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Abstract

The Rayleigh-Taylor instability of an interface separating fluids of distinct density is driven
by an acceleration across the interface. Low order statistical moments of fluctuating fluid
quantities characterize the hydrodynamics of the mixing zone.

A new model is proposed for the momentum coupling between the two phases. This
model is validated against computational data for compressible flows, including flows near the
incompressible limit. Our main result is a zero parameter first order closure for ensemble
averaged two phase flow equations. We do not, however, fully solve the closure problem, as
the equations we derive are missing an (internal) boundary condition along any surface for
which either phase goes to zero volume fraction. In this sense, the closure problem is reduced
from a volume to a surface condition, rather than being solved completely.

A new understanding of the compressibility dependent loss of universality of the mixing rate
is obtained in terms of a one parameter family of solutions of the two phase flow equations. This
parameter measures the initial perturbation amplitude in dimensionless units which eliminate
this effect in the incompressible limit.

We compare two formulations of the statistical moments, one based on two phase flow and
the other on turbulence models. These formulations describe different aspects of the mixing
process. For the problem considered, the two phase flow moments appear to be preferable, in

that they subsume the turbulence moments but not conversely.
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1 Introduction

We study ensemble averaged equations for multi-fluid mixing. Ensemble averaging, for nonlinear
equations generally and for fluid flow equations specifically, introduces new variables, requiring new
equations, and a hierarchy of higher order moments and equations. This hierarchy is usually broken
at the level of first or second order moments by a closure hypothesis, which relates the higher
order moments occurring in the equations to products of lower order moments, already having a
dynamical equation. The closure hypothesis can be viewed as an approximation, or as a type of
physical law, descriptive of the context to which it applies. We prefer the latter view, as with
thermodynamics, and think of closure as a type of constitutive law or equation of state description
characterizing e.g. turbulence or multiphase flow, with a specific closure hypothesis valid for some
flow regimes, but not others.

The flow regime studied here is the mixing layer associated with the Rayleigh-Taylor instability
[11] in which a light fluid acts via an external force (gravity) to accelerate a heavy one. The
data required to validate our closure hypothesis comes from the experimental measurement of
rocket accelerated fluid interfaces [10,14], and from numerical simulations of the two fluid Euler
equations by the front tracking method [2,6,7]. Among the many numerical studies of Rayleigh-
Taylor instability, e.g. [4,13,14], the front tracking simulations appear to be distinguished in their
ability to include compressible effects and to agree with incompressible laboratory experiments in
the incompressible limit. For this reason, they provide a suitable data set for validation of our
closure hypothesis.

Among our main results is the derivation and validation of a new first order closure for com-
pressible multiphase flow. The dependent variables are the ensemble averages of the volume fraction
and the density, momentum, and energy in each phase. For such a system the phase pressure is a
function of the thermodynamic variables in its own phase. The problem of formulating an equation
of state for the mixed phase is thereby circumvented. This is achieved at the expense of enlarging
the number of dependent variables employed. The use of additional variables also allows a more
fundamental description of the momentum coupling between the two phases. Our solution of the
closure problem is not complete: there is a missing boundary condition along surfaces for which the

volume fraction of one of the two phases goes to zero. In the interior of the mixing zone, where the



phase volume fractions are bounded away from zero and one, the closure is complete; moreover, in
this region, the closure has no free parameters. It avoids the use of a phenomenological length scale
with its own equation of motion in order to formulate a “drag term”. We speculate, however, that
a one parameter closure with “drag” may be useful at the edge of the mixing zone.

Our proposed equations are validated by derivation from fundamental two fluid Euler equations
with all modeling or approximation steps justified by comparison to simulation data for the Rayleigh-
Taylor problem, as well as by arguments of physical plausibility. Because the closure is not complete,
we do not predict the overall mixing rate coefficient, a. The derivation we give is more satisfactory
than the customary arguments based on the principle that two expressions which have the same
physical dimensions will be equivalent up to a dimensionless constant. Conventional closures, with
a phenomenological length scale and drag term, can be derived from ours.

We have previously noted a significant compressibility dependence [2] in the growth rate of
the mixing zone, accompanied by a loss in universality in this quantity. We provide here a new
understanding of these phenomena. There is a one parameter family of solutions to our mul-
tiphase flow equations, parametrized by a dimensionless measure of the initial amplitude. The
non-dimensionalization maps all initial conditions into a single point in the incompressible limit,
which explains the occurrence of an incompressible fixed point and the loss of universality in the
compressible case. The dependence of our solutions on the initial ensemble can also be understood in
terms of the relative weighting of short and moderate wavelength perturbations. (Long wavelength
perturbations have been systematically excluded in this study.) Again, the nondimensionalization
has the property of eliminating this ensemble dependence in the incompressible limit.

We also compare alternative closure possibilities. We compare first order multiphase moments
to second order turbulent moments. We find, to good approximation for this data set, that the
second order turbulence moments can be expressed as products of first order multiphase moments.
On this basis, we regard the multiphase description and closure as the more satisfactory of the two

for this data set.

2 Turbulence Moments Derived from Two Phase Moments

The purpose of this section is to compare two phase mixing with turbulence modeling in the context
of a data set which contains both mixing and turbulence aspects. We derive a formula relating
turbulence moments to the corresponding two phase mixing quantities, and thereby differentiate

between two mechanisms contributing to the turbulence moments.



We consider flow with no microscopic mixing, i.e. with a well defined two phase flow. We
consider a problem in two space dimensions (x, z) at time ¢, which has an « direction symmetry, so
that the ensemble average (-) is independent of .

The ensemble average is defined by a measure on the function space of initial conditions. The
details are given in [2]. Briefly, the initial conditions are defined with periodic boundary condi-
tions and with discrete Fourier modes having wavenumbers in the interval kpy, < & < kpax. By
convention, we have taken ky.x = 2k to suppress long wavelength disturbances. In this range,
the Fourier amplitudes are independent Gaussian random variables. The expected value of the
amplitude of each mode is small enough to be within the linear regime. For this reason, the initial
amplitudes can be propagated backward or forward in time on the basis of the linear theory. Since
the large k£ modes grow more rapidly than the small £ modes, the assumption of equal amplitude
of the distinct Fourier modes can be valid for at most one unique time in the evolution. Thus the
overall amplitude of the modes, or the relative weighting of low to high frequencies, is a potentially
significant parameter characterizing the ensemble. We return to this point in Section 5.

Let Xj be the characteristic function of the set in which fluid of phase £ is located, and let
ar = (Xj) be the volume fraction for phase k. Then «y is a function of z,¢ but not a function of .
Let a = ay, so that 1 — a = as. For a quantity ¢ = a(x, z,t), we introduce the absolute and phase
volume averages

(aXi)  (aXy)

a={(a), ap= ) = (2.1)

which are functions of z and ¢, and the absolute and phase fluctuating quantities

ba=a—a, da,=a—ay.

From these definitions, it follows that ¢ = aya; + azas .

The main result of this section is an expression of the second moments for the absolute fluctuating
quantities in terms of the second moments of the phase fluctuating quantities plus an expression
involving only the two phase first moments, i.e. the phase volume averages. Moreover, for a
computational data set derived from Rayleigh-Taylor mixing, we show that the first contribution is
small, so that the absolute second moments are effectively given as functions of the two phase first

moments. We consider the absolute second moments

B = (6pdp) , (2.2a)

—

A = (6p87) (2.2b)
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These quantities arise as additional independent variables (beyond those occurring in the Euler

R = (pvv) — (2.2¢)

equations for the fluid flow) in turbulence modeling of ensemble averaged flow, see [1]. In particular,
they arise from averaging nonlinear terms in the momentum equation. Correspondingly, the single

phase version of these moments are defined to be

Bk == M 5 (23@)
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An elementary direct calculation leads to the formulas

B = OélBl + OéQBQ + Oéloég(ﬁg — /31)2 5 (24@)

A= OélAl + OéQAQ + ozlozz(pl — pg)(f)l — 172) . (24[))

Here, we suppress the vector indices in A and wv.

To derive (2.4a), we write
op=p—p=Xilp—p)+Xalp—p)
= X1(0p1 + p1 — p) + Xo(6p2 + p2 — p) -
Since X7 X3 = 0 and expectations which are linear in fluctuating quantities must vanish,
B = (X1(6p1)*) + (X2(6p2)%) + ar(pr — p)* + c2p2 — p)*

Elementary algebra, using the identities a; + as = 1, p = a1p1 + azps, and the definition (2.3a),
yields (2.4a).
Similarly, we have
bv=v—0v=Xq(v—0)+ Xa(v —0)
= X1(6v1 + 01 —0) + Xa(6vy + 02 — 0) .

Substituting this identity together with the ép identity in the definition for A yields (2.4b).



In order to derive the corresponding formulas for R, we introduce a notation for mass weighted
averages. Mass weighted averages are presumably more fundamental than volume based ones, and,

in the case of R, they lead to simple formulas. Let

Then

1 _ _ o
- 5 (O‘%(Pvl)Q + az(pv,)* + 20‘1052/’”1/’”2)

This can be simplified to yield

0102
p

=

R=a1R + Ry + aqog

(01 — v2)* . (2.4¢)

More important than identities, such as the above, are simple approximations, valid for specific
data sets. This is the issue to which we now turn. For the Rayleigh-Taylor two phase mixing data
under study here, we show that the dominant contribution to the turbulent second moments comes

from the two phase first moments (mean flow quantities). In this approximation, we have
BBty phase = arag(pe — p)* (2.5a)

AR A wo phase = ayaa(py — p2)(01 — v2) (2.5b)

P25y — 52 . (2.5¢)

L L phase = @12

Now we present the comparison between the exact results and the results of the two phase
flow approximation. The results presented in this section are the statistical average of five runs
with Atwood number A; = % = %, and dimensionless compressibility M? = Ag/c; = 0.5.
Here p;,: = 1,2, denotes the density of the two fluids at the interface, A is the wavelength of the
perturbation and ¢; is the sound speed in the heavy fluid. A more detailed study, with systematic
variation of both the Atwood number and M?, will be included in the thesis of the first author; the
conclusions are basically the same. Each run has a different seed for the initial random interface. In
Figures 2.1a and 2.1b, we compare the exact and two phase approximate versions of B and A, for
Rayleigh-Taylor mixing data. We see that the approximation is very close to the exact correlation

for A and B. In Figure 2.2 we compare the exact value of R with the value of the two phase

approximation R . phase- The comparison shows that the two phase approximation captures



most of the contribution, although the agreement is not as good as the ones shown in Figure 2.1
for B and A.

Averaging the nonlinear terms in the energy equation also introduces second moments of fluc-
tuating quantities. Let e denote internal energy per unit volume, and e internal energy per unit
mass, so the e = pe. The averaged energy equation contains a divergence of

S = (ev) — <e><<p/>)v>

In addition, it contains drag related terms resulting from the average of pressure and velocity

= (pev) — pev . (2.6)

gradients. The analysis [1] of these terms leads to the correlation
G = (bpbe) . (2.7)

As above, we can define single phase versions of S and G,

Xrev Xre)(Xgpv
5 = - ) _ O’zkzé(k’;f ) (2.8)
and
G, = Xebrden) (2.9
A
Then

S = (151 + a1€101) + (252 + az€207)

(04351/71171 + 04352/72172 + arag(€1pa0q + 62/71171))

™|

This can be simplified to

a0y, _ _

S =051+ a5 + 5 (p2€1 — préz) (01 — Dg)

Following the treatment of A above, we also have
G = onGh + oGy + aqas(pr — p2)(€ — &) .

As with A, B, and R, we introduce the approximations

a0y, _
S5 two phase =—— (P2€1 - /’162) (v1 - U2) )

and

G =G o phase = araz(pr — p2)(€é1 — €)



See Figures 2.3a-b for a comparison between the exact results and the results from two phase flow
approximation of S and G, for Rayleigh-Taylor mixing data. These figures show that the two phase
flow approximation for S and G is an excellent one.

From Figures 2.1-3, we conclude that two phase mean flow (two phase first moments) will give
a very good description of the turbulent second moments, and thus that the mixing phenomena in

this data set is dominated by two phase behavior rather than by turbulence.

3 Equations for Compressible Two Phase Flow

Equations for two phase flow are derived in two steps. The first is a mathematically exact averaging
operation, which, due to the nonlinearity of the equations, introduces new unknowns (equations
which do not close). The second step is a modeling step, in which some of the unknowns are
declared to be new dependent variables, for which new equations (not closing) are derived as above,
and then the remaining unknown quantities are approximated in terms of the original and new
dependent variables. For incompressible flows, this process is described very elegantly by Drew [3].
Examples of compressible multiphase flow equations are given in [8,9]. We follow the formalism of
[3], introduced in part in §2 as well.

The Lagrangian interface satisfies the exact microscopic equation

0X .
8—tk L VX =0 . (3.1)

where iy is the velocity of the (Lagrangian) interface. Note that only the normal component
Uint * Mg of Tipt is well defined, where i), is the unit vector normal to the interface. We orient 7y

pointing out of phase k, so that

00Xy
Gt - VXL = Tong » T 3.2
Vint k= Yint " "k ony (3.2)
where % is a negative delta function, per unit length or area of interface surtace, for phase k.
Thus, we have, identically
aOék = = an
e —SN =0 . 3.3
ol + <v1nt g ank> ( )

The averaged equations resulting from conservation of mass follow those of [3], with the simpli-

fication that, due to the absence of transfer of mass across the interface, the source term I'y, = 0.
Thus
8ozkﬁk
ot




Our treatment of the momentum equation also follows [3], with the following changes: The
external force, f, is specialized to pg, where ¢ denotes gravity. Cancellations due to the fact that
the interface moves with the fluid velocity are imposed. Surface tension has been set to zero.
Reynolds stress terms, omitted in [3], are included. The result, after averaging, is

O(Xyppv)

o TV (Xepov) = =V {(Xep) + (pVXe) + (Xepf) (3.5)

Here p denotes the pressure, assumed to be continuous across the interface. Using the identity

Xip)ay

V<ka> = V< = V(ﬁkozk) (36)

(852
we have

8akﬁkﬁk

5 + V- (apprtptr) = =V(awpr) + arped + (pVXi) = V- (arpRy) - (3.7)

The energy equation is considered as an equation for pe. After insertion of the Xj factors,

rearranging terms and averaging, we obtain the identity

X .
% + V- (Xpvpe) = —(XypV - 0)
which can be rewritten as
8ozkﬁk€ o~ —
T + V(agpérty) = =V (apSy) — (XgpV - 0) . (3.8)

We can express the average of the pV - ¢ term on the right hand side as
—(XppV - V) = = (pV - (X30)) + (pv - VX}) .
We rewrite the first term by adding and subtracting the product of the averages, to obtain
—(pV - (X30)) = ((pr = p) V - (X D)) = pr(V - (X0)). (3.9)

Combining the above expressions yields the exact averaged energy equation

8akﬁk€k

ot

Equation (3.9), which is a truncated correlation, has been analyzed numerically, see Fig. 3.1,

and is found to be small.



4 Effective Equations for Rayleigh-Taylor Mixing Data

In this section, we model (i.e. propose) effective dynamical equations for the averaged Rayleigh-
Taylor mixing data. Because of the horizontal translational symmetry of the problem the averaging,
as implemented numerically, is two fold, containing both the ensemble average over the initial data
and the translational average of physical quantities at the same height.

There are three terms in (3.3), (3.7) and (3.10) which are proportional to V.Xj, namely (¥, -
VXi) in (3.3), (pVXg) in (3.7) and (pv - VX}) in (3.10). These terms represent the coupling
between the two phases. Notice that V.X; is a delta function in the direction normal to the
interface between the two phases. These terms are intrinsically defined in higher dimensions only.
However, the horizontal average maps these higher dimensional quantities onto one-dimensional
ones. Therefore, they can not be determined exactly in the effective one dimensional dynamical
equation without knowing the exact solution in higher dimensions. In order to resolve the closure
problem for the effective dynamical equations, we model these terms next.

The three interfacial terms can be expressed as (fVXy), where f = U, p, pv. We define an
effective interfacial quantity feg as (fVXy) = (fint VXi) = fegV(Xg). Here fing is f evaluated at
the interface, due to the ¢ function property of V.Xj.

As fluid of phase 1 begins to penetrate into phase 2, the frontier portion of that fluid occupies
only a small volume and is near the interface. Therefore in that regime f; is a good approximation
for fug. Similarly, f; is a good approximation for feg in the regime where the fluid of phase 2

penetrates into phase 1. We interpolate these two approximations to obtain a model for f.g,

foff a1 fo + a2 fi. (4.1)

Equation (4.1) models the effective coupling between phases in our one dimensional effective equa-

tions. Therefore the three interfacial terms are modeled as

(Tint - VXi) = (02 + apty) - Vay, (4.2)
<pVXk> o (Oélpz + 062]51) . VOék 5 (43)
<p17 . VXk> o (Oélpgljg + 062}51171) . VOék . (44)

To interpret these equations physically we note that when summed over & each side of these
approximate equations gives zero. Thus these terms represent interchange of volume, momentum

and energy, respectively, between the two phases.
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We now show that (4.3) represents both equilibrated pressure boundary conditions and drag.

To see this, we write p = ayp; + asps, and compute
a1pz +aapr = p— (a2 — a1 )(p2 — p1) = p— (@2 — a1)[(p2 — p) — (P1 — P)]-

We interpret p as the equilibrated pressure. The second term is the net interface pressure force on
phase k due to its interaction with phase &’ # k. It is the amount of the interface force due to
pressure deviations from the equilibrated pressure. With the present set of variables, this expression
does not require further modeling to in order to obtain a closed system.

Both the normal velocity and pressure are continuous across the interface in the absence of the
surface tension. The continuity of pressure and normal velocity are preserved in these approxima-
tions. Namely, as we add up the interfacial contributions from the two phases, they cancel each
other. In Figures 4.1-3, we compare the approximations in Eqs. (4.2)-(4.4) with the numerical
results for simulations with Atwood number A; = 2/3, M? = 0.5 at times ¢t = 3,6,9 and 12. These
results are obtained from an ensemble average over four runs with different initial random interfaces.
The results from the model agree very well with the numerical solutions. Since data for pressure
is much smoother than data for the velocity, the approximation for the average of the intertacial
pressure is better than for the interfacial velocity. Figures 4.1 and 4.3 are quite similar, due to the
facts that they both contain interfacial velocity and that the interfacial pressure is smooth.

Asin §2, we set R = S = 0. Also we make the approximation vy ~~ ;. Figure 4.4 shows that
vy and vy are almost the same. Combining these with the approximation for the interfacial terms
and the fact from §3 that the truncated correlation in the energy equation is negligible, we obtain

the following one dimensional effective equations for the Rayleigh-Taylor mixing data:

0 0

% + (Oé1172 + 06261)% =0 5 (45)
aakﬁk 8akﬁk6k .
o + 5 - 0, (4.6)
Oagppvr,  O(apprvyty) _ O(agpy) _
o 8. 0. T

0

‘|‘(051}52 + 062}51)% 5 (47)
a(akﬁkék) 8(akﬁk€kﬁk) . _ 8(0%1’%) _ _ 80%
or T 0. T Mg tlammtann)go (+8)
for £k =1,2 and

anq + Qg = 1. (49)
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We next explain how the usual expression for drag in two phase flow can be derived from (4.7).

Consider the first and third terms on the rhs of (4.7). These can be written as

—ak%—[Pk—PJr(O@—Oél)((Pz_p)_(pl_p))]%

z

Conventionally pressure differences are not available, so we model the first term as —ak%. Although

% is available as an inverse length scale in conventional models, this quantity is denoted as L™*,
where [ is a phenomenological length and is given its own equation. On dimensional grounds,

dL/dt is a velocity (difference), yielding the equation
dL/dt = |1)2 — 1)1|Z:0

We note further that if we continue with the identification of dax/dz with L™', then the derivative
of (4.5) with respect to z gives a conservation law for L™, which is not equivalent to the above
ordinary differential equation.

The pressure differences above are not available in conventional models, so they must be replaced
by a dimensionally equivalent term, which we take to be density times a velocity difference squared.
In this substitution, an undetermined dimensionless parameter is allowed.

This completes the derivation of the usual drag model and closure assumptions from ours, at
the level of rigor with which the conventional models are themselves derived. This also explains,
intuitively, why our procedure does not require adjustable parameters.

To complete our system, we need an effective equation of state for each phase, but not for
the mixture. We consider the internal energy €, as a function of density p; and pressure p;. We

approximate the effective equation of state as

€ = fk(ﬂk,pk) ~ fi(pr, Pr)- (4.10)
In this approximation, we assume that pressure and density variations within a phase are small
relative to variations in these quantities between phases. In other words, the phase equation of
state approximation avoids the difficulties commonly associated with defining equations of state for
mixtures.

Altogether we have ten unknowns, ay, vk, pi, pr and & for k = 1,2 and ten equations, (4.6)-(4.8),
(4.10) for each phase, (4.9) and (4.5) for one of the phases. Equation (4.5) for the other phase can
be derived by using (4.9). Therefore our system is closed for 0 < oy < 1.

In order to compare the solution from the effective equations with the results from the numerical

computations, we specialize the equation of state to the stiffened polytropic gas

_ Pt VkPsik

=T e (4.11)
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Here 44 is a dimensionless constant and p, ; is a constant with the dimension of pressure. According
to our approximation for the effective equation of state, we have
~ pk + YEPs,k
€= T~ — -
(yk — L)pr
Substituting this expression into the energy equation (4.8), we have

Jo
+ (1 pavy + 042}51171)8—; . (4.12)

Q[ak(ﬁk + Vkps,k)] N 0 oxk(pr + Vkps,k)] - 5 O(ayty)
ot v — 1 0z Y — 1 0z
Actually, for the stiffened polytropic equation of state, there is no approximation at all in the
effective equation of state. This is due to the fact that the internal energy appears in (4.8) as

Qg PLE-

We comment that there are no free parameters in our model. From (4.5) and the method of
characteristics, it is easy to see that ay lies between 0 and 1 for all times since ¢, lies in that range
initially.

The characteristic speeds of system (4.5)-(4.9) consist of the characteristic speeds vj, and vy £ ¢y,
of each phase separately, together with the speed vy + ayv; for the volume fraction mode. In
particular, the system has only real characteristics, and thus is hyperbolic. See also [12] for a
different closure, which also has purely real characteristic speeds. From this analysis, we see that
the number of independent modes and the characteristic structure of the system changes across
any surface for which one of the volume fractions goes to zero. Moreover, on the two phase side
of this surface (the side for which 0 < ay < 1), there will be one incoming characteristic (of the
larger system) for which there is no data, as the corresponding mode does not exist in the smaller
(one phase) system on the other side of this surface. This characteristic is an incoming sound wave
for the phase whose volume fraction goes to zero at the surface. In this sense, our closure is not
complete, but it has reduced the closure problem from a volume to a surface condition, and given

it an improved physical basis.

5 Loss of Universality for Compressible Rayleigh-Taylor
Mixing
Experiments [10,14] and simulations have shown that the incompressible Rayleigh-Taylor mixing

problem has a mixing region growth rate which is universal, for random initial disturbances of a

flat interface. In this section, we discuss the loss of universality for compressible Rayleigh-Taylor
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mixing. Universality is important theoretically, as it supports the notion of a renormalization
group fixed point for this problem, and it is important practically, as it eliminates the need to
characterize the detailed properties of a randomly perturbed interface. In order to compare solutions
obtained with different parameter values, it is important to introduce dimensionless units. We
choose dimensionless (primed) space and time units for which ¢’ = 1, namely 2’ = zg/c2, t' = tg/co,
where ¢g is a characteristic velocity, taken here to be the sound speed of the heavy gas at the interface
at time zero. In these units, v’ = v/c¢y. We also transform the mass in such a way that the density
p' = p is not transformed. The transformation rules for pressure, p’ = p/c2 and energy density
& = ¢/c, are then uniquely determined. The dimensionless compressibility M = (Ag/c?)'/2, with
A a characteristic transverse length, is written as M = M’ = (\)'/2, While the Atwood number
A; is an attribute of the equations alone, M? refers to the solution as well as to the equations,
and as dimensionalized here, has the role of a dimensionless transverse length. The random initial
conditions are additionally characterized by initial amplitude, af = 6z = d209/cs = aog/ci. Our
previous studies [2] had considered §z9/\ = af,/M? as a dimensionless characterization of the initial
conditions, with the choice a//M? < 1 to reduce the influence of this parameter on the solution.

Henceforth, we refer only to the dimensionless units, and drop all further reference to primes.
Thus the governing equations are given as (4.5) - (4.10), with ¢ = 1.

The initial conditions are determined by the linearized compressible Rayleigh-Taylor theory [5].
Assume the computational domain is a rectangle defined as (x,z) € [#, 2] X [z, 2,). The initial
perturbed interface is given by
2rn(x — ap)

((E _xl) 9 € E [fﬁl, (Eu] 9

2= Zintfe T Z Ay cos

where z is the position of the unperturbed interface and A, is the amplitude of the interface

intfc

perturbation corresponding to mode n. We consider a random interface problem, in which A, is

chosen by using independent Gaussian variables. The detailed choice of A, is described in [2]. Note

that the long wave length modes are set to zero. Let L = |z, — x|, then
2
ai(z, 0) = — > / — Zintfe — ZA cos mn(z xl)) dx |
ensemble (xu - $1)
and

az(z, 0) = 1 — ay(z, 0),

where © is the Heaviside function.
Our results suggest the following RNG interpretation. The Rayleigh-Taylor mixing dynamics is
a flow away from an unstable RNG fixed point, defined by the unstable unperturbed flat interface,

14



towards a possible one parameter family of fixed points. This family is determined as follows: the
convention that (a) low wave numbers are eliminated and (b) the remaining modes have equal
weights, defines a distinguished one parameter family of random initial conditions labeled by an
overall amplitude. In this family, the time ¢ = 0 is uniquely fixed by the equal weight hypothesis
on the allowed modes.

Let ag denote the variance of the Gaussian random variable which defines the A,. Thus ag
parameterizes the initial conditions. The resulting family of solutions can also be understood in
terms of data at times ty # 0. If the amplitude is still small, the time propagation from ¢t = 0 to
t = to will be given by the linear theory. At ¢ = #;, the Fourier modes in the interface will not be
equally weighted. For example if t5 < 0, the ¢t = 5 amplitudes will be smaller, but the longer of the
allowed wave lengths will be exponentially larger in relative amplitude. Thus the one parameter
family of initial measures on function space could alternately be described in terms of a constant
amplitude, but with a variable exponentially weighted relative amplitude for the allowed modes.

Additionally, we require a small amplitude to wavelength restriction, ag < A, for validity of
the linear perturbation theory used to define the initial conditions at ¢ = 0. Since M? = X is a
dimensionless transverse length, the incompressible limit M? — 0 forces aq — 0, giving a unique
solution from our one parameter family in the incompressible limit.

Our previous nondimensionalization of initial conditions was in terms of the validity of linear
perturbation theory, i.e. ap/\ = ag/M? < 1. For the long time dynamics, aq is a better description
of the initial data than is ag/M?. In fact for the ensembled averaged equations, A and M?* are not
defined, and all transverse degrees of freedom have been eliminated, while ag retains its meaning.
Our earlier direct simulation data can be replotted in the dimensionless units used here.

We find that the previously observed dependence on M? can be seen as a dependence on the
initial amplitude ag. More fundamentally, the observed dependence on M? can be seen as a de-
pendence on the relative strength of the moderate and high frequency modes in the random initial
data. From this point of view, there should be no RNG fixed point for compressible Rayleigh-Taylor

mixing, other than by approximation to the incompressible limit.

6 Conclusions

Two phase turbulent mixing data, obtained from direct numerical simulation of the two fluid Euler
equations by the front tracking method, was analyzed.

A new two phase closure, with no adjustable parameters, is proposed. The closure is validated
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by comparison with simulation data, which, itself is in agreement with experiment. The closure is
not complete, as there is a missing condition along the internal boundaries for which one phase goes
to zero volume fraction. The closure also provides a qualitatively new insight into the previously
reported compressibility dependent mixing rate. The latter is now seen as a dependence on initial
amplitude, which becomes a more natural occurrence in a highly compressible situation. Both
turbulent and two phase formulations were considered. The two phase formulation appears to
be more satisfactory. For example, products of the first moments of the two phase formulation

reproduce the second moments of the turbulent formulation correctly.
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7 Captions

Figure 2.1. (a) Comparison between the exact value and two phase approximate value of B (equa-
tions (2.2a) and (2.5a)) for t = 2,5,7 and 9. (b) Comparison between the exact value and two
phase approximate value of A (equations (2.2b) and (2.5b)) for t = 2,5,7 and 9. Here the At-
wood number is A; = 2/3 and the dimensionless compressibility M? = 0.5. We see that the
approximation is in very close agreement with the exact correlations for A and B.

Figure 2.2. Comparison between the exact value and two phase approximate value of R (equa-
tions (2.2¢) and (2.5¢)) for ¢ = 0,6,9 and 11. Although the agreement is not as good as that
shown in Figure 2.1 for A and B the approximation still correctly captures most of the contribution
to R.

Figure 2.3. (a) Comparison between the exact value of S and two phase approximate value
S two phase fort = 2,5,7and 9. (b) Comparison between the exact value of G and the two phase
approximate value G .o phase for t = 2,5,7 and 9. Here the Atwood number is 4, = 2/3
and the dimensionless compressibility M? = 0.5. We see that the approximation is in very close
agreement with the exact correlations for S and G.

Figure 3.1. Comparison between (pV Xv;) and pxV - (avy) for A; = 2/3 and M? = 0.5. 3.1(a)
shows the result for phase 1 at times ¢ = 5 and 9 and 3.1(b) gives the result for phase 2 at times
t = 2 and 8. Since the quantities shown here are quite close to each other, the correlation term
derived in the averaged equation for the energy is negligible.

Figure 4.1. Comparison between (Tt - VX}) and (e 02+ agv1) - Vay, for A, = 2/3 and M? = 0.5
at times ¢t = 3,6,9 and 12. The solid curves correspond to the exact expression (i, - V.Xj) and
the dashed curves are the results obtained from the one-dimensional model (o102 + a3v1) - Vay.
The agreement is surprisingly good.

Figure 4.2. Comparison between (pVX}) and (a1py + aspy) - Vay, for A, = 2/3 and M? = 0.5
at times ¢t = 3,6,9 and 12. The solid curves correspond to the exact expression (pVXj) and the
dashed curves are the results obtained from the one-dimensional model (a1py 4+ azpr) - Vag. The
agreement is remarkably good over the entire mixing zone.

Figure 4.3. Comparison between (pt' - VX}) and (a1pavs + azpivy) - Vay for Ay = 2/3 and
M?* =0.5 at timest = 3,6,9 and 12. The solid curves correspond to the exact expression (pt-V X})
and the dashed curves are the results of the one-dimensional model (aqpav2 + agprv1) - Vay. The
agreement is surprisingly good. This figure is quite similar to Figure 4.2, because the error comes

mainly from the approximation to the velocity of the interface.
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Figure 4.4. Comparison between ¢}, and vy for A; = 2/3 and M? = 0.5 at times¢ = 2,5,7 and
9. 4.4(a) shows the results for phase 1 and 4.4(b) gives the results for phase 2. This plot shows

that the results obtained from the volume average and the density average are nearly the same.
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Figure 2.1. (a) The comparison between the exact value and two phase approximate value of B
(equations (2.2a) and (2.5a)) for t = 2,5,7 and 9. (b) The comparison between the exact value
and two phase approximate value of A (equations (2.2b) and (2.5b)) for ¢t = 2,5,7 and 9. Here
the Atwood number is A; = 2/3 and the dimensionless compressibility M? = 0.5. We see that

the approximation is very close to the exact correlation for A and B.

20



0.075F - - - =

0.025

15.0 16.0 17.0

Figure 2.2. The comparison between the exact value and two phase approximate value of R (equa-
tions (2.2¢) and (2.5¢)) for t = 0,6,9 and 11. Although the agreement is not as good as the ones
shown in Figure 2.1 for A and B, it still captures most of the contribution to R.
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Figure 2.3. (a) The comparison between the exact value S and two phase approximate value
S two phase fort = 2,5,7 and 9. (b) The comparison between the exact value G and two phase
approximate value G phase fort = 2,5,7 and 9. Here the Atwood number is A, = 2/3 and
the dimensionless compressibility M? = 0.5. We see that the approximation is very close to the

exact correlation for S and G.
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Figure 3.1. The comparison between (pV X, 0).) and prV - (agvg) for A; = 2/3 and M? = 0.5. (a) is

for phase 1 at times¢ = 5 and 9 and (b) is for phase 2 at times ¢ = 2 and 8. Since the quantities
shown here are quite close to each other, the correlation term derived in the averaged equation for

energy is negligible.
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Figure 4.1. The comparison between (it - VX}) and (o0 +aqvy)-Vay for Ay = 2/3 and M? = 0.5

at times?t = 3,6,9 and 12. The solid curves are the results of the exact expression (vj, - VX}) and

the dashed curves are the results of the one-dimensional model (105 4 a201) - Vay. The agreement

is very good near the edges of the mixing zone. At the center of the mixing zone, the approximation

still capture the qualitative features of the original data.
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Figure 4.2. The comparison between (pVXy) and (a1p2 + aapy) - Vay. for A, = 2/3 and M* = 0.5

at times t = 3,6,9 and 12. The solid curves are the results of the exact expression (pVX}) and

the dashed curves are the results of the one-dimensional model (a1ps 4+ a2p1) - Vay. The agreement

is very good over the whole mixing zone.
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Figure 4.3. The comparison between (pv -V X}) and (o pavs + aapivy)- Vay for A, = 2/3 and M? =
0.5 at times ¢ = 3,6,9 and 12. The solid curves are the results of the exact expression (pv' - VX})
and and the dashed curves are the results of the one-dimensional model (a1p2v3 + @2pivy) - Vay.
The agreement is very good near the edges of the mixing zone. At the center of the mixing zone, the
approximation still capture the qualitative features of the original data. This figure is quite similar

to figure 4.2, because the error mainly comes from the approximetion to velocity of the interface.
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Figure 4.4. The comparison between v, and v, for A; = 2/3 and M? = 0.5 at times ¢ = 2,5,7 and

9. (a) is for phase 1 and (b) is for phase 2. It shows that the result from the volume average and

the result from the density average are almost the same.
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