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Implementing mesh-based approaches for deformable objects
on GPU.

Guido Ranzuglia, Paolo Cignoni, Fabio Ganovelli, Roberto Scopigno†

Abstract
These latest years witnessed an impressive improvement of graphics hardware both in terms of features and in
terms of computational power. This improvement can be easily observed in computer games, where effects which,
until few years ago, could only be achieved with expensive CPU computation are now shown interactively.
Although the GPU has been designed for implementing graphics effects, it is still it basically a processing unit
with its own memory, and, being specialized for algebraic tasks, supplies a number of floating point operations
per second which is orders of magnitude greater than the CPU.
This suggested to the graphics community that the GPU could also be used for general purpose computation and
a number of papers have been published on how to hack the GPU to this target.
Following this trend we propose a framework for using GPU for implementing techniques for deformable objects
represented as generic meshes. The framework only assumes than the global computation is the union of local
computations, which is true for all the explicit methods.

Categories and Subject Descriptors(according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture
I.3.5 [Computational Geometry and Object Modeling]: Physically based modeling

1. Introduction and previous work

It is well known that modeling the behavior of a deformable
object is a time consuming task, because of the amount
of calculations necessary to compute the reaction of a de-
formable object under external forces. Without going into
details (please refer to [NMK∗05] for an excellent survey)
the basic parts for defining a model for deformable objects
are:

Forces computation. Given the current shape of the
object and the force acting on it, compute the forces
produced by the deformation energy stored in the body.

Discretization over space.The object must be par-
titioned in a, possibly large, set of simple elements.
Triangle or tetrahedral meshes are popular choices.

Integration through time. Given a description of the dy-
namic state of the object (e.g the position and velocity of
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all its points), compute the description of next state after
a small time step (generally smaller than 1/20 second).

For the sake of this discussion is convenient to split the ex-
istent methods in two main classes: theexplicit methodsus-
ing explicit integration schemeand the others, i.e. the meth-
ods requiring animplicit schemeeither for Force Computa-
tion of for Time Integration. This distinction is fundamental
because the methods of the first class share the important
property that the total computation is given by the union of
local (to the elements of the discretization) and independent
computations.
In other words, implicit methods require the multiplication
of a sparse matrix having at least as many columns and
rows as three times the number of vertices of the mesh for
each simulation step. With an explicit methods this matrix is
block diagonal and the multiplication can be performed lo-
cally on each finite element and summed up in the vertices.
Explicit methods (and explicit integration step) are broadly
used for they are easier to implement and generally more
flexible. For example they do not require preprocessing and
modifications to the mesh can be done on-the-fly to simulate
cuts and lacerations [BMG99,GCMS00,NvdS00].
However, both explicit and implicit methods burden the CPU
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Alg OneStep(dt) {
for each s in Springs {

f = k_s * ( (s->m1->p - s->m0->) -
s_rl ) /

||s->m1->p - s->m0-
>p|| ;

s_1->f +=f;
s_2->f -=f;
}

for each m in Masses {
m->velocity += m->f/m->mass * dt;
m->p += m->velocity * dt;
}

}

Figure 1: Straightest implementation of a mass spring
system.

with a large amount of computation.
To evaluate the kind of algorithm involved, consider the ex-
plicit mass spring system for cloth simulation, which is by
far the easiest and most straightest method. The cloth is mod-
eled with a net of masses and springs connecting the spring
to form a lattice. One step of simulation is implemented as
in figure1:

wheres_rl is the rest length of the spring ,k_s its elastic-
ity constant,s_12the masses to whichs is connected. This
is probably the most seen and the most naive code snippet
about deformable objects. Still, it useful to us because it
shows three things: 1) even a simple method requires many
floating point operations 2) the memory requirement is mod-
est 3) there is no branching. Clearly there are explicit models
for which these observations do not hold so strictly.

Why GPU?
Programmable Graphical Processing Units have characteris-
tics that meet those afore mentioned the explicit methods:
1) They provide a higher number of floating point opera-
tions per second than the CPU (e.g. nVidia(tm) 7800 Gtx’s
pixel shader performs around 165 GFLOPS against the 8 of
a Pentium IV), which is the reason because the introduction
of GPUs has spawned a large number of papers pursuing the
goal of using them for general purpose (see [OLG∗05] for
a recent survey); 2) Memory transfer is an expensive task
and memory itself is limited (512 MB on nVidia 7800); 3)
Branching, introduced with the latest GPU generations, it’s
still a costly operation.

GPUs are essentially designed for rendering, so it is not
surprising that most of the work is about speeding up ren-
dering techniques such asray tracing [PBMH02, WSE04,
LL04], photon mapping[CSKSN05,LC03,PDC∗03,Hac04],
radiosity[CHH03], just to cite a few.

A different research trend aims to develop general purpose
algorithms, such as solver for linear system [GGHM05,
BFGS03], for database management [GLW∗04], for sorting
algorithms [Gov05] and so on for a number of non graphics
applications.
GPU based techniques for simulation have also been pro-
posed. The problems that can be expressed as boundary
value problems on a regular grid are particularly suitable
for being solved on the GPU [GWL∗03]. This is the case of
Navier-Stokes equations used in fluids simulation [HCSL02,
WLL04,Har04].
Fewer solutions have been proposed for simulation with
meshes. In [JT05] a mass spring system is implemented in
the GPU by placing particles on a regular grid and using
implicit connectivity, so that each internal particle has 18
neighbors. Each particle is associated with a pixel in the
PBuffer (referred asposition-buffer) that stores the particle
position. At each simulation step, force computation is per-
formed on the pixel shader, where each particle sum up the
force component running over the adjacent particles (i.e. the
adjacent texels).
In order to visualize the object, a mesh is associated to the
non internal particles of the mass spring system. Each vertex
of the surface mesh fetches its position from the position-
buffer (shader model 3.0), while the normal, needed to shade
the surface, is approximated as the normalized sum of those
of the adjacent particles.
The advantage of implicit connectivity is that they need only
one texture look up per particle. On the other hand, the
amount of texture memory is directly proportional to the ac-
curacy of the representation. An improved version of this
approach [JHT05] uses a fine grained mesh for the surface
connected with a coarser mass spring system in GPU.
Irregular tetrahedral meshes are used in [GEW05]. In this
work, each vertex stores, for each tetrahedron it belongs
to, three reference to the other three vertices and the cor-
responding springs’ rest lengths. For each vertex, the force
contributions of all the tetrahedra in the one-ring neighbor-
hood are summed. In this case more texture fetches are in-
volved: for each vertex and for each tetrahedron they need
three texture fetches to find out the indices of the other three
vertices and the three dependent fetches to find out their po-
sition.

2. Problem’s analysis

Since we want to define an as general as possible framework,
instead of an ad hoc method, we will consider a mesh a set
of vertices and a set of relations among vertices both vertices
and relations may have a number of attributes (e.g. each ver-
tex needs to store its velocity). The only requirement is that
the relations have constant arity.

Then, we need a way to store connectivity because, as will
be clear soon, a vertex needs to have a pointer to the relations
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Alg OneStep(dt) {
for each m in Masses {

m->f = m->left_s.k *
(m->m1.p - m->p) / ||m->m1.p - m->p|| ;
m->f += m->right_s.k *

(m->m2.p - m->p) / ||m->m2.p - m->p|| ;
m->v += m->f/m->mass * dt;
m->p += m->v * dt;
}

}

Figure 2: GPU compliant implementation of the mass
spring system (chain of springs)

that include it. For example in a tetrahedral mesh each vertex
needs a pointer to the tetrahedra that include it.

3. GPU’s bonds

As aforementioned the most seen snippet of code about de-
formable object the algorithm in figure1 cannot directly
implemented on a graphics hardware. Due to the architec-
tural bonds that performance reasons impose to the GPU, the
modern graphics devices do not expose a texture write in-
struction at a computed address (scatter operation). A com-
mon way to overcome this limitation (when it is possible)
is to convert a scatter operation in a gather operation. For
example the previous snippet of code may be translated as
reported in figure2.

The textures in a GPU’s program represent the analogous
of arrays in the CPU’s programming paradigm. Typically in
a physical simulation there are some vectorial quantities that
have to be continuously updated in function of a small time
stepdt. In the code in figure2, for example, the vertex(mass)
position and the vertex speed are integrated through time.
From a GPU point of view this implies the need for writing
the new calculated values in textures. As previously seen the
present graphics hardware does not provide a write texture
instruction for a texel’s index different from which that is
tightly related to the vertex/mass. For this reason is neces-
sary to provide a number of different textures; one for each
vertex/mass attribute that has to be dynamically updated. In
the other hand the vertex attributes that don’t change during
the simulation may be maintained in a single texture, using,
for example, a constant number of contiguous texels.

4. Our Framework

Although each texel contains a RGBA color information
from a GPGPU point of view the four coordinates of a tex-
ture’s pixel may assume other meanings. In our framework
a single entry of a texel may be interpreted in three different

ways: a scalar value, a single vector’s component, a pointer
(an index) to a texel or to an entry in another texture.

As previously seen the GPU architecture create a substan-
tial division between the attributes that remain constant dur-
ing the simulation and the attributes that assume variable val-
ues (please refer to Figure3).

The textures are mainly divided in three classes:

- Vertex attributes textures
- Relation attributes textures
- Vertex - Relations Connectivity texture

Both vertex and relation textures are sub-divided in two
sub-classes that are dictated by the distinction between con-
stant and variable attributes. The textures for the vertex vari-
able attributes (VerVar) has all the same dimension (propor-
tional to the vertices’ number and influenced by the GPU’s
characteristics). In the other hand, typically, there is a single
texture containing the constat vertex values(VerConst); the
dimension of this texture with a good grade of approxima-
tion is:

dim(VerConst) = dim(VerVar)∗ ( f loats_per_vertex)/4†

.

TheVerConstalways exists because at least contains nec-
essary two value related to the connectivity texture (Conn):
an offset and number of relations incident in a single vertex.

In eachConn’s texel there are four indexes referred to the
textures containing the relation’s variable and constant at-
tributes; with this information a vertex can access at the re-
lations that influence him state.

5. A case of study: Mass - Spring System

As an example of the framework’s use will consider the man-
agement of deformable tetrahedral meshes (simplicial com-
plexes of order 3). In this case the relations are represented
by the tetrahedrons that compose the mesh. The only vari-
able attribute that we will put on theRelVarwill be the four
indexes to the vertices of the tetrahedron. In the constant at-
tributes textureRelConstText, instead, there will be the six
length of the springs at rest time. In this example will con-
sider the elastic constantk common to each spring in the
system. Using the texture coordinates defined at the four ver-
tices of the activation quad (which size is equal to the dimen-
sion of a vertex variable attribute texture) is possible to ac-
cess to each attributes in theVerVar [BI05]. Knowing the di-
mension of one of these textures and the number of constant
attributes for each vertex the address of the attributes in the
VerConstTexcan be easily calculated. In this texture, other
than offset and the number of relations per vertexnelem, we

† In each texel is possible to store four different scalar attributes.
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Figure 3: Arrangement of the data in texture memory.

will insert, for a more plain exposition, the vertex’s identifi-
cation serial. Using offset and nelem is than possible to di-
rectly read the attributes stored inRelVarand computing the
address of the first texel containing the constat attributes in
RelConstTex. As previously seen the only attributes stored in
RelVarare the indexes of the vertices that compose the tetra-
hedron. One of these four indexes will refer to the vertex that
is computing the total force incident on himself; in this case,
comparing the index stored in theRelVarand the id constat
attributes, we avoid to make redundant calculus.
If we had a triangular mesh instead of a tetrahedral mesh,
the only change in the textures’ structure is that theRelVar
would be containing only three vertex index per texel.

6. Real-time update of a relation’s attribute

The distinction between constant attributes texture and vari-
able attributes texture permits to use the last one to update
the vertices state. In the same manner in our framework is
possible to change dynamically the relation’s characteristic
directly on GPU; without the necessity of a costly commu-
nications between the main system memory and the graphic
hardware. It will be sufficient to draw a quad composed of
only one fragment. The texture coordinates defined at the
quad’s vertices will assigned in order to refer to the partic-
ular relation that we want to update. If would be necessary
to update more than one texel for each attribute’s relation, as
in the vertex case, we maintain the single attribute in differ-
ent texture of the same dimension. If in mass-spring system
we would eliminate a simplex it will be sufficient to mark
the tetrahedron or the triangle in some convenient way (for
example we can set the vertices indexes at -1 in theRelVar)
in order to indicate that this element must be ignored during
the physical simulation.

Using the right number of textures to store the spring’s char-
acteristics (two for a tetrahedral mesh‡, only one for a sim-
plicial complex of order 2) can be possible to dynamically
change on GPU the elastic constantk of each springs in the
system.

7. Results

Tables4 and 5 shows some results when running triangle
and tetrahedral meshes. From this table it can be seen that
for average sized meshes the GPU implementation is twice
as fast that the GPU ones on a NVidia GeForce 6800GT.
This is quite a low gain considering the large gap in terms of
FLOPS, but it is not too surprising, since our framework uses
several dependant fetches per iteration. On the other hand,
the mass spring system is somewhat the worst case because
it performs few floating point operations per element (trian-
gle, tetrahedron). Table5 shows the fps for a ill conditioned
tetrahedral mesh, where all the tetrahedra share a common
vertex. As a consequence, the fragment program for this ver-
tex will have to iterate over all the tetrahedra while all the
other per fragment computation (for vertices connected to 6
tetrahedra each) will have to wait.

8. Conclusions and future work

We presented a general framework to handle irregular
meshes entirely on the GPU. The framework has been tested

‡ A tetrahedron is composed by six edges/springs so it’s no possible
to maintain the information in a single texel.
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Triangle meshes

masses triangles GPU CPU

8321 16384 108 90
24578 49152 31 20
33025 65536 29 15
65538 131072 15 7
131585 262144 8 3

Figure 4: GPU-CPU comparison for triangle meshes. The
last two columns show fps.

Tetrahedral meshes

masses tetrahedra GPU CPU

2783 13200 70 48
3375 16464 57 39
4096 20250 48 31
9261 48000 28 13
12167 63888 22 9
17576 93750 16 6
29791 162000 10 4

Figure 5: GPU-CPU comparison for triangle meshes. The
last two columns show fps.

by implementing mass spring systems for simplicial com-
plexes of order 1, 2 and 3 (chains, triangle meshes and tetra-
hedral meshes respectively), but it supports with no modifi-
cations other types of structure (e.g. quadrilateral or hexa-
hedral meshes) as long as it is expressed as a set of vertices
and a set ofrelationsamong groups of vertices, with the only
assumption the all the relations connected the same number
of vertices. With respect to previous approaches, the frame-
work requires more dependent fetches, but on the other hand
it saves texture memory and, differently from [GEW05] does
not cause replication of data.

This will allow us to implement accurate methods that re-
quire much more memory per element that the mass spring

Worst Case

masses tetrahedra GPU CPU

2562 5120 64 84
10242 20480 42 19

Figure 6: Worst case: all the tetrahedra share a common
vertex.

systems, such as the so called explicit FEM [OH99], which
is the next step of this work.
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