corroborating that in this case,
in AGN 5(n) with covarianceR,, = GR @ To avoid It is not possible to invert the matri#{F in spite of the

n — VU .

such an exponentially complex problem, we are motivated spectral richr)ess of the qdoptgd codes. This resu.lt is also in
consider block-by-block detection, relying on a variant of (4gjgreement with what predicted in [39]. However, using 1.1c of
heorem 1, we know that we can recover from this situation by

3(n) = Ks(n) + Gu(n). (77) breaking the periodicity of the code. Specifically, we simulated

a system with the same parameters as before and then applied
\%escrambling code, of lengt P = 2P, to the coded data by
simply multiplying the precoded vectdFs(n) with diag(@),

To provide a global performance measure per symbol,
adopt the average error probability defined as

. 1 M-l where@ is a2P x 1 vector containing a pseudo-noise binary
P, = Z P (78) {1, —1} code. The corresponding result is reported in Fig. 5(b)
m=0 and testifies to the gain achieved with the scrambling that

where P™ denotes the error probability of theth symbol. corresponds to aperiodic precoding,

. . According to result 1.2 of Theorem 1 and Remark 2
For BPSK constellations, the symbol error performance in . AT :
AGN is in Section IV, ZF equalization is not possible for channels

with zeros atexp(j2«1/M), with [ integer, if the precoding

plm) _ 1erfc< K ) (79) matrix has a cyclic prefix. However, result 1.1c of Theorem
e 1 shows that a proper aperiodic precoding guarantees perfect

equalization for such channels as well. To provide numerical
where g is the mth row of the receiver matrixG. Gener- evidence of this statement, we considered the casg® of
alizations of (79) to larger constellations follow along knowd/ + 2, L = 4, and Q@ = 2. In Fig. 5(c), we report the
lines [2, p. 140]. If the optimum ZF equalizer is used, it turnaverage BER for plain OFDM with cyclic prefix (solid line
out thatR,,, = ¢2KI, revealing that ZF equalizers performB) and the same precoder followed by complex scrambling
also noise whitening that renders symbol-by-symbol detectianth period @ P (dashed line B). In the same figure, we verify

9iR,.g,,
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(a) Average BER for OFDM (dashed) and TZ-OFDM/ZF (solid). (b) Average BER using Hadamard precoders with (dashed line) and without (solid
line) scrambling. (c) Average BER using OFDM with cyclic prefi®, M, L, Q) = (8, 6, 4, 2), channel zeros<p(j2nl/P) (A), exp(j2xl/M) (B),
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Fig. 6. |H(f)| (dashed) versus (a) average..(f)| (TZ solid, LZ dashed-dotted). Versus (b) averdgé. ()| (TZ solid, LZ dashed-dotted).

also statements 1.1a and 1.1c of Theorem 1 by testing together with the channel transfer function magnitjeé /)|.
OFDM scheme without (solid line A) and with (dashed line ANote that with both optimal designs, the transmit filterbank
scrambling. We used the same parameters as before, but watids to pre-equalize the channel, i.e., to transmit more power
channel zeros atxp(j2#1/P), with1 =0, ---, 3. We observe at the frequencies where the channel attenuation is higher and
that for both channels, use of aperiodic precoding achiewdse-versa. Conversely, the frequency behavior of the receiver

symbol recovery, whereas the schemes without scramblingidanore complicated to interpret because the receiver filterbank

not allow symbol reconstruction, independent of the SNR. performs the equalization and, at the same time, produces
Example 2—Optimum Max-SNR/ZF Desigrere,

we white noise at its output.
generate the optimal

transmit/receive-filterbank pair

of Our method is also able to accommodate interferences
Theorem 3 with AWGN for the two cases of leading zerosuperimposed to the received signal. In the following example,

(LZ) and trailing zeros (TZ) (57), with the proper definitions ofve consider two narrowband interferences superimposed to the
the filterbank matrices provided in Section V-A. Our systemeceiver AWGN. MatrixIZ,,, was formed as the sum of the
parameters ardd = 32, P = 39, L = 7, and the channel covariance matrices corresponding to the noise and the two
impulse response i#" = [1, —0.3, 0.5,—0.4, 0.1,—0.02, interferences that are supposed to be uncorrelated afith

0.3, —0.1]. Fig. 6(a) and (b) depict for both the LZ andand with interference-to-noise ratib; /Ny = FE5/No. Using

TZ solutions the average magnitudes of the transmit- a®b), we computed the optimal filterbanks for the TZ and LZ
receive-filters’ transfer functions (each curve is normalizeshses, whose frequency responses are reported in Fig. 7. We
with respect to its maximum value)

observe the deep nulls placed by the receive filterbanks on the

1M frequencies occupied by the two interfering tones. Comparing
|F(f)] == — Z |Fr ()] the receive- with transmit-filterbank responses, we deduce that
m=1 a considerable amount of power is wasted at the transmitter
1 M side at the frequencies occupied by the interferences.
G(H)] =7 Z |G ()] To study the role of the TZ precoder and compare its
m=1

performance with existing modulations, we computed the
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Fig. 7. |H(f)| (dashed) versus (a) averagE..(f)| (TZ solid, LZ dashed-dotted). (b) Versus averdgé..(f)| (TZ solid, LZ dashed-dotted); inter-
ferences spectrum (solid).

10° e E—— precoder has TZ's [see (74)] but for different levelsff/No.

PR Tz oM The same channel and parameters as in Figs. 6 and 7 were
TR used, withAf = 32, P = 39, andL = 7. It is interesting
; to provide an intuitive interpretation of the results shown in
Fig. 9. In particular, the behavior of the transmit filters is
strongly dependent on the values Bf/N, at the receiver.
More specifically, if £, /Ng is high, the transmitter tends to
allocate more power at the most attenuated frequency bins;
this is similar to the ZF case simulated in Example 2. In
contrast, at lowF; /Ny, less power is concentrated at the most
attenuated frequencies.

The difference in power allocation between the two opti-
mization criteria is even more emphasized in the presence
of narrowband interferences. As shown in Fig. 10(a), the

Fig. 8. BER versusZ,/No (dB). MMSE-CP criterion does not waste as much power as the

max-SNR/ZF criterion at the frequencies occupied by the

theoretical BER according to (78) and (79), assuming BPIRterferences, especially at lod, /No.
modulation with M = 16, P = 20, and L = 4 and Example 4—Comparison of Optimal DesignEo compare
using a channel with zeros &t 0.95, —0.95, 1.3 exp(j=5/8). the BER performance of the two design criteria under differ-
The curves in Fig. 8 compare BER versiis /N, for the ent channel selectivity conditions, we considered two chan-
standard OFDM receiver [by inverting (15)], our proposefe€ls: channel (a) with zeros atl.1, 0.9, 0.7 exp(j3r/4)
TZ-OFDM precoder and its receiver in (44), our optimize@nd channel (b) with zeros at 0.9, Oep(j270.256), 0.4
LZ-ZF and TZ-ZF transmitter-receiver pair in (57), and &p(j270.141). We generated BPSK symbols witl/ = 8
TZ-CDMA precoder that uses as filters the Hadamard bagigd £ = 11 and computed both optimal TZ precoders
with trailing zeros and the corresponding receiver in (44§ccording to (57) and (74). The resulting performance is
From Fig. 8, it is evident that the LZ-ZF and TZ-ZF optimareported in Fig. 11(a) and (b). We observe that both designs
designs of (57) perform best and have basically identical BERUtperform OFDM, especially around the operatioBa) Ny
Standard OFDM exhibits the worst performance becauser@nge of 10-20 dB. Comparing BER for the MMSE/CP
cannot equalize the subchannel located at zero frequencyangl the max-SNR/ZF designs, it is worth noticing that in
is also interesting that TZ-OFDM outperforms OFDM due tgeneral, the MMSE-CP criterion yields lower BER at low
the null guard time used instead of the cyclic prefix (suffix)’s/No values, where the noise predominates, whereas the
As illustrated by this example, the simple TZ modificatiofax-SNR/ZF criterion provides better performance at high
is sufficient to meet the conditions of Theorem 1. Finallyks/No values, where the ISI constitutes the main source of
using Hadamard codes instead of complex exponentials, megor. Therefore, we expect that in general, the BER curves
of the Symbo|s are distributed across more than one frequer%%ﬁained with the two criteria intersect and the intersection
bin, and this makes TZ-CDMA more robust than TZ-OFDMPoINt changes as a function of the channel selectivity, as
as verified by Fig. 8. This confirms that in general, spregyidenced in Fig. 11(a) and (b).
spectrum codes are to be preferred in transmissions over
frequency-selective channels.

Example 3—Optimum MMSE/CP Designbigs. 9 and VII.- CONCLUDING REMARKS
10 are the counterparts of Figs. 6 and 7 for the optimal Redundancy in the input of digital communication systems
transmitter-receiver filterbank pairs of Theorem 4 when the traditionally introduced in the form of error-correcting
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Fig. 10. |H(f)| (dashed) versus (a) averade..(f)|, Es/No = 0 dB (dashed-dotted), /Ny = 20 dB (solid). Versus (b) averadé.,..(f)|, Es/No =0
dB (dashed-dotted)E; /No = 20 dB (solid); interferences spectrum (solid).
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Fig. 11. BER versusk,/Ng (dB) (L = 3, M = 8, P = 11).

codes defined over finite fields. In this paper, we devdilterbank precoder-equalizer structure. With respect to OFDM

oped redundant precoders in the form of FIR transmitterecoders, the proposed transmit-receive filterbanks are more
filterbanks and derived general existence and uniqueness ammplex to obtain. However, this operation has to be done only
ditions that guarantee perfect equalization of FIR channalace if the channel is time-invariant, or in case of time-varying

with FIR receiver filterbanks. Contrary to existing approacheshannels, it needs to be performed every time the channel
no restrictions were imposed on the channel zero locatiossatus information is updated. As far as real-time processing
Specific precoder designs with trailing zeros and receivef the input data stream and of the equalizer input, with respect
filterbanks with leading zeros were proved to yield simpl®® OFDM, our approach requires more operations because it
and practical equalization algorithms for a number of singleloes not use the FFT; nevertheless, it relies on FIR filtering

and multiuser modulations that fall under the unifying FIRperations so that complexity does not increase dramatically.
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However, the performance gained when dealing with practidal the LZ case, using the appropriate decomposition of
channels that often exhibit deep nulls is worth the increaséﬂHR;jH specified in (55), we obtain the same result,

complexity. considering that
Jointly optimal transmitter-receiver filterbanks were also A 0O
designed to maximize output SNR with zero-forcing equalizers Vv, v,) <0 0 ) vV, v,)2v
or minimize mean-square error with finite transmitted power
constraints. The resulting designs turned out in closed form, = 0)<A 0)(1 0)7 = A. (83)
and it is interesting to note that both design methodologies ’ 0 0 ’
convert transmission over the wideband dispersive channel ™

to transmission overP parallel uncorrelated subchannels, Proof of Lemma:
the main difference between the two approaches being the Proof: From (68) and (69), we can obtain, respectively
power distribution across the subchannels. For long distance = = P = =
transmissions where the transmitters have to operate at their "reAad®” +I"ra— =r"a¢ (84)
maximum power, it is convenient to use the MMSE/CP pPAPY L THr®APY =THAD (85)
criterion to avoid unnecessary waste of power on subchannels . .
experiencing severe attenuation or narrowband interferenc@gd after equating the left-hand sides of (84) and (85), we get
Although, in this paper, the channel was considered known p® AP =THTAL (86)
and the reception was assumed to be block-synchronous, in . ) N
a companion paper, we address blind symbol recovery aRgcause matrix;®A®* is Hermitian, 1T A~ must be
develop self-recovering equalization and synchronization &l€rmitian too, and thuii‘HI‘A—l_:b_;rl_I‘H_I‘. For distinct
gorithms [27]. Together with the results hereimput diversity 'S the latter is possible only 11" is diagonal. Hence,
induced by redundant filterbank precoders and scraminFg}]L’F is diagonal and, due to (86%A®"" must be diagonal
turns out to be a very useful tool for mitigating multipat®S Well. _ _ .
effects in block transmissions without requiring channel dis- TO Show thay®@A?&* is also diagonal, we use again (68)
parity conditions. and (69) to obtain
A number_of interestir!g research_ issues open up: mglti- SASH(THT + u)(A~! + BADH) = BA2BH. (87)
channel/multiuser extensions, adaptive algorithms, combined
approaches that exploit input redundancy for joint error coBecausePA®* andI'’I" are diagonal, the right-hand side

rection and channel equalization, and decision feedback altet{87) must be also diagonal. u
natives along the lines of [36] and [37]. Proof of (70): Substituting (68) into the MSE part of (67),
we obtain
APPENDIX E=tr(A - APH (AL + 2ADH)"1BA)
Proof of (67): From (66), we can expresE and G as =tr(A — (A1 + 2AST)TPASM).  (88)

(80) Due to the Lemma, the matrix inside the trace is diagonal and

F=vaUu?,  G=UrA*viE" R} . o
v can be written explicitly as

In the TZ case, by substituting (80) to the terms in (59), we Z |i;|262,
obtain . Z s . - @)
tr(GR,,,G") i X+ Z |¢s1 2655
J

=tr(UTA'V"H"R!R, R, HVAT'THU™)

_ tr(UI‘A*1VHVAVHVA*1FHUH) As far as minimizingg +u.C, we will argue that w.l.0.g. matrix

& can have at most one nonzero entry in every row and every

—1pH
=tr(FA™'TY) column; furthermore, we will show next that matsdx can be
tr((GHF — R,.(GHF — 1)) considered w.l.o.g. as diagonal. X
=tr(UTAT'ADUY — R,,(UTAT'ASU - 1)) For each row, let 77 := max; é;;, and define® such that
_ H HyrH N " .
—tr(U(I‘@—I)U RSSU(I‘@_I) U ) 6JJ|(7)1‘J|2 IZ |¢ij|26jj and (/)“ =0 if J ;é J.
=tr((T® — AP — ) J
tr(FR, . F) L. (90)
'“ . . Due to (90), we have (PA®") = (AR, ie., if B
=tr(VRUUAUTUS"VT) satisfies the power constraint, then so daks Moreover,
=tr(PAPY). (81)
Thus, (59) can be written as "WhenA has repeated eigenvalues, deflne= A+éA with $A a diagonal
perturbation matrix to assure that;’s are distinct. Howeverp;; (A) in (73)
E+uC :tr(I‘A_lI‘H) +tr((T® —HAT® — I)H) is a continuous function ok, which implies thatimsa g ¢::(A) = ¢;;(A)

and proves that Theorem 4 holds true as well for channels with repeated

+ p(tr(@A®d) — Ry). (82) eigenvalues.
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because_; |¢;1263;

From (91) and (89), we infer that i minimizes £, then

> 0, using the definition 0b; 7, we find [22]

J
Z |ij|265; < 614 Z 63512655 = |dis |63, (91) [23]
J J

[24]
[25]

so does®. Hence, as far as minimizin§ + 1C, we can take

P =
be full rank, it should also have only one nonzero entry pé?r6

& to have only one nonzero entry per row. SirkEenust

column; thus® should be (within a permutation matrix factor)

diagonal, but permutation matrices do not alfe®; hence,

[27]

setting\;;'s andé;;'s in decreasing order, forces w.l.o§.to

be diagonal [c.f. (90)].
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