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Abstract

Modeling and simulating the effects of human factors on landscape change remain as challenges for ecological
studies. In this paper, we present a dynamic landscape simulation (DLS) approach to elucidate human-induced
landscape changes for a 5104 km? study area within the Chicago metropolitan region. The DLS consists of an urban
growth simulation submodel and a land-cover simulation submodel. This approach simulates urban land-use
expansion by incorporating socioeconomic and demographic data and predicts changes in the landscape as a result
of urban expansion. A utility function of spatial choice and a methodology for the construction of that utility
function were developed to execute the process. The approach, with dynamic adjustment of transition structures (i.e.
the transition potentials, threshold and rate), overcomes the shortcomings of static and statistical models that use a
constant transition probability in simulation modeling. It also allows selected economic principles to be integrated
into landscape simulation. In this study, historical land-cover and census data were applied to derive transition
thresholds and transition rates of the land cover changes. Comparison of the 1997 land-cover maps derived by a DLS
simulation and by the classification of Landsat Thematic Mapper (TM) remotely sensed data indicated that a 62.3%
overall agreement was achieved among the changed areas. Landscape simulations of the study area from 1997 to 2020
at 5 year time interval were prepared. The results depicted the trends of landscape change in this large urban setting
area. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Landscape pattern has four basic elements:
number, size, shape, and juxtaposition of patches.
These elements are important contributors to the
interpretation of ecological processes (Gardner et
al., 1987; O’Neill et al., 1988; Dunn et al., 1990).

* Corresponding author. Tel.: + 1-401-8744345; fax: + 1-
401-8744561.
E-mail address: yqwang@uri.edu (Y. Wang).

Landscapes represent complex ecological systems
that operate over broad spatio-temporal scales
(O’Neill et al., 1989). Considerable interest has
focused on the simulation of landscape dynamics
(e.g. Turner, 1987; Turner, et al., 1989; Muller
and Middleton, 1994; Boerner et al., 1996;
Childress, 1997). Since a landscape pattern at any
given time is a stage on which dynamic processes
occur, quantitative landscape studies require that
time, or temporal change, be considered (Dunn et
al., 1990).
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Both natural and socioeconomic processes drive
landscape change. Among human factors, urban
land expansion is one of the main driving forces
that changes landscapes and threatens natural
ecosystems. Human demand for land and exten-
sive land conversion for economic activities accel-
erate losses of biodiversity (Ehrlich, 1988; Liu and
Ashton, 1998). Socioeconomic and demographic
data have, until recently, rarely been linked with
other biophysical data in landscape studies (Lo
and Faber, 1997). Simulation of human-influ-
enced landscape change remains as a research
challenge (Flamm and Turner, 1994).

Modeling approaches that incorporate human
factors into landscape simulation have long been
explored (Turner, 1987; Hall et al., 1988). Flamm
and Turner (1994) tested stochastic simulation
models to integrate socioeconomic and ecological
information into a spatially explicit transition
model of landscape change. Their simulations
were designed to compare pixel-based (100 m),
patch-based, and ownership-based transition
models in order to evaluate the effects of incorpo-
rating differing amounts of information about the
landscape into the model. Socioeconomic data
were applied to construct transition probabilities
and introduce human influences into landscape
simulations.

When human activities are considered, Markov
models which handle stationary processes may
not be appropriate, because transition probabili-
ties among landscape states are not constant
(Boerner et al., 1996). Traditional cellular au-
tomaton (CA) models do not consider variation
of transition structures throughout a large study
area in which unbalanced human influences on
landscapes may occur. A hybrid Markov-cellular
automaton (M-CA) model is a new approach in
spatio-temporal dynamic modeling (Silvertown et
al., 1992; Li and Reynolds, 1997). In M-CA mod-
eling, the Markov process controls temporal dy-
namics among the cover types through the use of
transition probabilities (e.g. Turner, 1987; Silver-
town et al., 1992). Spatial dynamics are controlled
by local rules determined either by the cellular
automaton mechanism (neighborhood configura-
tion) or by its association with the transition
probability (e.g. Silvertown et al., 1992). It has

been recognized that GIS data have great poten-
tial for M-CA modeling, both in the model devel-
opment and simulation phases (Zhou and
Liebhold, 1995). A major advantage of the M-CA
approach is that GIS and remote sensing data can
be efficiently incorporated (Li and Reynolds,
1997). In particular, temporal GIS data can be
used to define initial conditions, to parameterize
M-CA models, to calculate transition probabili-
ties and to determine the neighborhood rules.
Although the potential has been discussed by Li
and Reynolds (1997), multitemporal remote sens-
ing data and the derivatives of sequentially devel-
oped GIS data have rarely been directly
incorporated into dynamic simulation modeling.

Since urban land expansion is one of the main
factors that affects natural ecosystems, a dynamic
mechanism in urban growth simulation is a key
for revealing human impacts on landscape
change. GIS spatial analysis provides support for
formulating operational and practical urban and
regional models. In general, four categories of
GIS-based models have been applied to predict
the evolution of urban and regional spatial struc-
tures. These include statistical models (Jensen et
al., 1994); Lowry-type models (Parrot and Stutz,
1991); spatial choice behavior models (Zhang and
He, 1997); and CA models (Xie, 1996; Clarke and
Gaydos, 1998; Wu, 1998). Spatio-temporal inter-
actions among the spatial compartments and sub-
systems were not considered as an integral
component of the models. Most of these models
cannot describe dynamic structures of urban sys-
tems when spatial interactions among system ele-
ments are required and when the dynamic
evolution of urban spatial structure needs to be
considered.

In order to reveal human-induced landscape
change, we developed a dynamic landscape simu-
lation (DLS) approach. The DLS incorporates
and quantifies socioeconomic and demographic
factors using utility functions of spatial choice.
This new approach differs from the previous static
and statistical models in that it enables economic
principles, such as utility and marginal utility, to
be imbedded directly in landscape simulation. Dy-
namic adjustments of transition rates and
thresholds were implemented in the DLS coupled
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by the use of multiscale spatial units. The DLS
creates a new mechanism to study the impact of
human factors on landscape dynamics. Therefore,
the objective of this paper is to illustrate the DLS
modeling approach and the testing results. We first
introduce the model structure. Then, we discuss the
methods for model construction. Finally, as an
application example, we simulate the landscape
change within the metropolitan Chicago area using
the DLS approach.

2. Methods
2.1. Study area

The study area is located in a semicircular zone
between 30 and 65 km from the center of downtown
Chicago and is about 5104 km? in area. The
Chicago metropolitan area contains some of the
world’s best remaining patches of endangered nat-
ural communities. This significant concentration of
rare natural ecosystems includes eastern tallgrass
prairie, oak-savanna, open woodland, and wooded
and prairie wetland. The existing patches are small
and isolated. Long-term survival of these commu-
nities depends on proper management of much
larger, restorable acreage that surrounds and con-
nects the high-quality remnants. Like most
metropolitan areas, the Chicago region has experi-
enced dramatic land-cover change in the past three
decades. Population increase and employment-re-
lated decentralization of population are among the
dominant driving factors that result in landscape
change. For example, from 1970 to 1990, the
region’s population and employment increased by
4 and 21%, respectively, while the urban land area
increased by 47%. Land-cover changes occurred
mostly in the suburban areas where there are
concentrations of natural preserves. As recently
projected by the U.S. Bureau of the Census and
endorsed by the Northeastern Illinois Planning
Commission (NIPC), the Chicago region’s popula-
tion and employment will grow by the year 2020
to more than 9 million and to 5.3 million, a 25 and
37% increase from 1990, respectively (NIPC, 1998).
The impacts of the projected population and em-
ployment increases on the region’s landscape are

unknown. Urban land expansion accelerates frag-
mentation and degradation of natural communities
in this large urban setting environment. What the
effects of socioeconomic and demographic changes
on the landscape will be remains a question to
answer.

Distance from downtown Chicago is considered
an important character of the regional landscape.
A half-ring pattern can be observed from both
Landsat images and the derivatives of land cover
maps. We subjectively created five concentric zones
to quantify the half-ring pattern of the landscape
(Fig. 1). The zones divided the Chicago metropoli-
tan region into 0—15 km (Zone I), 15-30 km (Zone
II), 30—45 km (Zone III), 45— 65 km (Zone IV), and
> 65 km (Zone V) areas. The distance was mea-
sured from the center of Chicago. Land-cover
information derived from 1997 Landsat Thematic
Mapper (TM) data revealed that Zone III and Zone
IV are among the most fragmented areas in the
region (Table 1). The highest patch densities of
natural areas were observed in Zone III (4.05
patches/km?) and in Zone IV (3.90 patches/km?).
These two zones were the most changed areas
between 1985 and 1997 in urban land expansion
(Table 2). Population and employment forecasting
data (NIPC, 1998) indicate that the municipalities
within or close to these two zones will be among
the most changed areas from year 1990-2020.
Landscapes within these areas will be affected
dramatically by expanding urbanization. Therefore
these two zones were selected as the study area.

2.2. Model structure

The DLS consists of an urban growth simulation
submodel and a land-cover simulation submodel
(Fig. 2). The urban growth submodel simulates the
urban land expansion driven by socioeconomic and
demographic factors. The land-cover simulation
submodel predicts landscape change as the result of
urban spatial growth. The simulation is controlled
by the spatial choice utility function. Socioeco-
nomic and demographic data, land-cover data of
multiple years derived from Landsat remotely
sensed images, and multisource GIS data were
employed to define the simulation conditions and
restrictions.
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2.2.1. Spatial units

We created three levels of spatial units: section,
compartment, and cell in DLS modeling. A section
is the basic spatial unit for the construction of
transition structures. It is not to be confused with

Land cover 1985

subunits of the public land survey system. Multi-
ple sections were applied to present variations of
land transitions. This separation allowed us to use
more than one transition rate in a large area,
which overcame the shortcomings of using a sin-

Urban land change: 1985-1997
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Fig. 1. Land cover of northeastern Illinois in 1985 and 1997, and the land cover changes.
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Table 1
Landscape patch density of the Chicago region in 1997

145

Distance and area of the Natural area Unassociated growth Agriculture land Urban land
zones (Patches/km?) (Patches/km?) (Patches/km?) (Patches/km?)
Zone I (0-15 km, 473.92 0.93 1.12 0.33 1.9
km?)
Zone II (15-30 km, 1187.65 2.65 2.94 0.62 3.38
km?)
Zone III (3045 km, 4.05 2.9 1.41 3.36
1768.19 km?)
Zone IV (45-65 km, 3.9 2.5 2.26 2.81
3335.43 km?)
Zone V (>65 km, 4887.67 3.39 2.32 2.58 2.19
km?)
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Fig. 2. The DLS model takes multi-year socioeconomic and demographic data, biophysical data, and m

ulti-year land-cover data as

input. Urban growth simulation submodel and land-cover simulation submodel are integrated using utility function of spatial choice.
Spatiotemporal interaction between two submodels is achieved by three levels of spatial units, i.e. section, compartment, and cell.

The simulation is controlled by dynamic transition thresholds and rates, spatial constraints, and socioeco
factors. The model output represents a dynamic series of landscape simulations.

nomic/demographic driving

gle transition rate to simulate the landscape of the acters of the region were referenced to design the

entire region. Spatial location and landscape char- eight sections for the study

area (Fig. 3).



Table 2
Urban land-cover changes of the study area, between 1985 and 1997, by zones

4!

Land cover Nature to urban  Unasso. growth to urban Agriculture to urban Urban land in Urban land change (%) Urban change density
change (ha.) (ha.) (ha.) 1985 (ha.) 1985-1997 (ha./km?)

Zone 1 329 295 149 38 059 2.03 1.63

Zone 11 3559 3232 1335 48 037 16.92 6.84

Zone 111 5505 7479 7428 32917 62.01 11.54

Zone 1V 5049 7663 10 044 29 898 76.11 7.26

Zone V 1739 4896 6035 23992 52.81 4.04
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Compartments, 2.5 x 2.5 km areas within sec-
tions, are the second level spatial unit. They con-
trol the spatial step of the simulation for the
urban growth submodel. Each compartment pos-
sesses a set of state variables. The state variables
are constant at a given model iteration. Urbanized
area in each compartment is calculated at a given
time interval Az based on the initial state condi-
tion at time z. The change of urbanized land, as a
new state variable of the compartment, represents
a driving factor in landscape change. The size of
the compartment was determined by referencing
the mean size of the polygons that represent the
270 municipalities of the Chicago metropolitan
region.

The cell, sized at 150 x 150 m (5 x 5 Landsat
TM pixels), is the minimum spatial unit in the
DLS model. A cell reflects the land-cover status at
a given time in this spatial unit. Under the control
of the expected urbanized area within each com-
partment at time 7+ A¢, the states of cells at
t + At are simulated. Cells within different com-

Study Area and Sections

partments have different controls for their ex-
pected urban land areas. Changes of a cell’s
land-cover types alter the state variable of the
compartment.

2.2.2. Urban growth simulation submodel

The urban growth simulation submodel is a key
to bridging the human driving factors and land-
scape change. Only when urban growth can be
effectively modeled can the impacts of population
and employment increase on landscapes be accu-
rately simulated. Therefore, an urban growth sim-
ulation was designed as a submodel in this DLS
approach. The concepts of effective population,
utility and marginal utilities, construction of util-
ity function, and using these concepts in urban
growth simulation are discussed as follows.

2.2.2.1. Effective population. In this study, urban
land consumption is considered as residential-,
commercial- and industrial-related land uses. Ef-

\ >
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\ \ Compartment and Cells
N
/'//
9 //
\ |~
%
Section and Compartments

Fig. 3. Study area and the spatial units. Section is the basic spatial unit that is applied to construct transition structures;
Compartment is the basic spatial unit for urban growth submodel. Compartment is 2.5 x 2.5 km in size. Cell is the minimum spatial
unit for land-cover simulation submodel. Cell is 150 x 150 m in size and contains 5 x 5 Landsat TM pixels.
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fective population (P is defined as the sum of
residential population (P,.;) and weighted number
of employment (P,,,) in a given spatial area.
Square kilometer is applied as the given spatial
area.

Peff: Presi + R Pempl’ (1)

P, and P, are the hosts that consume residen-
tial as well as commercial and industrial land
uses. P reflects human effects on consumption
of land by the above land uses. P,.; and P, can
be obtained from census and employment data. In
order to calculate effective population, the R (Eq.
(1)) 1s used to transform the number of employ-
ment to the weighted number of employment. R is
the ratio between average urbanized areas occu-
pied by residential and by employment in each
section.

2.2.2.2. Spatial choice and the utility function. The-
oretical studies of applying spatial choice utility
functions have been documented (Timmerman
and Borgers, 1989; Leonardi and Papageorgiou,
1992). In this study, spatial choice is a process in
which effective population compares the at-
tributes of the compartments within a feasible set
of choices and chooses the most probable com-
partment to occupy. Urban growth represents an
expansion of urban land-use that associates with
spatial choice of effective population. We define
utility as a measure that the effective population
derives from the attributes within the selected
compartments. A utility function, therefore, rep-
resents a relationship between the quantities of
the attributes of compartments that the effective
population occupies and the utilities derived from
the attributes. Each compartment has a utility
value. The utility functions are employed to derive
probabilities of the compartments that are to be
occupied by effective population.

A section of the study area is divided into a set
of compartments. Spatial location of a compart-
ment is described by its central coordinates of
z={(x1, ¥1), (X2, %), ... (x.,y.}, where Z is the
total number of compartments. The attribute vec-
tor of z is specified as S(z;t) = {s,(z; 1), 5:(z; 1),
S5(z; t)...s,(z;t)}, where n is the number of
dimensions of attribute vectors that describes the

features of the compartments. The compartments
define a discrete space for the utility function of
spatial choice. Spatial choice of the ith socioeco-
nomic element is described by utility function as:

Ulz; t)=f[S(z; 1), H(O)] + e(t) i=1,2,3...m)

(z:0e(Z: 1) z={(x, ), (X2, 32), o (X2 92))

2)
where:
Ulz; 1): is the utility function associated

with spatial choices of location z
(z=1,2,3,... Z) by the ith socioe-
conomic element at time ¢;

S(z; t): is the attribute vector of compart-
ment z at time 7;

H(1t): is the characteristic of the ith so-
cioeconomic element at time ¢;

&(1) is the random disturbance at time
L

(Z;1): is the set of locations that have

the potentials to be selected by the
ith socioeconomic element at time
L

Z =(x;yp): 1s a geometric central coordinate
of the spatial compartment z;

m: is the total number of socioeco-
nomic elements considered.

In the model, spatial choice depends on two
factors: landscape pattern (S(z; ¢)) and character-
istics of socioeconomic elements (H'(z)). Human
activities as one component of spatial choice can
be represented by a utility function.

2.2.2.3. Construction of the utility function. To
construct a utility function, we assume that the
spatial distribution of effective population obeys a
utility function of spatial choice. If P(z) is the
change rate of the density of effective population,
U is the utility function associated with spatial
choice of location by effective population, then

Pz = C U(kla k27 LERE ] kn)a (3)

where C is a constant and can be defined as the
ratio of the change rate of effective population
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and the utility value. It can be derived during the
construction of utility functions. The k;s represent
the ith attributes that impact spatial choices of
effective population. The attributes considered in-
clude: (1) density of effective population; (2) em-
ployment in a given compartment; (3) road
density; (4) degree of facility accessibility (Flamm
and Turner, 1994); (5) degree of transportation
accessibility which is the time-distance to major
transportation; and (6) proportion of non-urban
land in each compartment. All six attributes were
normalized to a range of 0—100.

To implement the above discussion, a utility
function needs to be constructed for each of the
above attributes k; (1 <j<n, n=6) by finding a
set of compartments which possess constant at-
tributes for all k; (i#;). Then k; is the only
attribute that alters the changing rate of the den-
sity of effective population.

In order to construct a utility function, a mar-
ginal utility needs to be defined. A marginal utility
is the increment of utility caused by the unit
increase of certain attribute (Peterson, 1989). The
marginal utility M, (k) is defined as:

1 AP,
M, (k;) = C Ak, (I=1,2,...L), 4)
where L is the number of compartments in the
selected set. Ak is the increment of the influence
factor. AP, is the increment of changing rate of
the density of effective population caused by the
changes of the influence factor. A curve-fitting
process can be applied to explore the relations
between influence factor k; and the change rate of
the density of effective population. Let M, (k;) be
the fitting curve function, the utility of k; is:

kj
U(k;) =L M, (k;)dk;. ()

Since the K; has been normalized to a continu-
ous variable between 0 and 100, the influencing
impact of K; can be quantified. Following the
same process, utility functions for other influence
factors, U(k,), U(k,) ... U(k,), can be derived. By
the additive rule of utility (Mansfield, 1982), the
total utility function of spatial choice for effective
population is derived as:

Ul (5,90, Kk, ) k20 = 3 Tk (9]
©

The following example explains the methodol-
ogy for constructing a utility function for the
attribute U(k,) the proportion of non-urban land.
The utility function in this example was derived
for section 6 (Fig. 3). Applied data included:
employment and residential data in 1985 and
1996, land cover data in 1985 and 1997, and road
density. The influence factors of k; (j=1,2, ..., 6)
and the P(z) between 1985 and 1997 for the 255
compartments within this section were derived
from the above data. Seventy-six compartments
that had the same influence factors of k, through
ks but different k, were selected. Therefore L =
76. The change rate of AP(z)/Aks, (1=
1,2,...,76) was calculated. For each k¢, a
corresponding AP(z)/Aks, was observed. The re-
lationship between k¢, and AP(z)/Akg,, which rep-
resented the marginal utility value of kg, was
computed (Fig. 4a). According to the law of
diminishing marginal utility (Sher and Pinola,
1981; Mansfield, 1982; Peterson, 1989), the addi-
tional utility derived from the consumption of an
additional quantity of an attribute in the com-
partments should decrease. Therefore, the fitting
curve of this relationship was expressed as an
exponential relationship:

M, (k¢) = A exp (B k), (7)

where 4 and B are constants which can be deter-
mined by the 76 pairs of ks, and AP(z)/Akg,. The
marginal utility function was derived (Fig. 4b).
From the marginal utility function the con-
structed utility function for the influence factor &,
in the selected section was obtained (Fig. 4c).

2.2.2.4. Simulating urban growth. A compartment
and a given iteration of the model are the basic
spatio-temporal units for the simulation of urban
growth. In this study, time interval Az was applied
as the time break in which the state of variables
would be adjusted. Every 5 years starting from
1997 was defined as a time interval. An initial
state of the attributes for each of the compart-
ments was obtained from multiple GIS data and
census data. In each iteration, the attributes and
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Fig. 4. The process for constructing a utility function. (a).
Relationships between proportions of non-urban land at-
tribute (k¢) and the (AP /Akg); (b) marginal utility function; (c)
utility function.

utility values were calculated. Newly added effec-
tive population in each section was allocated by
Egs. (8) and (9).

APS(i, t+ A[) = APS(t + Al) eUS(f, r)/'z eUS(i, ) (8)

i=1
AS APS(i, t + At) < A3(i, 1), 9)

where APS (i, t + At) is the increment of effective
population within the ith compartment of the Sth

section in a given time interval Az. AP (t+ At)is
the increment of effective population within the
Sth section in a given time interval Az. U® (i, 1) is
the utility of the ith compartment within the Sth
section at time 7. A3, is an average urban area for
each unit of effective population. A3 (i, ¢) is the
available land within the ith compartment of the
Sth section at time ¢ for urban expansion. The
available land was extracted from land cover data
by excluding the areas of restrictions. The areas of
restrictions include nature preserves, flood zones,
buffered areas around urban constructions and
major road networks, and other areas that are
very unlikely to be consumed by urbanization,
such as water surface and wetland sites. The
constant C in the utility function was obtained
when the allocated population (Eq. (8)) best ap-
proximated to the distribution of census popula-
tion. A search algorithm that applied the rule of
minimum of quadratic sum of residual was devel-
oped to obtain the C. If there is no available land
in one compartment, the unallocated effective
population will be reallocated to the neighboring
compartments (Eq. (9)). In each model iteration,
at first, the increment of effective population
APS (i, t + At) is allocated (Eq. (8)). If A5 APS
(i, t + Ar) < A5 (i, t), the allocation process stops.
Otherwise, unallocated effective AP! in the ith
compartment is calculated and reallocated into
neighboring compartments (Fig. 5). Cross section
reallocation of effective population is applied
when there is no available land within one section.
The expected urban land (A4,(i, t + At)) for each
compartment is derived by

A, 1+ At)= AS APS (i, t + A1). (10)

2.2.3. Land cover simulation submodel

Transition potentials and thresholds, and urban
growth simulation are the keys that affect the
results of landscape simulation. The density of
effective population and the proportion of non-
urban land cover are the two attributes that
bridge the urban growth simulation submodel and
the land-cover simulation submodel. These two
attributes dominate the interactions of the two
submodels. Expected urbanization is obtained by
Egs. (8)—(10). The urbanization controls land-
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cover simulation. The results of land-cover simu-
lation alter the influencing factors that contribute
to the utility functions (Eq. (6)).

2.2.3.1. Spatial distribution of transition potential.
Transition potential represents the possibility of
state change for a cell from current land-cover
type to other categories. Transition potential is a
function of its current land-cover type, the land-
cover types of its neighboring cells, and average
transition rate of the section. In this study, a 3 x 3
moving window was used to the 8 referenced
neighboring cells. The transition potential is ex-
pressed as:

PC"(c;, ¢;, S, t+At) = NC"(c;, t) Tr(c;, ¢;, S, 1)/8,

i Y i Y

(11
where PC"™ (c;, ¢, S, t+ At) is the transition po-

200

tential for the mth cell in the Sth section which

l

Allocation of effective population
AP t+4f)by Equation (8)

l

changes from type ¢, to ¢; from time 7 to t + At. j
is the number of all possible land-cover types.
NC™(c;, t) is the total number of cells among the
8 neighboring cells that possess the same land-
cover type of ¢; at time t. Tr(c,c;, S, 1) is the
transition rate from ¢; to ¢; at time ¢ within the
Sth section.

2.2.3.2. Spatial distribution of transition threshold.
Transition thresholds (TH) are boundary values
of transition potentials. The transition of state for
a cell will possibly take place when its transition
potential is greater than the boundary value. In
this study, a transition threshold was derived for
each transition option. A matrix of transition
thresholds was applied for each section. The ma-
trices of transition thresholds were calculated
from multi-year land covers derived from re-
motely sensed data. The search algorithm for

R AP AD < 00 1)

Ng | Unallocated effective population

—» | in ith compartment
AP= AP+ AD A3 1V A%

03
k3

End of Allocation

Allocation 47 ¢=1,2,..&of unallocated
effective population armong the 8
neighboring compatments of the ith
compartment by Equation (8)

|

AwdP} AT 1)

Unallocated population in
jth compartment
4P/= 4R BG4,

End of Allocation

Fig. 5. The process of allocation of effective population.
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The set up of initial THg(c;, ¢j)
threshold and search step ATH

v

v

TH(ci! C,): THO(civ C‘)

A

|

The transition potentials P i Ci, S, trZAY)

|

IfMax {PC™c ;. ¢, S, t#ZAY), i=12,...
Simulated transition from c;to ¢ jtakes place

n} > TH(c;, &)

TAL = to- No
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Simulated transition area AA®
Observed transition area AA°
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[THo(c,. &)= TH(E,, ) - ATH }e— —— [ THo(c:, &) =TH(C., G)+ ATH]

[Reserve TH(c;, ¢ i) ]

Fig. 6. Search algorithm for obtaining transition threshold (TH).

transition thresholds among non-urban land-
cover categories was designed (Fig. 6).

The search process for TH(c; c;) began by set-
ting up both an initial threshold TH(c; ¢;) and a
search step ATH. The initial threshold was devel-
oped subjectively by referencing the characteris-
tics of land-cover changes in the study area.
During each model iteration At, transition poten-
tials of all cells PC™ (c;, ¢;, S, t + ZAt) were calcu-
lated. At was the accumulation of time steps
within the time interval of ¢, — ¢, The transition
potential for each cell was examined. If

max [PC(c, ¢, S, 1+ Y A1), i=1,2,....,n}

> TH(c; ¢)), (12)

a simulated change for the cell from ¢; to ¢; would
take place. When X Atr=1t,—1t,, the simulated
transition area (A4°) and observed transition area
(AA°) were obtained. The (A4°) was observed
from land covers derived from historical remotely

sensed data. When (A4°~AA°), the TH (c;, ¢;)
was reserved for further use; if (A4AS>AA©,
TH(c;, ¢;)=TH(c, ¢;) + ATH; if (A4 <AA°,
TH(c; ¢;)=TH(c, ¢;) —ATH, and the new
search of TH(c;, c¢;) began. This process continued
until the set of thresholds was obtained for all
sections.

2.2.3.3. Impact simulation of urban growth on land
cover change. In each time interval Az, the urban
growth submodel simulated the expected urban
land A4,(i, t + At) for each of the compartments.
The transition threshold from non-urban to urban
land was searched under the control of expected
urban land at time ¢ 4+ Az. The following controls
were applied to simulate land-cover change for
cells: (1) the transition threshold from non-urban
to urban land for each of the compartments; (2)
the transition threshold among non-urban land-
cover types for each of the sections; and (3) the
expected urban area for each of the
compartments.
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2.2.34. Land cover simulation. Remote sensing
derived land-cover data at a given time (e.g. 1997)
were set up as the initial state for the land-cover
simulation. We calculated the total number of
cells among 8 neighboring cells which possessed
the land-cover type of ¢ at time
t, PC"(c;, c;, S, t+ At), and the transition poten-
tial for the mth cell in the Sth section which
changed from type ¢, to ¢; from time ¢ to 7 + Az. If
¢; was in the urban land category, the transition
threshold was calculated by a loop searching each
compartment. The process was controlled by ex-
pected growth of urban land (Eq. (10)). If the ¢;
was other land-cover type rather than urban, the
obtained threshold TH(c; c;) applied.

Spatial restrictions for urbanization were ap-
plied. If a cell fell into a restricted area, the
transition to urban land cover would not take
place. Transitions among other non-urban land-
cover types were possible. However, transition
from natural area to agriculture land-use was
precluded. If

PC™(c;, ¢;, S, 1+ At)
>max {PC"(¢;, ¢, S, t+At),i=1,2,...,n,1

#i,l#]} (13)
and
PC™(c;, ¢, S, t+ At) > TH(c,c;), (14)

then, the transition from ¢; to ¢; would take place.
The process continued until the simulation for all
the sections was completed for the given time
interval.

2.3. Landscape simulation and analysis methods

Landscape simulation and characterization
were organized in GIS environment. Arc/Info
8.01 (Environmental Systems Research Institute,
Redland, California, USA) and ERDAS Imagine
8.4 (ERDAS, Inc., Atlanta, Georgia, USA) soft-
ware systems, AML (Arc Micro Language) and C
programming were employed to implement the
model.

2.3.1. Data source

Primary data sources applied in this study in-
clude: (1) land-cover data of 1972, 1985, and
1997, which were derived from classification of

October 1972 Landsat Multispectral Scanner
(MSS) data and May 1985 and October 1997
Landsat TM data; (2) 1980 and 1990 census data
from the U.S. Bureau of the Census; (3) estimated
population, household, and employment data for
1996 from NIPC (1998); (4) projected population,
household, and employment data of northeastern
Illinois for the year 2020 from NIPC (1998); and
(5) GIS spatial and attribute data of municipali-
ties, transportation, flood zones, and nature pre-
serves. In the projected demographic and
employment changes, NIPC considered that the
actual future levels and distributions of popula-
tion and employment would be the result not only
of countless private sector decisions but also of
important government policy and investment ac-
tions. The forecast did not suggest a continuation
of past development patterns. Instead, the fore-
cast was based on the expectation that public
policy and investment would give increased em-
phasis to the maintenance of existing communi-
ties, revitalization of declining areas, and
cost-effective and environmentally-sensitive new
development (NIPC, 1998). We assumed that the
above considerations were applied when we used
the NIPC’s forecast data in urban growth and
landscape simulations.

2.3.2. Extraction of land cover information and
the transition rate

To extract land-cover information for
1972, 1985, and 1997, Landsat images of these
years were rectified and georeferenced to the Uni-
versal Transverse Mercator (UTM) coordinate
system. Supervised classification using a maxi-
mum likelihood classification algorithm of the
ERDAS Imagine system was employed to classify
the images. Land-cover types included woodland,
savanna, prairie, wetland, unassociated growth,
agriculture, and urban land. Unassociated growth
represented the areas created by human distur-
bance. Original natural communities had been
destroyed. Secondary trees and shrub growths
were the dominant features of wunassociated
woody growth. Unassociated grassy areas in-
cluded prairie restoration sites that had been re-
covered from formerly agricultural tracts.
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Intensive fieldwork was conducted to assist
training-signature selection, using GPS to accu-
rately position ground truth. The GPS positioning
data were differentially corrected, projected to the
UTM coordinate system, and converted into GIS
coverage in Arc/Info vector format. Using ground
truth, 132 training signatures of natural and cul-
tural land-cover categories were defined to classify
the 1997 TM image. To assist in the classification
of 1972 and 1985 Landsat data, multisource spa-
tial data were referenced. These included histori-
cal air photos; land-use and land-cover maps of
the region developed in 1974 and 1990, ecosystem
maps and management records from the forest

Table 3

Confusion matrix of classification of May 1985 Landsat TM data

preserve and conservation districts in each of the
northeastern Illinois counties; and USGS topo-
graphic maps. A total of 145 and 87 training
signatures for land-cover categories were defined
by their spectral characteristics to classify the
1985 and 1972 Landsat data, respectively.

To simplify the DLS modeling conditions, gen-
eralization was applied during post-classification
process to recode classified land-cover data into
five general land cover types, i.e. water, nature
area unassociated growth, agriculture, and urban
land. Assessment of classification accuracy for the
generalized land cover shows that about 93%
overall accuracy was achieved for the 1985 and

Classified data

Natural area  Unassociated  Agriculture Urban land Row total Omission Accuracy (%)
growth land error (%)
Reference data
Natural area 201 6 1 208 3.36 96.63
Unassociated 40 40 0 100
growth
Agriculture 52 6 58 10.34 89.66
land
Urban land 7 8 100 115 13.04 86.96
Column total 208 54 52 107 421
Commission 3.36 25.92 0 6.54 Overall 93.35%
error (%)
Table 4
Confusion matrix of classification of October 1997 Landsat TM data
Classified data
Natural area  Unassociated  Agriculture Urban land Row total Omission Accuracy (%)
growth land error (%)
Reference data
Natural area 248 6 3 1 258 3.88 96.12
Unassociated 53 2 2 57 7.02 92.98
growth
Agriculture 1 1 60 62 3.23 96.77
land
Urban land 2 8 3 92 105 12.38 87.62
Column total 251 68 68 95 482
Commission 1.98 22.06 11.76 4.17 Overall 93.98%

error (%)
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Table 5
Transition rate in sections among land cover categories be-
tween 1972 and 1997

Nature  Unasso. G. Agri. Urban

Section 1

Nature 0.570 0.105 0.011 0.138
Unasso. G. 0.239 0.253 0.030 0.303
Agri. 0.016 0.173 0.100 0.523
Urban 0.097 0.077 0.007 0.646
Section 2

Nature 0.417 0.150 0.022 0.231
Unasso. G. 0.117 0.347 0.036 0.325
Agri. 0.021 0.138 0.142 0.513
Urban 0.064 0.075 0.010 0.679
Section 3

Nature 0.467 0.166 0.026 0.162
Unasso. G. 0.125 0.353 0.057 0.293
Agri. 0.015 0.137 0.311 0.349
Urban 0.075 0.099 0.020 0.630
Section 4

Nature 0.440 0.194 0.029 0.154
Unasso. G. 0.108 0.379 0.092 0.246
Agri. 0.037 0.160 0.414 0.209
Urban 0.049 0.101 0.021 0.657
Section 5

Nature 0.468 0.207 0.040 0.106
Unasso. G. 0.155 0.399 0.077 0.193
Agri. 0.050 0.240 0.300 0.223
Urban 0.071 0.135 0.018 0.601
Section 6

Nature 0.462 0.225 0.039 0.095
Unasso. G. 0.132 0.437 0.074 0.182
Agri. 0.068 0.203 0.371 0.175
Urban 0.076 0.152 0.031 0.562
Section 7

Nature 0.287 0.270 0.080 0.181
Unasso. G. 0.069 0.379 0.149 0.228
Agri. 0.024 0.106 0.566 0.127
Urban 0.037 0.104 0.024 0.658
Section 8

Nature 0.379 0.263 0.069 0.109
Unasso. G. 0.085 0.405 0.196 0.143
Agri. 0.033 0.148 0.596 0.052
Urban 0.032 0.142 0.039 0.614

1997 data (Tables 3 and 4). The 1972 land-cover
data was achieved by classification of MSS data.
Although the spatial resolution of MSS (79 m)
was different from TM (30 m), the coarser data
represented the land-cover patterns in 1972 well.

A 88% overall accuracy was achieved for the 1972
land-cover data. The classifications of the Landsat
data quantified land-cover types for the above
years and revealed change patterns of the region.

Transformation of land use from agriculture to
urban was evident for the sections in Zone III.
Section 1 and 2 possessed the highest transition
rates of 0.523 and 0.513, respectively (Table 5).
Sections 3, 4 and 5 possessed relatively lower
transition rates of 0.349, 0.209, and 0.223. Sec-
tions 6, 7, and 8, within the outer ring Zone 1V,
had no sign of predominant transformation from
agricultural to urban land during the same time
period. The transition rate from unassociated
growth to urban land presented a relatively bal-
anced spatial distribution among the sections in
the zone they located. This revealed that the
transition rates were unbalanced among the sec-
tions or throughout the study area. Therefore, the
use of section as one of the spatial units provided
more detailed transition estimations for the
simulation.

2.3.3. Simulation conditions

The following conditions were applied in DLS
simulation. The time period was from 1997 to
2020 with a S5-year interval started at 1997. A
3-year interval was applied from 2017 to 2020.
Urban growth and the land cover were simulated
for 2002, 2007, 2012, 2017, and 2020. Compart-
ments were used as the spatial unit in urban
growth simulation submodel. Cells were used as
the spatial unit in land-cover simulation sub-
model. The broader scale of compartments (2.5 x
2.5 km) facilitated the construction of utility
function of spatial choice which was based on
socioeconomic data. On the other hand, the finer
spatial unit of cells (150 x 150 m) allowed the
details of land-cover simulation to be conducted.
Eight cells centered by the target cell within a
3 x 3 window were applied for neighborhood-infl-
uence analyses. Restricted areas were excluded
from the available land for urban growth. The
effective population, which is the combined effects
of projected increases of employment and human
population from 1997 to 2020, was applied as the
main driving factor in urban growth and land-
cover change.
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2.3.4. Landscape characterization

Landscape indices of ‘patch number’, ‘patch
density’, ‘average patch size’, ‘maximum patch
size’, and ‘standard deviation of patch sizes’ were
used to characterize the regional landscapes. Arc-
Grid GIS was employed to convert raster land-
cover data into a vector GIS coverage prior to the
calculation. Arc/Info AML and C programs were
developed to calculate the above landscape in-
dices. Quantification of the 1997 landscape re-
vealed that the study area (Zone III and IV)
possessed more patches for both natural and ur-
ban lands than other zones. There was no over-
whelming dominant land-cover category in
number of patches and in average patch size. This
indicates that landscapes in Zone III and Zone IV
are relatively fragmented. The area represents the
transitions of landscapes from urban to suburban
and to agricultural land. It is expected that trends
of increasing population and employment will
greatly change the landscape of the study area.

3. Results

To evaluate the DLS performance, this ap-
proach was tested by simulating 1997 land cover
with 1972 land cover as the initial state. The same
simulation conditions and attribute factors dis-
cussed earlier were applied. For each of the sec-
tions land-cover changes detected from 1972 to
1985, and to 1997 were used as baseline data in
the calculation of initial transition rates among
the four land-cover types (Table 5). The transi-
tions of land-cover categories in a cell depend on
urban growth and dynamic transition structure.

Y. Wang, X. Zhang / Ecological Modelling 140 (2001) 141-162

During the simulation, transition structures in
cells were dynamically adjusted by the interac-
tions between urban growth and land cover simu-
lation submodels. Therefore, transition rates were
dynamic for the simulation period. A cell by cell
agreement among the changed cells was exam-
ined. The comparison was made only for those
cells in which the land-cover types changed during
the time interval. The changed cells were extracted
from both DLS simulation and from remote sens-
ing derived land cover by GIS analysis. Compari-
sons among the changed cells avoid misleading of
the percentage of agreement caused by large num-
bers of unchanged cells for the time period. A
62.3% overall agreement was achieved. Better per-
centages of agreement were obtained for sections
1,2,7, and 8. Lower percentages of agreement
were observed for the other sections (Fig. 7).

The results (Fig. 7) indicated that the DLS
approach could be influenced by the degree of
complexity of the landscapes. For example, the
agricultural landscape was predominant in sec-
tions 7 and 8 for the time period between 1972
and 1997. The relatively simple landscape con-
tributed to the better agreement between the sim-
ulated and remote sensing-derived land covers.
More irregular shaped patches of natural land-
scape and unbalanced socioeconomic and demo-
graphic influences contributed to the relative
lower simulation agreement for section 5.

The urban land expansion and the consequent
land covers of the study area from 1997 to 2020
were simulated by the DLS. Utility functions were
constructed for the six socioeconomic and demo-
graphic factors and implemented in the urban
growth submodel to depict the influence of the

§60-§ § \\ _ Q § § S Agreement
el
< 22‘§ § AN § §s §§7 §§{‘ Sections

Fig. 7. Agreement between remote sensing-derived and DLS-simulated 1997 land covers among the changed cells.
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above factors on the landscape change. The land-
scape  simulations  for  the years of
2002, 2007, 2012, 2017, and 2020 were achieved
(Fig. 8). The simulation indicates that urban
growth is evident in the study area. Most agricul-
ture land will be converted into urban land uses
by the year 2020. Natural areas tend to be more
isolated and surrounded by urban land. The trend
of urbanization is predominant particularly for
the sections 5, 6, 7, 8 (Fig. 9). Increases in mean
patch size, total area, and standard deviation of
urban land are evident for all the sections after
year 2012.

The comparison of landscape indices among
natural and urban areas in 1985, 1997, 2012, and
2020 shows that the total area, the patch density,
and the mean patch size of natural areas are in a
decreasing trend for all of the sections. The pat-
terns of the patch density and the total area
indicate that a major decline of natural areas
occurred in sections 1, 2, 3, 4, and 5 between 1985
and 1997. The same trend is continued but at a
reduced rate from 1997 to 2020. The lower patch
density and smaller mean size indicate that the
natural areas in these sections are tending to be
more fragmented.

The urban growth increases the number of in-
terfaces between natural and urban landscapes.
We used the proportion of interface-edge between
two land cover types to characterize the landscape
change. The proportions of interface-edge among
land cover types show that interface edges shared
by natural and urban areas increased from 0.354
in 1972, to 0.368 in 1985, to 0.492 in 1997 (Table
6). The simulated results indicate that the increas-
ing trends of interface-edge between natural and
urban areas will continue and reach 0.524 in 2012
and 0.576 in 2020, respectively. The increasing
trend of proportion of interface-edge by urban
and unassociated growth areas has been observed
as well. However, the values of the proportion of
interface-edge between natural and unassociated
growth areas, and between natural and agricul-
tural areas, are in decreasing trends, mainly
caused by consumption of unassociated growth
areas and agricultural lands by urban land uses.
Although the decrease of patch density and mean
patch size of natural areas is not overwhelming

(Fig. 9), the changing pattern of the proportions
of interface-edge reflects the impacts of human
factors on natural areas in the region.

Visual comparison between the patterns of the
land covers simulated by the DLS and compiled
by the Openlands Project (Openlands, 1999)
shows a good match between the two. The Open-
lands project predicted urban land expansion of
the region from year 1998 to 2028 by the informa-
tion about likely future land patterns obtained
through a series of meetings with policy makers,
professional planners, open space advocates,
builders and developers. Many policy and plan-
ning factors, such as sewer-service expansions,
highway extensions, and other future infrastruc-
ture improvements, were considered. Although
the results of the Openlands project were mostly
based on the data from qualitative analysis and
extensive interviews, the base map upon which the
Openlands project findings rooted had been cor-
rected and updated by the most up-to-date devel-
opment information. Various factors causing
development pressures and whether areas would
likely develop in the short term (within 10 years)
or the long term (from 10 to 30 years) were given
full consideration (Openlands, 1999). Visual com-
parison confirmed that the DLS simulation cap-
tured dynamic features of human-induced
landscape changes. Since the Openlands project
was not GIS-based, no quantitative comparison
or measurements between the DLS and Open-
lands results were attempted.

4. Discussions and conclusions

The DLS approach is designed to integrate
urban spatial growth and land-cover change sub-
models in simulating human-induced landscape
change. This integration allows a dynamic adjust-
ment of transition structures during the simula-
tion process. The adjustment overcomes the
shortcomings of using a fixed or a constant transi-
tion rate. Since human-induced landscape changes
are closely related to socioeconomic factors, this
adjustment is critical to reflect the spatio-temporal
unevenness of human impacts in dynamic model-
ing. In order to represent the impact, socioeco-
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Fig. 8. Result maps of landscape simulation for the selected years from 1997 to 2020.
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Fig. 9. Comparison of landscape characters by DLS simulated landscape data.

demographic influences

must be

treated as internal components of the model. The
DLS approach explores a mechanism that can be

used to quantify and incorporate human impacts
on landscape dynamics. The utility function of
spatial choice allows economic principles to be
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incorporated into landscape simulation. Although
only six socioeconomic and demographic at-
tributes were discussed in this study, the method-
ology enables the effects of other attributes to be
directly linked with the simulation modeling. The
methodology in the construction of a utility func-
tion creates a new paradigm for building a quanti-
tative model of spatial choice.

Space available for urban land expansion is
implicit in DLS, when modeling the spatial de-
mand of urban land and spatial choice of com-
partments. Spatial restrictions enforced by GIS
data can be effectively referenced to limit the
areas of available land for urban expansion. Land
availability and dynamic change of the attributes
within compartments for each time interval,
reflect the spatial supply for urban land and ad-

Table 6

just the spatial choice of compartment by the
effective population for the next time interval.
Multiple spatial units facilitate the interactions
among the submodels. The sections allow multiple
transition structures to be implemented so that
the spatial variance of landscape changes
throughout the study area can be represented.
This is important particularly when the simulation
covers a large area that has unbalanced transition
structures and uneven development patterns.
The compartments control spatial scale of ur-
ban growth simulation. Compartments adjust
transition structures of the sections by dynamic
allocation of the effective population. This is the
key to incorporate socioeconomic and demo-
graphic data into the landscape simulation.
Whether the size of the compartment would affect

Proportion of interface-edge among land-cover types from 1972 to 1997 and for the simulated years

Land cover category Nature Unassociated growth Agriculture Urban
Proportion of interface-edge (1972)

Nature 0.150 0.495 0.354
Unassociated growth 0.255 0.450 0.295
Agriculture 0.399 0.214 0.387
Urban 0.351 0.173 0.476

Proportion of interface-edge (1985)

Nature 0.323 0.309 0.368
Unassociated growth 0.310 0.290 0.400
Agriculture 0.312 0.306 0.382
Urban 0.310 0.359 0.325

Proportion of interface-edge (1997)

Nature 0.316 0.191 0.492
Unassociated Growth 0.256 0.267 0.476
Agriculture 0.189 0.326 0.484
Urban 0.314 0.374 0.312

Proportion of interface-edge (2012)

Nature 0.277 0.199 0.524
Unassociated Growth 0.230 0.259 0.510
Agriculture 0.189 0.294 0.518
Urban 0.312 0.363 0.325

Proportion of interface-edge (2020)

Nature 0.231 0.193 0.576
Unassociated growth 0.199 0.244 0.557
Agriculture 0.177 0.258 0.565
Urban 0.313 0.350 0.337
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the simulation result has not been examined yet.
It was observed, however, that most of the munic-
ipalities in the outer ring areas (>45 km from
downtown Chicago) are relatively small in size
and had been expanded dramatically in the past
10 years by the annexation of the surrounding
available lands. These municipalities have greater
potentials to be further expanded. Therefore, the
policy of land annexation in northeastern Illinois,
as one of the driving factors, can be incorporated
into the DLS to improve modeling performance.

The cells, with finer spatial scale, control the
spatial step of land-cover simulation. The cell size
was designed to bridge the size of a Landsat TM
pixel and the spatial scale of the compartment.
The cells will facilitate the integration of remote
sensing data and the derivatives of land cover
with data from other sources. Although the cell is
the minimum spatial unit, land-cover type for
each of the TM pixels provides sub-cell informa-
tion that can be applied to refine land cover
simulation. Finer resolution of spatio-temporal
data in both socioeconomic and biophysical cate-
gories should improve and enhance the capacity
of the model.

The results of this DLS modeling are particu-
larly telling in the case of one of the most severe
threats to the region’s environment: urban sprawl
and its consequences. The simulated landscapes
reveal a dramatic trend in urban land increase.
Fragmentation and isolation of the natural com-
munities are evident in the study area and
throughout the region. Even though most of the
region’s high quality natural areas are in conser-
vation management and more open lands will be
protected, the integrity and viability of natural
ecosystems will be altered by the accelerated tran-
sition of surrounding agricultural land to urban
structures. The pattern of sprawling growth in the
Chicago region has been recognized by the con-
cerned agencies. Region-wide planning efforts, as
addressed in the latest regional Biodiversity Re-
covery Plan (Chicago Wilderness, 1999), are un-
derway. The DLS approach provides a new
prototype for this type of regional study. The
simulation results are helpful in understanding the
current and future landscape patterns and in man-
agement planning.
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