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Abstract— NLRP10 is one of the members of NOD-

like receptors (NLRs) family that is least characterized.  

It is a protein that takes part in pathogen sensing and 

responsible for the subsequent signaling propagation 

leading to immunologic response. In this study, 

computational tools such as algorithm, web server and 

database were used to investigate the domain of 

NLRP10 protein.  The findings of this research may 

provide computational insights into the structure and 

functions of NLRP10, which in turn may foster better 

understanding of the role of NLRP10 in the 

immunologic defense.  

 

Index Terms— Scientific Computing, Bioinformatics, 

Database, Algorithm, Visualization, Protein, Server  

 

I. Introduction 

Computer tools are proved indispensable and useful 

in the research of many scientific fields, especially in 

advancing human knowledge in the structures and 

functions of biological processes and entities.  In the 

past decades, various algorithms [1-7], computational 

models [8-12], web servers [13-18], simulations [19-

23], databases [24-28], computational intelligence 

approaches [29-33], and imaging techniques [34-38] 

have been developed to aid the analysis and process of 

complex biological data.  The use of computational 

tools has become prevalent in many biomedical niches 

such as data mining [39-40], sequence analysis [41-43], 

computational biology [44-49], structural 

bioinformatics [50-52], molecular designs [53-55], 

systems biology [56-58], protein science [59-61], drug 

discovery [62-63], and even biophysics [64-66].  With 

these computational tools, biological data can be 

categorized and analyzed according to the scientific 

needs.  Besides, greater accuracy and structural 

insights of the molecular data are made possible with 

computational approaches. Computational solutions to 

the gigantic volume of biological data appear to be a 

promising approach to aid the advancement of 

biological sciences [67]. 

In this study, we employed computer modelling and 

fold prediction approach in the study of the domain of 

NLRP10, which is one of the members of NOD-like 

receptors (NLRs) family [68].  NLR family members 

are the main constituents of the inflammasome, which 

is a molecular assembly that is activated upon infection 

or cellular stress [68].  Inflammasomes are important in 

regulating the innate immune defenses by inducing 

proinflammatory cytokines interleukin-1β and 

interleukin-18 [68-69].  NLRs have also been 

recognized to complement the immunological 

functions of Toll-like receptors (TLRs), a group of 

pathogen sensors which are membrane-bound and 

triggering the transcription factor NF-ĸB, mitogen 

activated protein kinases and Jun amino-terminal 

kinase [70-72].  Most of the NLRs and TLRs induce 

the inflammatory response by recruiting adaptor 

proteins [71-76].  Such recruitment requires the 

identical or similar structural domain of the interfacing 

proteins.  Hence, the understanding of the protein 

domain is important for a better insight in the signaling 

pathways of these pathogen sensing mechanisms.  

Despite some of the NLRs, such as NLRP3, have been 

widely studied, the molecular details of NLRP10 

remain poorly understood.  The understanding of 

NLRP10, especially its domain, would greatly 

elucidate the downstream signaling pathways and the 

immunologic mechanism of cytokine induction.         

Domain analysis is an approach which has been 

widely adopted by bioinformaticians and computer 

scientists in the analysis of protein structure.  The 

common computational approach in domain analysis 

lies in the identification of motif, such as those applied 

in SLiM-mediated protein interactions [77], homology 

study [78,83], localization of structural motifs [79], and 

the binding site identification [80-81].  Besides, 

theoretical computer science, such as the concept of 

graph theory, is also frequently applied in the analysis 

of protein domain [82].  Because the structural insights 

of proteins are closely associated to protein function, 

domain analysis is vital and versatile in revealing the 

cellular processes.  To date, the known domains of 

NLRP10 are Nucleotide-binding and Oligomerization 

(NACHT) and pyrin (PYD).  This research undertakes 

to analyze the domains of NLRP10 using 

computational tools.  The findings of this research may 

provide computational insights into the structure and 

functions of NLRP10, which is crucial for further 

investigation in the fields such as structural 

bioinformatics and immunopathology. 

In this paper, the procedures and methods are 

described in detail in Section II.  The obtained results 

were presented in Section III with elaborated 

discussion. A conclusion of the findings is given in 

Section IV. 
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II. Methods 

The nucleotide and amino acid sequence of NLRP10 

were retrieved from the National Center for 

Biotechnology Information (NCBI).  We used neural 

network based Pcons [85] to find the structural 

templates for NLRP10.  Upon the identification of the 

modelling template for NLRP10, NMR Restraints Grid 

[84] was used to identify the NMR data.  NRG-CING 

database [86] was used to model and validate the 

structure of the template for NLRP10.  The algorithm 

used in the structural modelling is Saltbridge [88].  In 

addition, we used Ramachandran plot [89] to visualize 

backbone dihedral angles Ψ against φ of amino acid 

residues in the protein.  The backbone of a protein was 

considered as a discrete curve, which permits the 

Frenet frames to be calculated based on space curves 

[87].  Let 

1 j j jS P P                                                    (1) 

We define a unit tangent vector at point Pj, where 
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III. Results and Discussion 

NLRP10 is a protein constituted by 655 amino acids.  

It has a Pyrin domain at its N-terminus and a central 

NACHT domain, as depicted in Fig. 1. 

 

 

Fig. 1: The schematic view of NLRP10 domains 

 

Using Pcons server [85], we obtained 5 protein 

templates which serve as structural models for 

NLRP10.  These templates are summarized in Table 1. 

 
Table 1: Protein templates for NLRP10 

Rank Pcons score ProQ score Template 

1 0.050 117.57 2KN6 

2 0.047 58.01 2HM2 

3 0.047 60.36 1UCP 

4 0.046 68.40 2DO9 

5 0.044 56.24 1PN5 

 

Among 5 candidate proteins, 2KN6 is the best 

matched protein template with NLRP10, based on the 

amino acid sequence alignment. The consensus based 

quality prediction for 2KN6 was depicted in Fig. 2. 

 

Fig. 2: Consensus based quality prediction for 2KN6 

 

It is clear that the predicted quality index is highest 

between amino acid positions of 100-200 range, though 

there is a flux in quality index in this range.  The 

predicted quality index is dropped after position 200, 

drastically, to zero and below.  Notably, the second 
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half of the protein exhibits negative values in the 

consensus based quality prediction.  Since sequence 

consensus does not totally reflect the structure, we 

performed structural based quality prediction for 2KN6, 

as illustrated in Fig. 3. 

 

Fig. 3: Structural based quality prediction for 2KN6 

 

Fig 3 demonstrates that the quality prediction based 

on the structure of 2KN6 has positive quality index 

(except at position 97, tyrosine), with most parts of the 

protein acquiring quality index higher than zero.  The 

lowest value is -0.02216 at position 97, following with 

0.01278 at position 96 (valine). The highest quality 

index is 0.90657 at position 10 (tryptophan). 

NMR Restraints Grid [84] was used to identify the 

NMR data for 2KN6.  The completeness statistics are 

summarized in Table 2. 

 
Table 2: The Completeness statistics for 2KN6 

Parameters Values 

Model count 20 

Residue count 215 

Total atom count 3060 

Redundancy threshold % 5.0 

Completeness cutoff 4.0 

Completeness cumulative % 36.3 

Constraint unexpanded count 2495 

Constraint intra-residue count 793 

Constraint observed count 1544 

Constraint expected count 2546 

Constraint matched count 924 

Constraint unmatched count 620 

 

We queried NRG-CING database [86] to model and 

validate the NMR data of 2KN6, which is a model 

template for NLRP10.  The side chain and backbone 

validation are depicted in Fig 4. 

 

 

Fig. 4: Side chain and backbone validation 
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The side chain and backbone validations of 2KN6 

NMR data (as shown in Fig 4) demonstrate varieties of 

structural angles (PHI, PSI, CHI1/2). The angle at 

certain amino acid position at the side chain is drastically 

large, as shown at position 28-29, 45-47, 57-59, 115-117, 

117-119, and 183-185. The residue properties of 2KN6 

were probed. Fig. 5 illustrates one segment of the 

sequences. 

 

 
Fig. 5: The residue properties of 2KN6 (amino acid 0-55) 

 

The top panel in Fig. 5 shows the RMS deviation of 

the model from the template.  To have an accurate 

model, it is desirable to have a small RMS deviation. 

Our obtained results show that the deviation is small 

enough, reflecting an accurate match between model 

and template.  The middle panel in Fig. 5 demonstrates 

the accessibility of the secondary structure.  In overall, 

it was noticed that a large portion of the sequence 

demonstrates a pattern of random coil, implying that 

the protein backbone will sample all possible structures 

in the absence of stabilized interactions.  As shown in 

Fig. 5, statistical random coil was found in the vicinity 

of amino acid position 1-3, 15-17, 30-40, and 46-48.  

Besides, random coils were also identified in the 

vicinity of the position 60-63, 77-79, 90-115, 126-128, 

135-143,150-155, and 167-170 (data not shown).  

These suggest that non-local amino acid interactions 

are absent in these random coil regions. The bottom 

panel of Fig 5 depicts the accessibility of the sequence 

to solvent and other binding proteins. 

To understand the allowable regions of the residue, 

we have used Ramachandran plot for this purpose. The 

plot represents each amino acid residue as a dot in a 

graph of φ against backbone dihedral angles Ψ. The 

residues in favored region and generously allowed 

region are shown in red dot and yellow dot, 

respectively. 

From Fig 6, we notice that the residues in favored 

region are clustered largely negative for φ whereas 

positive for Ψ. The triangles in Fig 6 represent glycine 

residues, which provide flexibility for enzyme active 

sites [90]. We summarized the plot statistics in Table 3. 

 

Fig. 6: Ramachandran plot 

 

Table 3: Statistics of Ramachandran plot 

Residues in most favored regions 1470 86.5% 

Residues in additional allowed regions 198 11.6% 

Residues in generously allowed regions 14 0.8% 

Residues in disallowed regions 18 1.1% 

Number of non-glycine and  

non-proline residues 
1700 100% 

Number of glycine residues  40  

Number of proline residues 120  

Total number of residues 1860  
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From Table 3, it is evident that most of the residues 

are falling within the most favored regions (86.5%).  

The number of glycine and proline residues is low, 

with a total percentage of 8.6% of the total number of 

residues.  We obtained the distant restraints based on 

short-, medium-, and long-ranged sequence separation.  

Restraints within the same residues are short-range; 

sequence separation within four residues is medium-

range; and sequence separation greater than four 

residues is categorized as long-range restraint. The 

distant restraint is plotted in the chart as shown in Fig 7. 

 

 

 
              2.5                                   5.0 

                          Distance (A) 

 
Fig. 7: Distant restraints (short-, medium-, and long-range) 

 

As shown in Fig 7, the number of long-range distant 

restraints reduced drastically (<50) across the residue 

distance. Regardless of the residue range categories, 

the number of restraint at smaller distance (  2.5 A) is 

greater than that of greater distance (   5.0 A).  The 

data collected on distant restraint is reliable as the 

number of upper- and lower-bound violations is very 

low.  

 

IV. Conclusion 

A computational approach combining computer 

modelling and fold prediction has been used in this 

research to analyze the domain of NLRP10.  2KN6 

serves as a structural template because it is the best 

matched protein template for NLRP10.  In general, the 

structure of 2KN6 has positive quality index (except at 

position 97, tyrosine), with most parts of the protein 

acquiring quality index higher than zero.  The side 

chain and backbone of 2KN6 were validated, and the 

residue properties of 2KN6 were analyzed.  Our 

analysis of the structural properties of 2KN6 casts light 

on the domain features of the NLRP10 protein, which 

is critical for the understanding of NLRP10-implicated 

immunologic diseases.  
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