
Quantifying the Effects of Aspect-Oriented Programming:
A Maintenance Study

Uirá Kulesza1 Cláudio Sant’Anna1,2 Alessandro Garcia2

Roberta Coelho1 Arndt von Staa1 Carlos Lucena1

1Software Engineering Laboratory – Computer Science Department – PUC-Rio – Brazil
{uira, claudios, roberta, arndt, lucena}@inf.puc-rio.br

2Computing Department – InfoLab 21 – Lancaster University – UK

{garciaa}@comp.lancs.ac.uk

Abstract
One of the main promises of aspect-oriented
programming (AOP) is to promote improved
modularization of crosscutting concerns, thereby
enhancing the software stability in the presence of
changes. This paper presents a quantitative study that
assesses the positive and negative effects of AOP on
typical maintenance activities of a Web information
system. The study consists of a systematic comparison
between the object-oriented and the aspect-oriented
versions of the same application in order to assess to
what extent each solution provides maintainable
software decompositions. Our analysis was driven by
fundamental modularity attributes, such as coupling,
cohesion, conciseness, and separation of concerns. We
have found that the aspect-oriented design has
exhibited superior stability and reusability through the
changes, as it has resulted in fewer lines of code,
improved separation of concerns, weaker coupling,
and lower intra-component complexity.

1. Introduction
Aspect-oriented programming (AOP) [11] is a post-

OO paradigm with the goal of enhancing software
maintainability through new modularization
mechanisms for encapsulating crosscutting concerns.
However, it is not clear up to now how the aspectual
decompositions scale in realistic maintenance scenarios
involving more than one widely-scoped aspect, such as
distribution and persistence. There is also no empirical
evidence whether AOP improves the ability to preserve
the architecture stability as the system evolves, thereby
hindering the adoption of AOP in the development
mainstream. The challenge is that system changes
commonly manifest themselves in heterogeneous
forms; they involve not only simple modifications in a
single implementation module, but also encompass
introductions of new use cases that naturally impact

several classes and aspects implementing the coarse-
grained architectural decisions.

In fact, while AOP [11] is fast gaining wide
attention in both research and industry environments,
the understanding of its impact on key maintainability-
related software attributes are still deep challenges to
software engineers. There is now some systematic case
studies in the literature that analyses how AOP
promotes superior separation of concerns in the
implementation of crosscutting features, such as
distribution [16, 17, 18], persistence [13, 14, 18],
exception handling [6], and design patterns [3, 9].
However, they have not analyzed the scalability of
AOP in the presence of widely-scoped design changes.

This paper presents a systematic case study in
which we have compared the maintainability of aspect-
oriented (AO) and object-oriented (OO) architectures
of a typical web-based information system. Our
investigation complements the existing empirical body
of knowledge on the use of AOP, since our two-phase
evaluation has respectively quantified: (i) the effects of
AOP on the achievement of separation of concerns and
other equally important maintainability attributes, such
as low coupling, high cohesion, design simplicity, and
conciseness; and (ii) the scalability of both AO and OO
solutions with respect to the same attributes used in (i)
while implementing a set of pervasive, broadly-scoped
design modifications in the target system. The design
of the case study is mainly structured according to a
layered software architecture. It involves three classical
crosscutting concerns – distribution, persistence, and
concurrency – and other elementary non-crosscutting
concerns, such as business and GUI elements. In order
to better understand the positive and negative effects of
AOP in the selected maintenance scenarios, our
analysis was performed according two different
architecture levels: at the system-level and at the
“layer”-level.

The paper is organized as follows. Section 2 shows
the design of the target web-based system. Section 3
presents the study setting. Section 4 presents the
general system-level results. Section 5 describes a
detailed analysis of the layer-level data. Section 6
provides more general discussion about the impact of
AOP on maintainability. Section 7 discusses related
work. Section 8 includes some concluding remarks.

2. Overview of the System Design
In our study, we have compared the AO and OO

implementations of a same web-based information
system, called HealthWatcher (HW). The main
purpose of the HW system is to allow citizens to
register complaints to the health public system. This
system was the ideal for our case study due to several
reasons. First, it has been developed out of our research
environment. Both original AO and OO versions of the
HealthWatcher system were developed by the Software
Productivity research group from the Federal
University of Pernambuco. Second, a preliminary
qualitative assessment has been recently conducted and
reported [16]. It has allowed us to supplement the
qualitative focus on separation of concerns of the first
study with both a broader quantitative analysis and a
systematic investigation about the scalability of AOP
in software maintenance scenarios.

Finally, it is a realistic system that involves a
number of common concerns, such as GUI,
persistence, concurrency, and distribution; it also
encompasses the application of mainstream
technologies commonly used in industrial contexts,
such as Java Remote Method Invocation (RMI),
Servlets, and Java Database Connectivity (JDBC).
Fourth, both OO design (Section 2.1) and AO design
(Section 2.2) of the HW system were developed with
modularity and changeability principles as main
driving design criteria. Each design choice for both OO
and AO solutions have been deeply discussed and
documented elsewhere [16, 17, 18].

2.1. Object-Oriented Design
The OO version of the HW system is implemented

using the Java programming language. The Layer [2]
architectural pattern is used to structure the system
classes in four main layers: GUI (Graphical User
Interface), Distribution, Business and Data. Figure 1a
presents a partial class diagram of the OO
implementation, illustrating the main architectural
elements. The GUI layer implements a web user
interface for the system. The Java Servlet API is used
to codify the classes of this layer. The Distribution
layer is responsible for making distributed the system
services provided by the Business layer. It is
implemented using the RMI technology. The Business

layer aggregates the classes that define the system
business rules. Finally, the Data layer defines the
functionality of database persistence using the JDBC
API. Also, several design patterns [1, 11, 16, 17] are
used in the design of the HW layers to achieve a
reusable and maintainable implementation.

The aforementioned design decisions have shown to
be effective to modularize most of the driving system
concerns: the graphical user interface, distribution,
business, and data access concerns. However, code
relative to some distribution, persistence, concurrency
issues still remain spread and tangled in the system
modules. Figure 1a illustrates how some of these
concerns crosscut the coarse-grained structures in the
existing OO implementation of the system, such as [16,
17, 18]:
• the need to make serializable the entity system
classes (the Complaint and Employee classes, for
example) in order to allow them to be transmitted over
the network;
• the transparent configuration of GUI layer servlet
classes to make it possible the remote access of the
business services using the Distribution layer;
• existing transaction demarcation code in methods of
the HealthWatcherFacade business class;
• initialization of a persistence mechanism that
manages database initialization and connections;
• transparent configuration of the business classes to
use persistent or nonpersistent data access classes;
• implementation of concurrency control mechanisms
(such as, timestamp or code synchronization) in
business and data classes.

2.2. Aspect-Oriented Design
The AO version of the HW system was

implemented using AspectJ [12]. The design followed
the same principles of reusability and maintainability
of the OO version, modularizing the same main
concerns of interest. The only difference was that the
AO design was conceived to also isolate the
crosscutting issues relative to distribution, persistence,
and concurrency (Section 2.1), which naturally could
not be separated in the OO system version. The AO
implementation is still structured following the Layer
architectural pattern. However, only the Distribution
concern is no longer implemented as a “layer” (Fig
1b). Aspects are the abstractions used to implement
this concern.

Figure 1b shows the design of the AO system
version. An UML stereotype <<aspect>> is used to
represent the aspects of the system. Moreover, UML
dependency relations with the <<crosscuts>>
stereotype indicate that an aspect introduces or
modifies the structure and/or behavior of system
classes. As we can see in the Figure 1b, different

aspects modularize the crosscutting concerns existing
in the OO implementation. Due to space limitation, for
complete implementation descriptions refer to [16-18].

3. Study Setting
Following the selection of the system to be

assessed, our quantitative study proceeded according to
several steps: (i) definition of the assessment criteria;

(ii) selection of the software metrics; (iii) execution of
important assessment procedures; (iv) data collection;
and (v) data analysis. In the following sections, we
respectively describe the assessment criteria and
metrics, and the most relevant assessment procedures.

 Business LayerGUI Layer

Data Layer

Distribution Layer

ServletInsertEmployeeServletSearchComplaintData

ISystemFacade

DSRMISourceAdapter

IDSRMITargetAdapte

DSRMITargetAdapter

ComplaintRecord

IComplaintRepository

ComplaintRepositoryJDBC EmployeeRepositoryJDBC

IPersistenceMechanism

PersistenceMechanism

EmployeeComplaint

IEmployeeRepository

EmployeeRecord

HealthWatcherFacade

Distribution Concern

GUI ConcernG

Legend:

Business Concern

Persistence Concern

D

B

P

C Concurrency Concern

G

D

D P P P

P P P

B B

B

B
B

B

D

D P G D P D D

D

C

C

P

Figure 1: (a) HealthWatcher Object-Oriented Implementation

Business Layer

GUI Layer

Data Layer
Distribution Concern

GUI ConcernG

Legend:

Business Concern

Persistence Concern

Concurrency Concern

D

B

P

C

< < cros scu ts >>

<< cros scu ts>>

< < cros scu ts >>

< < cros scu ts>>

< < cros scu ts >>

<< cros scu ts>>

< < cros scu ts >>

< < cros scu ts >>

< < cros scu ts >>

<< aspect>>
PersistenceControlHealthWatcher

<< as pe ct>>
Timestamp

<< aspe ct>>
HWOptmisticOptmization

EmployeeRecord

<< aspect>>
ClientDistributionAspect

HealthWatcherFacade

IComplaintRepository

ComplaintRepositoryJDBC

<<as pe ct>>
TransactionControlHealthWatcher

<< as pe ct>>
OptmisticSynchronization

Complaint

IEmployeeRepository

<< aspe ct>>
HWTimestamp

< <aspect> >
AbstractTransactionControl

ComplaintRecord

< <aspect>>
AbstractPersistenceControl

EmployeeRepositoryJDBC

<< aspect>>
FacadeDistributionAspect

ServletInsertEmployeeServletSearchComplaintData

Employee

G G

D

D

B

B B

B

B

P P

P P

P

P

P

P

C

C

C

C

Figure 1: (b) HealthWatcher Aspect-Oriented Implementation

3.1. The Metrics
In our study, a suite of metrics for separation of

concerns (SoC), coupling, cohesion and size [15] was
selected to evaluate the OO and AO implementations
of the HW system. We have decided to focus on a
restrict set of measures that are typically used to
evaluate maintainability. The chosen metrics have
already been successfully used in several case studies
[3, 6, 8, 9, 10]. This metrics suite was defined based on
the reuse and refinement of some classical and OO
metrics [4]. Our assessment framework also
encompasses new metrics for evaluating SoC
dimensions. These metrics capture the degree to which
a single system concern maps to the design
components (classes and aspects), operations (methods
and advice), and LOC. Table 1 briefly defines each
metric, and associates it with the relevant software
attribute.

3.2. Assessment Procedures
The study was organized in two phases: (i)

assessment of the original implementations - the
measurement and analysis of the original OO and AO
versions for the HW system; and (ii) implementation
and assessment of the evolved implementations. Both
original versions implement the total of 13 use cases,
presented in Table 2, related to the system domain. In
the maintenance phase of our study, we changed both
OO and AO architectures of the HW system to address
a set of new 8 use cases, also showed in Table 2.

The functionalities introduced by these new use
cases represent typical operations encountered in the
maintenance of information systems. We have selected
them because they naturally involve the modification
of modules implementing several system concerns. It
has allowed us to evaluate the degree to which both
solutions scale in the presence of change scenarios not
restricted to punctual modifications in the classes
and/or aspects. All the new use cases required changes
in the classes pertaining to the 4 layers of both system

versions. With respect to the aspects, all the new use
cases demand small changes in the distribution and
persistence aspects, and the 4 new use cases related to
insertion of system entities demand changes in the
concurrency aspects..

In the measurement process of both original and
maintenance HW versions, the data was partially
gathered by the AJATO tool [5]. The data collection
relative to the SoC metrics is preceded by the
shadowing of every class, interface and aspect in both
implementations of the system. Their code was
shadowed according to the crosscutting concerns –
distribution, persistence, and concurrency – that they
implement. We treated these concerns as the issues
driving the assessment because both designs and
implementations of the HW system were motivated to
separate them. We present the results of our evaluation
process by describing the overall measures for the
system viewpoint (Section 4), and the layer viewpoint
of view (Section 5).

4. Results: The System Viewpoint

Tables 3 and 4 present the collected absolute values
for all the metrics considering both AO and OO
versions before and after their maintenance. Figures 2
and 3 compare the results obtained for the AO and OO
implementations both before and after the introduced
changes. The first column of the figures present the
data gathered in the first phase – i.e. before the
maintenance scenarios, and the second one describes
the measures for the second phase. The measures
shown in the graphics were gathered according to the
system perspective; that is, they represent the tally of
metric values associated with all the classes and
aspects for the system implementation. The Y-axis
presents the percentage relative to the absolute value of
the system considering each metric. Each pair of bars,
presented in the graphics, is attached to a percentage
value, which represents the difference between the AO

Table 1. The Metrics Suite
Attributes Metrics Definitions

Concern Diffusion over
Components (CDC)

Counts the number of classes and aspects whose main purpose is to contribute to the
implementation of a concern and the number of other classes and aspects that access them.

Concern Diffusion over
Operations (CDO)

Counts the number of methods and advices whose main purpose is to contribute to the
implementation of a concern and the number of other methods and advices that access them.

Separation of
Concerns

Concern Diffusion over LOC
(CDLOC)

Counts the number of transition points for each concern through the lines of code. Transition
points are points in the code where there is a “concern switch”.

Coupling Between Components
(CBC)

Counts the number of other classes and aspects to which a class or an aspect is coupled.
Coupling

Depth Inheritance Tree (DIT) Counts how far down in the inheritance hierarchy a class or aspect is declared.

Cohesion
Lack of Cohesion in Operations

(LCOO)
Measures the lack of cohesion of a class or an aspect in terms of the amount of method and
advice pairs that do not access the same instance variable.

Lines of Code (LOC) Counts the lines of code.

Number of Attributes(NOA) Counts the number of attributes of each class or aspect. Size
Weighted Operations per

Component (WOC)
Counts the number of methods and advice of each class or aspect and the number of its
parameters.

and OO results. A positive percentage means that the
AO implementation was superior, while a negative
percentage implies that the AO implementation was
inferior. As it can be observed in Figures 2 and 3, the
results of the measurement process show favorable
results for the AO implementation with respect to the
majority of the metrics used.

Table 2. HealthWatcher Use Cases

System Version Use Cases

Original

- Insert, Update, Search Employee
- Insert, Update, Search Complaint
- Update and Search list of Health Unit
- Search Specialties by Health Unit
- Search Health Units by Specialty
- Search List of Specialties
- Search Disease Type
- Search list of Disease Type

Maintenance

- Insert and Search HealthUnit
- Insert and Search Symptoms
- Insert and Search Medical Specialty
- Insert Disease Type
- Search list of Symptoms

4.1. Quantifying Separation of Concerns

The application of the SoC metrics was useful to
quantify how effective was the separation of the
distribution, persistence and concurrency concerns in
the AO implementation of the system (Figure 2). Since
the main objective of the AO solution [16, 17, 18] was
to provide the isolation of these crosscutting concerns
using AspectJ, we could expect superior SoC outcomes
in favour of the AO implementation. In fact, all the
measures in Figure 2 confirm our hypothesis: the AO
implementation exhibits better results with respect to
all the concerns investigated. The graphics show
significant differences in favor of the AO
implementation in terms of the concern diffusion over
components (CDC), over operations (CDO) and over
lines of code (CDLOC). There are cases where the
superiority of the AspectJ solution is higher than 50%.

The distribution concern, for example, is spread
over 35 components (classes and aspects) in the OO
implementation, while in the AO solution it is only
involves 6 components. The CDC metric in Figure 2a
shows the percentage difference between both
versions. Also, the distribution concern presents better
results for the CDO metric. It is scattered over 98
operations (methods and advices) in the OO solution,
while over only 41 operations contains code relative to
distribution in the AO solution. Finally, the distribution
concern is more tangled in the OO solution than in the
AO implementation (CDLOC metric). The OO
solution presents 77 “concern switches” over the
system code, while the AO solution brings only 1,
because the aspects fully modularize the distribution
concerns. Thus, this difference also reflects the
superiority of the AO solution in terms of the CDLOC
metric.

The AO implementation after the system changes
also exhibits better results for all the SoC metrics
compared to the OO version. In some cases, the
percentage difference between both versions is
increased after the maintenance activities. For
example, the CDO metric for both the persistence and
concurrency concerns. It is also interesting to observe
that the percentage differences between the AO and
OO systems after the maintenance scenarios are
relatively the same as before the changes for the
distribution and persistence concerns. Figure 2 shows
that the AspectJ solution has scaled well with respect
to separation of concerns. The concurrency concern
revealed a different situation: the superiority of
AspectJ was even higher in the maintenance phase.
The reason was that the introduced functionalities
required the implementation of a number of extra
synchronization behaviors. These behaviors were
successfully captured by the concurrency aspects, but
they were replicated over several methods in the OO
version.

Table 3. Collected Values for the Separation of Concerns Metrics
Concern Distribution Persistence Concurency
Metric CDC CDO CDLOC CDC CDO CDLOC CDC CDO CDLOC

OO 35 98 77 56 286 353 16 36 85 Before
Maintenance AO 6 41 1 35 206 17 11 30 1

OO 43 145 115 60 372 503 23 70 163 After
Maintenance AO 6 62 1 36 233 19 11 38 1

Table 4. Collected Values for the Coupling, Cohesion and Size Metrics
Coupling Cohesion Size Metric

CBC DIT LCOO VS LOC NOA WOC
OO 517 145 767 89 6239 148 1003 Before

Maintenance AO 495 142 838 96 5521 143 1015

OO 728 158 814 102 7597 171 1214 After
Maintenance AO 687 155 960 109 6685 161 1227

4.2. Quantifying Coupling, Cohesion and Size
We have also analyzed how the AO implementation

has impacted positively or negatively on the coupling,
cohesion and size measures in comparison with its OO
implementation. Figure 3 presents graphics with the
results for these metrics for both original and evolved
system versions. The graphic structures are similar to
the ones in Figure 2, with the exception that Figure 3
also highlights the contribution of the aspects in the
overall system measures. For example, aspectual
modules consist of 20% of the total number of
components (VS metric) in the original AspectJ
implementation (Figure 3a) and 18% in the evolved
version (Figure 3b). Both graphics show that the AO
implementation exhibits better results for many of the
metrics, such as: the lines of code (LOC), number of
attributes (NOA), and both the coupling metrics (CBC
and DIT). On the other hand, the OO implementation
brings better results for the vocabulary size (VS) and
cohesion (LCOO) metrics. Both AO and OO
implementations present similar results for the WOC
metric.

The VS metric in Figure 3a shows that the AO
implementation needed to define 7% more components
(classes + aspects) than the OO version. In fact, the AO
version involved 96 components while the OO
implementation included only 89 components to
implement the same functionalities. These differences
are justified by the presence of several new aspects in
the AO implementation of the system which are used
to (Figure 1b): (i) modularize persistence and
concurrency crosscutting concerns encountered in the
implementation of the Business and Data system
layers; or (ii) replace the original OO implementation
of the Distribution layer.

Figure 3a also shows that there is a small difference
in favor of the AO implementation with respect to the
absolute value of the coupling metric (CBC). It
happens mainly because, although many of the aspects
reduce the coupling of system classes by modularizing
their respective crosscutting concerns, they still need to
hold references to the classes in which they introduce
some state or behavior. But considering the AO
implementation has more components (classes and
aspects) demonstrated by the VS metric, we can
observe that it has produced more decoupled classes
and aspects. In addition, Figure 3b shows that the
contribution of the aspectual modules in the overall
system coupling has relatively decreased after the
maintenance changes, showing a satisfactory stability
of the AO design.

The DIT (depth inheritance tree) and NOA (number
of attributes) metrics have presented similar results in

the AO and OO implementations of the system, as
shown in Figure 3a. For some system layers, such as
the Distribution (see figures 4c and 4d), the DIT value
has been reduced significantly, because the AO
implementation does not explore a complex class
hierarchy as in the OO solution. The DIT value of the
AO solution is compensated by the creation of several
aspect hierarchies that enable the reuse of crosscutting
concerns implementations, thereby decreasing the
number of “extension dependencies” and reducing
code replication in the class hierarchies. In fact, the
two coupling dimensions were lower in the AspectJ
solution, which tended to present both weaker inter-
component coupling (CBC) and weaker inheritance
coupling (DIT).

Before Maintenance After Maintenance

(a) (b)

(c) (d)

(e) (f)
Figure 2. Separation of Concerns Metrics

0

10

20

30

40

50

60

70

80

90

100

CDC CDO CDLOC

OO

AO

0

10

20

30

40

50

60

70

80

90

100

CDC CDO CDLOC

OO

AO

Distribution Concern
+83% +58% +99% +86% +57% +99%

0

10

20

30

40

50

60

70

80

90

100

CDC CDO CDLOC

OO

AO

0

10

20

30

40

50

60

70

80

90

100

CDC CDO CDLOC

OO

AO

Persistence Concern
+41% +28% +95% +40% +37% +96%

0

10

20

30

40

50

60

70

80

90

100

CDC CDO CDLOC

OO

AO

0

10

20

30

40

50

60

70

80

90

100

CDC CDO CDLOC

OO

AO

Concurrency Concern
+31% +17% +99% +52% +46% +99%

The AO implementation of HealthWatcher also
exhibits better results with respect to LOC. Figures 3a
shows that the AO implementation was 12% superior
in the absolute value. This result confirms that the AO
implementation has succeeded to capture common and
redundant code of scattered and tangled concerns in the
OO implementation. Thus, this quantitative study
reinforces the observations of Soares et al [16] related
to the LOC gains in the AspectJ implementation.

Figures 3a shows the superiority of the OO
implementation with respect to the cohesion metric
(LCOO). The OO solution was 8% superior in the
absolute value. The production of components with a
lower cohesion was a side effect in the AO
implementation. In all layers of the AO version, there
is at least one aspect that contributes to decrease the
cohesion of the system, i.e. increase the value of
LCOO. The lack of cohesion in these aspects occurs
because each aspect is meant to encapsulate
crosscutting behavior applied to different components.
However, these behaviors cannot be directly related to
each other, producing high LCOO values.

Finally, the WOC (weighted operations per
component) measures also exhibit a similar absolute
value for both OO and AO solutions (Figure 3a).
Although the AO implementation presents a lot of new
aspects with their respective new advice and methods
which contribute to the growth of the WOC metric
values, the implementation of some classes and
interfaces existing in the OO version are simplified in
the AO implementation. The distribution
implementation, for example, replaces a set of
repetitive classes and interfaces from the Distributed
Adapters pattern in the OO version [1] by a set of
aspects in the AO version. This design helps to reduce
the WOC absolute value in the AO implementation.

As we can see in Figure 3b, there are few changes
in the absolute values of both OO and AO versions
after the implementation of new case cases in the
maintenance phase. The percentage differences are
very similar to the values computed for the original
system versions. For some metrics, such as NOA and
CBC, we can also perceive some reduction in the
percentage difference. The results demonstrate the
superiority of the AO implementation for many of the
metrics used in our study even in the presence of
maintenance activities. Also the higher number of
components (VS metric) in the AspectJ
implementation should not be viewed as a negative
factor, since it is only an evidence of increased
modularity of the system concerns. We provide further
discussions about the cohesion issue in Section 6.3.

5. Results: The Layer Viewpoint
This section presents analysis of the metrics data by

considering the main system layers: GUI, Distribution,
Business, and Data. This analysis is important to
understand the impact that the separation of concerns
provided by the AO implementation has brought to
each layer with respect to coupling, cohesion, and size
attributes. The analysis also allows to quantify which
layers in the OO and AO solutions have exhibited
better results with respect to the metrics. Due to space
limitation, we do not present all the data and graphics
of the absolute values for each of the metrics
considering the system layers. They can be found in
[19].

5.1. Graphical User Interface (GUI)
The OO implementation of the GUI layer has

exhibited better results than the AO solution for many
of the metrics considering their absolute values. The
AO solution was superior only with respect to the LOC
and CBC metrics. The only aspects codified for this

0

10

20

30

40

50

60

70

80

90

100

VS LOC NOA WOC CBC DIT LCOO

%

OO
AO

Health Watcher System
-7% +12% +3% -1% +4% +2% -8%

AO without aspects

0

10

20

30

40

50

60

70

80

90

100

VS LOC NOA WOC CBC DIT LCOO

%

OO
AO

Health Watcher System
-6% +12% +6% -1% +6% +2% -15%

AO without aspects
(a) Before Maintenance (b) After Maintenance

Figure 3. Coupling, Cohesion and Size Metrics

layer address the handling of distribution- and
persistence-related exceptions. These exception
handling aspects allow to modularize the repetitive
code related to distribution and persistence exceptions
existing in the code of Java servlets of the GUI layer.
This is the reason for the improvement in the LOC and
CBC metrics for the AO solution. On the other hand,
these aspects are also responsible for the increase in the
values collected for the other metrics.

In the maintenance phase, we observed a decrease
in the percentage difference between OO and AO
versions. It happens because the exception handling
aspects did not need to be modified, they already have
a generic implementation which address the exception
handling related to persistence and distribution for the
new servlets introduced. Also, there are new
improvements related to the LOC and CBC metrics. In
this way, the AO solution for this layer tends to
improve when new use cases (servlets) are
implemented.

5.2. Distribution
The AO implementation of the Distribution layer

has exhibited better results for almost all the coupling
and size metrics considering their absolute values. The
only exception was the cohesion metric, which will be
discussed in Section 6.3. One of the main benefits of
the AO solution is to avoid the extensive class
hierarchy provided by the OO solution based on the
Distributed Adapter pattern [1]. Many classes and
interfaces are specified in the OO solution to guarantee
the transparent distributed communication between
GUI and Business layers. They maintain a lot of
repetitive code which contributes to the increase of the
size and coupling metrics. In the AO solution, aspects
are used: (i) to advise calls to the business facade class
in the servlet client classes; and (ii) to redirect these
calls to a distributed version of the system. The results
showed that the AO solution for the Distribution layer
improves considerably not only the SoC metrics but
also the other coupling and size attributes. The
percentage superiority of the evolved AspectJ version
is mostly the same as in the original implementations.

5.3. Business
The OO solution presents better absolute values for

most of metrics considering the Business Layer. Only
the LOC and NOA metrics exhibit better results for the
AO solution. The reduced value for the LOC metric in
the AO implementation reflects how effective the
aspects have modularized repetitive persistence and
concurrency crosscutting concerns encountered in the
OO implementation related mainly to: (i) transaction
demarcation; and (ii) synchronization protocols. The
modularization of these concerns brings the need to

have more aspects to address them (VS metric), with
their respective new operations (WOC metric) and
coupling with other elements (CBC and DIT metrics).
Thus, there is a initial cost associated with the
separation of these concerns in the Business Layer.

Looking at the same measures after the maintenance
activities, we observed an improvement in the metrics
for the AO version. The VS, LOC, NOA, WOC and
CBC metrics of the AO solution show improvements
in the percentage differences compared to the OO
solution. It happens because the AO solution reused
the general implementation of the transaction and
concurrency policies in the new maintenance scenarios,
implemented as a set of abstract aspects. However,
each use case of the maintenance phase demanded the
writing of less lines of code related to the distribution,
persistence, and concurrency concerns, which were
modularized in the aspects. At the end, more effort was
required to change the OO version for most the
measures.

5.4. Data
The analysis of the measures obtained for the Data

layer for both original and maintenance versions
exhibits better results for the OO version. The use of
aspects in the AO solution of the Data layer has
succeeded in the separation of concurrency and
persistence concerns, but it has produced a larger layer
in terms of size metrics (VS, LOC, NOA and WOC
metrics). The increase of these values was caused by
the implementation of concurrency aspects for this
layer. The AO implementations present better results
only for the CBC metric. The reason for this inferior
value in this metric was the implementation decision to
use only one exception class to represent both
persistence and concurrency exceptions in every data
access class.

The metric data collected for the Data layer after the
maintenance of the system shows the increase in the
percentage differences compared to the values obtained
in the original system versions. This increase favors the
OO version for the LOC, WOC and CBC metrics. The
degradation of the AO version in terms of these metrics
is caused by the implementation of the timestamp
concurrency policy in the HWTimestamp subaspect
(Figure 1b). The maintenance scenarios demanded the
creation of several AspectJ inter-type constructions in
this aspect, which are responsible to introduce methods
for the management of timestamps in the different data
access classes.

6. Discussions and Lessons Learned
This section presents an overall analysis of the

previously observed results on the application of
metrics, described in Sections 4 and 5. We present

discussions on the impact of AOP in different
maintainability facets of the HealthWatcher system.

6.1. Aspects Reuse and Modifiability
We have observed that the presence of reusable

aspects brought some benefits when the system was
modified. In the AO version of the HW system, there is
a set of abstract and reusable aspects related to the
persistence, concurrency, and error handling concerns.
These aspects have contributed to the decrease in the
lines of code of the final system. These benefits can be
observed in the complete analysis of the system with
the decrease of 12% in LOC for both AO original and
maintenance versions. The specific analysis of the GUI
and Business layers (Sections 5.1 and 5.3) also showed
how these reusable aspects contribute to amortize the
initial cost of these aspects in several metrics (such as
WOC, DIT, and CBC) along the system maintenance.

The positive values of SoC metrics and the
existence of several reusable aspects also contribute to
facilitate the maintenance of the AO implementation.
An additional interesting observation is that more
components (classes and aspects) were needed to be
modified in the AO version, because it requires
changing both the classes along the layers to
implement the use case functionality and the aspects
implementing the crosscutting issues.

6.2. Stability of Aspectual Modules
In our study, the existing aspects from the original

version were not modified in the maintenance
scenarios. Hence, this study seems to confirm the
natural intuition that the additional design effort to
“aspectize” the crosscutting behaviors is compensated
by the reduced effort spent in maintenance scenarios
involving the target system. It happened because the
stability of the base layered architecture is preserved
more in the AO version when addressing the new use
cases. In our investigation, the layered architecture of
the Java systems has been somewhat degraded at the
implementation level with the introduction of the new
functionalities. The concern associated with each layer
is progressively diffused over the other layers during
the maintenance process, as it is evidenced in the SoC
metrics (e.g. see Figure 2).

6.3. Cohesiveness
As illustrated in the previous sections, cohesion

seems a major problem in the AO implementations for
all the system layers. In fact, cohesion is always a
polemic issue as we have identified similar problems in
previous studies [3, 6, 8, 9] in which the
implementation of the aspects did not contain internal
fields. In this sense, we believe that the cohesion
measures are not directly conclusive as the LCOO
metric (Table 1) focuses on a specific cohesion

dimension; it counts the explicit relations between
internal component fields and operations. While
looking at Figure 3 and discarding the influence of
aspects on the overall cohesion measures, the OO
implementation is still superior even after the changes
have been introduced (Figure 3b). As a consequence,
more empirical studies using different cohesion metrics
need to be performed in order to infer more broad
conclusions. On the other hand, the SoC metrics used
in our study can also assess the cohesion dimension
related to specific system concerns. The CDLOC
metric, for example, shows how different pieces of
code of the system are directly related to a specific
concern.

6.4. Scalability of AOP
In order to analyze the scalability of both OO and

AO versions in the maintenance phase when referring
to distribution, persistence and concurrency, we have
used the collected values for the SoC metrics. We
considered a solution as scalable if the evolution of the
implementation did not impact a number of modules
that is higher than the number of modules affected in
the original implementation. Comparing the results
obtained in the original and maintenance versions, we
can observe that the AO version was much more
scalable than the OO solution. The increase in the
percentage differences between both versions (Fig. 2)
demonstrates how the AO solution has required fewer
changes in modules than the OO when referring to
distribution, persistence and concurrency concerns. For
example, the CDC values shows that the OO solution
required changes in more components (8 additional
classes for distribution, 4 for persistence and 7 for
concurrency). On the other hand, the AO solution did
not require changes in additional classes or aspects for
the distribution and concurrency concerns, and
required only the additional SymptomRepositoryRDMBS
class for the persistence concern. This class, however,
was introduced only after maintenance activities.

6.5. Study Constraints
Someone could argue that we have not assessed all

the possible internal software attributes affecting the
system maintainability. However, on the basis of prior
research on empirical software engineering, we were
able to identify four relevant attributes that seem
underlie most of the quantitative case studies:
coupling, cohesion, size, and SoC. Practitioners and
researchers can add other assessment elements to
customize the criteria to particular settings and further
case studies. In addition, as discussed in Section 3.1,
we have decided to focus on the metrics previously
described because they have already been proved to be
useful as effective quality indicators in several case

studies [3, 6, 8, 9, 10]. Also, strictly speaking, the
scope of our experience is indeed limited to the system
chosen this study, and the Java and AspectJ languages.

7. Related Work
There is little related work focusing either on the

quantitative assessment of AO solutions in general, or
on the empirical investigation of how AOP scales up in
maintenance scenarios. Substantial empirical evidence
is missing even for crosscutting concerns that software
engineers face every day, such as persistence and
distribution. There are several case studies in the
literature involving the “aspectization” of such
pervasive crosscutting concerns [13, 14, 16, 17].
However, these studies mainly focus on the
investigation on how the use of aspect-oriented
abstractions supports the separation of those concerns.
They do not analyze other effects and stringent quality
indicators in the resulting aspect-oriented systems.
Even worst, they do not quantify the benefits and
drawbacks of AO techniques in the presence of widely-
scoped changes. We have previously performed a far-
reaching maintenance study [8], but our target was
aspects specific to multi-agent systems. These aspects
have a localized scope and tend to affect a few
modules; they do not have a major influence on the
architectural structuring of the system. In addition, the
introduced changes were restricted to simple changes
in some few classes or aspects.

8. Conclusions

This paper presented a far-reaching study in which
we compared AO and OO implementations of a typical
web-based information system with respect to primary
maintainability attributes. We have found that although
the number of operations and components has slightly
increased with the use of AOP, various flavors of our
study show that the overall quality of the AO system
was significantly superior at the system and component
levels. The use of AOP required fewer lines of code,
helped to achieve an improved separation of concerns,
exhibited components with weaker coupling and lower
internal complexity. However, a lower cohesion was a
side effect in the AO solution mainly because some
aspects were not aggregating inter-related behaviors.
As a consequence, architectural stability was clearly
superior in the AO architectural design of the target
system.

Acknowledgements. We would like to thank Sérgio
Soares and Paulo Borba for making the HW
implementations available. This research was partially
sponsored by FAPERJ (grant No. E-26/151.493/2005
and No. E-26/100.061/06), and European Commission

Grant IST-2-004349: European Network of Excellence
on AOSD (AOSD-Europe).

9. References
[1] V. Alves, P. Borba. Distributed Adapters Pattern: A
Design Pattern for Object-Oriented Distributed Applications.
Proc. SugarLoafPLoP.01, Rio de Janeiro, October 2001.
[2] F. Buschmann, et al. Pattern-Oriented Software
Architecture: A System of Patterns. 1996: Wiley and Sons.
[3] N.Cacho, C. Sant'Anna, E.Figueiredo, A.Garcia,
T.Batista, C. Lucena. Composing Design Patterns: A
Scalability Study of AOP. Proc. AOSD'06, March 2006.
[4] S. Chidamber, C. Kemerer. A Metrics Suite for OO
Design. IEEE Trans. on Soft. Eng.,20-6, 1994, 476-493.
[5] E. Figueiredo, A. Garcia, C. Lucena. AJATO: an AspectJ
Assessment Tool. Proc. ECOOP.06, Demo Session, Nantes,
France, July 2006.
[6] F. Filho, N. Cacho, R. Ferreira, E. Figueiredo, A. Garcia,
C. Rubira. Exceptions and Aspects: The Devil is in the
Details. Proc. FSE-14, November 2006.
[7] E. Gamma, et al. Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.
[8] A. Garcia, et al. Separation of Concerns in Multi-Agent
Systems: An Empirical Study. In Software Engineering for
Multi-Agent Systems II, Springer, LNCS 2940, 2004.
[9] A. Garcia, et al. Modularizing Design Patterns with
Aspects: A Quantitative Study. Proc. AOSD'05, USA, 2005.
[10] I. Godil, H. Jacobsen. Horizontal Decomposition of
Prevayler, Proc. CASCON 2005, October, Canada..
[11] G. Kiczales, et al. Aspect-Oriented Programming. Proc.
of ECOOP’97, LNCS 1241, Finland, 1997, 220-242.
[12] G. Kiczales, et al. Getting Started with AspectJ.
Communications of the ACM. October 2001.
[13] J. Kienzle, R. Guerraoui. AOP: Does it Make Sense?
The Case of Concurrency and Failures. Proc. ECOOP'02.
[14] A. Rashid, R. Chitchyan. Persistence as an Aspect. Proc.
AOSD'03, USA, 2003.
[15] C. Sant’Anna, et al. On the Reuse and Maintenance of
Aspect-Oriented Software: An Assessment Framework. Proc.
Brazilian Symp. on Software Engineering, 2003, 19-34.
[16] S. Soares, et al. “Implementing Distribution and
Persistence Aspects with AspectJ”. Proc. OOPSLA’02.
[17] S. Soares. An Aspect-Oriented Implementation Method.
Doctoral Thesis, Federal Univ. of Pernambuco, 2004.
[18] S. Soares, P. Borba, E. Laureano. Distribution and
Persistence as Aspects. Software: Practice & Experience,
2006.
[19] Quantifying the Effects of AOP: A Maintenance Study,
www.teccomm.les.inf.puc-rio.br/MaintenanceStudy/index.html.

