
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002 1025

A Timing-Constrained Simultaneous Global Routing
Algorithm

Jiang Hu and Sachin S. Sapatnekar

Abstract—Proposed in this paper is a new approach for VLSI
interconnect global routing that can optimize both congestion and
delay, which are often competing objectives. The authors’ ap-
proach provides a general framework that may use any single-net
routing algorithm and any delay model in global routing. It is
based on the observation that there are several routing topology
flexibilities that can be exploited for congestion reduction under
timing constraints. These flexibilities are expressed through the
concepts of a soft edge and a slideable Steiner node. Starting with
an initial solution where timing-driven routing is performed on
each net without regard to congestion constraints, this algorithm
hierarchically bisects a routing region and assigns soft edges to the
cell boundaries along the bisector line. The assignment is achieved
through a network flow formulation so that the amount of timing
slack used to reduce congestions is adaptive to the congestion
distributions. Finally, a timing-constrained rip-up-and-reroute
process is performed to alleviate the residual congestions. Experi-
mental results on benchmark circuits are quite promising and the
run time is between 0.02 s and 0.15 s per two-pin net.

Index Terms—Global routing, interconnect, layout, performance
optimization, physical design, VLSI.

I. INTRODUCTION

A S INTERCONNECT is becoming one of the dominant
factorsaffectingvery largescale integration (VLSI)perfor-

mance in the deep submicron era, the requirements on the quality
of interconnect routing are becoming stricter, and the routing
problem is consequently growing more difficult to solve. Most
commonly, the routing problem is solved in two separate stages:
global routing and detailed routing. In global routing, a given set
of global nets are routed coarsely, in an area that is conceptually
divided into small regions called routing cells. For each net, a
routing tree is specified only in terms of the cells through which
it passes. The number of allowable routes across a boundary
between two neighboring cells is limited. One fundamental goal
of global routing is to route all the nets without overflow, i.e., the
number of wires across each boundarydoes notexceed its supply.
This problem is NP-complete even if each net has only two
pins. Since minimizing congestion is very hard to achieve and is
essential for global routing, it has long been a focus of research
[1]–[13] in global routing. Most of these works belong to one or
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a combination of the following genres: the sequential approach,
hierarchical methods, linear programming or multicommodity
flow based algorithms, and rip-up-and-reroute techniques.

In the sequential approach, the nets are routed one after an-
other. In [1], for each net, a Steiner tree on the grid graph that
minimizes the maximum edge weight is sought to minimize the
congestion, with the weights being proportional to the density
of wires in each routing cell. For any sequential approach, it
is hard to decide which net ordering is better than others [14],
i.e., each ordering has its own weakness. As a solution to avoid
this ordering problem, the hierarchical method [2]–[4] recur-
sively splits the routing region into successively smaller parts.
At each hierarchical level, all of the nets are routed simulta-
neously (often through linear programming) and refined in the
next hierarchical level until the lowest level of the hierarchy is
reached. Sometimes the whole global routing is formulated and
solved through linear programming followed by a randomized
rounding [5]. Another method is the application of multicom-
modity flow model [6]–[8], in which the fractional solutions
are rounded to obtain the routing solutions. For global routing
on standard cell designs, the work of [9] proposed an iterative
deletion technique to avoid the net ordering problem. The works
of [10]–[12] first route each net independently, then rip up the
wires in congested areas and reroute them to spread out the
routing density. The rip-up-and-reroute technique is very prac-
tical and popular in industrial applications.

When interconnect becomes a performance bottleneck in
deep submicron technology, merely minimizing congestion is
not adequate. In later works [15]–[19], interconnect delays are
explicitly considered during global routing. In [15], each net is
initially routed in SERT-C [20], after which the congested area
is ripped up and rerouted by locally applying a multicommodity
flow algorithm. In [16], beginning with a set of routing trees
satisfying timing constraints for each net, a multicommodity
flow method is applied to choose a single routing tree for each
net, such that the congestion is minimized. At places where
overflow occurs, the wires are ripped up and rerouted through
maze routing in which the timing objective is combined with
wirelength and congestion. The work of [17] is similar to
[16] except that path-based timing constraints are satisfied
instead of net-based timing constraints. For global routing on
standard cell designs, the work of [18] and [19] incorporates
the timing issue with an iterative deletion technique. In [21],
timing constraints are combined with a top-down hierarchical
bisection and assignment method for FPGA routing where the
switch delay dominates and wire delays are neglected.

In global routing, congestion and delay are often competing
objectives. In order to avoid congestion, some wires must make
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Fig. 1. Tessellation in global routing.

detours, and the signal delay may consequently suffer. In this
paper, we propose a new approach to global routing such that
both congestion and timing objectives can be optimized at the
same time. One key observation is that there are several routing
topology flexibilities that can be traded into congestion reduc-
tion while ensuring that timing constraints are satisfied. These
flexibilities include the use of: 1) soft edges; 2) slideable Steiner
nodes; and 3) edge elongation, all of which are described later
in this paper.

In our algorithm flow, each net is initially routed individually
to satisfy its timing constraints, and these routes are used to
obtain the timing-constrained routing flexibilities. Next, these
flexibilities are traded into congestion reduction through a
hierarchical bisection and assignment process followed by
a timing-constrained rip-up-and-rerouting. The hierarchical
bisection and assignment process here is similar to the works
in [21]–[23]. However, due to interdependence of the timing
slack consumption among the nets, the assignment is not
straightforward as in [21]–[23]. We propose a network flow
formulation so that the timing slack consumptions are adaptive
to the congestion distributions in the assignment. We further
extend the model to be a generalized network flow problem,
in order to exploit the flexibility from slideable Steiner nodes.
Finally, the timing-constrained rip-up-and-reroute process
is performed to overcome any inabilities of the hierarchical
approach in satisfying congestion constraints. This method
has the advantage that it does not depend on any net ordering.
Moreover, it provides a general framework that can accom-
modate any single-net routing scheme and can be applied on
any delay model, since the timing performance of any initial
routing solution can be preserved in subsequent stages.

The remainder of the paper is as follows. Section II introduces
background knowledge for this work, and Section III briefly
shows an overview of our algorithm. The network flow based
assignment algorithm is described in Section IV and the com-
putational complexity of the hierarchical bisection and assign-
ment algorithm is analyzed in Section V. The timing-constrained
rip-up-and-rerouting method is introduced in Section VI. Exper-
iments are presented in Section VII, and we conclude in Sec-
tion VIII.

II. PRELIMINARIES

A. Problem Background and Congestion Metrics

We are given a set of nets , with each net
being defined by a set of pins , where

the source or driver is denoted as. We consider routing in
two layers, one for horizontal wires and the other for vertical
wires. As in conventional global routing, we tessellate the en-
tire routing region into an array of uniform rectangular cells, as
shown in the dashed lines in Fig. 1. We represent this tessel-
lation as a grid graph , where
corresponds to the set of grid cells, and a grid edge cor-
responds to the boundary between two adjacent grid cells. We
will refer to a grid edge simply as aboundary. The number of
wires that are allowed to cross a boundary is limited by an upper
bound, which is called thesupplyof the boundary and expressed
as . During the routing, the number of wires that are routed
across a boundaryis designated as thedemand . Theover-
flow at boundary is . Thedemand
densityfor a boundary is defined as . In
Fig. 1, if the supply for each boundary is 2, there is an over-
flow of 1 on the thickened boundary and the corresponding de-
mand density is 1.5. We use the metrics of the maximum de-
mand density and the total overflow

to evaluate the congestion reduction.

B. Soft Edges

The concept of a soft edge is proposed in [24] for single net
routing and buffer insertion with location restrictions. We will
show that this concept can also be exploited as a routing flexi-
bility under timing constraints in multinet global routing.

A routing tree is described by a set of nodes
and a set of edges . The

location for a node is specified by its coordinates and .
An edge in is uniquely identified by the node pair or
the notation interchangeably, where is the upstream end
of this edge, i.e., is closer to the source node andis closer
to the leaf nodes of the tree.
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Fig. 2. Routing with soft edges.

Routing in the rectilinear space requires that each edge has
a fixed orientation, either horizontal or vertical. For example,
when we consider the connection betweenand in Fig. 2(a),
or and in Fig. 2(b), we usually choose an upper L-shaped
or a lower L-shaped connection, both of which are indicated in
the dotted lines. In each case, a bend (degree-two Steiner) node
is induced, for example, or may be induced in Fig. 2(b).
Since there are many uncertainties at the global routing stage,
i.e., the detailed routes are not determined, the specifications on
delays need to capture the nature of the delay functions without
being completely exact. In this spirit, these two routes and many
multibend monotone routes connecting and can be re-
garded to have same delay performance, if the extra delay from
a small number of vias can be neglected for the same reason.1

However, these routes may have different influences on the con-
gestion distribution when we consider multiple nets in global
routing. Before these different influences become clear, it is
better to keep the flexibilities on routes rather than to embed
them into the rectilinear space prematurely. Based on this ob-
servation, we may connect and with a soft edge, which is
defined as follows.

Definition 1: A soft edgeis an edge connecting two nodes
, such that: 1) and ; 2) its edge

length is fixed; 3) the precise edge route betweenand
is not determined.

We will refer to the traditional edges in a rectilinear tree with
fixed orientations assolid edges. The soft edge connection be-
tween and is shown as a solid curve in Fig. 2(b). By
keeping edge soft, we can maintain the flexibility on routes
connecting and until we consider congestion in global
routing with other nets. In Fig. 2(c), in the presence of another
net, a Z-shaped route for is chosen to reduce congestion
without hurting the delay.

In fact, the concept of soft edge is also useful in single-net
routing. Consider the process of constructing the Steiner min-
imum tree in Fig. 2(b) in a manner similar to Prim’s minimum
spanning tree algorithm. If we begin by connecting sinkto
source and arbitrarily choose the upper-L connection, the
Steiner minimum tree will not be reached. Instead of fixing
the edge orientation immediately, we can use a soft edge,
as shown in Fig. 2(a). In order to minimize wirelength, when
we consider connecting to the routing tree, we choose

1Later in our algorithm, we will penalize the use of excessive of vias.

the closest connection point between and . The
closest connection point between a node and an
edge is defined by its coordinates and such that

and .
In Fig. 2(b), Steiner node is introduced at the point
and the Steiner minimum tree is obtained. The concept of soft
edges is especially useful for nets with a large number of pins,
where the decision-making process is much more complicated.

C. Delay Properties and Slideable Steiner Nodes

To measure the signal delay of an interconnect, we employ the
Elmore delay model. Although occasional large errors make El-
more delay unsuitable for critical nets [25], it has a role in global
routing because of its fidelity [20] and simplicity and is a reason-
able model considering that the routing in global stage is coarse
and the number of nets may be very large. The works of [20] and
[26] describe delay properties with respect to connection loca-
tion along a maximal segment.2 The work in [24] shows that
these properties hold for soft edges and we will briefly describe
them as follows.

For a general form of a partially constructed routing tree,
shown in Fig. 3(a), let us consider the process of obtaining
an optimal connection between node and edge . The
closest connection point between a node and an
edge is defined by its coordinates and such that

and .
The dashed lines are other nodes and edges of this routing
tree, and represents the closest connection point between

and . Any connection that is downstream of cannot
lead to an optimal solution [20]. More specifically, we wish to
search for an optimal connection point within the bounding box
defined by and . Suppose we connect to at point

, as indicated in Fig. 3(b). Let be the Manhattan
distance from to , i.e., . If the delay
at an arbitrary sink is and the its required arrival time
is , then thedelay slack .
We can obtain the following conclusion.3

Lemma 1: Under the Elmore delay model, the delay slack at
any sink in the routing tree is a convex function with respect
to .

2A maximal segment is a maximal set of consecutive edges that are either all
horizontal or all vertical.

3A detailed derivation is available in [24].
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Fig. 3. General case, nodev is to be connected to edgee .

Fig. 4. Delay slack function versus distancez of connection point. Here we
overloadCC as its Manhattan distance tov .

For the example in Fig. 3, if only sink and sink are
timing critical, we depict their delay slack functions in Fig. 4.
The timing slack for a routing tree on the net is
the minimum delay slack among all the sinks in this net; this
is illustrated by the thickened contour in Fig. 4. If the objec-
tive is to minimize wire cost subject to timing constraints, the
optimal connection (Steiner) point here is a point with a non-
negative net timing slack, lying as close to as possible; for
this particular example, this corresponds to. As in this ex-
ample, the optimal connection point is, in general, likely to be
a non-Hanan point. The work of [26] showed this advantage of
using non-Hanan points and proposed the MVERT algorithm
to perform non-Hanan optimization globally for a routing tree.
Based on properties similar toLemma 1, MVERT finds the op-
timal connection point through a quasi-binary search and ob-
tains significant wire cost reductions.

A careful observation tells us that there are often many Steiner
node locations for a specific value of. The set of locations for
a given value of form a locus as illustrated by the thickened
segment in Fig. 3(b). When we slide the Steiner nodealong
this locus, the lengths of its incident edges are preserved and so
is the delay at each sink. Similar to the rationale for soft edges,
we only specify this locus instead of a point for this Steiner node
and call it aslideable Steiner node(SSN). This is similar to the
merging segment in the deferred-merge embedding algorithm
[27] for zero skew clock net routing. The concept of a slideable
Steiner node provides extra flexibility for the routes of its inci-
dent edges and can again be used to reduce the congestion in
global routing without degrading timing performance or area.

III. A LGORITHM OVERVIEW

This algorithm includes three phases: 1) performance driven
routing for each net; 2)HBA : hierarchical bisecting of routing
regions and assigning soft edges to boundaries along the bi-
sector; and 3)TRR: timing-constrained rip-up-and-reroute.

In phase 1, each net is routed to meet its timing constraints
without considering congestion. Any single-net performance-
driven routing method, e.g., P-tree [28], RATS tree [29] or
MVERT [26], can be applied here. Besides satisfying timing
constraints, each routing tree should be soft, i.e., should not
contain any degree-two Steiner node. This can be achieved
through utilizing soft edges during routing as in the example
of Fig. 2 or replacing L-shaped connections in the results with
soft edges. Thus, at the end of phase 1, timing-constrained
routing trees are generated along with topology flexibilities to
be exploited in the subsequent phases. For a net withsinks,
the computational complexity of MVERT is about [26].

In phase 2, a routing region is recursively bisected into
subregions in a top-down manner. At the topmost level, the
whole routing region is bisected into left (upper) and right
(lower) halves by a bisector line which is formed by a column
(row) of consecutive vertical (horizontal) grid cell boundaries.
For example, in Fig. 5, the thickened bisector line is composed
of three boundaries, , , and . Each soft edge that intersects
this bisector is assigned to a boundary. After the assignment,
a pseudopin is inserted into the soft edge at the assigned
boundary, and therefore this soft edge is split into two new soft
edges that belong to two separate subregions. One assignment
for the example in Fig. 5 is shown in Fig. 6. In the next
hierarchical level, bisections and assignments are applied on
the left (upper) and right (lower) half regions. This process is
repeated until the subregion is a single grid cell or a pair of
neighboring grid cells. Thus, at the end of this process, the
route for each soft edge is specified to the detailed level of
grid cells it goes through.

When we make a bisection, we always choose a direction to
make the region as close to a square as possible. For example, if
a region has more rows (columns) than columns (rows), we will
bisect along the horizontal (vertical) direction. At each direc-
tion, the bisection could be at different locations. We choose a
location such that the ratio of the number of crossing soft edges
to the total capacity along the bisector line is the maximum, i.e.,
we make bisection at the most congested place. Since our hier-
archical approach proceeds in a top-down manner, more favor
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Fig. 5. An example of bisection.

Fig. 6. An assignment result from network flow solution.

is given to the higher hierarchical level and we try to solve the
most difficult part at a higher level. Similar bisection strategy is
employed in the work of [22]. Although quadrisection as in [4]
is better at handling congestion, integrating it with timing con-
straints is very difficult.

The crucial part is to determine how to assign the soft edges
to the boundaries on the bisector line. The basic goal is to assign
all of the soft edges without exceeding any boundary supply and
without causing any delay violations. The absence of delay vi-
olation implies that the delay slack for each net is nonnegative.
In order to make the assignment feasible, sometimes it is neces-
sary to allow some wires to detour, which inevitably increases
delay, i.e., some timing slack is consumed to reduce conges-
tion. In addition to ensuring absence of delay violations, it is
naturally desirable that the consumption of the timing slack is
minimized, since the timing slack may be needed in the sub-
sequent levels of bisection and assignment. These objectives
are achieved through a min-cost network flow formulation. Be-
cause of the involvement of timing issues, this formulation is
not as straightforward as that in [21]–[23]. We run a min-cost
max-flow algorithm [30] to solve this network flow problem.
The min-cost flow algorithm we employed in practice is the ca-

pacity scaling algorithm [30], which can give an optimal solu-
tion in a pseudopolynomial time.

The hierarchical bisection and assignment in phase 2 is a
method of divide-and-conquer that has the advantage of sim-
plifying the problem nature. In this global routing approach, it
reduces a two-dimensional (2-D) problem into one dimension.
The price that this simplification inevitably pays is on conges-
tion reduction, since a decision at a higher hierarchical level may
overlook the needs at a lower level. In phase 2, any soft edge that
could not be assigned in the network solution is temporarily as-
signed to a boundary such that the maximum demand density
is minimized and no delay violation is incurred. These residual
overflows will be cleaned in phase 3.

The third phase is a timing-constrained rip-up-and-reroute
process. It is similar to traditional rip-up-and-reroute except that
a constraint on edge length is imposed to ensure no timing vi-
olation and the location of each SSN is readjusted to minimize
the congestion. It rips up the edges on a set of most congested
boundaries and reroutes them through maze routing. The cost
in maze routing is defined as the summation of the square of
demand densities over all boundaries that a soft edge passes
through, and these densities are dynamically updated. The edge
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length can be elongated to the extent that no delay violation is
incurred. The procedure for transforming timing slack into an
edge length slack is described in Section VI.

IV. NETWORK FLOW-BASED ASSIGNMENTALGORITHM

A. Basic Network Formulation

After one bisection, the assignment problem is formulated as
follows.

Assignment Problem:Given a bisector line composed of
a set of consecutive boundaries , and a set of soft
edges intersects , assign each soft edge to a
boundary such that there is no overflow on any boundary

and no delay violation on any routing tree which has
at least one soft edge , and the timing slack consump-
tion is minimized.

We solve this problem through a formulation of the network
flow problem and applying a min-cost max-flow algorithm on
it. The network is a directed graph consisting of
a set of vertices and arcs . The vertex set includes
all boundaries in and soft edges in , plus a source and
target . For the bisection in Fig. 5, its corresponding network
is illustrated in Fig. 7. We do not use SSNs at this moment for
simplicity and only in is included in the network. The
usage of SSN will be introduced in Section IV-C. There are three
types of arcs: 1) from sourceto every boundary vertex; 2) from
some boundary vertices to some soft edge vertices; and 3) from
every soft edge vertex to the target. Each arc has a cost and
a capacity associated with it. For each type-1 arc, its cost is 0
and its capacity is the corresponding boundary supply. In this
example, we assume that each boundary has a supply of 2. For
each type-2 arc, its capacity is 1 and its cost will be defined later.
For each type-3 arc, its capacity is 1 and its cost is 0.

An arc from a boundary vertex to a soft edge vertex im-
plies a candidate assignment between them. Not every pair of
boundary and soft edge vertices is automatically qualified for
constructing a type-2 arc between them. For any boundary and
any soft edge, there are three relative positions between them as
shown in Fig. 8. In Fig. 8(a), the boundary lies entirely within
(the bounding box of) the soft edge. If we choose an assign-
ment of the soft edge to this boundary, there will be no change
in the length of the soft edge, and two vias are induced. If a
boundary lies partially within the bounding box of a soft edge,
as in Fig. 8(b), we have anL-intersectionbetween the boundary
and the soft edge, where no change in the soft edge length is re-
quired and one via is induced. In either of these two cases, i.e.,
if a boundary is within or has an L-intersection with a soft edge,
we can always set up an arc between them without affecting the
delay. These arcs are calledbasic arcs, and they are the solid
type-2 arcs in Fig. 7. The third situation is shown in Fig. 8(c),
where the soft edge does not intersect with the boundary. In this
case, an assignment on this pair will require a wire detour, and
we need to check whether or not this may cause any delay vi-
olation. An arc can be constructed for such a pair only if the
assignment on this pair will not cause any delay violation. For
the example in Fig. 5, if the timing slack of remains nonneg-
ative when the soft edge goes through boundary , then an
arc (a dashed line) between them is constructed in Fig. 7. We

Fig. 7. Network formulation of the example in Fig. 5 without considering SSN.
The number on each arc is its capacity.

Fig. 8. Relative positions of a boundary and a soft edge.

call such a construction asoft edge expansionand each expan-
sion implies a timing slack consumption.

We categorize the trees across the bisector lineinto single-
crossing trees and multicrossing trees, which are the trees that
cross only once (such as in Fig. 5) and more than once
(such as in Fig. 5), respectively. Initially, we construct all the
basic arcs for all the soft edges in and perform an expansion
for all the soft edges that belong to single-crossing trees. The
expansions of edges in multicrossing trees will be discussed in
the next section.

The cost of a type-2 arc is defined according to the timing
slack of its corresponding tree, since one major objective is to
minimize timing slack consumption. If the timing slack of tree

is before the assignment, and is if its soft
edge is assigned to boundary, then we define the arc cost
as

(1)

It can be seen that if a soft edge intersects with a boundary
entirely or partially, its corresponding type-2 arc has a cost of
unity, otherwise the cost is larger than one. As a secondary ob-
jective, we hope to reduce the number of vias in the wiring.
Therefore, for the situation in Fig. 8(b), we reduce its cost by
a small user-specified offset . In our implementa-
tion, we let .
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B. Construction of Arcs for Multicrossing Trees

Generally speaking, adding a type-2 arc between a boundary
vertex and a soft edge vertex may increase the likelihood of ob-
taining a feasible network flow solution. Hence, a soft edge ex-
pansion is usually desired as long as no delay violation is in-
curred. One issue that was not discussed in the last section is the
procedure for those soft edges that belong to multicrossing trees,
such as in Fig. 5. The difficulty here is that the timing slack
computations for the soft edges are correlated. For some speci-
fied timing constraints, whether a soft edge can be expanded, or
how far it can be expanded, depends on whether other crossing
edges in the same tree are expanded, and how far they have been
expanded. For example, in Fig. 5, the expansion ofdepends
on whether has been expanded and how far, i.e., toor
to . In fact, these soft edges compete with each other on a
common timing slack resource, which must be allocated prop-
erly. A uniform allocation may overlook local congestion distri-
bution and result in some unnecessary expansions while some
necessary expansion is not performed.

We solve this difficulty by identifying the necessary expan-
sions through the min-cut method. It is well known that the
max-flow equals the forward capacity of the min-cut in a
network flow problem [31]. In the beginning, we run a max-flow
algorithm on the partially constructed network to obtain an
min-cut , . The forward capacity of
this cut is denoted by . If ,
then it is guaranteed that every soft edge can be assigned to a
boundary without any overflow, and thus no more expansion is
necessary. Otherwise, the maximum feasible flow is less than
the number of soft edges to be assigned, thus we need to in-
crease the capacity of the min-cut through additional soft edge
expansions. In the example for Fig. 5, before the expansion for
multicrossing trees, the min-cut is indicated in the dashed curve
in Fig. 7, where the vertices in are in the shaded region and
vertices in are unshaded. We can see that the forward capacity

while there are five soft edges that need to be
assigned, thus, we need to expand some soft edge(s) from the
multicrossing tree if possible.

The min-cut result shows us not only whether more expan-
sions are necessary but also the congestion distribution infor-
mation or where to make the expansion. Every forward arc in
the min-cut must be saturated [31], e.g., and

are saturated. If a soft edge vertex is in , e.g.,
in Fig. 5, its downstream arc must be saturated, and therefore
it can always be assigned to a boundary without inducing over-
flow, i.e., it is not in a congested area. On the other hand, if
a boundary vertex is in (and not all of its downstream
arcs are saturated), e.g., in Fig. 5, its upstream arc must be
saturated and the soft edges corresponding to its downstream
vertices are located in a congested area. Adding an arc from a
boundary vertex to a soft edge vertex matches
a soft edge in a congested area to an uncongested boundary.

Lemma 2: The necessary and sufficient condition to increase
the max-flow of a network is to add a forward arc between

and for every min-cut with .
We make a sweep among all the soft edges in multi-crossing

trees and pick at most one soft edge from each tree to expand

in order to increase the capacity of min-cut. More precisely
speaking, for each multicrossing tree, from all the
and pairs, we choose one with minimum cost to add
an arc between them if no delay violation is induced. After one
iteration of expansions, we run the max-flow min-cut algorithm
again to repeat this process until or no
more feasible arc can be found. Note that the timing slack com-
putation in a later iteration of expansions should account for any
wire detour in other soft edges of the same tree in previous ex-
pansions. In the example in Fig. 7, we can make an expansion
between and if no delay violation is induced,
and then the network problem becomes feasible.

The iterative min-cut and expansion technique makes the al-
location of timing slack in multicrossing trees adaptive to the
congestion distribution, and expansions are made only when
necessary, without waste.

C. Utilization of SSN

In phase 1, if we use the MVERT algorithm together with soft
edges, we can have a slideable Steiner node that provides extra
flexibility in routing. The appealing feature of SSN is that when
we slide it along its locus, the timing performance is preserved.
i.e., no timing slack is consumed. Again, we integrate this flex-
ibility into the formulation of the network flow problem so that
it can be exploited in a unified network flow solution.

The positions of an SSN within a grid cell do not affect wire
congestion distributions, hence we can consider one arbitrary
position for a SSN within a grid cell. For each SSN whose locus
intersects with , we consider only two candidate positions,
each on a different side of the bisector line, such as and

in Fig. 5. We need to consider candidate positions on both
sides of , since they result in remarkably different intersec-
tions between their incident soft edges and the bisector line.
On each side of , we only consider the grid cell that has a
boundary in such that this boundary intersects the locus of
the SSN, since the SSN position in this grid cell can provide
the maximum overlap between its incident soft edge(s) and.
For example, in Fig. 5, intersects with two boundaries
and , while would intersect only with . It is evident
that a larger overlap implies a larger number of basic arcs which
are preferred as they will not consume timing slacks. It is pos-
sible to include SSN locations in other grid cells, such asin
Fig. 5, into the generalized network flow model. However, their
incident soft edges has less overlap onwhich implies less
timing-conserved flexibility and including them will increase
the size of the network flow model. For and , all three
associated soft edges , and are included in the ver-
tices in the network as shown in Fig. 9. Obviously, cannot
be assigned simultaneously with or . This exclusive-
ness constraint can be satisfied through adding a pseudo-vertex

and formulating a generalized network flow model [30], where
each arc has a gain factor associated with it. For example, the
amount of flow will reduce after passing through an arc
with gain factor of . We solve this min-cost flow problem
using the Fleischer–Wayne algorithm [32], which is currently
the fastest approximation algorithm for the generalized network
flow model.



1032 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

Fig. 9. Network formulation considering SSN.

After the assignment, only one of the candidate SSN positions
is selected. The locus of the SSN is truncated at the intersection
with and the part where the selected position located would
be retained, as shown in Fig. 6.

D. Post Processing

In our top-down hierarchical approach, the assignment at
each hierarchical level is performed along one dimension
(either horizontal or vertical). An assignment along one di-
rection at one hierarchical level may be unfavorable to the
congestion along the other direction at a lower hierarchical
level. In order to alleviate this weakness, we apply simple post
processing on each network flow solution. After performing
the min-cost network algorithm, each soft edge is assigned to
a grid cell boundary. Sometimes there are multiple assignment
solutions (corresponding to degenerate solutions) that all
satisfy congestion constraint at the same cost in terms of
consumption on timing slack and the number of vias. The
network flow algorithm can provide only one of the solutions,
even though they may imply different impacts to congestion
at the subsequent lower hierarchical level. For example, the
assignment of across the vertical bisector line in Fig. 10 may
affect the congestions along the four thick dashed segments.
We define the density over a segment as the ratio of the number
of intersecting wires to the total number of tracks along this
segment. For example, if there are two wiring tracks across
each grid cell boundary and we let the route ofpass through

in Fig. 10, then the density over segmentwill be 0.5. We
define the cost over a segment in the same way as we define the
boundary cost in maze routing in Section VI. The summation
of the cost, over all segments that a route passes through, is
employed as a secondary cost in the post processing, while the
cost defined in the network flow formulation is treated as the
primary cost. In Fig. 10, the secondary cost for assigning
to is the summation of the cost over segmentsand .
In the post processing, we reassign each soft edge to another
boundary when there is a reduction in the secondary cost and
no degradation in either the primary cost or the congestion

Fig. 10. Two options of routingT may have different impacts on the con-
gestions along the four thick dashed segments, even when both of them satisfy
the congestion constraints along the vertical bisector line.

Fig. 11. Algorithm of assignment.

along the bisector line. The complete assignment algorithm is
summarized in Fig. 11.

V. COMPUTATIONAL COMPLEXITY OF THE HIERARCHICAL

BISECTION AND ASSIGNMENTALGORITHM

We will roughly analyze the complexity of the assignment al-
gorithm at each hierarchical level and then give the complexity
of the whole hierarchical bisection and assignment (HBA) algo-
rithm.

The assignment algorithm consists of the dynamic network
construction stage and the min-cost flow algorithm stage. The
dynamic network construction is composed by several iterations
of the max-flow algorithm whose complexity is dominated by
the min-cost flow algorithm. The number of iterations of the
max-flow algorithm is bounded by the number of cell bound-
aries along the cut line, because each soft edge is expanded to
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cover at least one more boundary in each iteration. Thus, the
complexity of the assignment algorithm is dominated by the
complexity of the min-cost flow algorithm. If there is SSN in-
volved, we will use the Fleischer–Wayne min-cost flow algo-
rithm [32] for the generalized network. Otherwise, we will use
the capacity scaling min-cost flow algorithm [30] for the con-
ventional network, which is faster than the Fleischer–Wayne al-
gorithm.

For a network with vertices and arcs, the capacity
scaling algorithm has a complexity of

[30], where is the maximum arc capacity. If there
are cell boundaries along the bisector line andsoft edges
across the bisector line, is bounded by and is
bounded by . Thus, the capacity scaling algorithm has a
complexity of .

The Fleischer–Wayne algorithm is an-approximate algo-
rithm4 with complexity of

[32], where and
are the upper bound and the lower bound of the total cost

of a max-flow solution. If the cost upper bound for each arc is
, then . Since each soft edge is assigned to

at most one cell boundary, the cost lower bound approxi-
mately equals. Thus, the complexity of the Fleischer–Wayne
algorithm is

.
For a grid graph with grid cells, the number of bisections

is bounded by and the number of cell boundariesalong
each bisector line is bounded by , assuming that the number
of rows roughly equals the number of columns. Usually the
number of soft edges for a routing tree is bounded by a con-
stant times the number of pins, hence the number of soft edges
across a bisector line is bounded bywhich is the total number
of pins for a circuit. Then we can conclude the following.

Theorem 1: The HBA algorithm without using the SSN has
a complexity of

for a circuit with pins on a grid graph
with grid cells and the maximum wire capacity across a cell
boundary to be .

Theorem 2: The HBA algorithm using the-approximate the
Fleischer–Wayne algorithm has a complexity of

, for a circuit with pins on a grid graph with
grid cells and the maximum arc cost in the network to be.
Note that the above bounds are very loose bounds, since only

on the topmost hierarchical level the values ofand are close
to and , respectively, and the actual values ofand are
usually much smaller on lower hierarchical levels.

VI. TIMING-CONSTRAINEDRIP-UP-AND-REROUTE

The last phase of our method is the TRR process. For each cell
boundary with wiring overflow, we rip up every wire across this
boundary and reroute it through maze routing. For each wire,
we rip up the part corresponding to the soft edge. For example,
in Fig. 1, we rip up edge for tree across the thick-
ened boundary. In the maze routing, we define the cost across a

4An �-approximate algorithm can provide at least(1� �) times the maximal
flow with at most the optimal cost.

Fig. 12. Elongation for edgee .

boundary to be if ; otherwise , where
is any large number greater than . Such quadratic cost

can give a much heavier penalty to the congested path in a con-
tinuous manner. Similar cost definition is also employed in the
work of [33] and a good discussion on the cost definition in
maze routing can be found in [19]. We keep an arbitrary constant
boundary ordering and repeat this process until there is no wire
overflow or no improvement on congestion. On each boundary
with wiring overflow, the rip-up-and-reroute also follows an ar-
bitrary constant net ordering. Because of the iterative nature, the
net ordering is not important. A net rerouted earlier in an iter-
ation may have a result poorer than those rerouted later in the
same iteration, since its rerouting is based on a poorer routings
of other nets. Therefore, it should be rerouted earlier in the next
iteration to make larger corrections. This explains why we use
a constant net ordering [11].

In the TRR method, we need to transform the delay con-
straints into physical constraints on edge length, i.e., we need to
compute the maximum allowed elongation for routing edge

such that no delay violation is caused. We useto represent
the load capacitance seen from node. The subtree rooted at

is denoted as . For the interconnect wire, the resistance and
capacitance per unit length isand , respectively. The length of
a routing path from driver to a node is denoted as ,
and the length of the common path for two nodes
from the driver is expressed as . For example, in Fig. 12,

is the path length from to . For any sink , we
can compute the maximum such that the delay slack
is nonnegative. If , i.e., is not downstream of , as
shown in Fig. 12, then

(2)

where is the driver resistance, since the elongation of
affects only the load capacitance seen from. If , such
as in Fig. 12, satisfies the following:

(3)

where is the original length of edge . This equation can
be solved to obtain the . In the case of double roots for this
equation, we choose the one where the slope of function is neg-
ative, since the delay slack should be monotonically decreasing
with respect to the allowed elongation. We computefor all
the sinks in the routing tree and choose the minimum value as a
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safe value. In the case where a delay without closed form expres-
sion is employed, the actual delay needs to queried each time a
detour may occur in the maze routing.

The SSN can be exploited in TRR as well. For an SSN, we
rip up the three incident soft edges all together and compute the
minimal congestion paths to the locus of the SSN at each grid
cell. For the example in Fig. 5, we rip up edges , and .
Then, a maze routing search is performed from nodes
and simultaneously toward nodes and . Note that

, , and are the three candidate locations for the SSN
and moving any of them within its grid cell will not affect con-
gestion. We choose one of the candidate locations based on the
total cost of the three paths connected to it in the maze routing.
For example, the cost of choosing is the summation of the
following paths found in maze routing: , and

. We finally select a candidate location with the min-
imum total paths cost and route its incident soft edges according
the paths found by the maze routing.

VII. EXPERIMENTAL RESULTS

We implemented our algorithm in C++ and performed exper-
iments on an Sun Ultra-10 workstation with 2 Gb of memory.
The experiments are performed on ten benchmark circuits pro-
vided by the VLSI CAD Lab at UCLA. These circuit’s charac-
teristics are summarized in Table I. The experiments aim to test
the effect of the proposed algorithm on both timing and con-
gestion. Traditional rip-up-and-reroute (RR) and timing-con-
strained rip-up-and-reroute TRR methods are tested together
with our algorithm (HBA TRR) on the same set of circuits.

The results are listed in Table II. The initial routing trees are
obtained through MVERT [26] algorithm. In the implementa-
tion of MVERT, we replace the SERT [20] algorithm in the ini-
tial routing by the AHHK [34] algorithm which can give sim-
ilar routing tree performance at a faster speed. As a reason-
able way of specifying timing constraints, after constructing the
AHHK trees, we randomly assign a positive slack to each sink
as a timing constraint. The subsequent non-Hanan optimization
stage in MVERT will keep the routing tree to satisfy the timing
constraints and minimize its wirelength at the same time. The
second column in Table II gives the number of soft edges
generated by the MVERT algorithm.

The congestion results are expressed in terms of total over-
flow and the maximum demand density . In order
to see the impact of exploiting SSNs, two versions of our al-
gorithm (HBA TRR) are tested. The results without using
SSNs are listed in columns 7–9 of Table II while the results ex-
ploiting SSNs are in columns 10–12. The SSNs are exploited
through the Fleischer–Wayne algorithm [32], which is a rel-
atively computationally expensive method. The value ofin
the Fleischer–Wayne algorithm determines the tradeoff of run-
time and the solution quality of the generalized network flow
problem. However, we found that the final routing quality is not
sensitive to the value ofin our experiment. Therefore, we em-
pirically let , which is a relatively large value so that
the Fleischer–Wayne algorithm can converge at a reasonable
speed. Another implementation strategy is to enable the Fleis-
cher–Wayne algorithm only at lower hierarchical level, i.e., we

TABLE I
BENCHMARK CIRCUITS

will not exploit SSNs at higher hierarchical levels. Since a deci-
sion at a higher hierarchical level may be unfavorable to subse-
quent lower levels, it is not worthwhile to invest computational
resources on the expensive Fleischer–Wayne algorithm. On the
other hand, exploiting SSNs at lower hierarchical levels will
yield a more definite impact on final solution quality. Because a
top-down approach is inherently in favor to higher hierarchical
levels, it is reasonable to provide SSNs as additional leverage
to lower hierarchical levels as a compensation. Moreover, it
is more economical to apply the Fleischer–Wayne algorithm
to lower hierarchical levels where the problem size is smaller.
Based on our experience, we enable the Fleischer–Wayne algo-
rithm only when , where is the number of cell
boundaries along a bisector line andis the number of wires
across the bisector line.

Comparing the results from with and without exploiting
SSNs, we can see that SSNs help to improve the congestion
quality in a few circuits ( , and ). Several
conditions need to be satisfied to let the SSNs taking effect:
1) The existence of SSNs depends on timing constraints and
cannot be guaranteed. 2) The locus of an existing SSN should
intersect the bisector line. 3) The SSN should be in a congested
region so that sliding its location makes a difference. If it is not
in a congested region, its location will not affect the congestion
result. 4) Even in a congested region, the original location of
an SSN must be at an inferior point that can be improved. It
is common that one of these four conditions is not satisfied,
so that enabling the use of SSNs does not make a difference
on congestion results. The extra CPU time from exploiting
SSNs is limited due to our careful application strategy on the
Fleischer–Wayne algorithm.

The TRR method is a naive combination of timing constraints
with RR in an effort to minimize the congestion subject to the
timing constraints. Note that the SSNs are not exploited in the
TRR here. The congestion results of TRR are in columns 5 and
6. We can observe that our approach always gives significant
lower congestion in terms of both total overflow and the max-
imum demand density. Since the RR is good at congestion re-
duction only in a local region and lacks a global view, it is more
likely to get stuck in a deadlock and fail to find a better so-
lution under timing constraints. On the other hand, the hierar-
chical approach is better at a global planning level, and there-
fore, a combination of these two complementary approaches can
yield a good result on congestion reductions subject to timing
constraints.
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TABLE II
EXPERIMENTAL RESULTS FORRR (UNCONSTRAINEDRR), TRR,AND HBA + TRR WITHOUT/WITH USING SSN. IN THE RESULTS OFRR,F = 0; D = 1

FOR ALL THE CIRCUITS EXCEPT THAT F = 1; D = 1:13 ON xerox

TABLE III
RUNTIME IN SECONDS FORTHREE PHASES OF THEALGORITHM AND THE

MAXIMUM NUMBER OF ITERATIONS ON MAX-FLOW ALGORITHM IN

EACH NETWORK CONSTRUCTION INPHASE 2

For reference, we also performed the RR on the same circuits
without imposing timing constraints during the congestion re-
duction process. The unconstrained approach is able to elimi-
nate the wiring overflow for almost every circuit except .
Obviously, the congestions from RR are always better than the
timing-constrained approaches. In order to see how much we
may lose on timing performance if we ignore it in congestion
reduction, we computed the number of nets with negative slack
and the worst slack among all of the nets from the results of
RR and listed them in columns 3 and 4 in Table II. We can see
that every circuit has a very high negative slack and up to half of
the nets could have timing violations for some circuits. Our pro-
posed timing-constrained method results in no timing violations
at all. The congestion results from our method are not sensitive
to small changes on timing constraints. However, if we relax
the timing constraints sufficiently, we can reach congestion re-
sults similar to those from RR, i.e., results with less conges-
tions. Since our approach strictly obeys the timing constraints,
the change on wiring capacities will not affect the timing per-
formance.

The total runtime for three phases of our algorithm (with the
exploitation of SSNs enabled) on each circuit are listed in the
rightmost column in Table II. In Table III, we decompose the
runtime for each phase. As we can see, Phase 2-HBA is the dom-
inating part of the run time. In Phase 2, the adaptive network
construction process includes several iterations of max-flow al-
gorithm. In the column 4 of Table III, we listed the maximum
number of iterations among all of the network constructions.

Since each circuit has different number of nets and the number
of pins on one net may be between two and several dozens, it
would be more interesting to evaluate the average runtime on
each two-pin net as a normalized comparison. It is conceivable
that the formulation of soft edges is equivalent to a decomposi-
tion to two-pin nets. Based on this data, the average runtime is
found to be between 0.02 and 0.15 s per two-pin net.5

VIII. C ONCLUSION AND FUTURE WORK

In this work, we have proposed a new approach to timing-con-
strained global routing. We formalize the routing tree topology
flexibilities under timing constraints through the concepts of
a soft edge and an SSN and trade these flexibilities into con-
gestion reduction while the timing constraints are satisfied. Ex-
perimental results show that the traditional RR method may
cause significant delay violations and is poor on congestion
when timing constraints are imposed directly. Our proposed al-
gorithm can achieve good congestion results while satisfying
timing constraints.

One limitation of our work is that only local timing-con-
strained routing flexibilities are employed compared with the
global flexibilities used in [17]. A combination of the global and
local flexibilities is expected to yield more timing-constrained
congestion reduction. We assume that the timing constraints for
each net is given and the consumption of the positive slack on
each net will not cause timing violation along any path in the
timing graph. Obviously this assumption depends on a good
slack budgeting for each net along a timing path. If we can uti-
lize a path-based slack directly, we will be able to avoid the slack
budgeting and potentially obtain more routing flexibilities as
in [17]. Therefore, including global flexibilities and path-based
timing constraints into our current method will be a good direc-
tion of future research.
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