
INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION (HTTP://WWW.IJCC.US), VOL. 6, NO. 3, SEPTEMBER 2008 23

Computational Verb Rule Bases
Tao Yang

Abstract— Different types of computational verb rule
bases(verb rule bases, for short) are presented in this paper.
The basic properties of verb rule bases are defined. The formal
presentation of verb rule bases using Boolean matrices is given.
The algorithms of merging and splitting verb rule bases using
Boolean matrices are studied. Copyright c© 2008 Yang’s Scientific
Research Institute, LLC. All rights reserved.

Index Terms— Computational verb rule base, computational
verb, Boolean matrix, rule base.

I. INTRODUCTION

COMPUTATIONAL verb rules are the basic building
blocks for almost all engineering applications of compu-

tational verbs. In an engineering application, we usually need
to model the input-output dynamics of a system. The inputs
of the system can be different kinds of waveforms while the
corresponding outputs can be different waveforms as well. In
general, the system can have more than one input and more
than one output. Therefore, to model the input-output relation
of the system, we build a set of computational verb rules, of
which the antecedents consist of multiple computational verbs
and the consequences consist of multiple computational verbs.
For each input or output, the dynamical behaviors are usually
clustered into a group of computational verbs if there are any
bifurcations along the parameter/phase space of the system, or,
if the dynamics are quantitatively/qualitatively different along
the parameter/phase space. In order to cover the input space
and the output space completely, we need to construct a set
of computational verb rules, of which many permutations of
the computational verbs in antecedents and consequences are
used. The function of each of these verb rules is to

1) cover a part of the entire parameter/phase space of the
input waveforms (resulting in disjunctive antecedents);

2) cover the entire parameter/phase space of the input
waveforms with its own emphasis (resulting in conjunc-
tive antecedents);

3) cover a part of the entire parameter/phase space of
the output waveforms (resulting in disjunctive conse-
quences);

4) cover the entire parameter/phase space of the output
waveforms with its own emphasis (resulting in conjunc-
tive consequences).

Manuscript received January 6, 2008; revised August 08, 2008.
Tao Yang, Department of Electronic Engineering, Xiamen

University, Xiamen 361005, P.R. China. Department of Cognitive
Economics, Department of Electrical Engineering and Computer
Sciences, Yang’s Scientific Research Institute, 1303 East University
Blvd., #20882, Tucson, Arizona 85719-0521, USA. Email:
taoyang@xmu.edu.cn,taoyang@yangsky.com,taoyang@yangsky.us.

Publisher Item Identifier S 1542-5908(08)10308-6/$20.00
Copyright c©2008 Yang’s Scientific Research Institute, LLC. All
rights reserved. The online version posted on September 27, 2008 at
http://www.YangSky.com/ijcc/ijcc63.htm

Therefore, there are four permutations of types of an-
tecedents and consequences for constructing verb rules listed
as follows.

1) Conjunctive antecedents with conjunctive consequences;
2) Conjunctive antecedents with disjunctive consequences;
3) Disjunctive antecedents with conjunctive consequences;
4) Disjunctive antecedents with disjunctive consequences.
When a set of verb rules; namely, a verb rule base is used

to model the relations between dynamical inputs and outputs,
there are at least two kinds of inter-rule relations

1) Conjunctive inter-rule relation. In this case, the relation
between rules is in serial and each verb rule cover the
entire input-output relation with emphasis.

2) Disjunctive inter-rule relation. In this case, the relation
between rules if in parallel and each verb rule cover a
part of input-output relation.

With all permutations of different types of antecedents, conse-
quences and inter-rule relations, there are eight possible types
of verb rule bases. Since in a real-life problem, it is difficult
to find the crisp boundaries among qualitatively different
dynamics, we usually design a computational verb to cover
the entire parameter/phase space with emphasis. Therefore,
the most commonly used verb rule bases are with conjunctive
antecedents, conjunctive consequences and conjunctive inter-
rule relations.

The organization of this paper is as follows. In Section II,
the brief history of computational verb theory will be given. In
Section III, different types of verb rule bases will be defined.
In Section IV, the basic properties of verb rule bases will
be presented. In Section V, formal presentation of verb rule
bases in Boolean matrices will be given. In Section VI, the
merging algorithm of verb rule bases will be designed based
on the formal presentation of verb rule bases using Boolean
matrices. In Section VII, the splitting algorithm of verb rule
bases will be designed based on the formal presentation of
verb rule bases using Boolean matrices. In Section VIII, some
concluding remarks will be included.

II. A BRIEF HISTORY OF COMPUTATIONAL VERB THEORY

As the first paradigm shift for solving engineering prob-
lems by using verbs, the computational verb theory[27] and
physical linguistics[30], [47] have undergone a rapid growth
since the birth of computational verb in the Department of
Electrical Engineering and Computer Sciences, University of
California at Berkeley in 1997[13], [14]. The paradigm of
implementing verbs in machines was coined as computational
verb theory[27]. The building blocks of computational theory
are computational verbs[22], [17], [15], [23], [28]. The relation
between verbs and adverbs was mathematically defined in

24 INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION (HTTP://WWW.IJCC.US), VOL. 6, NO. 3, SEPTEMBER 2008

[16]. The logic operations between verb statements were stud-
ied in [18]. The applications of verb logic to verb reasoning
were addressed in [19] and further studied in [27]. A logic
paradox was solved based on verb logic[24]. The mathe-
matical concept of set was generalized into verb set in[21].
Similarly, for measurable attributes, the number systems can
be generalized into verb numbers[25]. The applications of
computational verbs to predictions were studied in [20]. In
[29] fuzzy dynamic systems were used to model a special
kind of computational verb that evolves in fuzzy spaces. The
relation between computational verb theory and traditional
linguistics was studied in [27], [30]. The theoretical basis
of developing computational cognition from a unified theory
of fuzzy and computational verb theory is the theory of
the UNICOGSE that was studied in [30], [35]. The issues of
simulating cognition using computational verbs were studied
in [31]. In [54] the correlation between computational verbs
was studied. A method of implementing feelings in machines
was proposed based on grounded computational verbs and
computational nouns in [37]. In [44] a theory of how to
design stable computational verb controllers was given. In
[38] the rule-wise linear computational verb systems and
their applications to the design of stable computational verb
controllers and chaos in computational verb systems were
presented. In [42] the concept of computational verb entropy
was used to construct computational verb decision tree for
data-mining applications. In [41] the relation between com-
putational verbs and fuzzy sets was studied by using com-
putational verb collapses and computational verb extension
principles. In [43] the distances and similarities of saturated
computational verbs were defined as normalized measures of
the distances and similarities between computational verbs.
Based on saturated computational verbs, the verb distances
and similarities are related to each other with a simple relation.
The distances and similarities between verbs with different life
spans can be defined based on saturated computational verbs
as well. In [45] the methods of using computational verbs to
cluster trajectories and curves were presented. To cluster a
bank of trajectories into a few representative computational
verbs is to discover knowledge from database of time series.
We use cluster centers to represent complex waveforms at
symbolic levels. In [11] computational verb controllers were
used to control a chaotic circuit model known as Chua’s
circuit. Computational verb controllers were designed based
on verb control rules for different dynamics of the region-
wise linear model of the control plant. In [10] computational
verb controllers were used to synchronize discrete-time chaotic
systems known as Hénon maps. Different verb control rules
are designed for synchronizing different kinds of dynamics. In
[49], how can computational verb theory functions as the most
essential building block of cognitive engineering and cognitive
industries was addressed. Computational verb theory will play
a critical important role in personalizing services in the next
fifty years. In [46], [48] computational verb theory was used
to design an accurate flame-detecting systems based on CCTV
signal. In [52] the learning algorithms were presented for
learning computational verb rules from training data. In [50]
the structures and learning algorithms of computational verb

neural networks were presented. In [53] the ambiguities of the
states and dynamics of computational verbs were studied. In
[51] the history and milestones in the first ten years of the
studies of computational verb theory were given. In [3] a case
study of modeling adverbs as modifiers of computational verbs
was presented. In [12] computational verb rules were used to
improve the training processes of neural networks.

The theory of computational verb has been taught in some
university classrooms since 20051. The latest active applica-
tions of computational verb theory are listed as follows.

1) Computational Verb Controllers. The applications of
computational verbs to different kinds of control prob-
lems were studied on different occassions[26], [27].
For the advanced applications of computational verbs
to control problems, a few papers reporting the latest
advances had been published[33], [32], [44], [38], [55].
The design of computational verb controllers was also
presented in a textbook in 2005[1].

2) Computational Verb Image Processing and Image Un-
derstanding. The recent results of image processing by
using computational verbs can be found in[34]. The
applications of computational verbs to image under-
standing can be found in [36]. The authors of [2]
applied computational verb image processing to design
the vision systems of RoboCup small-size robots.

3) Stock Market Modeling and Prediction based on compu-
tational verbs. The product of Cognitive Stock Charts[6]
was based on the advanced modeling and computing
reported in [39]. Computational verb theory was used
to study the trends of stock markets known as Russell
reconstruction patterns [40].

Computational verb theory has been successfully applied
to many industrial and commercial products. Some of these
products are listed as follows.

1) Visual Card Counters. The YangSky-MAGIC card
counter[8], developed by Yang’s Scientific Research
Institute and Wuxi Xingcard Technology Co. Ltd., was
the first visual card counter to use computational verb
image processing technology to achieve high accuracy of
card and paper board counting based on cheap webcams.

2) CCTV Automatic Driver Qualify Test System. The
DriveQfy CCTV automatic driver qualify test system[9]
was the first vehicle trajectory reconstruction and stop
time measuring system using computational verb image
processing technology.

3) Visual Flame Detecting System. The FireEye visual
flame detecting system[4] was the first CCTV or we-
bcam based flame detecting system, which works under
color and black & white conditions, for surveillance and
security monitoring system.

1Dr. G. Chen, EE 64152 - Introduction to Fuzzy Informatics and Intelligent
Systems, Department of Electronic Engineering, City University of Hong
Kong. Dr. Mahir Sabra, EELE 6306: Intelligent Control, Electrical and
Computer Engineering Department, The Islamic University of Gaza. Dr.
D. H. Guo, Artificial Intelligence, Department of Electronic Engineering,
Xiamen University. Prof. T. Yang, Computational Methodologies in Intelligent
Systems, Department of Electronic Engineering, Xiamen University.

YANG, COMPUTATIONAL VERB RULE BASES 25

4) Smart Pornographic Image and Video Detection Sys-
tems. The PornSeer[7] pornographic image and video
detection systems are the first cognitive feature based
smart porno detection and removal software.

5) Webcam Barcode Scanner. The BarSeer[5] webcam bar-
code scanner took advantage of the computational verb
image processing to make the scan of barcode by using
cheap webcam possible.

6) Cognitive Stock Charts. By applying computational
verbs to the modeling of trends and cognitive behaviors
of stock trading activities, cognitive stock charts can
provide the traders with the “feelings” of stock markets
by using simple and intuitive indexes.

7) TrafGo ITS SDK. Computational verbs were applied to
model vehicle trajectories and dynamics of optical field
and many other aspects of dynamics in complex en-
vironments for applications in intelligent transportation
systems (ITS).

III. COMPUTATIONAL VERB RULE BASES

A typical engineering system consists of multiple inputs and
multiple outputs as shown in Fig. 1. Since we usually observe
these input/output signals over a certain period of time, the
signals xi(t), i = 1, . . . , m; yj(t), j = 1, . . . , o are usually
represented as time series in digital systems or waveforms in
analogue systems.

Engineering
system

x1(t)

x2(t)

xm(t)

y1(t)

y2(t)

yo(t)

inputs outputs

Fig. 1. Block diagram of the inputs and outputs of a typical engineering
system.

To construct the model of the engineering system from
the observations of its inputs and outputs is the problem of
modeling. One way of modeling is to construct computational
verb rules to define the relation between the dynamical behav-
iors of xi’s and yj’s. For each input xi(t), the dynamics can
be lumped into some computational verbs. The same can be
done to each output yj(t). Therefore, a typical verb rule for
modeling an engineering system is usually of the form

IF [x1 V1] ∧ . . . ∧ [xm Vm], THEN [y1 Ṽ1] ∧ . . . ∧ [yo Ṽo] (1)

where each xi and a prescribed verb constitute a verb phase in
the antecedent while each yj and a prescribed verb constitute
a verb phrase in the consequence.

Sine each xi and yj can associate with different verbs to
form different verb phrases, there are many possible verb
rules to choose from the permutations of all possible verbs
associated to xi’s and yj’s in verb rules. Therefore, in a real-
life engineering application, we usually face a set of verb rules
of the same structure.

A rule base is a set of rules, therefore, a rule base is also
known as an algorithm. If in a rule base,
• the relation between each rule in a verb rule base is

conjunctive, then the rule base is called conjunctive rule
base.

• the relation between each rule in a verb rule base is
disjunctive, then the rule base is called disjunctive rule
base.

Since in real-life problems, it is more difficult to find solutions
to satisfy all rules at the same time in a rule base than solutions
to satisfy one rule each time, disjunctive rule bases are more
common than conjunctive rule base.

If the relation between all verb phrases in the antecedent of
a computational verb rule is
• conjunctive, then the antecedent is called conjunctive

antecedent.
• disjunctive, then the antecedent is called disjunctive an-

tecedent.
Since in real-life problems, we usually expect all verb phrases
in an antecedent to be satisfied at the same time, it is more
commonly to use conjunctive antecedents than disjunctive
ones.

Based on all permutations of types of antecedents and types
of rule bases, we have the following four types of conjunctive-
consequent rule bases.

1) Conjunctive antecedents in disjunctive(CAD) rule base
as shown in Eq. (2).

2) Disjunctive antecedents in disjunctive(DAD) rule base
as shown in Eq. (3).

3) Conjunctive antecedents in conjunctive(CAC) rule base
as shown in Eq. (4).

4) Disjunctive antecedents in conjunctive(DAC) rule base
as shown in Eq. (5).

CAD rule base (2) is the most commonly used one in real-life
problems.

Let us assume that each of the rule bases (2) to (5)
consists of n computational verb rules, in each of which the
antecedent consists of m verb phrases and the consequent
consists of o verb phrases. The rule bases (2) to (5) are
multiple-input-and-multiple-output(MIMO). We usually need
to decompose a MIMO rule base into a multiple-input-and-
single-output(MISO) rule set because the latter is easy to
implement and analyze. As an example, for each rule in CAD
rule base (2) we have

IF [x1 Vi1] ∧ . . . ∧ [xm Vim], THEN [y1 Ṽi1] ∧ . . .∧ [yo Ṽio];

= [x1 Vi1] ∧ . . . ∧ [xm Vim] → [y1 Ṽi1] ∧ . . . ∧ [yo Ṽio]

= q{[x1 Vi1] ∧ . . . ∧ [xm Vim]} ∨ {[y1 Ṽi1] ∧ . . . ∧ [yo Ṽio]}
= q{[x1 Vi1] ∧ . . . ∧ [xm Vim]} ∨ [y1 Ṽi1]

∧ . . .∧q{[x1 Vi1] ∧ . . . ∧ [xm Vim]} ∨ [yo Ṽio]

= {[x1 Vi1] ∧ . . . ∧ [xm Vim]} → [y1 Ṽi1]

∧ . . . ∧ {[x1 Vi1] ∧ . . . ∧ [xm Vim]} → [yo Ṽio]

= {IF [x1 Vi1] ∧ . . . ∧ [xm Vim], THEN [y1 Ṽi1]}
∧ . . . ∧ {IF [x1 Vi1] ∧ . . . ∧ [xm Vim], THEN [yo Ṽio]}.

(6)

where “q” denotes logic negation.

26 INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION (HTTP://WWW.IJCC.US), VOL. 6, NO. 3, SEPTEMBER 2008

IF [x1 V11] ∧ . . . ∧ [xm V1m], THEN [y1 Ṽ11] ∧ . . .∧ [yo Ṽ1o];
∨
...
∨
IF [x1 Vi1] ∧ . . . ∧ [xm Vim], THEN [y1 Ṽi1] ∧ . . .∧ [yo Ṽio];
∨
...
∨
IF [x1 Vn1] ∧ . . . ∧ [xm Vnm], THEN [y1 Ṽn1] ∧ . . .∧ [yo Ṽno]. (2)

IF [x1 V11] ∨ . . . ∨ [xm V1m], THEN [y1 Ṽ11] ∧ . . .∧ [yo Ṽ1o];
∨
...
∨
IF [x1 Vi1] ∨ . . . ∨ [xm Vim], THEN [y1 Ṽi1] ∧ . . .∧ [yo Ṽio];
∨
...
∨
IF [x1 Vn1] ∨ . . . ∨ [xm Vnm], THEN [y1 Ṽn1] ∧ . . .∧ [yo Ṽno]. (3)

IF [x1 V11] ∧ . . . ∧ [xm V1m], THEN [y1 Ṽ11] ∧ . . .∧ [yo Ṽ1o];
∧
...
∧
IF [x1 Vi1] ∧ . . . ∧ [xm Vim], THEN [y1 Ṽi1] ∧ . . .∧ [yo Ṽio];
∧
...
∧
IF [x1 Vn1] ∧ . . . ∧ [xm Vnm], THEN [y1 Ṽn1] ∧ . . .∧ [yo Ṽno]. (4)

IF [x1 V11] ∨ . . . ∨ [xm V1m], THEN [y1 Ṽ11] ∧ . . .∧ [yo Ṽ1o];
∧
...
∧
IF [x1 Vi1] ∨ . . . ∨ [xm Vim], THEN [y1 Ṽi1] ∧ . . .∧ [yo Ṽio];
∧
...
∧
IF [x1 Vn1] ∨ . . . ∨ [xm Vnm], THEN [y1 Ṽn1] ∧ . . .∧ [yo Ṽno]. (5)

YANG, COMPUTATIONAL VERB RULE BASES 27

Therefore, we can transform the MIMO verb rule base (2)
into the following MISO verb rule base.

{IF [x1 V11] ∧ . . . ∧ [xm V1m], THEN [y1 Ṽ11]}
∧ . . . ∧
{IF [x1 V11] ∧ . . . ∧ [xm V1m], THEN [yo Ṽ1o]}
∨
...
∨
{IF [x1 Vi1] ∧ . . . ∧ [xm Vim], THEN [y1 Ṽi1]}
∧ . . . ∧
{IF [x1 Vi1] ∧ . . . ∧ [xm Vim], THEN [yo Ṽio]}
∨
...
∨
{IF [x1 Vn1] ∧ . . . ∧ [xm Vnm], THEN [y1 Ṽn1]}
∧ . . . ∧
{IF [x1 Vn1] ∧ . . . ∧ [xm Vnm], THEN [yo Ṽno]}

(7)

Similarly, the MIMO verb rule base (3) can be transformed
into the following MISO verb rule base.

{IF [x1 V11] ∨ . . . ∨ [xm V1m], THEN [y1 Ṽ11]}
∧ . . . ∧
{IF [x1 V11] ∨ . . . ∨ [xm V1m], THEN [yo Ṽ1o]}
∨
...
∨
{IF [x1 Vi1] ∨ . . . ∨ [xm Vim], THEN [y1 Ṽi1]}
∧ . . . ∧
{IF [x1 Vi1] ∨ . . . ∨ [xm Vim], THEN [yo Ṽio]}
∨
...
∨
{IF [x1 Vn1] ∨ . . . ∨ [xm Vnm], THEN [y1 Ṽn1]}
∧ . . . ∧
{IF [x1 Vn1] ∨ . . . ∨ [xm Vnm], THEN [yo Ṽno]}

(8)

The MIMO verb rule base (4) can be transformed into the

following MISO verb rule base.

{IF [x1 V11] ∧ . . . ∧ [xm V1m], THEN [y1 Ṽ11]}
∧ . . . ∧
{IF [x1 V11] ∧ . . . ∧ [xm V1m], THEN [yo Ṽ1o]}
∧
...
∧
{IF [x1 Vi1] ∧ . . . ∧ [xm Vim], THEN [y1 Ṽi1]}
∧ . . . ∧
{IF [x1 Vi1] ∧ . . . ∧ [xm Vim], THEN [yo Ṽio]}
∧
...
∧
{IF [x1 Vn1] ∧ . . . ∧ [xm Vnm], THEN [y1 Ṽn1]}
∧ . . . ∧
{IF [x1 Vn1] ∧ . . . ∧ [xm Vnm], THEN [yo Ṽno]}

(9)

The MIMO verb rule base (5) can be transformed into the
following MISO verb rule base.

{IF [x1 V11] ∨ . . . ∨ [xm V1m], THEN [y1 Ṽ11]}
∧ . . . ∧
{IF [x1 V11] ∨ . . . ∨ [xm V1m], THEN [yo Ṽ1o]}
∧
...
∧
{IF [x1 Vi1] ∨ . . . ∨ [xm Vim], THEN [y1 Ṽi1]}
∧ . . . ∧
{IF [x1 Vi1] ∨ . . . ∨ [xm Vim], THEN [yo Ṽio]}
∧
...
∧
{IF [x1 Vn1] ∨ . . . ∨ [xm Vnm], THEN [y1 Ṽn1]}
∧ . . . ∧
{IF [x1 Vn1] ∨ . . . ∨ [xm Vnm], THEN [yo Ṽno]}

(10)

All consequences in rule bases (2) to (5) are conjunctive.
If these conjunctive consequences are replaced by disjunctive
consequences, then we have the following four types of rule
bases.

1) Conjunctive antecedents in disjunctive(CAD) rule base
as shown in Eq. (11).

2) Disjunctive antecedents in disjunctive(DAD) rule base
as shown in Eq. (12).

3) Conjunctive antecedents in conjunctive(CAC) rule base
as shown in Eq. (13).

4) Disjunctive antecedents in conjunctive(DAC) rule base
as shown in Eq. (14).

28 INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION (HTTP://WWW.IJCC.US), VOL. 6, NO. 3, SEPTEMBER 2008

IF [x1 V11] ∧ . . . ∧ [xm V1m], THEN [y1 Ṽ11] ∨ . . .∨ [yo Ṽ1o];
∨
...
∨
IF [x1 Vi1] ∧ . . . ∧ [xm Vim], THEN [y1 Ṽi1] ∨ . . .∨ [yo Ṽio];
∨
...
∨
IF [x1 Vn1] ∧ . . . ∧ [xm Vnm], THEN [y1 Ṽn1] ∨ . . .∨ [yo Ṽno]. (11)

IF [x1 V11] ∨ . . . ∨ [xm V1m], THEN [y1 Ṽ11] ∨ . . .∨ [yo Ṽ1o];
∨
...
∨
IF [x1 Vi1] ∨ . . . ∨ [xm Vim], THEN [y1 Ṽi1] ∨ . . .∨ [yo Ṽio];
∨
...
∨
IF [x1 Vn1] ∨ . . . ∨ [xm Vnm], THEN [y1 Ṽn1] ∨ . . .∨ [yo Ṽno]. (12)

IF [x1 V11] ∧ . . . ∧ [xm V1m], THEN [y1 Ṽ11] ∨ . . .∨ [yo Ṽ1o];
∧
...
∧
IF [x1 Vi1] ∧ . . . ∧ [xm Vim], THEN [y1 Ṽi1] ∨ . . .∨ [yo Ṽio];
∧
...
∧
IF [x1 Vn1] ∧ . . . ∧ [xm Vnm], THEN [y1 Ṽn1] ∨ . . .∨ [yo Ṽno]. (13)

IF [x1 V11] ∨ . . . ∨ [xm V1m], THEN [y1 Ṽ11] ∨ . . .∨ [yo Ṽ1o];
∧
...
∧
IF [x1 Vi1] ∨ . . . ∨ [xm Vim], THEN [y1 Ṽi1] ∨ . . .∨ [yo Ṽio];
∧
...
∧
IF [x1 Vn1] ∨ . . . ∨ [xm Vnm], THEN [y1 Ṽn1] ∨ . . .∨ [yo Ṽno]. (14)

YANG, COMPUTATIONAL VERB RULE BASES 29

Similarly, we can transform the MIMO verb rule base (11)
into the following MISO verb rule base.

{IF [x1 V11] ∧ . . . ∧ [xm V1m], THEN [y1 Ṽ11]}
∨ . . . ∨
{IF [x1 V11] ∧ . . . ∧ [xm V1m], THEN [yo Ṽ1o]}
∨
...
∨
{IF [x1 Vi1] ∧ . . . ∧ [xm Vim], THEN [y1 Ṽi1]}
∨ . . . ∨
{IF [x1 Vi1] ∧ . . . ∧ [xm Vim], THEN [yo Ṽio]}
∨
...
∨
{IF [x1 Vn1] ∧ . . . ∧ [xm Vnm], THEN [y1 Ṽn1]}
∨ . . . ∨
{IF [x1 Vn1] ∧ . . . ∧ [xm Vnm], THEN [yo Ṽno]}

(15)

The MIMO verb rule base (12) can be transformed into the
following MISO verb rule base.

{IF [x1 V11] ∨ . . . ∨ [xm V1m], THEN [y1 Ṽ11]}
∨ . . . ∨
{IF [x1 V11] ∨ . . . ∨ [xm V1m], THEN [yo Ṽ1o]}
∨
...
∨
{IF [x1 Vi1] ∨ . . . ∨ [xm Vim], THEN [y1 Ṽi1]}
∨ . . . ∨
{IF [x1 Vi1] ∨ . . . ∨ [xm Vim], THEN [yo Ṽio]}
∨
...
∨
{IF [x1 Vn1] ∨ . . . ∨ [xm Vnm], THEN [y1 Ṽn1]}
∨ . . . ∨
{IF [x1 Vn1] ∨ . . . ∨ [xm Vnm], THEN [yo Ṽno]}

(16)

The MIMO verb rule base (13) can be transformed into the

following MISO verb rule base.

{IF [x1 V11] ∧ . . . ∧ [xm V1m], THEN [y1 Ṽ11]}
∨ . . . ∨
{IF [x1 V11] ∧ . . . ∧ [xm V1m], THEN [yo Ṽ1o]}
∧
...
∧
{IF [x1 Vi1] ∧ . . . ∧ [xm Vim], THEN [y1 Ṽi1]}
∨ . . . ∨
{IF [x1 Vi1] ∧ . . . ∧ [xm Vim], THEN [yo Ṽio]}
∧
...
∧
{IF [x1 Vn1] ∧ . . . ∧ [xm Vnm], THEN [y1 Ṽn1]}
∨ . . . ∨
{IF [x1 Vn1] ∧ . . . ∧ [xm Vnm], THEN [yo Ṽno]}

(17)

The MIMO verb rule base (14) can be transformed into the
following MISO verb rule base.

{IF [x1 V11] ∨ . . . ∨ [xm V1m], THEN [y1 Ṽ11]}
∨ . . . ∨
{IF [x1 V11] ∨ . . . ∨ [xm V1m], THEN [yo Ṽ1o]}
∧
...
∧
{IF [x1 Vi1] ∨ . . . ∨ [xm Vim], THEN [y1 Ṽi1]}
∨ . . . ∨
{IF [x1 Vi1] ∨ . . . ∨ [xm Vim], THEN [yo Ṽio]}
∧
...
∧
{IF [x1 Vn1] ∨ . . . ∨ [xm Vnm], THEN [y1 Ṽn1]}
∨ . . . ∨
{IF [x1 Vn1] ∨ . . . ∨ [xm Vnm], THEN [yo Ṽno]}

(18)

IV. PROPERTIES OF COMPUTATIONAL VERB RULE BASES

The basic properties of verb rule bases are defined as
follows.

Definition 1 (Complete): A computational verb rule base is
complete if and only if all possible permutations of computa-
tional verb phrases of the inputs are included in the antecedents
of the rule base.

Definition 2 (Incomplete): A computational verb rule base
is incomplete if and only if at least one permutation of
computational verb phrases of the inputs is missing in the
antecedents of the rule base.

30 INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION (HTTP://WWW.IJCC.US), VOL. 6, NO. 3, SEPTEMBER 2008

Definition 3 (Exhaustive): A computational verb rule base
is exhaustive if and only if all possible permutations of
computational verb phrases of the outputs are included in the
consequences of the rule base.

Definition 4 (Non-exhaustive): A computational verb rule
base is non-exhaustive if and only if at least one permutation
of computational verb phrases of the outputs is not included
in the consequences of the rule base.

Definition 5 (Consistent): A computational verb rule base
is consistent if and only if each permutation of computational
verb phrases in the input is mapped onto only one permutation
of computational verb phrases of the outputs.

Definition 6 (inconsistent): A computational verb rule base
is inconsistent if and only if at least one permutation of
computational verb phrases in the input is mapped onto more
than one permutation of computational verb phrases of the
outputs.

Definition 7 (Monotonic): A computational verb rule base
is monotonic if and only if each permutation of computational
verb phrases in the output is mapped from only one permuta-
tion of computational verb phrases of the inputs.

Definition 8 (Non-monotonic): A computational verb rule
base is non-monotonic if and only if at least one permutation
of computational verb phrases in the output is mapped from
more than one permutation of computational verb phrases of
the inputs.

A very good computational verb rule base is most likely
complete, non-exhaustive, non-monotonic and must be consis-
tent. However, in real-life applications, a useful computational
verb rule base doesn’t need to be “very good” in order to be
“useful”. The degree of usefulness of computational verb rule
bases with all permutations of different properties are listed in
Table I where the last column shows the degree of usefulness
of the rule base. The degree of usefulness are lumped into three
categories represented by H(hight), M(medium) and L(low).
Observe that the consistent and complete verb rule bases are
of high degree of usefulness, the consistent and incomplete
ones are of medium degree of usefulness while the inconsistent
ones are of low degree of usefulness. Since a verb rule base
of M degree of usefulness is incomplete, we can upgrade it
into H degree by constructing additional verb rules based on
additional observations.

V. FORMAL PRESENTATION OF COMPUTATIONAL VERB
RULE BASES USING BOOLEAN MATRICES

Definition 9 (Boolean matrix): An m × n Boolean matrix
is a matrix consisting of m rows and n columns and, of which
each element can only take 0 or 1 as its value.

The formal presentation of a computational verb rule base
using Boolean matrix is constructed as follows.

1) Label the rows of the Boolean matrix with all permuta-
tions of computational verb phrases of inputs;

2) Label the columns of the Boolean matrix with all
permutations of computational verb phrases of outputs;

3) If an element corresponds to a mapping between an input
permutation to an output permutation, then set its value
to 1. Otherwise, set its value to 0.

TABLE I
THE DEGREE OF USEFULNESS OF COMPUTATIONAL VERB RULE BASES

WITH PERMUTATIONS OF DIFFERENT PROPERTIES OF COMPUTATIONAL

VERB RULE BASES (Y=YES AND N=NO).

no. complete exhaustive consistent monotonic degree
1 Y Y Y Y H
2 Y Y Y N H
3 Y N Y Y H
4 Y N Y N H
5 N Y Y Y M
6 N Y Y N M
7 N N Y Y M
8 N N Y N M
9 Y Y N Y L
10 Y Y N N L
11 Y N N Y L
12 Y N N N L
13 N Y N Y L
14 N Y N N L
15 N N N Y L
16 N N N N L

TABLE II
LABELING THE BOOLEAN MATRIX FOR VERB RULE BASE (19)

Input/output II ID DI DD
III 0 0 0 1
IID 0 0 0 0
IDI 0 0 0 0
IDD 0 0 0 0
DII 0 1 0 0
DID 0 0 0 0
DDI 1 0 0 0
DDD 0 0 0 0

Example 1: Consider the following verb rule base of which
both input and output take two computational verbs increase
and decrease.

IF [x1 increase] ∧ [x2 increase] ∧ [x3 increase],
THEN [y1 decrease] ∧ [y2 decrease];
IF [x1 decrease] ∧ [x2 increase] ∧ [x3 increase],
THEN [y1 increase] ∧ [y2 decrease];
IF [x1 decrease] ∧ [x2 decrease] ∧ [x3 increase],
THEN [y1 increase] ∧ [y2 increase].

(19)

The Boolean matrix is constructed as shown in Table II and
given by

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
1 0 0 0
0 0 0 0

. (20)

Based on the formal presentation of verb rule bases using
Boolean matrices, the properties of verb rule bases can be
easily defined as follows.

Definition 10 (Complete): A verb rule base is complete if
and only if there is at least one 1 in each row of its Boolean
matrix.

YANG, COMPUTATIONAL VERB RULE BASES 31

Definition 11 (Incomplete): A verb rule base is incomplete
if and only if there is at least one row of its Boolean matrix
consists of all 0’s.

Definition 12 (Exhaustive): A verb rule base is exhaustive
if and only if there is at least one 1 in each column of its
Boolean matrix.

Definition 13 (Non-exhaustive): A verb rule base is non-
exhaustive if and only if there is at least one column of its
Boolean matrix consists of all 0’s.

Definition 14 (Consistent): A verb rule base is consistent
if and only if there is no more than one 1 in each row of its
Boolean matrix.

Definition 15 (inconsistent): A verb rule base is inconsis-
tent if and only if there is at least one row of its Boolean
matrix consists of more than one 1.

Definition 16 (Monotonic): A verb rule base is monotonic
if and only if there is no more than one 1 in each column of
its Boolean matrix.

Definition 17 (Non-monotonic): A verb rule base is non-
monotonic if and only if there is at least one column of its
Boolean matrix consists of more than one 1.

VI. MERGING COMPUTATIONAL VERB RULE BASES

Given the following two computational verb rule bases

VrB1 :
IF [x1Vi1] ∧ . . . ∧ [xmVim],
THEN [y1V̂i1] ∧ . . . ∧ [yoV̂io];

VrB2 :
IF [x̃1Ṽj1] ∧ . . . ∧ [x̃kṼjk],
THEN [ỹ1V̄j1] ∧ . . . ∧ [ỹpV̄jp];
i = 1, . . . , n; j = 1, . . . , r. (21)

Let B1 and B2 be the Boolean matrices of VrB1 and VrB2,
respectively. And assume that B1 and B2 are p1 × q1 and
p2 × q2 Boolean matrices, respectively. The permutations of
verb phrases for inputs used by VrB1 and VrB2 are packed into
two vectors x1 and x2, respectively. x1 is p1 dimensional
while x2 is p2 dimensional. The permutations of verb phrases
for outputs used by VrB1 and VrB2 are packed into two vectors
y1 and y2, respectively. y1 is q1 dimensional while y2 is q2

dimensional. Observe that x1 and y1 are row label vector and
column label vector of B1, respectively. And x2 and y2 are
row label vector and column label vector of B2, respectively.

Let B be the Boolean matrix of the merging verb rule base
VrB = VrB1+VrB2. B is a p1p2×q1q2 matrix. Let x and y denote
the row label and column label vectors of B, respectively. x
and y are p1p2 and q1q2 dimensional matrices, respectively.
Then we have

x = rw(x1 ¯ x>2),
y = rw(y1 ¯ y>2) (22)

where rw(A) denotes the operation of repack elements of

matrix A into a vector. For example,

rw
(

a b c
d e f

)
=

a
b
c
d
e
f

. (23)

The symbol “¯” denotes a symbolic dot product illustrated as
follow.

(
1
2

)
¯ (

1 2 3
)

=
(

11 12 13
21 22 23

)
,

(
a
b

)
¯ (

a b c
)

=
(

aa ab ac
ba bb bc

)
,

(
a
b

)
¯ (

1 2 3
)

=
(

a1 a2 a3
b1 b2 b3

)
. (24)

Let’s pack all elements of B1 and B2 row wise into p1q1-
vector v1 and p2q2-vector v2, respectively. Calculate a p1q1×
p2q2 matrix A as

A = v1v
>
2 = rw(B1)[rw(B2)]>. (25)

We split A into a p1 × p2 block matrix as follow

A =

A11 . . . A1p2

...
. . .

...
Ap11 . . . Ap1p2

 (26)

where Aij , i = 1, . . . , p1; j = 1, . . . , p2 are q1 × q2 matrix.
Then we first repack all Aij row-wisely and then repack each
Aij row-wisely to form the Boolean matrix as

B =

{rw(A11)}>
...

{rw(A1p2)}>
...

{rw(Ap11)}>
...

{rw(Ap1p2)}>

(27)

Example 2: Let B1 and B2 be

B1 =
(

1 0
1 1

)
, B2 =

(
0 1 1
1 0 1

)
, (28)

the row label and column label vectors of B1 are given by

x1 =
(

a
b

)
, y1 =

(
α
β

)
, (29)

and row label and column label vectors of B2 are given by

x2 =
(

1
2

)
, y2 =

3
4
5

 . (30)

32 INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION (HTTP://WWW.IJCC.US), VOL. 6, NO. 3, SEPTEMBER 2008

The row label vector and column label vector of B are given
by

x =

a1
a2
b1
b2

 , y =

α3
α4
α5
β3
β4
β5

. (31)

We calculate matrix A as

A = rw(B1)[rw(B2)]>

=

1
0
1
1

0
1
1
1
0
1

>

=

0 1 1 1 0 1
0 0 0 0 0 0
0 1 1 1 0 1
0 1 1 1 0 1

 , (32)

from which the block matrices are given by

A11 =
(

0 1 1
0 0 0

)
, A12 =

(
1 0 1
0 0 0

)
,

A21 =
(

0 1 1
0 1 1

)
, A22 =

(
1 0 1
1 0 1

)
. (33)

Then B is given by

B =

0 1 1 0 0 0
1 0 1 0 0 0
0 1 1 0 1 1
1 0 1 1 0 1

 . (34)

A fast algorithm to calculate B is given as follow.
Algorithm 1: Let B1 = {b1(i, j)}, then B can be con-

structed as

B =

b1(1, 1)B2 . . . b1(1, q1)B2

...
. . .

...
b1(p1, 1)B2 . . . b1(p1, q1)B2

 . (35)

Example 3: Let us use the fast algorithm to redo Exam-
ple 2.

B =

1
(

0 1 1
1 0 1

)
0

(
0 1 1
1 0 1

)

1
(

0 1 1
1 0 1

)
1

(
0 1 1
1 0 1

)

=

0 1 1 0 0 0
1 0 1 0 0 0
0 1 1 0 1 1
1 0 1 1 0 1

 . (36)

VII. SPLITTING COMPUTATIONAL VERB RULE BASES

The reverse process of merging verb rule bases as presented
in Section VI is to split a verb rule base into two verb rule
bases. It follows from Algorithm 1 that only VrB with Boolean
matrix B of the form in Eq. (35) can be split into two VrB’s.

Algorithm 2: For any p1p2 × q1q2 Boolean matrix B, let
us split it into p1 × q1 block matrices {Aij}. If Aij’s can
be categorized two classes, one of which consists of all zero
elements and the other of which consists of at least one 1,
then B can be split into the following two Boolean matrices.

B1 = {bij}, bij =
{

0, if Aij contains no 1,
1, if Aij contains at least one 1,

B2 = Aij , if Aij contains at least one 1. (37)
Example 4:

B =

0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0

 (38)

Observe that if we choose Aij to be 2× 3 matrices, then Aij

can be categorized into the following two types:

A1 =
(

0 1 0
0 1 0

)
, A0 =

(
0 0 0
0 0 0

)
. (39)

And we have

B =
(

A1 A0 A1

A0 A1 A0

)
(40)

Therefore, B can be split into

B1 =
(

1 0 1
0 1 0

)
,B2 = A1 =

(
0 1 0
0 1 0

)
. (41)

Example 5: In Example 4 if we choose

A1 =
(

0 1 0
)
, A0 =

(
0 0 0

)
, (42)

then

B =

A1 A0 A1

A1 A0 A1

A0 A1 A0

A0 A1 A0

 . (43)

Therefore, B can be split into

B1 =

1 0 1
1 0 1
0 1 0
0 1 0

 ,B2 = A1 =

(
0 1 0

)
. (44)

Observe from Examples 4 and 5 that some verb rule bases
can be split into different sets of verb rule bases.

VIII. CONCLUDING REMARKS

To manage the complexity of verb rule models of engineer-
ing systems, we need to either merge or split verb rule bases.
When two verb rule bases are closely related to each other, we
usually merge them into one. On the other hand, if it becomes
too difficult to handel a big verb rule set, we usually split it
into smaller verb rule bases. However, not all big rule bases
can be split into smaller ones. Boolean matrices provide us
with an efficient tool to study the properties of verb rule bases
and a tool to merge and split verb rule bases. However, to split
a big verb rule base into smaller ones is lack of general method
though Algorithm 2 provides an easy way to split verb rule
bases of special configurations. To split big verb rule bases
is much more important than to merge small verb rule bases
because in engineering we usually divide a complex problem
into controllable small ones. Therefore, future studies will be
focused on splitting verb rules bases.

YANG, COMPUTATIONAL VERB RULE BASES 33

REFERENCES

[1] Guanrong Chen and Trung Tat Pham. Introduction to Fuzzy Systems.
Chapman & Hall/CRC, November 2005. ISBN:1-58488-531-9.

[2] Wanmi Chen, Yanqin Wei, Minrui Fei, and Huosheng Hu. Applications
of computational verbs to image processing of RoboCup small-size
robots. In Intelligent Control and Automation, volume 344/2006 of
Lecture Notes in Control and Information Sciences, pages 494–499.
Springer, Berlin / Heidelberg, 2006.

[3] Yi Guo. A study of adverbs as modifiers of computational verbs. Inter-
national Journal of Computational Cognition, 6(1):31–35, March 2008
[available online at http : //www.YangSky.us/ijcc/ijcc61.htm,
http : //www.YangSky.com/ijcc/ijcc61.htm].

[4] Yang’s Scientific Research Institute LLC. FireEye Visual Flame
Detecting Systems. http://www.yangsky.us/products/flamesky/index.htm,
http://www.yangsky.com/products/flamesky/index.htm, 2005.

[5] Yang’s Scientific Research Institute LLC. BarSeer Webcam
Barcode Scanner. http://www.yangsky.us/demos/barseer/barseer.htm,
http://www.yangsky.com/demos/barseer/barseer.htm, 2006.

[6] Yang’s Scientific Research Institute LLC. Cognitive
Stock Charts. http://www.yangsky.us/products/stock/,
http://www.yangsky.com/products/stock/, 2006.

[7] Yang’s Scientific Research Institute LLC. PornSeer
Pornographic Image and Video Detection Systems.
http://www.yangsky.us/products/dshowseer/porndetection/PornSeePro.htm,
http://www.yangsky.com/products/dshowseer/porndetection/PornSeePro.htm,
2006.

[8] Yang’s Scientific Research Institute LLC. and Wuxi
Xingcard Technology Ltd. YangSky-MAGIC Visual Card
Counters. http://www.yangsky.us/products/cardsky/cardsky.htm,
http://www.yangsky.com/products/cardsky/cardsky.htm, 2004.

[9] Yang’s Scientific Research Institute LLC. and Chinese Traf-
fic Management Research Institute of the Ministry of Public
Security(TMRI-China). DriveQfy Automatic CCTV Driver Qualify
Testing Systems. http://www.yangsky.us/products/driveqfy/driveqfy.htm,
http://www.yangsky.com/products/driveqfy/driveqfy.htm, 2005.

[10] R. Tonelli and T. Yang. Synchronizing Hénon maps using computational
verb controllers. Phys. Rev. E., 2007. submitted.

[11] R. Tonelli and T. Yang. Controlling Chua’s circuits using computational
verb controllers. International Journal of Robust and Nonlinear Control,
Apr. 17 2008.

[12] H.-B. Wang and T. Yang. Training neural networks
using computational verb rules. International Journal of
Computational Cognition, 6(2):17–32, June 2008 [available
online at http : //www.YangSky.us/ijcc/ijcc62.htm,
http : //www.YangSky.com/ijcc/ijcc62.htm].

[13] T. Yang. Verbal paradigms—Part I: Modeling with verbs. Technical
Report Memorandum No. UCB/ERL M97/64, Electronics Research
Laboratory, College of Engineering, University of California, Berkeley,
CA 94720, 9 Sept. 1997. page 1-15.

[14] T. Yang. Verbal paradigms—Part II: Computing with verbs. Technical
Report Memorandum No. UCB/ERL M97/66, Electronics Research
Laboratory, College of Engineering, University of California, Berkeley,
CA 94720, 18 Sept. 1997. page 1-27.

[15] T. Yang. Computational verb systems: Computing with verbs and
applications. International Journal of General Systems, 28(1):1–36,
1999.

[16] T. Yang. Computational verb systems: Adverbs and adverbials as
modifiers of verbs. Information Sciences, 121(1-2):39–60, Dec. 1999.

[17] T. Yang. Computational verb systems: Modeling with verbs and
applications. Information Sciences, 117(3-4):147–175, Aug. 1999.

[18] T. Yang. Computational verb systems: Verb logic. International Journal
of Intelligent Systems, 14(11):1071–1087, Nov. 1999.

[19] T. Yang. Computational verb systems: A new paradigm for artificial
intelligence. Information Sciences—An International Journal, 124(1-
4):103–123, 2000.

[20] T. Yang. Computational verb systems: Verb predictions and their
applications. International Journal of Intelligent Systems, 15(11):1087–
1102, Nov. 2000.

[21] T. Yang. Computational verb systems: Verb sets. International Journal
of General Systems, 20(6):941–964, 2000.

[22] T. Yang. Advances in Computational Verb Systems. Nova Science
Publishers, Inc., Huntington, NY, May 2001. ISBN 1-56072-971-6.

[23] T. Yang. Computational verb systems: Computing with perceptions of
dynamics. Information Sciences, 134(1-4):167–248, Jun. 2001.

[24] T. Yang. Computational verb systems: The paradox of the liar. Inter-
national Journal of Intelligent Systems, 16(9):1053–1067, Sept. 2001.

[25] T. Yang. Computational verb systems: Verb numbers. International
Journal of Intelligent Systems, 16(5):655–678, May 2001.

[26] T. Yang. Impulsive Control Theory, volume 272 of Lecture Notes in
Control and Information Sciences. Spinger-Verlag, Berlin, Aug. 2001.
ISBN 354042296X.

[27] T. Yang. Computational Verb Theory: From Engineering, Dynamic
Systems to Physical Linguistics, volume 2 of YangSky.com Monographs
in Information Sciences. Yang’s Scientific Research Institute, Tucson,
AZ, Oct. 2002. ISBN:0-9721212-1-8.

[28] T. Yang. Computational verb systems: Verbs and dynamic systems.
International Journal of Computational Cognition, 1(3):1–50, Sept.
2003.

[29] T. Yang. Fuzzy Dynamic Systems and Computational Verbs Represented
by Fuzzy Mathematics, volume 3 of YangSky.com Monographs in In-
formation Sciences. Yang’s Scientific Press, Tucson, AZ, Sept. 2003.
ISBN:0-9721212-2-6.

[30] T. Yang. Physical Linguistics: Measurable Linguistics and Duality
Between Universe and Cognition, volume 5 of YangSky.com Monographs
in Information Sciences. Yang’s Scientific Press, Tucson, AZ, Dec. 2004.

[31] T. Yang. Simulating human cognition using computational verb theory.
Journal of Shanghai University(Natural Sciences), 10(s):133–142, Oct.
2004.

[32] T. Yang. Architectures of computational verb controllers: Towards
a new paradigm of intelligent control. International Journal
of Computational Cognition, 3(2):74–101, June 2005 [available
online at http : //www.YangSky.com/ijcc/ijcc32.htm,
http : //www.YangSky.us/ijcc/ijcc32.htm].

[33] T. Yang. Applications of computational verbs to the
design of P-controllers. International Journal of Com-
putational Cognition, 3(2):52–60, June 2005 [available
online at http : //www.YangSky.us/ijcc/ijcc32.htm,
http : //www.YangSky.com/ijcc/ijcc32.htm].

[34] T. Yang. Applications of computational verbs to digital
image processing. International Journal of Computa-
tional Cognition, 3(3):31–40, September 2005 [available
online at http : //www.YangSky.us/ijcc/ijcc33.htm,
http : //www.YangSky.com/ijcc/ijcc33.htm].

[35] T. Yang. Bridging the Universe and the Cognition. Interna-
tional Journal of Computational Cognition, 3(4):1–15, December 2005
[available online at http : //www.YangSky.us/ijcc/ijcc34.htm,
http : //www.YangSky.com/ijcc/ijcc34.htm].

[36] T. Yang. Applications of computational verbs to effective
and realtime image understanding. International Journal of
Computational Cognition, 4(1):49–67, March 2006 [available
online at http : //www.YangSky.com/ijcc/ijcc41.htm,
http : //www.YangSky.us/ijcc/ijcc41.htm].

[37] T. Yang. Applications of computational verbs to feeling
retrieval from texts. International Journal of Computa-
tional Cognition, 4(3):28–45, September 2006 [available
online at http : //www.YangSky.com/ijcc/ijcc43.htm,
http : //www.YangSky.us/ijcc/ijcc43.htm].

[38] T. Yang. Rule-wise linear computational verb systems:
Dynamics and control. International Journal of Compu-
tational Cognition, 4(4):18–33, December 2006 [available
online at http : //www.YangSky.com/ijcc/ijcc44.htm,
http : //www.YangSky.us/ijcc/ijcc44.htm].

[39] T. Yang. Applications of computational verbs to cognitive
models of stock markets. International Journal of
Computational Cognition, 4(2):1–13, June 2006 [available
online at http : //www.YangSky.us/ijcc/ijcc42.htm,
http : //www.YangSky.com/ijcc/ijcc42.htm].

[40] T. Yang. Applications of computational verbs to the study of the effects
of Russell’s annual index reconstitution on stock markets. Interna-
tional Journal of Computational Cognition, 4(3):1–8, September 2006
[available online at http : //www.YangSky.us/ijcc/ijcc43.htm,
http : //www.YangSky.com/ijcc/ijcc43.htm].

[41] T. Yang. Bridging computational verbs and fuzzy member-
ship functions using computational verb collapses. International
Journal of Computational Cognition, 4(4):47–61, December 2006
[available online at http : //www.YangSky.us/ijcc/ijcc44.htm,
http : //www.YangSky.com/ijcc/ijcc44.htm].

[42] T. Yang. Computational verb decision trees. International
Journal of Computational Cognition, 4(4):34–46, December 2006
[available online at http : //www.YangSky.us/ijcc/ijcc44.htm,
http : //www.YangSky.com/ijcc/ijcc44.htm].

34 INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION (HTTP://WWW.IJCC.US), VOL. 6, NO. 3, SEPTEMBER 2008

[43] T. Yang. Distances and similarities of saturated com-
putational verbs. International Journal of Computa-
tional Cognition, 4(4):62–77, December 2006 [available
online at http : //www.YangSky.us/ijcc/ijcc44.htm,
http : //www.YangSky.com/ijcc/ijcc44.htm].

[44] T. Yang. Stable computational verb controllers. International
Journal of Computational Cognition, 4(4):9–17, December 2006
[available online at http : //www.YangSky.us/ijcc/ijcc44.htm,
http : //www.YangSky.com/ijcc/ijcc44.htm].

[45] T. Yang. Using computational verbs to cluster trajec-
tories and curves. International Journal of Computa-
tional Cognition, 4(4):78–87, December 2006 [available
online at http : //www.YangSky.us/ijcc/ijcc44.htm,
http : //www.YangSky.com/ijcc/ijcc44.htm].

[46] T. Yang. Accurate video flame-detecting system based on computational
verb theory. AS Installer, (42):154–157, August 2007. (in Chinese).

[47] T. Yang. The Mathematical Principles of Natural Languages: The First
Course in Physical Linguistics, volume 6 of YangSky.com Monographs
in Information Sciences. Yang’s Scientific Press, Tucson, AZ, Dec. 2007.
ISBN:0-9721212-4-2.

[48] T. Yang. Applications of computational verb theory to the de-
sign of accurate video flame-detecting systems. International
Journal of Computational Cognition, 5(3):25–42, September 2007
[available online at http : //www.YangSky.us/ijcc/ijcc53.htm,
http : //www.YangSky.com/ijcc/ijcc53.htm].

[49] T. Yang. Cognitive engineering and cognitive industry. Interna-
tional Journal of Computational Cognition, 5(3):1–24, September 2007
[available online at http : //www.YangSky.us/ijcc/ijcc53.htm,
http : //www.YangSky.com/ijcc/ijcc53.htm].

[50] T. Yang. Computational verb neural networks. International
Journal of Computational Cognition, 5(3):57–62, September 2007
[available online at http : //www.YangSky.us/ijcc/ijcc53.htm,
http : //www.YangSky.com/ijcc/ijcc53.htm].

[51] T. Yang. Computational verb theory: Ten years later. Interna-
tional Journal of Computational Cognition, 5(3):63–86, September 2007
[available online at http : //www.YangSky.us/ijcc/ijcc53.htm,
http : //www.YangSky.com/ijcc/ijcc53.htm].

[52] T. Yang. Learning computational verb rules. International
Journal of Computational Cognition, 5(3):43–56, September 2007
[available online at http : //www.YangSky.us/ijcc/ijcc53.htm,
http : //www.YangSky.com/ijcc/ijcc53.htm].

[53] T. Yang and Y. Guo. Measures of ambiguity of computa-
tional verbs based on computational verb collapses. International
Journal of Computational Cognition, 5(4):1–12, December 2007
[available online at http : //www.YangSky.us/ijcc/ijcc54.htm,
http : //www.YangSky.com/ijcc/ijcc54.htm].

[54] Jian Zhang and Minrui Fei. Determination of verb similarity
in computational verb theory. International Journal of
Computational Cognition, 3(3):74–77, September 2005 [available
online at http : //www.YangSky.us/ijcc/ijcc33.htm,
http : //www.YangSky.com/ijcc/ijcc33.htm].

[55] Sheng Zhu, Zhong-Jie Wang, Yong Liu, and Bao-Liang Xia. An
improvement of the design of computational verb PID-controllers.
System Simulation Technology, 2(1):25–30, Jan. 2006. (in Chinese).

