
See	discussions,	stats,	and	author	profiles	for	this	publication	at:
https://www.researchgate.net/publication/229656486

Effect	of	underground	cavities	on	surface
earthquake	ground	motion	under	SH	wave
propagation

ARTICLE		in		EARTHQUAKE	ENGINEERING	&	STRUCTURAL	DYNAMICS	·	OCTOBER	2009

Impact	Factor:	2.31	·	DOI:	10.1002/eqe.912

CITATIONS

29

READS

106

4	AUTHORS,	INCLUDING:

Chiara	Smerzini

Politecnico	di	Milano

26	PUBLICATIONS			237	CITATIONS			

SEE	PROFILE

Roberto	Paolucci

Politecnico	di	Milano

100	PUBLICATIONS			1,654	CITATIONS			

SEE	PROFILE

Available	from:	Chiara	Smerzini

Retrieved	on:	09	April	2016

https://www.researchgate.net/publication/229656486_Effect_of_underground_cavities_on_surface_earthquake_ground_motion_under_SH_wave_propagation?enrichId=rgreq-b5fcb881-d805-4d3c-a56c-e9dac64c69ba&enrichSource=Y292ZXJQYWdlOzIyOTY1NjQ4NjtBUzoxMDI0MDEwMzM5MDAwNDRAMTQwMTQyNTcxNzU5MA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/229656486_Effect_of_underground_cavities_on_surface_earthquake_ground_motion_under_SH_wave_propagation?enrichId=rgreq-b5fcb881-d805-4d3c-a56c-e9dac64c69ba&enrichSource=Y292ZXJQYWdlOzIyOTY1NjQ4NjtBUzoxMDI0MDEwMzM5MDAwNDRAMTQwMTQyNTcxNzU5MA%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-b5fcb881-d805-4d3c-a56c-e9dac64c69ba&enrichSource=Y292ZXJQYWdlOzIyOTY1NjQ4NjtBUzoxMDI0MDEwMzM5MDAwNDRAMTQwMTQyNTcxNzU5MA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Chiara_Smerzini?enrichId=rgreq-b5fcb881-d805-4d3c-a56c-e9dac64c69ba&enrichSource=Y292ZXJQYWdlOzIyOTY1NjQ4NjtBUzoxMDI0MDEwMzM5MDAwNDRAMTQwMTQyNTcxNzU5MA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Chiara_Smerzini?enrichId=rgreq-b5fcb881-d805-4d3c-a56c-e9dac64c69ba&enrichSource=Y292ZXJQYWdlOzIyOTY1NjQ4NjtBUzoxMDI0MDEwMzM5MDAwNDRAMTQwMTQyNTcxNzU5MA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Politecnico_di_Milano?enrichId=rgreq-b5fcb881-d805-4d3c-a56c-e9dac64c69ba&enrichSource=Y292ZXJQYWdlOzIyOTY1NjQ4NjtBUzoxMDI0MDEwMzM5MDAwNDRAMTQwMTQyNTcxNzU5MA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Chiara_Smerzini?enrichId=rgreq-b5fcb881-d805-4d3c-a56c-e9dac64c69ba&enrichSource=Y292ZXJQYWdlOzIyOTY1NjQ4NjtBUzoxMDI0MDEwMzM5MDAwNDRAMTQwMTQyNTcxNzU5MA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Roberto_Paolucci?enrichId=rgreq-b5fcb881-d805-4d3c-a56c-e9dac64c69ba&enrichSource=Y292ZXJQYWdlOzIyOTY1NjQ4NjtBUzoxMDI0MDEwMzM5MDAwNDRAMTQwMTQyNTcxNzU5MA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Roberto_Paolucci?enrichId=rgreq-b5fcb881-d805-4d3c-a56c-e9dac64c69ba&enrichSource=Y292ZXJQYWdlOzIyOTY1NjQ4NjtBUzoxMDI0MDEwMzM5MDAwNDRAMTQwMTQyNTcxNzU5MA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Politecnico_di_Milano?enrichId=rgreq-b5fcb881-d805-4d3c-a56c-e9dac64c69ba&enrichSource=Y292ZXJQYWdlOzIyOTY1NjQ4NjtBUzoxMDI0MDEwMzM5MDAwNDRAMTQwMTQyNTcxNzU5MA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Roberto_Paolucci?enrichId=rgreq-b5fcb881-d805-4d3c-a56c-e9dac64c69ba&enrichSource=Y292ZXJQYWdlOzIyOTY1NjQ4NjtBUzoxMDI0MDEwMzM5MDAwNDRAMTQwMTQyNTcxNzU5MA%3D%3D&el=1_x_7


EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS
Earthquake Engng Struct. Dyn. 2009; 38:1441–1460
Published online 5 March 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/eqe.912

Effect of underground cavities on surface earthquake
ground motion under SH wave propagation

C. Smerzini1,∗,†, J. Avilés2, R. Paolucci3 and F. J. Sánchez-Sesma4

1Doctoral School of Earthquake Engineering and Engineering Seismology, ROSE School, IUSS Pavia,
Via Ferrata 1, 27100, Pavia, Italy

2Instituto Mexicano de Tecnologı́a del Agua IMTA, México
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SUMMARY

A theoretical approach is presented to study the antiplane seismic response of underground structures,
subjected to the incidence of both plane and cylindrical waves. The structure is assumed to be a circular
inclusion embedded in a homogenous, isotropic and linear visco-elastic halfspace. The inclusion may
consist either of a cavity, with or without a ring-shaped boundary, or it may be filled in with a linear-elastic
material, without loss of generality. The analytical solution is obtained using expansions of wave functions
in terms of Bessel and Hankel functions, relying on the technique of images and the use of Graf’s addition
theorem to enforce the boundary conditions.

The effects of underground cavities on surface earthquake ground motion are studied as a function of
the size of the cavity, its embedment depth, the frequency content of the excitation, the incidence angle
and the distance from the axis of symmetry of the cavity itself. A simple application of Rayleigh’s method
allows us to verify that the ground surface response is dominated by the fundamental vibration mode of
the portion of soil between the cavity and ground surface itself, in the frequency range of interest for
engineering purposes. A simple relationship to estimate the fundamental natural frequency as a function
of the embedment depth of the cavity is given. Finally, amplification factors on response spectra are
obtained, to provide a practical insight into the effect of an underground cavity on surface ground motion
during real earthquakes. Copyright q 2009 John Wiley & Sons, Ltd.
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1442 C. SMERZINI ET AL.

INTRODUCTION

It is widely recognized that significant earthquake ground motion amplifications may occur due
to the presence of either surface or subsurface irregularities. While numerous studies have been
developed on the effects induced by valleys and topographies, and implemented in seismic norms as
well (see e.g. Part 5 of Eurocode 8 [1]), understanding and quantifying the effects of underground
irregularities, such as buried cavities or tunnels, is still at a research stage. Similarly, the identifi-
cation and characterization of either natural or artificial subsurface obstacles, such as cavities or
petroleum reservoirs, constitute a challenging issue for geophysical subsurface investigations.

In their pioneering work, Pao and Mow [2] studied the diffraction of SH elastic waves and
dynamic stress concentration by a circular cylinder embedded in an ideal infinite space. Later, other
authors [3, 4] considered the scattering of elastic waves by a cylindrical cavity in a semi-infinite
medium. Dravinski [5, 6] presented a detailed literature review on the scattering of elastic waves
by subsurface irregularities, while Lee and co-workers undertook a systematic study to analyze,
first, the scattered wavefield induced by either a cavity or a tunnel under plane SH waves incidence
[7, 8], and, secondly to generalize it to 3D elastic diffraction [9], and to SV and P incidence
[10, 11]. Finally, the interaction effects between surface (e.g. canyon or valley) and subsurface
cavities/tunnels and their influence on surface ground motion were studied in [12].

The first objective of this paper is to provide a comprehensive analytical framework to assess
the modification of seismic surface ground motion due to underground inclusions, capable of
considering the incidence of both plane and cylindrical SH waves. The problem is formulated by
modelling the cross-section of the subsurface irregularities as an ideal circular inclusion embedded
in a homogenous, isotropic and linear visco-elastic halfspace. The method of solution, first intro-
duced by Avilés and Mora-Orozco [13], starts by defining a suitable set of cylindrical coordinates.
In each reference system, the diffracted or refracted wavefield is represented by means of the
method of separation of variables, in terms of series of Bessel and Hankel functions. The enforce-
ment of the boundary conditions, made possible with the aid of the Graf’s addition theorem [14],
allows us to obtain the exact solution. The solution technique is similar to the one proposed
by Lee and Trifunac [8], Avilés and Sánchez-Sesma [15] and Lee et al. [12]. Nevertheless,
contrary to the previous works, this method of solution is versatile enough to deal not only with
various kinds of buried obstacles, from cavities to elastic inclusions, but also different types of
excitations. Referring to the latter point, an exact asymptotic equivalence between the response
under incident plane and cylindrical waves is demonstrated relying upon a suitable normalization
technique.

The second objective is to provide quantitative estimates of the seismic amplification of surface
ground motion above underground cavities. As far as available from literature, while several closed-
form solutions for the dynamic response of embedded cavity have been proposed in the last 30
years (see e.g. [8, 16]), only a very limited effort has been devoted so far to translate the theoretical
findings in a format useful for engineering applications.

The work is organized as follows. We first present the mathematical model for plane SH waves
impinging on an circular inclusion and, secondly, generalize the method to the case of a point source
of cylindrical waves. Some representative numerical results are then presented in a parametric way
both in time and frequency domains, showing their dependence on the type of inclusion (cavity,
tunnel or elastic inclusion), its embedment depth, the frequency content of the input wavefield and
the distance of the observation point from the axis of symmetry. Finally, after providing the physical
interpretation of the peaks of the transfer functions of surface ground motion above underground
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EFFECT OF UNDERGROUND CAVITIES ON SEISMIC MOTION 1443

cavities, relying on a simple application of Rayleigh’s method, response spectral amplification
factors are calibrated and illustrated for some realistic sets of parameters.

MATHEMATICAL MODEL

The mathematical model is depicted in Figure 1. It consists of a cylindrical inclusion with circular
cross-section of radius ac embedded in a homogenous, isotropic and linear visco-elastic halfspace.
The inclusion may be either internally empty (cavity), or filled in with a linear visco-elastic material
(elastic inclusion), or its cross-section may include a ring-shaped boundary of variable thickness
with different elastic properties from the halfspace (lined tunnel), as sketched in Figure 1(a).
According to the notation used in Figure 1, the halfspace will be denoted by index S, while the
interior region of the buried structure by C . Two reference systems are superimposed in Figure 1,
the former located on the free surface and at distance L from the center of the inclusion, and the
latter centered in the inclusion itself at depth H . The incident wavefield undergoes phenomena
of multiple scattering and diffraction owing both to the free surface and to the presence of the
inclusion. Under the assumption of incidence SH plane waves, the total displacement wavefield in
the halfspace ws is a scalar quantity and has to satisfy the reduced wave equation, i.e. Helmholtz
equation [17]:

∇2ws+k2sws=0 with ∇2= �2

�2x
+ �2

�2y
(1)

Figure 1. (a) Various buried structures considered in this work; (b) sketch of the
mathematical model; and (c) method of images.
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1444 C. SMERZINI ET AL.

where �s=
√

�s/�s is the complex shear wave velocity of the halfspace with mass density, shear
modulus and quality factor given by �c,�c and Q, respectively, and ks=�/�s is the wavenumber
associated with shear waves.

Relying on the theory of elastic wave diffraction [2], the wavefield ws within the halfspace
results from the superposition of the free-field w(0) =w(i)+w(r) given by the incident and reflected
wavefields in the absence of the anomaly C , of the wavefield w

(d)
f diffracted by the surface of

the obstacle and of the wavefield w
(d)
i diffracted by the surface of the image of the inclusion (see

sketch in Figure 1(c)), as follows:

ws=w(i)+w(r)+w
(d)
f +w

(d)
i (2)

If the incident wavefield is represented by a train of SH plane waves, polarized in the z direction,
the free-field w(0) is given by the following expression:

w(0) =w(i)+w(r) =2e−iksx1 cos� cos(ksy1 sin�) with i=√−1 (3)

where � is the incidence angle. From here on, the time harmonic factor ei�t is understood and
the wavefields are normalized with respect to the input displacement amplitude w0. The diffracted
fields induced by the inclusion and its image are obtained by solving Equation (1) with the method
of separation of variables yielding:

w
(d)
f =

∞∑
m=0

{H (2)
m (ksr2)[Am cosm�2+ �̂m0Bm sinm�2]} (4)

and

w
(d)
i =

∞∑
m=0

{H (2)
m (ksr3)[Am cosm�3+ �̂m0Bm sinm�3]} (5)

where H (2)
m (◦) is the Hankel’s function of second kind and order m, while �̂m0=1 for m �=0 and

�̂m0=0 for m=0. The expansions of Equations (4) and (5) satisfy the stress-free condition at
y1=0 and the Sommerfeld radiation condition at infinity [18]. On the other hand, the displacement
wavefield refracted and trapped within the inclusion can be expressed as follows:

wc=
∞∑

m=0
{Jm(kcr2)[Cm cosm�2+ �̂m0Dm sinm�2]} (6)

where kc=�/�c and Jm(◦) is the Bessel’s function of first kind and order m.
The unknown coefficients Am and Bm , as well as Cm and Dm , are determined by enforcing

the boundary conditions regarding the continuity of displacements and stresses around the soil–
inclusion interface:

ws|r2=ac =wc|r2=ac and �s
�ws

�r2

∣∣∣∣
r2=ac

= �c
�wc

�r2

∣∣∣∣
r2=ac

∀�2∈[0 2	] (7)

Note that Cm and Dm are not significant as we are mainly interested predominantly to reproduce
the surface ground motion. Behind Equation (7) there is the assumption of a perfect bounding
between the inclusion and the surrounding medium.

Copyright q 2009 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2009; 38:1441–1460
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EFFECT OF UNDERGROUND CAVITIES ON SEISMIC MOTION 1445

SOLUTION TECHNIQUE

The exact solution of the model is obtained by a boundary method which involves series expansion
of incident and reflected SH waves in terms of cylindrical wave functions, as well as coordinate
transformations between any two reference systems. To this end, it is convenient to express the total
wavefield given by Equation (2) in terms of the polar coordinates (r2,�2). First, the incident and
reflected fields are expressed as series of cylindrical waves by means of the Neumann expansion
[14], as follows:

w(i),(r) =e

(i),(r)

e−ikSr2 cos(�2∓�) with 
(i),(r) =−iks(L cos�∓H sin�) (8)

so that the free-field takes the form:

w(0) = 2e−iksL cos�
{
cos(ksH sin�)

∞∑
m=0

[(−i)mεm Jm(ksr2)cosm�cosm�2]

+2isin(ksH sin�)
∞∑

m=1
[(−i)m Jm(ksr2)sinm�sinm�2]

}
(9)

where εm is the Neumann factor (εm =1 if m=0, εm =2 elsewhere). Note that the negative
and positive signs in Equation (8) indicate the incident (w(i)) and the reflected (w(r)) wavefields
respectively.

Finally, the diffracted wavefield w
(d)
i can be expressed in terms of (r2,�2) by Graf’s addition

theorem (see Appendix A for further details), leading to:

w
(d)
i =

∞∑
m=0

{
Jm(ksr2)

[εm

2
�+
nm cosm�2+ �̂m0�

−
nm sinm�2

]}
(10)

with �±
nm =∑∞

n=0 (−1)n[K±
nm An∓ �̂n0L±

nm Bn].

The transport factors K±
nm and L±

nm , which directly arise from transferring the wave solution
from system (r3,�3) to (r2,�2), are given by:

K±
nm = cos

(
(n+m)

	

2

)
H (2)
n+m(2ksH)±(−1)m cos

(
(n−m)

	

2

)
H (2)
n−m(2ksH) (11a)

L±
nm = sin

(
(n+m)

	

2

)
H (2)
n+m(2ksH)±(−1)m sin

(
(n−m)

	

2

)
H (2)
n−m(2ksH) (11b)

Appendix A provides details about a generalized version of the addition theorem, to transform
wave functions from one reference system to another.

Solving system of equations

Substituting Equations (4), (9) and (10) into Equation (2), the total displacement wavefield is
referred to the reference system (r2,�2). By enforcing the boundary conditions (7) and taking into
account the orthogonal properties of the trigonometric functions, we obtain four infinite linear
systems of equations for the unknowns An, Bn , Cn and Dn . The field within the inclusion is of no
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1446 C. SMERZINI ET AL.

interest here and therefore Cn and Dn can be eliminated by substitution. The resulting system can
then be written in matrix compact notation as follows:[

G11
mn G12

mn

G21
mn G22

mn

]{
An

Bn

}
=

{
I 1m

I 2m

}
(12)

where the independent terms I 1,2m are defined as:

I 1m = −4cos(ksH sin�)e−iksL cos�(−i)m cosm� (13a)

I 2m = −4isin(ksH sin�)e−iksL cos�(−i)m sinm� (13b)

The boundary conditions are those of continuity of displacements and tractions. It comes out,
after solving the inclusion model, that the coefficients for the diffracted field admit simple limiting
forms if the inclusion is a void or a lined tunnel. After some straightforward, but lengthy algebra,
the sub-matrices Gi j can be expressed as:

G11
mn = (−1)nK+

nm+ 2

εm
�mn�m, G12

mn =−(−1)nL+
nm

G21
mn = (−1)nL−

nm, G22
mn =(−1)nK−

nm+�mn�m

(14)

where �mn is the Kronecker delta (=1 if m=n; =0 if m �=n) while the factor �m , which only
affects the terms along the principal diagonal, is given by:

�m = H ′(2)
m (ksac)−FmH

(2)
m (ksac)

J ′
m(ksac)−Fm Jm(ksac)

(15)

where the prime denotes differentiation with respect to the argument and Fm is the inclusion factor
defined as:

Fm =C
J ′
m(kcac)

Jm(kcac)
with C=

√
�c�c
�s�s

for an elastic inclusion (16a)

Fm =C
J ′
m(kcac)−�mY ′

m(kcac)

Jm(kcac)−�mYm(kcac)
with �m = J ′

m(kc(1−b)ac)

Y ′
m(kc(1−b)ac)

for a lined tunnel (16b)

Fm = 0 for a cavity (16c)

We end up with a well-structured system, straightforward to generalize not only to different kinds
of buried inclusions of circular shape, but also to various incident wavefields (see the following
section for further details). Note that in Equation (16b) b=(ac−ai )/ac is the dimensionless
thickness of the wall of the tunnel, ai and ac being the inner and external radius, respectively,
while Ym(◦) is the Bessel’s function of second kind and order m. Leaving aside its analytical
derivation, Equation (16b) is obtained by imposing an additional boundary condition of vanishing
shear strains at the inner boundary, i.e. �wc/�r2|r2=(1−b)ac .

Infinite systems like in Equation (12) cannot in general be solved. Truncation to finite size is
therefore necessary to obtain the solution at any point. In other words, the order of the expansions
is set equal to M , such that the unknown coefficients are 2M+1. Solutions were checked to be
robust with respect to M ; specifically, small values of M , typically around 6–10, are sufficient to
obtain convergent solutions.
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DOI: 10.1002/eqe



EFFECT OF UNDERGROUND CAVITIES ON SEISMIC MOTION 1447

INCIDENCE OF CYLINDRICAL WAVES

In this section we illustrate how the solution technique, described previously for plane waves, can
be generalized to incident cylindrical waves.

Similar to the plane wave case, we rely upon the method of images considering twin punctual
sources in symmetrical position with respect to the free surface, as depicted in Figure 2. Note that
two polar coordinate systems, (rF ,�F ) and (r ′

F ,�′
F ), for the source and its image, respectively, are

built up. Using Graf’s addition theorem to pass from the polar coordinates, (rF ,�F ) and (r ′
F ,�′

F ),
to the reference system (r2,�2), as sketched in Figure 2, we can derive the following expressions
for the incident and reflected wavefields:

wi|cyl = H (2)
0 (ksrF )=

∞∑
m=0

[εm(−1)mH (2)
m (ksR

i )Jm(ksr2)cos(m(�2−�i ))] (17a)

wr|cyl = H (2)
0 (ksr

′
F )=

∞∑
m=0

[εm(−1)mH (2)
m (ksR

r )Jm(ksr2)cos(m(�2+�r ))] (17b)

where the geometrical quantities Ri ,�i , Rr and �r are defined in Figure 2.
The strategy of solution consists in the normalization of Equation (17) with respect to

the function H (2)
0 (ksD), where the geometrical parameter D as the distance between the

source and the reference system (x1, y1). Let us denote, for ease of notation, H (2)
m (ksRi )=Hi

m,

Figure 2. Sketch of the model to deal with cylindrical waves incidence.
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1448 C. SMERZINI ET AL.

H (2)
m (ksRr )=Hr

m,H (2)
0 (ksD)=HD

0 and Jm(ksr2)= Jm . Therefore, we end up with a compact
form for the cylindrical free-field:

w(0)|cyl = wi|cyl +wr|cyl
H D
0

= 1

HD
0

+∞∑
m=0

{εm(−1)m Jm[am cosm�2+bm sinm�2]} (18)

with am =Hi
m cosm�i +Hr

m cosm�r and bm =Hi
m sinm�i −Hr

m sinm�r .
It is worth noticing that the system in Equation (12) can be generalized to the case of incidence

represented by cylindrical waves, solely by changing the independent terms as follows:

I 1m = −2(−1)mam
HD
0

and I 2m = −2(−1)mbm
HD
0

(19)

The proposed normalization process allows one to establish an asymptotic equality between the
free-field solution induced by plane waves and that induced by cylindrical waves in the limiting
case for D→∞. Multiplying and dividing Equations (17a) and (17b) by Hi

0 and Hr
0 , respectively,

we obtain:

w(0)|cyl = Hi
0

HD
0

+∞∑
m=0

[
εm(−1)m

Hi
m

Hi
0

Jm cosm(�2−�i )

]

+ Hr
0

HD
0

+∞∑
m=0

[
εm(−1)m

Hr
m

Hr
0
Jm cosm(�2+�r )

]
(20)

Using the asymptotic relations for the Hankel’s functions [14] for D→∞ (implying that Ri , Rr →
∞), we build up the following relations:

Hi,r
0

HD
0

∼=

√
2

	ksRi,r√
2

	ksD

e−i(ksRi,r−	/4)

e−i(ksD−	/4)
=

√
D

Ri,r
e−iks(D−Ri,r ) (21)

and, similarly:

Hi,r
m

Hi,r
0

∼= e−i(ksRi,r−m	/2−	/4)

e−i(ksD−	/4)
= im (22)

Finally, by simple geometrical considerations it can easily be proved that �i =�r =� and√
(D/Ri,r )e−iks(D−Ri,r ) ∼=e−iks(L cos�∓H sin�) for D→∞, such that Equation (20) becomes:

w(0)|cyl ∼= e−iksL cos�
{
eiksH sin�

+∞∑
m=0

εm(−i)m Jm cosm(�2−�)

}

+ e−iksH sin�
+∞∑
m=0

εm(−i)m Jm cosm(�2+�)

}
(23)

Notice that Equation (23) is the same as Equation (9). This suggests that taking into account the
normalization of the cylindrical free-field solution, with respect to an appropriate function, allows
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EFFECT OF UNDERGROUND CAVITIES ON SEISMIC MOTION 1449

one to describe the limiting condition that, for sufficiently large source–receiver distance, harmonic
cylindrical waves are reduced to plane waves. It was found that, as a rule of thumb, this occurs
for dominant wavelengths larger than the cavity size, when the source-to-site distance is greater
than about 20 times the radius of the cavity.

NUMERICAL RESULTS

Some numerical results of potential practical interest are illustrated here, with reference to the
incidence of plane waves in the presence of underground cavities. First, the analytical solutions
for both cavities and elastic inclusions are shown in time and frequency domains as a function of
normalized dimensionless quantities. After that, the transfer function for surface ground motion
above underground cavities is analyzed in more detail, focusing on the physical interpretation of
its fundamental frequency and its higher harmonics, using the Rayleigh’s method to geological
structures is shown. Finally, we provide quantitative estimates of the amplification of surface
ground motion above underground cavities, based on response spectra of real accelerograms, for
some representative cases of practical interest.

Synthetic seismograms and transfer functions

To provide insights into the physics of the problem, Figure 3 illustrates some examples of synthetic
seismograms for the cases of: (a) a cavity; (b) a lined tunnel having a circular boundary with
properties b=0.125,�c/�s=2.5,�c/�s=1.5 and (c) an elastic inclusion with �c/�s=2.5 and
�c/�s=1.5. Results refer to both plane (top panel) and cylindrical (bottom panel) waves, assuming
vertical incidence (�=90◦). For the three cases, the cavity/inclusion has a unit radius ac and an
embedment depth H =3ac. Furthermore, a dimensionless frequency is introduced as the ratio of
the diameter of the inclusion to the wavelength:

�= �

	

ac
�s

= 2ac


(24)

Note that in absence of the underground structure, the amplitude of surface ground motion is
assumed to be 1 (i.e. free-field solution). Because of the small propagation distances involved, the
dependence of results on the quality factor Q is negligible. For this reason, Q=1000 has been
considered throughout this study.

In this example the peak dimensionless frequency of the seismic excitation is selected to be
close to 1. The seismograms have been computed by convolution of the analytical solutions with
a Ricker wavelet, whose time dependence is given by the equation:

f (t)=[1−2	2 f 2p (t− t0)
2]e−	2 f 2p (t−t0)2 (25)

where fp is the peak frequency of the Fourier amplitude spectrum and t0 is the time shift parameter.
The selected parameters are: fp=0.5Hz, t0=4 and 5 s, for plane and cylindrical waves incidence,
respectively.

The most relevant phases of ground motions can be clearly detected on the top left-hand side
of Figure 3: the direct arrival, denoted by D, the reflected phase (R) and some multiples (M1
and M2), corresponding to waves travelling along one quarter and the whole surface of the cavity,
respectively. Receivers located above the cavity (a) on the ground surface detect a direct wave front
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Figure 3. Synthetic seismograms obtained at 80 equally spaced receivers deployed along
the ground surface for: (a) a cavity; (b) a cavity with a circular boundary of properties:
b=0.125,�c/�s=2.5,�c/�s=1.5 and (c) an elastic inclusion with �c/�s=2.5,�c/�s=1.5
under plane (top panel) and cylindrical (bottom panel) waves incidence. For the three cases,
the burial depth is H =3ac. The most relevant phases of motion are superimposed on the

left-hand side top graph: direct (D), reflected (R) and some multiples (M1 and M2).

which is significantly attenuated, at least for the range of frequencies and the embedment ratio
investigated in this example. On the other hand, for receivers located either above the tunnel (b) or
the elastic inclusion (c), the refracted phase arrives about 2 s before the direct arrival, owing to the
higher S wave velocity within the inclusion. Note that the latter effect is more pronounced when
the incident wavefield is represented by a nearby punctual source due to the intrinsic curvature of
the incoming wave front.

Figure 4 compares the transfer functions at (a) x/ac=0 and (b) x/ac=1 for the same case
studies illustrated in Figure 3. The transfer function of a cavity shows several peaks larger than
1 at nearly regularly spaced frequencies (this aspect will be discussed in the following section),
while the presence of either a lined tunnel or an elastic inclusion filled with stiffer material with
respect to the surrounding medium (�c/�s=2.5) induces a rather significant de-amplification of
surface ground motions, at least for the considered range of frequencies and under the incidence
of vertical plane waves.

Physical interpretation of ground motion harmonics

As a further example of the frequency dependence of our results, Figure 5 illustrates the modulus of
the transfer function associated to an embedded shallow cavity with ac=5m,H =8m, �s=200m/s
and �s=2000kg/m3 subjected to incident vertical plane waves. Results for three representative
positions along the ground surface, specifically (i) x/ac=0, (ii) x/ac=1 and (iii) x/ac=2, are
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Figure 4. Comparison of the transfer functions at (a) x/ac=0 and (b) x/ac=1 for the same case studies
illustrated in Figure 3. The incident wavefield is given by vertically propagating plane waves.

Figure 5. Absolute value of the transfer function of a shallow cavity in terms of the normalized frequency
� at three representative observation points located at: (i) x/ac=0; (ii) x/ac=1 and (iii) x/ac=2. The
superimposed arrows on the left-hand side indicate the peak associated with the fundamental vibration

mode. The properties of the model under study are reported in the right-hand side sketch.

compared. Leaving aside for the moment the higher harmonics, which will be analyzed in the
sequel, we address now the interpretation of the first peak shown by an arrow in Figure 5. The
observation that such peak appears at the same frequency for all positions ranging from about −3ac
to +3ac suggests that it corresponds to a vibration mode of a bounded portion of soil. To support
the latter conjecture, we compared the fundamental frequency corresponding to such peak with
the one estimated by a simple application of the Rayleigh’s method. For a thorough discussion of
this method applied to geological structures, we refer the reader to Dobry et al. [19] and Paolucci
[20, 21].

The starting point of the method is the assumption of a suitable approximation of the actual
mode shape �z(x, y) (along the z-direction) under SH wave propagation, so that the fundamental
vibration frequency can be bounded as:

�2
0�min

�z

∫
� �i j (x, y)εi j (x, y)d�∫
� �(x, y)�2

z (x, y)d�
(26)
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Figure 6. Geometry of the model under study and polar reference system used for the application of the
Rayleigh’s method. Superimposed in the (x, y) plane are two idealized profiles, at ground surface and at

a given depth, of the mode of vibration �z(x, y) of the portion of soil of thickness d .

where �i j (x, y) is the stress tensor computed by Hooke’s law, εi j (x, y) is the strain tensor and
�z(x, y) is an admissible (i.e. satisfying the boundary conditions) approximation of the mode
shape �z(x, y). Equation (26) follows by equating the elastic strain energy and the kinetic energy
of the vibrating bounded medium, defined in the spatial domain �.

The geometry and the polar reference system referred to for the application of the Rayleigh’s
method are sketched in Figure 6. The domain � of existence of the proposed mode shape �z(x, y)
is constrained laterally by radial segments of inclination �0. In a polar reference system (r,�)

with origin in the center of the cavity (see Figure 6) the following expression for �z(r,�) is
assumed:

�z(r,�)=
( r

H

)m
coss

(
	�

2�0

)
(27)

where m,s and �0 are parameters to be obtained through a minimization process. As an illustrative
example, two idealized profiles, at ground surface and at a given depth, of the mode of vibration
�z(x, y) are shown in Figure 6.

Under SH wave propagation, the non-vanishing components of the strain tensor are given by:

�r z(r,�) = ��z

�r
(r,�)=H−mmrm−1 coss

(
	�

2�0

)
(28a)

��z(r,�) = 1

r

��z

�ϑ
(r,ϑ)=− 	

2�0

rm−1

Hm
s coss−1

(
	�

2�0

)
sin

(
	�

2�0

)
(28b)

such that Equation (26) specializes as follows:

�2
0� min

s,m,�0

∫
� �(�2r z+�2�z)d�∫

� ��2
z d�

= min
s,m,�0

{
�2

I1
I2

}
(29)
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with

I1 =
∫ �0

0

∫ H/cos�

a

{[
m
rm−1

Hm
coss

(
	�

2�0

)]2

+
[

	

2�0

rm−1

Hm
s coss−1

(
	�

2�0

)
sin

(
	�

2�0

)]2}
r dr d� (30a)

I2 =
∫ �0

0

∫ H/cos�

a

[
	

2�0

rm−1

Hm
s coss−1

(
	�

2�0

)
sin

(
	�

2�0

)]2
r dr d� (30b)

calculated numerically with Gaussian quadrature formulas. The fundamental frequency is found
by a standard minimization procedure with respect to the parameters m,s and �0.

Figure 7 compares the analytical fundamental vibration frequency, denoted as �p from here on,
and the values estimated by the application of Rayleigh’s method as a function of the ratio of
the embedment depth H over the radius of the cavity ac. It is worth underlining that this was
found to be the only parameter controlling �p. Attention is limited herein to the transfer function
computed at x/ac=0. The good agreement between the actual fundamental frequency and that
estimated by Rayleigh’s method (as expected from the well-known property of Rayleigh’s quotient,
the estimated value is larger than the analytical one) strongly supports the hypothesis of a funda-
mental vibration mode which dominates surface ground motions at low dimensionless frequen-
cies. The fundamental mode shape turns out to be defined typically by values of �0∼ 80–85◦,
s∼1.1–1.3 and m∼0.1–0.2. The large values of �0, combined with the values of s strictly larger
than 1, indicate that significant amplification (>10%) of motion at ground surface may reach
an extent up to approximately ±5ac, while the low values of m point out a tiny attenuation of
the fundamental mode shape with depth within the domain of interest. These results have been
confirmed by numerical simulations as well, not shown here for brevity.

Another interesting result is that the computed pairs (�p,H/ac) turn out to be approximated
with reasonable accuracy by a curve of equation:

�p ≈ 1
3 ·(H/ac)

−1 (31)

Figure 7. Dimensionless fundamental vibration frequency �p as a function of the ratio H/ac. The computed
analytical values (filled triangles) are compared with the estimates by Rayleigh’s method (crosses).
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Figure 8. Transfer functions computed at x/ac=0 for the following cases: (a) H/ac=2 and (b) H/ac= 7
3 .

The vertical gray lines superimposed on the left-hand side point out the natural frequencies of a free–free
plate of thickness d , given by Equation (33).

to be obviously applied for H/ac>1.0. From Equations (31), it follows that the wavelength p,
associated with the fundamental vibration mode, can be roughly estimated as:

p ≈6H (32)

The dominant wavelength of surface ground motion above underground cavities turns out to depend
only on the geometry of the problem, and it is equal to about 6 times the embedment depth.

We touch now on the issue regarding the physical interpretation of the higher harmonics of the
transfer function at x/ac=0 associated with buried cavities under vertical plane incidence. These
harmonics were found to coincide with the modal vibration frequencies of a plate of thickness d
with free–free boundary conditions, given by the following expression:

�n =n
ac
d

with n�1 (33)

To support this finding, Figure 8 shows the transfer functions (left-hand side) computed at x/ac=0
for two different configurations, namely: (a) H/ac=2 and (b) H/ac=7/3 (see sketches on the
right-hand side). It is apparent that the higher harmonics have natural frequencies that are in good
agreement with the assumed model.

Quantification of the effect of underground cavities on surface ground motion, based on real
accelerograms

To summarize the previous analytical findings, we provide in this section an example of the
practical quantification of the effect of underground cavities on surface ground motion based
on real accelerograms. Specifically, the procedure devised herein is the following. For a set of
representative configurations, in terms of radius size, embedment depth and dynamic properties
of the halfspace, an appropriate suite of output accelerograms was obtained by convolving the
surface response at selected receivers with a representative set of seven real accelerograms. These
accelerograms, reported in Table I, belong to an ensemble selected to fit, on average, the EC8
response spectral shape for stiff soil conditions, with anchor acceleration at zero period ag =0.25g
(Lai, 2007; Pers. Comm.).
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Table I. Details about the suite of real accelerograms considered for computing
average amplification factors for elastic response spectra; R=epicentral distance,

MW =moment magnitude, and PGA=peak ground acceleration.

Event name Date R (km) MW PGA (g)

Friuli (aftershock) 09/11/1976 16 5.6 0.23
Montenegro 04/15/1979 16 7.0 0.36
Kalamata (Southern Greece) 09/13/1986 10 5.8 0.24
Erzincan (Turkey) 03/13/1992 13 6.7 0.39
Ionian (Greece) 03/23/1983 18 6.2 0.23
Parkfield 09/28/2004 11.6 6.0 0.30
Parkfield 09/28/2004 14 6.0 0.24

After convolution, the 5% damped acceleration response spectrum (SA) of each accelerogram
was divided by the corresponding SA of the input accelerogram. Subsequently, the average (±1�)

ratios RSA(T ) of output vs input SA over the considered suite of accelerograms were calculated.
The covariance coefficient was found to range from 5 to 15%, approximately.

As an illustrative example, Figure 9 depicts variations of the spectral amplification factor RSA(T )

(black lines) calculated at positions x/ac=0,1,2 and 5, under vertical plane incidence, when
two representative cavities are considered: (a) H =8m, ac=4m and �s=500m/s (left) and (b)
H =15m,ac=3m and �s=400m/s (right). In each case, �s=2000kg/m3, value that will be
understood in the sequel. The dispersion of the curves (±1�) is also shown by thin gray lines,
indicating a not negligible dependence of RSA(T ) on the input ground motion, especially at very
low periods. Nonetheless, from here on, we will refer to the average ratios for the sake of simplicity,
keeping in mind that a maximum deviation of around 15% of the mean could apply. As expected,
significant variations of RSA(T ) with respect to unity are limited to |x/ac|<5. The largest values of
RSA(T ) occur at x/ac=0, exactly at top of the cavity along the ground surface, while RSA(T )<1.1
for |x/ac|>5. The maximum RSA(T ) ranges from about 1.4 to 1.25, passing from (a) to (b), in
the period range from approximately 0.1 to 0.2 s. Recalling the definition of � (see Equation (24)),
according to Equation (31), the structural period mostly affected by the presence of underground
cavities can be roughly estimated as:

Tp = 2ac
�s

1

�p
≈6

H

�s
(34)

Considering realistic values of H and �s, the presence of underground cavities is expected to
induce significant effects on surface ground motion limited to the low period branches of the
acceleration response spectra. Taking, for instance, H =15m and �s=400m/s as representative
values, Tp ∼0.2s is obtained, and the effects for longer periods will be negligible.

Equation (34) suggests a way of representing the average ratios as a function of a dimensionless
period defined as follows:

TN= T�s
H

(35)

Figure 10 shows the variations of the amplification factor RSA(TN) for different values of the
embedment ratio H/ac and normalized distance x/ac (�s=400m/s and �s=2000kg/m3). Results
for six representative values of the dimensionless depth H/ac (from 1.5 to 5.0) over the distance
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Figure 9. Average ratios (black lines) and ±1� (gray lines) of output over input acceleration response
spectra (at 5% damping) at different positions x/ac when two representative cavities are considered: (a)
H/ac=2,�s=500m/s,�s=2000kg/m3 (left) and (b) H/ac=3,�s=400m/s,�s=2000kg/m3 (right).

Figure 10. Amplification factors on acceleration response spectra, RSA, as a function of the normalized
period TN=T�s/H , for increasing values of H/ac and for various dimensionless distances. For the
half-space, �s=400m/s and �s=2000kg/m3 were considered. Results refer here to vertical plane waves

incidence, condition for which the most significant effects are found.

range |x/ac|�3 are shown; larger distances are omitted because the corresponding amplification
factors are of little engineering interest (<1.1%). It is apparent that, thanks to the normalization, all
response ratios RSA peak around TN=6, supporting Equation (34), but their amplitudes strongly
depend on the parameters H/ac and x/ac with decreasing values of RSA with H/ac and x/ac, as
expected. A slight increasing trend of the amplified periods is noted for increasing values of x/ac,
but this effect can reasonably be neglected from a practical point of view. Significant values of
RSA above unity are noted typically for H/ac<3, while for larger values the spectral amplification
factor tends to be smaller than about 1.1–1.2. The maximum value of RSA, around 1.5, is found

Copyright q 2009 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2009; 38:1441–1460
DOI: 10.1002/eqe



EFFECT OF UNDERGROUND CAVITIES ON SEISMIC MOTION 1457

for H/ac=1.5 and x/ac=0, i.e. above a shallow cavity with large diameter. Furthermore, even
though not shown here for brevity, it is noted that the peak values of RSA tend to increase when
softer media are considered (a maximum increase of ∼20% is observed passing from �s=600 to
200m/s). Nevertheless, such an effect is notable only for values of H/ac<2, thus confirming that
the geometry is the key factor that controls the observed amplification. Finally, note that the results
in Figure 10 are based on vertical plane wave incidence, when the most critical amplification factors
are obtained. Even though not shown here for brevity, we have verified that oblique incidence
induces a significant reduction of the amplification factor (e.g. for H/ac=2 and x/ac=0, RSA
decreases by about 20% passing from �=90◦ to �=30◦) since the fundamental vibration mode
is no longer fully excited.

CONCLUSIONS

Several analytical solutions have been presented to study the antiplane seismic response of various
types of underground structures, from cylindrical cavities, to tunnels up to inclusions filled in with
material of arbitrary rigidity, subjected to either plane or cylindrical waves. The method of solution
is based on the expansion of wave functions in terms of Bessel’s and Hankel’s functions, and their
transport within a suitable set of cylindrical coordinate systems is obtained thanks to the application
of Graf’s addition theorem. The same tool, accompanied by an appropriate normalization process,
allows us to derive the exact asymptotic equivalence, at large source–receiver distances, between
wavefields at ground surface induced by plane and cylindrical waves. Indeed, the proposed method
of solution turns out to be versatile in dealing both with different kinds of inclusions, and different
types of incident wavefields as well.

Among the broad set of analytical solutions that could be obtained through the proposed method,
particular emphasis was given to the physical interpretation of the transfer function of surface
ground motion above underground cavities, under vertically incident plane waves. To this end, a
simple application of the Rayleigh’s method was carried out confirming that surface ground motions
are controlled by the antiplane vibration modes of the portion of soil between the cavity and surface,
in the range of frequencies of interest for engineering purposes. An approximate relationship for
the fundamental vibration frequency as a function of the ratio of the embedment depth H to
the radius of the cavity ac has been obtained and provides a rough estimate of the fundamental
frequencies. According to this simple formula, it turns out that the dominant wavelength associated
with the fundamental vibration mode is about 6 times the embedment depth.

To provide quantitative estimates of the effect of underground cavities on surface ground motion,
spectral amplification factors RSA are computed as the average ratio of the output to the input
acceleration response spectra. The interesting feature of such factors is that they can be expressed
as a function of the dimensionless period TN=T�s/H for a set of representative real cases. The
obtained amplification factors tend to peak at TN∼6 with values up to about 1.5, for x/ac=0,
H/ac=1.5–2.0 and vertical plane incidence. It is found that the most critical amplification factors
are obtained for vertical or nearly vertical wave incidence, when the fundamental vibration mode
is fully excited. As a practical indication, RSA is significantly larger than 1 for H/ac�3 and
distances |x/ac|�3, approximately, while for larger embedment ratios and distances, it tends to
unity. Based on the previous results and on realistic values of the input parameters, both in terms of
seismic input and soil dynamic properties, it can be deduced that the presence of buried cavities is
expected to induce significant effects limited to the low period ranges of the acceleration response
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spectrum, typically within structural periods varying from 0.05 to 0.2 s, with spectral amplification
factors up to about 1.5. As a concluding remark, it is worth underlining that the results of this
paper are limited to the case of SH wave propagation. Preliminary findings, based on numerical
simulations under SV-P wave incidence, show that the largest levels of amplification may occur
at larger distance from the cavity, specifically at x/ac∼3, where the maximum of the in-plane
vibration mode is supposed to occur.

APPENDIX A: GRAF’S ADDITION THEOREM FOR WAVE PROPAGATION ANALYSES

We illustrate here a generalized version of Graf’s addition theorem, easy to specialize to different
kinds of applications of seismic wave propagation in elastic media.

Given the set of reference system sketched in Figure A1, the scope is to express an arbitrary
wave solution, originally given with respect to the system centered in B, in terms of the radial
coordinates of the system centered in A. For instance, provided the wave solution in terms of
H (2)
m (k|x− y|) and �, we seek the equivalent solution in terms of the polar coordinates (|y|,ϑy).

Applying the definition of Graf’s addition theorem as provided by Abramowitz and Stegun [14]
we end up with the following compact expression:

H (2)
m (k|x− y|)eim� =

+∞∑
n=−∞

H (2)
m+n(kr>)ei(m+n)ϑx Jn(kr<)e−inϑy (A1)

where r> =max{|x |, |y|} and r< =min{|x |, |y|}.
For ease of notation, let us define the following quantities: Hm ≡H (2)

m (k|x− y|); Hm±n ≡
H (2)
m±n(kr>) and Jn ≡ Jn(kr<). Expanding Equation (A1) with Euler’s formula and factorizing with

respect to the real and imaginary parts, we obtain the following expressions, respectively:

Hm cosm� =
+∞∑
n=0

εn

2
{Hm+n cos[(m+n)ϑx ]+(−1)nHm−n cos[(m−n)ϑx ]}Jn cosnϑy

+
+∞∑
n=1

{Hm+n sin[(m+n)ϑx ]−(−1)nHm−n sin[(m−n)ϑx ]}Jn sinnϑy (A2)

Figure A1. Set of reference systems referred to in the text for the application of Graf’s addition theorem.
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Hm sinm� =
+∞∑
n=0

εn

2
{Hm+n sin[(m+n)ϑx ]+(−1)nHm−n sin[(m−n)ϑx ]}Jn cosnϑy

−
+∞∑
n=1

{Hm+n cos[(m+n)ϑx ]−(−1)nHm−n cos[(m−n)ϑx ]}Jn sinnϑy (A3)

Defining the transport factors K±
mn and L±

mn as follows:

K±
mn = {Hm+n cos[(m+n)ϑx ]±(−1)nHm−n cos[(m−n)ϑx ]} (A4a)

L±
mn = {Hm+n sin[(m+n)ϑx ]±(−1)nHm−n sin[(m−n)ϑx ]} (A4b)

it is easy to verify the following identities:

Hm cosm� =
+∞∑
n=0

Jn
[εn

2
K+
mn cosnϑy+ �̂n0L

−
mn sinnϑy

]
(A5a)

Hm sinm� =
+∞∑
n=0

Jn
[εn

2
L+
mn cosnϑy− �̂n0K

−
mn sinnϑy

]
(A5b)
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