
1

RMAC: A Routing-Enhanced Duty-Cycle MAC
Protocol for Wireless Sensor Networks

Shu Du Amit Kumar Saha David B. Johnson
Department of Computer Science, Rice University, Houston, TX, USA

Abstract—Duty-cycle MAC protocols have been proposed to
meet the demanding energy requirements of wireless sensor
networks. Although existing duty-cycle MAC protocols such as
S-MAC are power efficient, they introduce significant end-to-end
delivery latency and provide poor traffic contention handling. In
this paper, we present a new duty-cycle MAC protocol, called
RMAC (the Routing enhanced MAC protocol), that exploits
cross-layer routing information in order to avoid these problems
without sacrificing energy efficiency. In RMAC, a setup control
frame can travel across multiple hops and schedule the upcoming
data packet delivery along that route. Each intermediate relaying
node for the data packet along these hops sleeps and intelligently
wakes up at a scheduled time, so that its upstream node can send
the data packet to it and it can immediately forward the data
packet to its downstream node. When wireless medium contention
occurs, RMAC moves contention traffic away from the busy
area by delivering data packets over multiple hops in a single
cycle, helping to reduce the contention in the area quickly. Our
simulation results in ns-2 show that RMAC achieves significant
improvement in end-to-end delivery latency over S-MAC and
can handle traffic contention much more efficiently than S-MAC,
without sacrificing energy efficiency or network throughput.

I. INTRODUCTION

Large-scale wireless sensor networks have a significant
potential in applications such as monitoring of natural and
man-made environmental phenomena and events, but this
potential may be limited due to the limited battery capacity of
sensor nodes. Many traditional wireless MAC protocols used
in wireless ad hoc networks, such as IEEE 802.11, require a
wireless device to remain awake to monitor the medium, even
when the node is not transmitting or receiving a packet. Since
a typical sensor network application usually generates very
light traffic on the network, this idle-listening mechanism is
very inefficient and wastes significant energy.

To mitigate this energy consumption of idle listening, duty-
cycling mechanisms have been introduced in sensor network
MAC protocols. For example, in S-MAC [1], each sensor
node follows a periodic synchronized listen/sleep schedule. An
overview of the operation of S-MAC is shown in Figure 1, in
which a node S sends a packet to a node D. The listening
period, in which the node’s radio is enabled, is divided into
a SYNC period and a DATA period. During the SYNC
period, an independent synchronization protocol is used to
synchronize the clocks of the sensor nodes, so that they can
be awake simultaneously with their neighbors. During the
DATA period, packets from applications can be sent. Similar to
IEEE 802.11, S-MAC uses the RTS/CTS mechanism to avoid
collisions between multiple transmitting nodes, and when a
node receives a data packet, it returns an ACK to the sender.

At the start of a SLEEP period, a node turns off its radio and
goes to sleep to save energy, unless it is still in the middle of

data transmission, in which case, the sender and the receiver
go to sleep after the transmission completes. In the example
in Figure 1, neither node S nor D will go to sleep until the
ACK frame is received by S. The above S-MAC operational
cycle is repeated endlessly during the life of the nodes.

As in IEEE 802.11, nodes in S-MAC maintain a Network
Allocation Vector (NAV) for virtual carrier sensing. For exam-
ple, node X in Figure 1 is a neighbor of node D and overhears
the CTS sent by D. Node X will set its NAV to indicate this
virtual carrier and will not send any traffic while its NAV is
nonzero. Inter-frame spacing, such as SIFS (Short Inter-Frame
Spacing) and DIFS (Distributed Inter-Frame Spacing), are also
used in S-MAC, as in IEEE 802.11. Before a node transmits an
RTS, it waits a random time in its contention windows (CW)
in order to decrease the possibility of collision when multiple
nodes try to send data in the same DATA period.

Duty-cycle MAC protocols are more energy efficient than
traditional MAC protocols, but they have some limitations.
Most importantly, end-to-end delivery latency may be in-
creased substantially; for example, with S-MAC, in each
operational cycle, a packet can be forwarded over a single
hop only, since an intermediate relaying node has to wait for
its next downstream node to wake up to receive the packet.

In addition, because a sensor node using a duty-cycle
MAC protocol is synchronized to be awake during the same
short period as its neighbors, the probability of network
contention increases. Although sensor network applications
usually generates very light traffic, decreasing the importance
of this concern, in some applications such as event monitoring,
communication demands may suddenly increase in a burst in
a small neighborhood. For example, when a fire starts, several
temperature monitoring sensors in the area will report to the
sink node at the same time. If the transmission contention
among these sensors is not handled well, the emergent data
may be lost or will experience a long delivery latency.

Finally, existing duty-cycle MAC protocols significantly
limit network throughput, since nodes can be active only
during a small fraction of the time. Although network through-
put in sensor networks is not as important as in traditional
networks, throughput is still an important factor, for example
to support high throughput during a temporary traffic burst,
such as in event-monitoring applications.

Motivated by the above problems, in this paper, we present
the design and evaluation of a new duty-cycle MAC protocol,
called RMAC (the Routing enhanced MAC protocol), that
exploits cross-layer routing information in order to avoid
these problems without sacrificing energy efficiency. Most
importantly, RMAC can deliver a data packet multiple hops
in a single operational cycle. During the SLEEP period in



DIFS

CW RTS

D

SYNC

CTS

SIFS

DATA

ACK

SIFS SIFS

X

S

DATA SLEEP

Wake Up Go To Sleep

NAV

Radio SleepNAV

Fig. 1. S-MAC: A typical duty-cycle MAC protocol for sensor networks

RMAC, a relaying node for a data packet goes to sleep first
and then intelligently wake up when its upstream node has
the data packet ready to transmit to it. After the data packet is
received by this relaying node, it can also immediately forward
the packet to its next downstream node, as that node has also
just woken up and is ready to receive the data packet.

RMAC can thus deliver a data packet much faster without
sacrificing the energy efficiency achieved by the duty-cycle
mechanism. RMAC can also efficiently handle traffic con-
tention by moving the contention traffic quickly away from the
contention area. Also, when a burst of traffic occurs, RMAC
is able to make multiple transmissions in a single SLEEP
period, thus taking better advantage of the SLEEP period than
previous duty-cycle MAC protocols.

The organization of the rest of this paper is as follows. In
Section II, we describe the basic ideas behind RMAC and
give an introduction to the protocol. We then present the
details of RMAC in Section III, including the control and data
forwarding algorithms and the exception handling methods.
Simulation-based performance evaluation is presented and
discussed in Section IV. In Section V, we discuss the related
work in the area of sensor network MAC designs. Finally,
Section VI draws conclusion and discusses future work.

II. RMAC OVERVIEW

In order to reduce end-to-end delivery latency with a duty-
cycle MAC protocol, the protocol should be able to forward
a data packet multiple hops within a single operational cycle.
The design of RMAC is guided by the fact that to achieve this,
nodes along the data forwarding path need to be awake only
when actually transmitting or receiving the packet. RMAC thus
sends a small control frame along the data forwarding path to
allow all nodes along the path learn when to be awake in order
to receive the data packet from the immediate upstream node
and forward it to the immediate downstream node.

Figure 2 shows an overview of the operation of RMAC. An
operational cycle of a sensor node in RMAC can be divided
into three stages: SYNC, DATA, and SLEEP. Similar to prior
work, RMAC assumes that a separate protocol (e.g., [2], [3]),
operating during the SYNC period, synchronizes the clocks
on sensor nodes with the required precision.

When a data packet is to be sent to a destination node that is
multiple hops away, a control frame is sent during the DATA
period to initiate the communication with the downstream
nodes. Instead of using a pair of RTS and CTS frames between
just two nodes, RMAC uses a series of control frames, named

SYNC DATA SLEEP

CW PION

DIFS

A

B

S

C

PION

PION

PION

DATA

ACK DATA

ACK DATA

ACK

SIFS

SIFS

SIFS

SIFS

SIFS

SIFS

SIFS

SIFS

Wake Up Go To SleepRadio Sleep

Fig. 2. RMAC overview

DIFS

CW

A

SIFS

PION

SIFS

D

S

DATA

PION

PION

Final = D

Next = A

Prev = Null

Final = D

Next = B

Prev = S

Final = D

Next = Null

Prev = B

B
PION

Final = D

Next = D

Prev = A

SIFS

Fig. 3. PION transmission example

PIONs (Pioneer frames), across multiple hops. A PION is used
to request communication, like an RTS frame, and to confirm a
request, like a CTS frame. Most importantly, a node transmits
a single PION to confirm receipt of a PION from its upstream
node and to simultaneously request communication from a
downstream node. This dual function makes the multihop
relaying of PIONs very efficient. We will present the PION
mechanism in detail in Section III.

During a SLEEP period, nodes go to sleep except for those
that have communication tasks, as set up by the PIONs. Every
node that has sent or relayed a PION must wake up at some
specific time to transmit or forward the data frames; each node
goes back to sleep after completing its communication task.

III. RMAC PROTOCOL DETAILS

A. Pioneer Control Frame (PION)
When a node has data to send, the node initiates its request

at the start of a DATA period. For example, in Figure 3,
source node S has data to send to the final destination D; the
next-hop node is A. Node S first picks a random period from
the contention window and wait for the medium to be quiet
for that period and an additional DIFS period before sending
a PION to A.

This PION includes all fields as in an RTS, such as current
sensor’s address, the next-hop address, and the duration of
the transmission. More importantly, the PION also includes
some cross-layer information: the final destination address
of the current flow and the number of hops the PION has
travelled. This final destination address is passed down by
the networking layer, and the hop count is set to zero when
the data packet is generated by the source node.

When A receives S’s PION, unless A is the final destination
of this flow, A gets the next-hop address for this destination
from its own network layer. A then waits a SIFS period before



transmitting its own PION. As in IEEE 802.11, SIFS is long
enough for a node to switch its transmitting/receiving mode
and to do the necessary data processing. The PION contains
three addresses, apart from the final destination address: its
own address, the previous-hop address (S), and the new next-
hop address (B). Additionally, the hop count in this new PION
is set to 1 more than that in the received PION; the use of the
hop count will be explained in Section III-B. This PION from
A serves both as a CTS to S and as an RTS to B. Unlike other
protocols, when S receives A’s PION, S does not send its data
frame immediately but waits for the start of the SLEEP period
to transmit the data frame; the DATA period of the operation
cycle is used only to send and receive PION frames, setting up
the schedule for the actual data transmission. Data frames are
transmitted and received only during the SLEEP period. Upon
receiving A’s PION, B performs the same steps as A. This pro-
cess of receiving a PION and immediately transmitting another
PION continues until either the final destination has received
the PION or the end of the current DATA period is reached.

B. Data Transmission
As mentioned in Section III-A, all data frames are

transmitted in the SLEEP period. In the example in Figure 4,
when the first node S receives the PION confirmation from
node A, it waits until the start of the SLEEP period to
transmit the data frame. Node A stays awake to receive the
data frame at the start of the SLEEP period, and after node
A receives the data frame, it sends an ACK frame to S. After
receiving the ACK, node S goes to sleep mode.

If node A earlier received the confirmation PION from its
next hop B in the DATA period, A immediately relays the
data frame to B. This data frame relaying process continues
at each hop until the final destination is reached or the data
frame reaches some node that did not receive a confirmation
PION from its next hop, in which case the node just holds
the data frame until the DATA period of the next operational
cycle. At that time, this node sends a fresh PION to the next
hop with the hop count reset to zero. This entire process is
repeated until the final destination is reached.

In the above case, when the SLEEP period starts, nodes S

and A start their data frame sending/receiving immediately.
Other nodes in the multihop path that took part in the PION
transmission in the current DATA period go to sleep to save
energy. Each node later wakes up at the right time to receive
the data frame from the upstream node and send it to the
downstream node. For example, node B can go to sleep when
the SLEEP period begins, but it wakes up at the scheduled
time when A is ready to forward the data frame to B.

DATA SLEEP

CW PION

DIFS

A

B

S

PION

PION

DATA

ACK

SIFS

SIFS

SIFS

Wake Up Go To SleepRadio Sleep

DATA

ACK

SIFS

SIFS

Fig. 4. Data transmission example

DATA SLEEP

CW PION

DIFS

A

B

S

PION

PION

DATA

ACK

SIFS

SIFS

SIFS

Wake Up Go To SleepRadio Sleep

DATA

ACK

SIFS

SIFS

A’
1 2 3

NAV

Fig. 5. Network Allocation Vector (NAV) example

The data relaying process is very much like a pipeline
process; the correct wake up time of a node can be calculated
from the hop count frm in the PION frame. Suppose a node
is the ith hop during the PION transmission. Its wake up time
Twakeup(i) should be

Twakeup(i) = (i − 1) · (durDATA + SIFS + durACK + SIFS) (1)

where durDATA and durACK are the times to send a single
data frame and an ACK frame, respectively. If all data frames
in the sensor network are the same size, durDATA could be
a preset value; otherwise, durDATA can be included in the
PION, to let every node along the path calculate the correct
wake up time.

C. Setting the Network Allocation Vector (NAV)
The Network Allocation Vector (NAV) at each node is

used in IEEE 802.11-style MAC protocols for virtual carrier
sense, to avoid packet collisions. A non-zero NAV implies a
busy medium and hence prevents a node from transmitting.
Unlike existing sensor network MAC protocols, the control
sequence is different in RMAC, since the PIONs schedule data
transmissions expected in the future. Thus, the NAV in RMAC
records segments of time, rather than a single duration, during
which the medium is considered busy. All nodes that overhear
a PION set a segment in their NAV based on the durDATA and
the hop count i in the PION. For example, in Figure 5, if node
A′ is a neighbor of node A, in order to avoid collision at node
A, A′ should not transmit if node A is potentially receiving
anything. Therefore, if node A′ overhears a PION from A to
B, it should set its own NAV to reserve the following three
segments of time (in the format [starttime, endtime]):

1) Confirmation PION Segment: [now, now+durPION],
where durPION is the transmission duration of a PION
frame. This segment ensures that A′ will not transmit
when A is receiving the confirmation PION from B.

2) Data Segment:
[

tdatastart, tdataend
]

, where tdatastart
can be calculated by A′ based on the next sleep time
and Twakeup of A. The value tdataend can then be
further calculated by adding a durDATA to tdatastart.
This segment ensures that A′ will not transmit when A

is receiving the data frame from the previous hop.
3) ACK Segment:

[

tackstart, tackend
]

, where tackstart
can be calculated by adding durDATA plus durACK plus
3 × SIFS to tdataend. The value tackend is tackstart
plus durACK, the transmission time of an ACK frame.
This segment ensures that A′ will not transmit when A

is receiving the ACK frame from its next hop.



After setting the above NAV segments, if node A′ receives
another PION destined to itself that requests A′ to do data
relaying, then A′ only transmits a confirmation PION, thereby
agreeing to relay the data frame, if the relaying assignment
does not conflict with its current NAV settings. This relaying
assignment involves an immediate PION and future ACK and
data transmissions. If any of these assignments conflict with
the current NAV at A′, then A′ does not transmit a PION, thus
rejecting the future relaying of the corresponding data frame;
the previous hop will have to request A′ in the DATA period
of the next operational cycle.

D. Handling Frame Losses

If a PION is lost, the upstream node of the PION’s sender
will not get a confirmation and so will not try to send the data
frame to the downstream node. The upstream node will initiate
a new PION in the next DATA period. Unfortunately, the
downstream node does not know that the upstream node did
not get its confirmation, so it will wake up and receive nothing.
After a predefined timeout, it will go back to sleep. Therefore,
the downstream node wastes some energy on the unnecessary
wakeup and the data packet cannot travel as many hops as it
could have. In the worst case, the upstream node may lose
the PION from the next downstream node, but that PION may
successfully traverse serval hops further along the downstream.
In this worst case, every node along the downstream will wake
up at the scheduled time, wait, receive nothing, and then go
back to sleep after time out.

If a data or a ACK frame gets lost, no retries are made in the
current operational cycle, since the next hop is not scheduled
to be awake to receive the retransmitted packet. Consequently,
the upstream node goes back to sleep and tries again in the next
DATA period, starting with a fresh PION. In summary, RMAC
does not require any retry effort in a single operational cycle.
The node that identifies a loss will start with a fresh PION in
the next operational cycle.

E. Synchronization and Data Fusion

In sensor networks, multiple duty-cycle schedules may co-
exist due to the limitation of the synchronization algorithms or
hardware. Irrespective of the duty-cycle based MAC protocol
being used, if a node has neighbors of different duty-cycle
schedules, the node needs to keep track of all these different
schedules. In RMAC, if a node receives a PION and the next
hop has a different duty-cycle schedule, the PION relaying
stops; the relaying node will first receive the data and then try
to deliver the packet to the next hop following the next hop’s
duty-cycle schedule.

Since the clock rates of the sensors may not be the same,
sensor clocks can drift apart over time. Therefore, when a
node calculates the wake up time using Equation 1, it can
further deduct a small time value from the calculated result to
ensure it will always wake up before its upstream node starts
transmitting.

Many sensor networks apply data fusion algorithms when
a sensor relays data packets for the others. For example,
data values can be aggregated and compressed on their way
to the sink node. Therefore, the wake-up time and NAV

TABLE I
NETWORKING PARAMETERS

Bandwidth 20 Kbps Sleep Power 0.05 W
Rx Power 0.5 W Carrier Sensing Range 550 m
Tx Range 250 m Contention window (CW ) 64 ms
Tx Power 0.5 W DIFS 10 ms
Idle Power 0.45 W SIFS 5 ms

TABLE II
TRANSMISSION DURATION PARAMETERS

Frame Size (bytes) Tx Latency (ms)
RTS/CTS 10 11.0
ACK (in S-MAC/RMAC) 10 11.0
PION 14 14.2
DATA (in S-MAC/RMAC) 50 43.0

segments cannot be easily calculated using a fixed durDATA.
To solve this problem, a PION can further include a field
of accumulated data transmission duration. When a PION is
forwarded, the relaying node adds its own durDATA value into
the accumulated data transmission duration in the PION. The
neighboring nodes and downstream nodes can thus correctly
set their NAV segments or wake-up timers.

IV. SIMULATION EVALUATION

To evaluate our RMAC design, we evaluated it using
version 2.29 of the ns-2 simulator. We simulate the Two Ray
Ground radio propagation model and a single omni-directional
antenna at each sensor node and a Two ray Ground radio
propagation model in air. For most of our experiments, we
compare RMAC against S-MAC without the adaptive listen
mode [4]. We did not include adaptive listening in S-MAC
because the end-to-end latency results from adaptive listening
can be easily derived from the basic S-MAC simulation
results: adaptive listening will reduce the latency in half.
However, along with the benefits in latency, adaptive listening
consumes much more energy than the basic S-MAC. Table I
shows the key parameters we used in our simulations; these
are the default settings in the standard S-MAC simulation
module distributed with the ns-2.29 package. According to
the ns2 documentation, the default 250m transmission range
and the 550m carrier sensing range are modeled after the
914MHz Lucent WaveLAN DSSS radio interface, which is
not typical for a sensor node. However, measurements have
shown that similar proportions of the carrier sensing range to
the transmission range are also observed in some state-of-art
sensor nodes [5]. In the future, we will investigate the impact
of smaller carrier sensing range.

In our simulations, traffic loads are generated by constant
bit rate (CBR) flows, and all data packets are 50 bytes in
size. Intermediate relaying nodes do not aggregate or compress
data. We also assume that the application data processing at
any node can be finished within a SIFS period; thus, data pro-
cessing introduces no extra delivery delays. The transmission
latencies for different types of packets are shown in Table II.

The transmission latencies in Table II are calculated as:
durFrame =

p + (Frame Size · E)

Bandwidth
+ 1 ms (2)

where we use the default 5 bytes for the preamble size p and
the default encoding ratio E of 2 in our simulations.

The duration of the DATA period in S-MAC can then be



TABLE III
CYCLE DURATION PARAMETERS

TSYNC (ms) TDATA (ms) TSLEEP (ms) Tcycle (ms)

S-MAC 55.2 104.0 3025.8 3185.0
RMAC 55.2 168.0 4241.8 4465.0

calculated as:
TDATA(S-MAC) = CW + DIFS + durRTS + SIFS + durCTS (3)

where durRTS and durCTS are the transmission latencies of
the RTS and CTS frames, respectively. The duration of the
DATA period in RMAC is calculated as:

TDATA(RMAC) = CW + DIFS + durPION + N · (SIFS + durPION) (4)

where durPION is the transmission duration of a PION frame.
The PION relaying number N defines how many PION frames
can be forwarded in each DATA period. In order to enable
multihop relaying of a PION, N should be greater than 1. In
our simulations, we chose N = 4.

Finally, the duty cycle R is defined as the proportion of the
radio awake time to the entire cycle time of a sensor node:

R =
Tawake
Tcycle

=
TSYNC + TDATA

TSYNC + TDATA + TSLEEP
(5)

We keep the same duty cycle (5%) for both RMAC and S-
MAC, although this makes the whole cycle in RMAC longer
than in S-MAC due to RMAC’s longer DATA period. The duty
cycle related settings are shown in Table III.

In our simulations, we assume all the nodes in the network
have already been synchronized to use a single wake-up and
sleep schedule. There is no synchronization traffic during our
simulations, but nodes still wake up at the beginning of the
SYNC period and listen to the medium. Also, we do not
include any routing traffic in the simulations, as we assume
the existence of a routing protocol deployed to provide the
shortest path between any two nodes.

A. Overview of Scenarios
We use three types of scenarios in our simulations: chain

scenarios, cross scenarios, and realistic scenarios.
Figure 6 shows an example of a chain scenario. All nodes

are equally spaced in a straight line, and neighboring nodes
are placed 200 m apart. One single CBR (constant bit rate)
flow sends packets from the node 0 to the node n. The length
of the chains varies from 1 hop to 24 hops. The chain scenario
helps us to study the protocols for basic multihop delivery.

Figure 7 shows an example of a cross scenario. Two straight
chains of nodes cross each other at a center node. The two
chains are of the same length, and the single node at the
crossing point is shared by the two chains. Therefore, the
length of the chains must be of a even number of hops. All the
neighboring nodes are placed 200 meters apart as well. There
are two CBR flows, each along one chain of nodes, from one
end of a chain to the other. The two CBR flows generate
packets at the same time and at the same rate, and thus their
traffic contends with each other at the center. The length of the
two chains is varied from 2 hops to 24 hops. Cross scenarios
are used to study the protocols for basic inter-flow contention.

nn-1210

Fig. 6. Chain scenario

TABLE IV
RESULTS OF 24-HOP NETWORKS

Scenario Latency Tcycle
Latency
Tcycle

PathLength·Tcycle
Latency

(seconds) (seconds) (cycles) (hops/cycle)
S-MAC chain 74.9 3.185 23.52 1.02
S-MAC cross 87.0 3.185 27.32 0.88
RMAC chain 17.4 4.465 3.90 6.16
RMAC cross 20.4 4.465 4.57 5.25

Finally, Figure 8 shows an example of a realistic scenario.
The sensor network is composed of 200 sensor nodes and
a sink node. The 200 sensor nodes are uniform randomly
distributed in a 2000 m by 2000 m square area, and the sink
node is located at the top right corner of the square. Figure 9
shows the histogram of the path lengths from the sensors to
the sink. The maximum path length from a sensor to the sink
is 15 hops, and most of the sensor are about 7 to 13 hops away
from the sink. All the traffic in the network is from a sensor
node to the sink. The traffic load in this scenario is generated
as follows: at a periodic interval, a random sensor node is
selected to send one data packet to the sink node. If a node
is selected to send a packet, it is taken out from the selection
pool. If the selection pool becomes empty, which means each
of the 200 nodes has sent a data packet to the sink, then the
selection pool is reset to the entire set of 200 nodes.

B. Latency Evaluation
In this subsection, we evaluate the performance of end-to-

end delivery latency. We use a typical light traffic load for
sensor networks. For the chain and cross scenarios, each CBR
flow generates a traffic load of 100 packets at the rate of 1
packet every 50 seconds; the entire simulation runs for 5500
seconds of simulation time. For the realistic scenario as well,
data is generated every 50 seconds, but each sensor sends only
one data packet to the sink node; the simulation runs for 10300
seconds of simulation time.

1) Latency Evaluation in Chain Scenarios: Figure 10
shows, for the chain and cross scenarios, how the average
packet delivery latency varies with the path length; error bars
show the minimum and maximum delivery latencies.

For the chain scenarios, delivery latency in both S-MAC
and RMAC increases as the hop count of the path increases.
However, delivery latency in S-MAC increases at a much faster
rate, although it actually has a shorter operational cycle than
does RMAC. This shows the benefit of RMAC’s capability of
multihop delivery within a single cycle. This capability can
be better presented in Table IV. Using the cases of the 24-
hop chain and cross scenarios, the last two columns in the
table show the total number of operational cycles needed for
a packet to finish the 24-hop delivery and the average number
of hops over which a packet can be forwarded in a single cycle.

For the 24-hop chain scenario, S-MAC can forward a data
packet over only 1.02 hops per cycle. It is slightly more than 1
hop, because for the first hop (from node 0 to node 1), S-MAC
does not need a full cycle to deliver the packet. Depending
upon when the data packet is generated at node 0, node 0
may be able to send the packet to 1 immediately, if a data
packet is generated during a DATA period. Otherwise, node 0
must wait for the start of the next DATA period; this waiting
time may vary, but is never more than one cycle.



0 1 n/2 n-1 n
… …

…
…

n+1

n+2

2n-1

2n
Fig. 7. Cross scenario

0 500 1000 1500 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Fig. 8. A realistic 200-node network

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

Path Length (Hops)

N
um

be
r o

f N
od

es

Fig. 9. The histogram of the path lengths of
the realistic network

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Path Length (Hops)

P
ac

ke
t D

el
iv

er
y 

La
te

nc
y 

(S
ec

on
ds

)

 

 
S−MAC in Chain
S−MAC in Cross
RMAC in Chain
RMAC in Cross

Fig. 10. Delivery latency in the chain and cross
scenarios

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

50

55

Path Length (Hops)

P
ac

ke
t D

el
iv

er
y 

La
te

nc
y 

(S
ec

on
ds

)

 

 
S−MAC
RMAC

Fig. 11. Delivery latency in the realistic
scenario

0 20 40 60 80 100
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of Packets

A
ve

ra
ge

 P
ow

er
 o

f S
en

so
rs

 (W
at

ts
)

 

 
S−MAC in Chain
S−MAC in Cross
RMAC in Chain
RMAC in Cross

Fig. 12. Average power of sensors in the 24-
hop chain and cross scenario

On the other hand, RMAC, can forward a data packet an
average of 6.16 hops per cycle. This is in spite of a value
of N = 4 in Equation 4. The PION can be forwarded 6.16
(> 4) hops in a single DATA period because of the size of
the contention window. When a source sensor node randomly
selects a slot in the CW, it has to wait until that slot arrives
before it can initiate its PION frame. As long as the node
does not select the last slot in CW, it can use that extra time
for relaying the PION over multiple hops. If this extra time
is more than durPION + SIFS, the PION can be forwarded
for one more hop than N in this DATA period. In the best
situation, the node selects slot 0 in its CW, and the whole CW
may potentially be used for forwarding PIONs. Therefore, the
number of extra hops a PION may be forwarded in a cycle is

X =
CW

durPION + SIFS
=

64 ms
14 ms + 5 ms

= 3.37 (hops) (6)

Thus, theoretically, in each cycle in RMAC, the data packet
can be forwarded for at least N hops, but may be as many as
bN +Xc hops. When the SLEEP period starts, if we require a
node not to go to sleep immediately if its radio is in transmit-
ting or receiving mode, then we can potentially forward the
PION for one more hop, because the last hop will have time to
finish its PION confirmation to its previous upstream node. In
this case, the maximum forwarded hops is dN +Xe. This also
shows a very good feature of RMAC: RMAC can efficiently
use a large contention window (CW), specifically, to deliver a
PION frame over more hops (> N ) in each DATA period. The
value for CW is usually decided by the application require-
ment. If the possibility of simultaneous traffic generation is
high in the neighborhood, for example in an event monitoring
network, a high value for CW is needed to avoid potential col-
lisions. A large CW may consume more power from the sensor

nodes or introduce longer delivery latency if the duty cycle is
kept fixed. In RMAC, since a PION can be potentially deliv-
ered further when the CW is larger, RMAC mitigates the neg-
ative effects of a large contention window while still achieving
the MAC contention resolution intended by a larger CW.

Another major difference for the chain scenarios between
S-MAC and RMAC in Figure 10 is the shape of their curves. In
S-MAC, as the path length increases, the end-to-end delivery
latency increases linearly, with very little fluctuation, since S-
MAC forwards the data packet with a fixed rate of 1 hop per
cycle. However, for RMAC, the number of hops over which
data can be forwarded in each cycle depends on the random
backoff selected by the source node. Therefore, the curve for
end-to-end latency for RMAC has more fluctuations and larger
error bars. For the chains shorter than 5 hops, the fluctuations
in RMAC’s latency are much smaller than those for longer
chains, because for shorter chains all the packets can reach
their final destinations within a single cycle.

2) Latency Evaluation in Cross Scenarios: Figure 10 also
shows the latency results of S-MAC and RMAC in the cross
scenario. Traffic contention has much less impact on RMAC
than on S-MAC; the gap between the chain curve and the
cross curve is much wider in S-MAC. Table IV shows that
compared to the chain scenario for a 24-hop flow, the end-
to-end delivery latency increases by 12.1 s, or 3.80 cycles, in
S-MAC, but only increases by 3 s, or 0.67 cycle, in RMAC.
RMAC deals with contention much better than does S-MAC,
due to RMAC’s ability to deliver packets over multiple hops
in a single cycle. Since the carrier sensing range is 550 meters
in our simulations, a data packet in our cross scenario must
be more than 3 hops away from the crossing point in order to
avoid any potential interference from the other flow. RMAC



is efficient in helping packets get through the contention area
quickly, and further away, thus avoiding the contention. In a
cross scenario, when two packets from the two flows arrive
simultaneously at the contention area in the center, one of
them wins and gets relayed. This winning packet immediately
goes several hops away so that in the next operational cycle,
the contention is already removed from the crossing area, and
the two packets can be delivered along their respective paths.

3) Latency Evaluation in the Realistic Scenario: Figure 11
shows the results of our latency evaluation for realistic sce-
narios. Because the data generation interval of 50 seconds is
long enough for an earlier generated packet to be delivered
to the sink before the next packet gets generated, there are
no competing flows in the network. If we compare the results
in Figure 11 with the chain scenario results in Figure 10 (for
chains shorter than 16 hops), they are almost of the same
shape, except that in the realistic scenarios, the curves of
both S-MAC and RMAC have greater fluctuations than in the
chain scenarios. This is due to the small sample size in the
realistic scenario; in Figure 10, each point is the average of
100 different samples, whereas in Figure 11, the number of
samples at a hop count k depends upon the number of the k-
hop neighbors of the sink node; the number of k-hop neighbors
is not monotonic with k, as shown in Figure 9.

C. Energy Consumption Evaluation

In this subsection, we evaluate the energy efficiency of
RMAC. Here as well, we use the typical light traffic load in
a 24-hop chain, 24-hop cross, and the realistic scenarios. We
varied our traffic load up to 100 packets in each topology, and
we observe the average sensor power consumption during the
entire simulated time. If the simulation has multiple packets
to send, then for the chain and cross scenarios, each CBR
flow generates traffic load at the rate of 1 packet every 50
seconds. For the realistic scenario , the periodicity of data
generation is also 50 seconds. Each simulation runs for 5500
seconds of simulated time.

Figure 12 shows the average power over all the sensors in
the chain and the cross scenario. Average power consumed is
calculated by dividing the total energy consumed by the sen-
sors by the total simulated time. Error bars show the minimum
and the maximum values for a single sensor’s average power
consumption. When there is no traffic in the network, nodes
in RMAC consume the same energy as those in S-MAC. This
is because both use the same duty cycle ratio R, thus having
the same power efficiency. As the traffic load increases, both
RMAC and S-MAC increase their energy consumption, but
RMAC has a smaller rate of increase than does S-MAC. This
is because RMAC has a more concise control frame sequence
than does S-MAC. For a multihop delivery of a packet,
sensors in RMAC transmit only about half as many total
control frames. Less transmitting also implies less receiving
or overhearing, which further increases the energy efficiency
of the entire network with RMAC. Another reason RMAC is
more energy efficient is that sensors in RMAC never consume
energy on overhearing a data frame transmission, because
during a data frame transmission, all the nodes are in the sleep
mode except for the two sensors that are communicating. In S-

MAC, however, since the data frame is transmitted right after
the CTS is received, part of the data frame transmission may
happen in the DATA period, and so all the neighboring sensor
nodes spend energy to overhear the transmission.

Figure 12 also shows the impact that traffic contention has
on energy efficiency. Both RMAC and S-MAC consume more
energy in cross scenarios than in chain scenarios, although the
gap between the chain curve and the cross curve in S-MAC
is much wider than in RMAC. This is expected, as we have
discussed in Section IV-B, due to the difference in contention
handling by the two protocols. In a cross scenario, it is always
a node in the crossing area that consumes the most energy,
which is shown in the figure as the upper limit of the error bars.
For the maximum average power value, S-MAC has a large
increase in cross scenarios over the chain scenarios of the same
path length. A sensor network’s lifetime is actually decided by
lifetime of the bottleneck links, in this scenario, the nodes
that are in the crossing area. Therefore, RMAC’s efficient
contention handling, together with its energy efficient control
sequences, can help to prolong the lifetime of the network.

Figure 13 shows the average power of sensors in the
realistic scenario. RMAC is more energy efficient than S-
MAC in the realistic scenario. Both curves look flatter than
the corresponding curves in Figure 12. This is because each
point on the curves is the average of 200 nodes, and many
nodes do not participate in packet relaying as much as the
nodes in the chain or cross scenarios. Nodes in the bottleneck
link, such as the one-hop neighbors of the sink, still consume
similar amounts of energy as the ones in the cross scenario,
and are shown as the upper limits of the higher error bars.

D. Throughput Evaluation

In this subsection, we evaluate the network throughput using
RMAC. Although network throughput is not a crucial metric
in typical sensor networks, it is important when the traffic can
potentially come in a burst. We again use a 24-hop chain, a
24-hop cross, and the realistic scenarios in our simulations.
We varied our traffic load in terms of the packet generation
rate, from 1 packet every 50 seconds to 10 packets every 50
seconds. For the cross scenarios, the two flows split their
load equally, for example, if the traffic load is 5 packets
every 50 seconds, each of the two flows will generate at
the rate of 2.5 packets every 50 seconds. Each simulation
runs for 2000 seconds of simulated time, and we record the
throughput of the network in terms of the average number of
packets successfully received by the final destination in every
50 seconds.

Figure 14 shows our simulation results. Each point in the
curve is the average of 4 different runs, and the error bars
show the minimum and the maximum values. For all cases, the
output rate follows the input rate when the input rate is low and
finally the output rate reaches its peak point. If we continue
injecting more packets into the system, after the output has
peaked, the input creates more contention in the system and
decreases the throughput slowly until the throughput reaches
a steady state value. In all three types of scenarios, RMAC
outperform S-MAC. This is again due to RMAC’s ability to
forward PIONs over multiple hops. Although the medium is



0 20 40 60 80 100
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of Packets

A
ve

ra
ge

 P
ow

er
 o

f S
en

so
rs

 (W
at

ts
)

 

 
S−MAC
RMAC

Fig. 13. Average power of sensors in the
realistic scenario

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

Input rate (pkts/50 seconds)

O
ut

pu
t r

at
e 

(p
kt

s/
50

 s
ec

on
ds

)

 

 
S−MAC in Chain
S−MAC in Cross
S−MAC in Real
RMAC in Chain
RMAC in Cross
RMAC in Real

Fig. 14. Throughput in the chain (24-hop),
cross (24-hop) and realistic scenario

0 5 10 15
0

5

10

15

Path Length (Hops)

P
ac

ke
t D

el
iv

er
y 

La
te

nc
y 

(S
ec

on
ds

)

 

 
N=2
N=4
N=8
N=12
N=16

Fig. 15. Packer delivery latency with different
PION relaying number

TABLE V
CYCLE DURATIONS WITH DIFFERENT N

N TSYNC (ms) TDATA (ms) Tcycle (ms)

2 55.2 129.6 3696
4 55.2 168.0 4465
8 55.2 244.8 6000
12 55.2 321.6 7536
16 55.2 398.4 9072

saturated when the load is high, PION frames can still be
forwarded multiple hops whenever it is possible. Therefore
it uses its medium access opportunity more efficiently than
with RTS/CTS in S-MAC.

E. PION Relaying Number (N )

Finally, we evaluate the impact of the PION relaying number
(N ) upon a network. If we increase N , the length of the DATA
period will increase, thus increasing the number of hops over
which a PION can be forwarded in each cycle. On the other
hand, increasing the length of the DATA period will increase
the whole cycle time as well. This implies that when a packet
cannot be delivered to the final destination in a single cycle
or when the packet is generated during a SLEEP period, the
packet has to wait longer for the next DATA period to begin.
Table V shows the PION relaying numbers we used in our
simulations, as well as their corresponding cycle time and
DATA period time. We use the same light load traffic in the
realistic scenario in this evaluation. The interval time for the
data generation is 50 seconds and each simulation runs for
10300 seconds of simulated time.

Figure 15 shows the average packet delivery latency for each
path length in the realistic scenario. From the figure, it is hard
to tell which value of N is the best fit for all the path lengths.
For the nodes within 5 hops away from the sink node, N = 2
and N = 4 provide the best end-to-end delivery latency. For
the nodes that are 5 to 10 hops away from the sink, N = 8
performs the best. And for the nodes that are even farther away
from the sink, N = 12 and N = 16, have the lowest delivery
latency. However, these results show that for a flow with a path
length of k hops, PION relaying number N = k should provide
the lowest average packet delivery latency. This is because all
the packets can be delivered within a single cycle and the
DATA period is just long enough to allow this to happen.

In real sensor network path length varies and a fixed number
N may not perform the best in all the cases. However,
designers can select the number N such that most of the nodes,

or the nodes sensing areas or events with higher priority, can
be delivered within a single cycle. For example, in our scenario
here, a value of N between 8 and 12 may be the best choice,
since according to the path length histogram in Figure 9, most
of the nodes are within 7 to 13 hops away from the sink.

V. RELATED WORK

Power efficient MAC protocols for sensor networks can
generally be divided into two categories: the first, based on on-
demand wakeup, and the other based on scheduled wakeups. In
on-demand wakeup protocols, nodes use some form of out-of-
band signaling technique, usually through a separate radio, to
wake up nodes (e.g., [6], [7], [8]). As expected, this adds extra
cost of the network deployment. On the other hand, scheduled
wakeup MAC schemes can be further divided based on their
synchronization requirements. Asynchronous schemes (e.g.,
[9], [10], [11]), although simple to implement, are less efficient
than synchronous schemes and cannot provide guarantees
on the worst-case delay. For synchronous scheduled wakeup
protocols, TDMA and duty cycling are the most commonly
used techniques. Although TDMA protocols (e.g., [12], [13])
are usually designed to create contention-free media access
for communication, they can definitely schedule the wakeups
of the sensor nodes as well. However, TDMA protocols have
to tackle the challenge of slot allocation and management,
which is extremely hard if the network topology is dense and
dynamic.

S-MAC [1] is one of the first duty-cycle based MAC
protocol for sensor networks. If there is no packet to receive
during the active period, T-MAC [14] adapts the duty-cycle of
the protocol by dynamically ending the active period of duty
cycle. Both of these protocols incur high delay in multihop
packet delivery, since a packet can be delivered over only a
single hop in a single active/sleep period.

In a later refinement of their work, S-MAC was modified
to include adaptive listening [4]. When a node overhears
an RTS or CTS, the node wakes up for a short period of
time after the transmission of the packet (for which the CTS
was intended). If the node is the next-hop node, then it can
immediately receive the packet from its neighbor. Therefore,
adaptive listening can deliver a packet up to 2 hops per cycle.
However, adaptive listening also consumes more energy, since
many neighboring nodes receive an RTS or CTS and stay
awake, but only one of them is the next hop.



DMAC [15] overcame the latency problem for the specific
communication pattern of a tree by offsetting the sleep sched-
ule of a sensor node (like a pipeline) by an amount dependent
on the level of the tree at which the sensor lies. In DMAC, not
all nodes on a multihop path are aware of the data delivery,
thus leading to interruption in forwarding. Also, trees need to
be rebuilt if the network has different communication patterns.
A similar pipelining scheme has also been proposed by Cao
et al. [16] and in the fast path algorithm proposed by Li
et al. [17]; these works, however, did not discuss in detail on
how to handle multiple schedules and the potential pipeline
stage conflicts of the multiple schedules. Abtin et al. [18]
suggest a new wakeup scheme that takes advantage of the
multiple routes usually available from sensor node to the sink
node. They use this in conjunction with the pipelined scheme
in order to improve energy efficiency while maintaining delay
bounds. Finally, Lu et al. [19] have proved that in the presence
of arbitrary communication, scheduling wakeups in order to
minimize the end-to-end delay is NP-hard. As a result, existing
pipelined schemes are all suboptimal.

Compared with the above scheduled wakeup mechanisms,
RMAC is unique as its wakeup scheduling algorithm is entirely
integrated into its media access mechanism. Therefore the
scheduling algorithm is fully distributed and semi-on demand.
The pipelined schedule in RMAC is set up only when there
is data to be delivered. The schedule is also fully dynamic
and fits arbitrary communication patterns: schedules come
and go in each cycle and no extra messages are needed to
set up or cancel the schedules other than the media access
control frames. RMAC achieves these features by using its
unique PION’s multihop forwarding mechanism, which not
only improves the end-to-end latency but also provides a better
contention handling solution in sensor networks.

VI. CONCLUSIONS AND FUTURE WORK

Duty cycle mechanisms have been used in sensor net-
works to improve energy efficiency, but they also introduce
significant increase in end-to-end delivery latency and poor
contention handling as well. We have presented the design
and evaluation RMAC (the Routing enhanced MAC protocol)
as a duty-cycle MAC protocol that is capable of multihop
data delivery in a single operational cycle. RMAC exploits
cross-layer routing information to allow its control PION
(Pioneer) frame to set up a multihop schedule for subsequent
forwarding of a data frame. Each node along the forwarding
path then wakes up at the correct scheduled time to allow
it to receive and forward the data frame. Our simulation
evaluation shows RMAC’s advantages in reducing the delivery
latency and alleviating the contention traffic. Our results also
show that RMAC achieves energy efficiency and throughput
improvement as well.

Despite all of the potentials RMAC has shown, there are
still many issues left open for future improvement. We are
right now working on shifting RMAC’s PION mechanism
to an asynchronous environment, such as in wireless mesh
networks. Also, RMAC definitely needs some theoretical anal-
ysis to guide us in the future exploration. Finally, the PION’s
mechanism increase the complexity in packet handling, which

may have some negative effects in a real implementation of
RMAC on a sensor network platform, such as TinyOS.

REFERENCES

[1] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol
for wireless sensor networks,” in Proceedings of INFOCOM 2002, Jun.
2002, pp. 1567–1576.

[2] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” in Proceedings of the Fifth Sympo-
sium on Operating Systems Design and Implementation (OSDI 2002),
Dec. 2002.

[3] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” in Proceedings of the First International Con-
ference on Embedded Networked Sensor Systems (SenSys 2003), Nov.
2003, pp. 138–149.

[4] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with
coordinated adaptive sleeping for wireless sensor networks,” IEEE/ACM
Transactions on Networking, vol. 12, no. 3, pp. 493–506, Jun. 2004.

[5] G. Anastasi, A. Falchi, A. Passarella, M. Conti, and E. Gregori,
“Performance measurements of motes sensor networks,” in Proceedings
of the 7th ACM International Symposium on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM 2004), Oct. 2004,
pp. 174–181.

[6] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, “Topology
management for sensor networks: Exploiting latency and density,” in
Proceedings of the Third ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc 2002), Jun. 2002, pp. 135–
145.

[7] M. J. Miller and N. H. Vaidya, “Power save mechanisms for multi-hop
wireless networks,” in Proceedings of the First International Conference
on Broadband Networks (BROADNETS 2004), Oct. 2004, pp. 518–526.

[8] S. Singh and C. S. Raghavendra, “PAMAS: Power aware multi-access
protocol with signalling for ad hoc networks,” SIGCOMM Computer
Communications Review, vol. 28, no. 3, pp. 5–26, 1998.

[9] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh, “Power-saving protocols for
IEEE 802.11-based multi-hop ad hoc networks,” in Proceedings of
INFOCOM 2002, vol. 1, Jun. 2002, pp. 200– 209.

[10] R. Zheng, J. C. Hou, and L. Sha, “Asynchronous wakeup for ad hoc
networks,” in Proceedings of the Fourth ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc 2003), Jun.
2003, pp. 35–45.

[11] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for
wireless sensor networks,” in Proceedings of the Second International
Conference on Embedded Networked Sensor Systems (SenSys 2004),
Nov. 2004, pp. 95–107.

[12] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor net-
works,” IEEE Transactions on Wireless Communications, vol. 1, no. 4,
pp. 660–670, Oct. 2002.

[13] S. S. Kulkarni and M. Arumugam, “TDMA service for sensor networks,”
in Proceedings of the 24th IEEE International Conference on Distributed
Computing Systems Workshops (ICDCSW 2004), May 2004, pp. 604–
609.

[14] T. van Dam and K. Langendoen, “An adaptive energy-efficient MAC
protocol for wireless sensor networks,” in Proceedings of the First In-
ternational Conference on Embedded Networked Sensor Systems (SenSys
2003), Nov. 2003, pp. 171–180.

[15] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An adaptive
energy-efficient and low-latency MAC for data gathering in wireless
sensor networks,” in Proceedings of the 18th International Parallel and
Distributed Processing Symposium (IPDPS 2004), Apr. 2004.

[16] Q. Cao, T. Abdelzaher, T. He, and J. Stankovic, “Towards optimal sleep
scheduling in sensor networks for rare event detection,” in Proceedings
of the Fourth International Conference on Information Processing in
Sensor Networks (IPSN 2005), Apr. 2005, pp. 20–27.

[17] Y. Li, W. Ye, and J. Heidemann, “Energy and latency control in low
duty cycle MAC protocols,” in Proceedings of the 2005 IEEE Wireless
Communications and Networking Conference (WCNC 2005), vol. 2,
Mar. 2005, pp. 676–682.

[18] A. Keshavarzian, H. Lee, and L. Venkatraman, “Wakeup scheduling
in wireless sensor networks,” in Proceedings of the Seventh ACM
International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc 2006), May 2006, pp. 322–333.

[19] G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel, “Delay effi-
cient sleep scheduling in wireless sensor networks,” in Proceedings of
INFOCOM 2005, vol. 4, Mar. 2005, pp. 2470–2481.


