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Learning a distance metric from training samples is often a crucial step in machine learning
and pattern recognition. Locality, compactness and consistency are considered as the key
principles in distance metric learning. However, the existing metric learning methods just
consider one or two of them. In this paper, we develop a multi-granularity distance learn-
ing technique. First, a new index, neighborhood granule margin, which simultaneously
considers locality, compactness and consistency of neighborhood, is introduced to evaluate
a distance metric. By maximizing neighborhood granule margin, we formulate the distance
metric learning problem as a sample pair classification problem, which can be solved by
standard support vector machine solvers. Then a set of distance metrics are learned in dif-
ferent granular spaces. The weights of the granular spaces are learned through optimizing
the margin distribution. Finally, the decisions from different granular spaces are combined
with weighted voting. Experiments on UCI datasets, gender classification and object cate-
gorization tasks show that the proposed method is superior to the state-of-the-art distance
metric learning algorithms.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

How to construct or learn a proper distance or similarity measure is a key problem in clustering and classification such as
k-means, and k nearest neighbor searching [10,51,54]. Whereas, the optimal distance metric may be problem-specific and up
to the underlying data structure and distributions. To this end, there have been increasing efforts made to learn a distance
metric in recent years [6,10,37,39,41,50]. Metric learning methods can be categorized into unsupervised [50], semi-
supervised [5] and supervised ones [1,11,25,27,34,53], according to the availability of the labels of training samples. Metric
learning has been proved to successfully improve the clustering and recognition performance in information retrieval
[29,30], bioinformatics [47] and computer vision tasks [6,10,12,16,39,37].

Generally speaking, metric learning aims to learn an effective distance metric, measured by which the samples from the
positive sample pair (i.e., samples with the same class label or similar samples) could be as close as possible, while the sam-
ples from the negative sample pair (i.e., samples with the different class labels or dissimilar samples) could be as far as pos-
sible. In most cases, a metric learning model has three key components: sample pairs; objective function; regularization. In
supervised learning, sample pairs can be generated from k nearest neighbors, e.g., large margin nearest neighbor (LMNN) [6]
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and neighborhood component analysis (NCA) [15]. In verification tasks, samples pairs could be randomly generated by putt-
ing two similarly labeled samples into positive pairs and two differently labeled samples into negative pairs [16,34,37,39,53].
In weakly supervised learning, side information is provided and similar/dissimilar sample pairs are given [50,18]. The objec-
tive function is often established by minimizing the distance between two samples in positive pairs and maximizing the dis-
tance between two samples in negative pairs [6,16,37]. Besides, Bar et al. proposed to maximize mutual information
between the original data and embedded data [3]. To get a stable solution and the expected property for the learned metric,
regularizations such as trace of matrix [53], log-determinant regularization [42], sparse regularization [23,32] and nuclear
norm [36] are imposed on the learned parameters in different applications [38].

In distance based classification, the performance of local classifiers, e.g., nearest neighbor classifier and neighborhood clas-
sifier, is greatly affected by the local distribution of the training samples. Many metric learning methods aim to learn a dis-
tance metric to get expected local data structure. The local data structure, i.e., neighborhood, can be evaluated from locality,
compactness and consistency. Locality means the neighborhood relationship in the original space, which should be kept in the
learning process. Locality preserving is widely applied in dimension reduction [17,40,43], spectral analysis [7,55] and sparse
coding [48]. Compactness measures the closeness of samples in the neighborhood, which is the main principle in many clus-
tering algorithms [24]. Consistency is used to measure ratio of the samples that can be recognized with the Bayes rule [9]. A
good metric should be capable to preserve locality, lead to compact local data structure and high consistency.

In [21], a neighborhood rough set model is proposed based on neighborhood granulation. The samples in the neighbor-
hood of each sample form a neighborhood granule. Then, a family of neighborhood granules forms an elemental granule sys-
tem that covers the universe. By computing the consistency of neighborhood granules, the universe is divided into decision
positive regions and decision boundary regions. The percentage of samples in the decision positive regions is defined as
neighborhood dependency [20,21]. Neighborhood dependency only counts the pure neighborhood granules and does not
reflect the real consistency. Then the decision boundary regions are further grouped into recognizable and misclassified sub-
sets based on the class probabilities in the neighborhood. The percentage of misclassified samples is defined as neighborhood
decision error rate [19]. Neighborhood decision error reflects the consistency of neighborhood structures. However, it does
not consider the locality and compactness. In this work we design a new evaluation index which simultaneously considers
the locality, compactness and consistency.

When we learn the distance metric with neighborhood information, a problem appears, i.e., how to set the size of neigh-
borhoods. It is suggested that multi-granularity data analysis may lead to performance improvement. Multiple granularity
leads to diverse viewpoints of the world. In different granular spaces, we may view an object differently or get different deci-
sions. This observation has been widely used in feature extraction, feature learning and classifier design. For example, in fea-
ture extraction, Gabor feature extracts features in different scales, that is, different down-sampling rate [33]. Additionally,
spatial pyramid model in matching uses pooling technique to combine the feature extracted in different patch sizes
[52,28]. In feature learning and representation, deep learning, is actually a multi-granularity method. Deep learning learns
low-level, middle-level and high-level features, and each level can be interpreted as a granularity [4]. For classifier design, a
multi-scale face recognition method is proposed by combining the decision of different scales [57]. In [56], an adaptive
neighborhood granularity selection and combination method is proposed to solve the granularity-sensitive problem in
neighborhood granular models. Hence, we can learn multiple distance metrics under different granularity and then combine
the decisions made from the learned metrics.

In this paper, we propose a multi-granularity neighborhood distance metric learning (MGML) method. Firstly, we propose
neighborhood granule margin to evaluate a distance metric. Neighborhood granule margin is defined by maximum log-like-
lihood of Bayes error. Then we formulate the metric learning problem as a support vector machines (SVM) model, which can
be effectively solved by standard SVM solvers. Hence, it is quite efficient and has good scalability. As the optimal neighbor-
hood size may be task-specific, we propose a multi-granularity method to combine the decisions of different granularity. For
each neighborhood size, we can learn a distance metric, and then a decision is got. By margin distribution optimization, the
granularity weights are learned. Finally, the decisions of different granularity are combined using the learned weights.
Experiments on UCI datasets, gender classification, object categorization show that the proposed metric learning method
is competent with the state-of-the-art metric learning methods.

The rest of this paper is organized as follows: Section 2 introduces neighborhood granule margin; Section 3 gives the met-
ric learning model by maximizing neighborhood granule margin; Section 4 proposes the multi-granularity distance metric
learning method; experimental analysis is described in Section 5, and Conclusions are given in Section 6.

2. Neighborhood granule margin

Given an information systemhU;A;Di;U ¼ fx1; . . . ; xng is a non-empty set of objects, A ¼ fa1; . . . ; amg is a set of attributes
which describe samples, and D is the decision variable.

Definition 1. [21] Given xi 2 U, the neighborhood dðxiÞ of xi is defined as
dðxiÞ ¼ fxjjxj 2 U;Dðxi; xjÞ 6 dg; ð1Þ
where D is a distance function defined in feature spaces and d is the neighborhood size.
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Definition 2. Given a metric space hU;Di, the family of neighborhood granules fdðxiÞjxi 2 Ug forms an elemental granule
system that covers the universe. A discriminative neighborhood relation R on the universe can be written as a relation matrix
ðrijÞn�n,
rij ¼
1; Dðxi; xjÞ 6 d; yi ¼ yj

�1; Dðxi; xjÞ 6 d; yi – yj

0; Dðxi; xjÞ > d

8><
>: ð2Þ
where yi and yj are the labels of xi and xj.
Similar to neighborhood relation [21] and neighborhood graph [40], discriminative neighborhood relation is also a kind of

similarity relation, which has the property of reflexivity and symmetry. It takes both the neighborhood relationship and dis-
crimination information into account. Then based on the discriminative neighborhood relation R, neighborhood dependency
[21] and neighborhood decision error [19] can be reformulated. For neighborhood dependency, we have
c ¼ 1
n

X
i

f
X

j2fjjrij – 0g
rij=ti

0
@

1
A ð3Þ
where fð�Þ is an indicator function and ti is number of samples in the neighborhood of xi. Actually, f
P

j2fjjrij – 0grij=ti

� �
is used

to judge whether xi belongs to the decision positive regions [21]. If
P

j2fjjrij – 0grij=ti ¼ 1, then all the samples in the neighbor-

hood of xi belong to the same class. In this case, xi belongs to the decision positive regions and f
P

j2fjjrij – 0grij=ti

� �
¼ 1. Other-

wise, if
P

j2fjjrij – 0grij=ti – 1, the samples in the neighborhood of xi belong to different classes. In this case, xi does not belong

to the decision positive regions and f
P

j2fjjrij – 0grij=ti

� �
¼ 0. As shown in Fig. 1, there are four samples. x1 and x4 belong to the

decision positive regions while x2 and x3 do not belong to the decision positive regions. Hence, for i ¼ 1 and 4,

f
P

j2fjjrij – 0grij=ti

� �
¼ 1 while for i ¼ 2 and 3, f

P
j2fjjrij – 0grij=ti

� �
¼ 0.

Neighborhood dependency reflects the percentage of pure neighborhood granules while it ignores the fact that the deci-
sion boundary samples can be further grouped into recognizable and misclassified subsets based on the probability in the
neighborhood [19]. For instance, in Fig. 1, x2 and x3 are both decision boundary samples. Whereas, x2 is recognizable while
x3 is misclassified. Then neighborhood decision error is defined to measure the percentage of misclassified samples [19]:
NDER ¼ 1
n

X
i

g
X

j

rij

 !
ð4Þ
where gð�Þ is an indicator function. Here, if
P

jrij 6 0, then g
P

jrij

� �
¼ 1, which means xi would be misclassified according to

the probability in the neighborhood [19]. If
P

jrij > 0; g
P

jrij

� �
¼ 0.

Based on neighborhood dependency and neighborhood decision error, feature selection algorithms have been proposed to
find a feature subset that keeps the neighborhood dependency or minimizes the neighborhood decision error [19,21]. Dif-
ferent from feature selection, we can learn the a desired metric D to get an expected neighborhood for each sample. Mea-
sured by a given distance measure D, the differently labeled samples in the neighborhood of xi should be far away from
xi while the similarly labeled samples should be close to xi.

In Fig. 1, there are four neighborhood granules. According to the local probability in the neighborhood, x1; x2 and x4 are
correctly classified while x3 is misclassified. Here the probability of xi being correctly classified is defined as:
pðyijxiÞ ¼
Q

rij¼1 expð�dijÞQ
rij¼1 expð�dijÞ þ

Q
rij¼�1 expð�dijÞ

ð5Þ
where dij is the distance between xi and xj, and yi is the label of xi. Then the probability of xi being misclassified is
Fig. 1. Different neighborhood granules.
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1� pðyijxiÞ ¼

Y
rij¼�1

expð�dijÞ
Q

rij¼1 expð�dijÞ þ
Q

rij¼�1 expð�dijÞ
: ð6Þ
A good distance metric D should get low Bayes error rate. Here, maximum log-likelihood is explored to optimize the param-
eter, i.e., D. The log-likelihood Ł can be written as:
Ł ¼
Xn

i¼1

logðpðyijxiÞÞ � logð1� pðyijxiÞÞ ¼
Xn

i¼1

log
pðyijxiÞ

1� pðyijxiÞ
¼
Xn

i¼1

log
drij¼1 expð�dijÞQ

rij¼�1 expð�dijÞ
¼
Xn

i¼1

X
rij¼�1

dij �
X
rij¼1

dij

0
@

1
A

¼
Xn

i¼1

�
Xn

j¼1

dijrij

 !
ð7Þ
In Eq. (7), for sample xi, there are two parts: dr1 ¼
P

rij¼�1dij and dr2 ¼
P

rij¼1dij The first part is the sum of the distance
between xi and differently labeled samples in its neighborhood and the second part is the sum of the distance between xi

and samples with the same class label in the neighborhood. By maximum log-likelihood, in the neighborhood, differently
labeled samples are farther while similarly labeled samples are closer.

Definition 3. Given U ¼ fx1; . . . ; xng, for sample xi, neighborhood granule margin is defined as:
mxi
¼ �

Xn

j¼1

dijrij ¼ dr1 � dr2 ð8Þ
Larger mxi
can lead to more discrimination ability. Besides, the neighborhood discriminative relationship R considers local-

ity of neighborhood. dr2 considers compactness of neighborhood. By maximizing neighborhood granule margin, a more com-
pact data representation can be obtained. Finally, the consistency has been hidden in Eq. (7).

A desired distance metric D can be learned by maximizing neighborhood granule margin. Fig. 2 shows neighborhood
granules measured by the desired distance metric. For dðx1Þ and dðx4Þ, compared to Fig. 1, we get more compact data rep-
resentation. For dðx2Þ, although x2 is correctly classified, we get a more consistent neighborhood and the locality is preserved.
For dðx3Þ, measured by the learned metric, discriminative neighborhood relationship is now consistent with the spatial dis-
tance. Hence, by maximizing neighborhood granule margin, the locality is kept, the compactness is strengthened and the
consistency is improved.

3. Neighborhood distance metric learning

In this section, we introduce the distance metric learning method by maximizing neighborhood granule margin.
Compared to other distance metrics, Mahalanobis distance is independent of data distribution and has been widely used

in different recognition tasks. Hence, we choose Mahalanobis distance as the distance metric D. The Mahalanobis distance
between xi 2 Rd and xj 2 Rd is defined as:
dMðxi; xjÞ ¼ ðxi � xjÞMðxi � xjÞT ð9Þ
where the matrix M<0 is required to be positive semidefinite. Sometimes, when there are no constraints imposed on M, Eq.
(9) becomes a discriminative function in terms of M [31,16]. The matrix M is often estimated from the data’s inverse covari-
ance matrix and plays an important role in multivariate statistics. If M is a diagonal matrix, the diagonal element can be used
as feature weights to evaluate the feature importance. Then features can be ranked according to the feature weights and a
discriminative feature subset can be selected.

We want to learn a M by maximizing neighborhood granule margin, which can be converted to a loss minimization prob-
lem. Then we get the following optimization objective:
Fig. 2. Expected neighborhood granules.
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min
M

RðMÞ þ k1

Xn

i¼1

Lðvxi
Þ

s:t: M < 0

ð10Þ
where RðMÞ is the regularization item imposed on M; Lðvxi
Þ is the loss function, and k1 is a constant that balances the loss

and regularization. For the regularization item RðMÞ, different regularization can be chosen to get expected property, e.g.,
sparse or low rank regularization. As the work in[6], we choose Mk k2

F , that is, the Frobenius norm of M. For the loss function
Lðvxi

Þ, different loss functions can be chosen, e.g., hinge loss in SVM [46], square loss in SRC [49], or logistic loss in logistic
regression [13]. Here linear loss is adopted and the problem in Eq. (10) becomes:
min
M

1
2

Mk k2
F þ k1

Xn

i¼1

1� vxi

s:t: M < 0

ð11Þ
Similar to SVM, by introducing slack variables, the optimization problem in Eq. (11) then becomes:
min
M;nik ;nij ;b

1
2

Mk k2
F þ k1

X
ij

nij þ
X

ik

nik

 !

s:t: dMðxi; xjÞ þ b 6 �1þ nij; j 2 fjjrij – 0 and yi ¼ yjg;
dMðxi; xkÞ þ b P 1� nik; k 2 fkjrik – 0 and yi – ykg;
M < 0;8i; j; k; nij P 0; nik P 0:

ð12Þ
where nij and nik are slack variables. j 2 fjjrij – 0 and yi ¼ yjg means that xj is in the neighborhood of xi with the same label.
dMðxi; xjÞ þ b 6 �1þ nij represents that the distance between xi and similarly labeled sample xj should be decreased. Corre-
spondingly, k 2 fkjrik – 0 and yi – ykg means xk is in the neighborhood of xi with a different label. dMðxi; xkÞ þ b P 1� nik

represents that the distance between xi and differently labeled sample xk should be enlarged.
Let us denote by zi ¼ ðzi1; zi2Þ a generated sample pair. If zi1 and zi2 have the same label, then we call zi a positive sample

pair and label it as ‘‘�1’’; otherwise, zi is a negative sample pair and labelled as ‘‘+1’’; The covariance matrix of the two sam-
ples in zi is C i ¼ ðzi1 � zi2ÞTðzi1 � zi2Þ. Suppose that we generated ns training sample pairs, and thus we have ns covariance
matrices C i; i ¼ 1;2; . . . ;ns. We label C i as ‘‘+1’’ or ‘‘�1’’ based on the label of zi, and define the following kernel function
to measure the similarity between C i and C j:
kðC i;C jÞ ¼ trðC iC jÞ ¼ hC i;C ji ð13Þ
where trð�Þ is the trace operator of a matrix and h�; �i means the inner product of matrices.
Suppose that we have a query sample pair, denoted by z ¼ ðz1; z2Þ. The covariance matrix of z is denoted by C. We intro-

duce the following discriminative function to judge whether z is positive or negative:
f ðCÞ ¼
X

i

ailikðC i;CÞ þ b ¼
X

i

aili < C i;C > þb ¼<
X

i

ailiC i;C > þb ð14Þ
where li is the label of pair zi, and ai is a weight. Let
M ¼
X

i

ailiC i: ð15Þ
Then we have f ðCÞ ¼ hM;Ci þ b.
The metric learning problem in Eq. (12) can then be converted into the following problem:
min
M;b;n

1
2

Mk k2
F þ k1

X
i

ni

s:t: liðhM;C ii þ bÞP 1� ni; ni P 0
ð16Þ
The Lagrangian of Eq. (16) can be defined as follows:
LrðM; b; n;a;bÞ ¼ 1
2

Mk k2
F þ k1

X
i

ni �
X

i

ai liðhM; C ii þ bÞ½ � � 1þ ni �
X

i

bini ð17Þ
where a and b are the Lagrange multipliers which satisfy ai P 0 and bi P 0;8i. To convert the original problem to its dual, we
let the derivative of the Lagrangian with respect to M; b and n to be 0:
@LrðM; b; n;a; bÞ
@M

¼ 0)M �
X

i

ailiC i ¼ 0 ð18Þ

@LrðM; b; n;a; bÞ
@b

¼ 0)
X

i

aili ¼ 0 ð19Þ

@LrðM; b; n;a; bÞ
@ni

¼ 0) k1 � ai � bi ¼ 0) 0 6 ai 6 k1;8i ð20Þ
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Then we substitute Eqs. (18)–(20) back into the Lagrangian, and we get the Lagrange dual problem of the metric learning
problem in Eq. (16):
Table 1
The alg

Inpu
Outp
1: co
2: ge
3: ge
4: pr
max
a

� 1
2

X
i;j

aiajliljkðC i;C jÞ þ
X

i

ai

s:t: 0 6 ai 6 k1;
X

i

aili ¼ 0
ð21Þ
Obviously, the problem in Eq. (21) can be easily solved by the support vector machine (SVM) solvers such as LIBSVM [8]. As
dMðz1; z2Þ is required to be a Mahalanobis distance metric, M should be semi-positive definite. Similar to MMC [50] and
MCML [14], we can compute the singular value decomposition (SVD) of M ¼ UKV , where K is the diagonal matrix of eigen-
values, and then set the negative eigenvalues in K to 0, resulting in a new diagonal matrix Kþ. Finally, we let Mþ ¼ UKþV be
the learned matrix. The algorithm of neighborhood distance metric learning (NDML) method is given in Table 1. In LIBSVM,
sequential minimal optimization (SMO) is used. The time complexity of SMO is Oðn2dÞ, where n and d are the number of sam-
ples and features, respectively. Hence, the time complexity of NDML is Oðns2dÞ, where ns and d are the number of sample
pairs and features, respectively. As there are quite a lot of SVM solvers for large scale problems, NDML has good property
in scalability, especially when the number of samples is very large. Besides, when the feature dimension is quite high,
PCA can be adopted to reduce the feature dimension as a preprocessing step for metric learning.

4. Multi-granularity distance metric learning

The learned M is affected by the granularity, i.e., neighborhood size. The neighborhood size decides the number of sample
pairs for metric learning. When we assign a very small value to d, the number of selected sample pairs would be quite small;
when the neighborhood size is very large, there will be at most nðn� 1Þ=2 sample pairs. As the learned M may be sensitive to
d (refer to Section 5.1), in this section, we propose a multi-granularity distance metric learning method. As shown in Fig. 3,
for training samples, given different granularity we can learn different distance metrics M. Then inspired by the work in [56],
we can learn the weights of different granularity. Given a test sample, we get a decision vector using the learned distance
metrics, and then combine the outputs to get the final decision.

Given S ¼ fðxi; yiÞg; i ¼ 1;2; . . . n, distance metrics M1;M2; . . . ;Mt are learned under t granularity. The classification results
in t different granularity spaces are H 2 Rn�t , where w ¼ hw1;w2; . . . ;wti is the weight vector of different granularity.

Definition 4. [56] For multi-class classification, the classification outputs in t different granular spaces are

fhijg; j ¼ 1;2; . . . ; t. The matrix Q ¼ qij

n o
n�t

is defined as:
qij ¼ 1ðyi;hijÞ ¼
þ1; if yi ¼ hij;

�1; if yi – hij:

�
ð22Þ
Definition 5. [56] For xi, the classification outputs in t different granular spaces are fhijg; j ¼ 1;2; . . . ; t. The ensemble margin
of xi is defined as
qðxiÞ ¼
Xt

j¼1

wjqij: ð23Þ
Ensemble margin should be enlarged by weight learning and margin maximization is usually transformed to a loss min-
imization problem [22,44,45].
Definition 6. [56] For each sample xi 2 S, ensemble margin of xi is qðxiÞ. Then the ensemble loss of xi is
orithm of neighborhood distance metric learning.

t: A set of samples S ¼ fðxi; yiÞg, i = 1, 2, . . .n
ut: Distance metric M
mpute neighborhood discriminative relationship R;
t positive and negative constraints from R;
t M by solving Eq. (21);
oject M to PSD cone, Mþ ¼ UKþV .



Fig. 3. Framework of multi-granularity metric learning.

Table 2
The alg

Inpu
Outp
1: Ch
2: Le
3: G
4: G
5: Le

P. Zhu et al. / Information Sciences 282 (2014) 321–331 327
exi
¼ eðqðxiÞÞ ¼ e

Xm

j¼1

wjqij

 !
ð24Þ
where e is a loss function. For a sample set S, the ensemble square loss is
eðSÞ ¼
Xn

i¼1

exi
¼
Xn

i¼1

ð1� qðxiÞÞ2 ¼ e� Qwk k2
2 ð25Þ
where e ¼ 1; 1; . . . ; 1½ �; e 2 Rn.
To get better margin distribution, we should minimize the ensemble square loss with lp-norm regularization imposed on

the weight vector to get a stable solution. Hence, we can construct the optimization objective as follows.
ŵ ¼ arg min
w

e� Qwk k2
2 þ k2 wk klp s:t:

Xm

j¼1

wj ¼ 1; ð26Þ
where k2 is a constant.
The problem in Eq. (26) can be solved as follows:
ŵ ¼ arg minwf �e� �Qw
�� ��2

2 þ k2 wk klpg: ð27Þ
where �e ¼ ½e; 1�; �Q ¼ ½Q ; e�.
For multi-granularity metric learning problem, we need to seek a sparse solution (as shown in Section 5.1). Hence, l1 norm

is imposed on w and l1 ls is used to solve this problem [26].
ŵ ¼ arg minwf �e� �Qw
�� ��2

2 þ k2 wk k1g: ð28Þ
After the weight vector w is learned by solving Eq. (28), given a test sample x, using the learned distance metrics
M1;M2; . . . ;Mt , we can get a decision vector h ¼ ½h1;h2; . . . ;ht �. Then the prediction label of x is:
y ¼ argmink

X
wjjhj ¼ k

n o
ð29Þ
The algorithm of multi-granularity distance metric learning (MGML) method is given in Table 2.
orithm of multi-granularity distance metric learning.

t: A set of samples S ¼ fðxi; yiÞg, i = 1, 2, . . .n
ut: Distance metrics M1;M2; . . . ;Mt and granularity weights w
oose t granularity d ¼ fd1; d2; . . . ; dtg;
arn t distance metrics M1;M2; . . . ;Mt of t granularity;

et classification outputs H for t granularity;
et the decision matrix Q ;
arn granularity weight vector w by solving Eq. (28).



Table 3
Data description of UCI datasets.

Data Sample Feature Class

breast 106 9 6
glass 214 9 7
heart 270 13 2
horse 368 22 2
iono 351 33 2
sonar 208 60 2
wine 178 13 3
wpbc 198 33 2
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Fig. 4. Metric learning performance with different neighborhood size.

Table 4
Accuracy of different distance metric learning methods.

Data NN LMNN [6] NCA [15] ITML [10] NDML MGML

breast 69.3 ± 15.8 65.6 ± 14.3 69.3 ± 11.1 63.2 ± 14.1 71.9 ± 12.3 70.5 ± 15.0
glass 66.3 ± 7.9 62.8 ± 16.3 60.6 ± 12.2 65.5 ± 11.2 73.9 ± 11.6 71.9 ± 10.5
heart 75.6 ± 10.0 77.8 ± 6.1 77.4 ± 5.9 78.9 ± 9.6 77.4 ± 11.9 79.6 ± 6.8
horse 89.2 ± 3.9 90.5 ± 4.6 90.3 ± 7.4 91.1 ± 4.7 91.9 ± 3.3 92.1 ± 3.9
iono 86.4 ± 4.9 88.1 ± 5.1 87.5 ± 6.6 89.0 ± 6.9 89.8 ± 4.7 89.2 ± 5.0
sonar 85.5 ± 9.2 88.1 ± 10.1 85.6 ± 5.5 80.9 ± 7.3 89.0 ± 5.5 88.4 ± 8.8
wine 94.9 ± 5.1 97.7 ± 3.0 96.7 ± 3.9 97.7 ± 3.0 98.8 ± 2.5 98.9 ± 2.3
wpbc 70.7 ± 6.7 78.8 ± 5.6 72.7 ± 9.2 69.2 ± 10.4 75.3 ± 9.3 75.3 ± 9.8

Average 79.7 81.2 80.0 79.4 83.5 83.2

Bold means the highest accuracy in all the comparison methods.

Fig. 5. Face images of gender classification.
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5. Experiment analysis

In this section, the performance of the proposed distance metric learning method is evaluated on UCI datasets, gender
classification and object categorization tasks. The code of MGML can be downloaded from http://www4.comp.pol-

http://www4.comp.polyu.edu.hk/cspzhu/


Table 5
Gender classification accuracy of different methods.

Method NN LMNN [6] NCA [15] ITML [10] MGML

Accu. 90.3 91.0 91.4 90.7 92.1

Bold means the highest accuracy in all the comparison methods.

Fig. 6. COIL database.

Table 6
Recognition rate on COIL20 database.

Method NN LMNN [6] NCA [15] ITML [10] MGML

Accu. 91.1 ± 4.2 91.7 ± 4.0 95.0 ± 3.8 94.5 ± 5.9 95.4 ± 4.3

Bold means the highest accuracy in all the comparison methods.
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yu.edu.hk/cspzhu/. For parameter setting, there are two parameters in MGML, i.e., k1 in Eq. (21) and k2 in Eq. (28). In all the
experiments, k1 is set as 1 and k2 is set as 0.1.

5.1. UCI datasets

We collected eight datasets from UCI Machine Learning Repository [2]. Table 3 lists the detailed information of the data-
sets, including numbers of samples, features and classes. Firstly, we shows the classification accuracy of NDML with gran-
ularity. As shown in Fig. 4, the accuracy varies greatly under different granularity. For different datasets the optimal
granularity is different. This validates that multi-granularity learning is necessary.

Then we compare the classification accuracy of different metric learning methods, as illustrated in Table 4. We use near-
est neighbor classifier to report the performance. NN means that the Euclidean distance is used. The highest accuracy of
NDML using different granularity is also reported. From the comparison we see that NDML and MGML outperform other
methods on seven datasets except wpbc. Compared with MGML, NDML is superior on some datasets. Whereas, NDML has
to suffer from granularity sensitivity. Compared to Euclidean distance, MGML improves the average classification accuracy
by 3.5%.

5.2. Gender classification

A non-occluded subset (14 images per subject) of the AR dataset [35] is used, which consists of 50 male and 50 female
subjects. We use the images from the first 25 males and 25 females for training, and the remaining images for testing. The
images were cropped to 60 � 43. A subset of faces of 10 men and 10 women are shown in Fig. 5. PCA was used to reduce the
dimension of each image to 50. The classification accuracy of different methods is shown in Table 5. Similar to the perfor-
mance on UCI datasets, MGML also achieves the highest accuracy.

5.3. Object categorization

We choose COIL20 database to validate the performance of the proposed method. COIL20 database contains 20 objects.
The images of each objects were taken 5� apart as the object is rotated on a turntable and each object has 72 images. The size
of each image is 32 � 32 pixels, with 256 gray levels per pixel. The sample images of 20 objects are shown in Fig. 6. PCA was
used to reduce the dimension of each image from 1024 to 100. The performance of different methods is illustrated in Table 6.
Compared to NN, NCA, ITML and MGML improve the accuracy greatly while for LMNN the improvement is unconspicuous.
Compared to NCA and ITML, the performance of MGML is better.

6. Conclusions

Learning a desired distance metric from given training samples is quite important in machine learning. In this paper, we
proposed a multi-granularity distance metric learning method via maximizing neighborhood granule margin. Firstly, we
propose neighborhood granule margin that considers neighborhood locality, compactness and consistency to evaluate the

http://www4.comp.polyu.edu.hk/cspzhu/
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distance metric. Then we learn a desired metric by maximizing neighborhood granule margin and formulate metric learning
as a sample pair classification task, which can be effectively solved by standard SVM solvers. Considering the sensitivity of
metric learning to granularity, we propose a multi-granularity metric learning method by margin distribution optimization.
Experiment analysis on different classification tasks shows that the proposed method outperforms the state-of-the-art met-
ric learning methods.
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