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After collecting a data base of fingerprint images, we design a neural 
network algorithm for fingerprint recognition. When presented with 
a pair of fingerprint images, the algorithm outputs an estimate of the 
probability that the two images originate from the same finger. In one 
experiment, the neural network is trained using a few hundred pairs 
of images and its performance is subsequently tested using several 
thousand pairs of images originated from a subset of the data base 
corresponding to 20 individuals. The error rate currently achieved is 
less than 0.5%. Additional results, extensions, and possible applica- 
tions are also briefly discussed. 

1 Introduction 

The fast, reliable, and computerized classification and matching of fin- 
gerprint images is a remarkable problem in pattern recognition that has 
not, to this date, received a complete solution. Automated fingerprint 
recognition systems could in principle have an extremely wide range of 
applications, well beyond the traditional domains of criminal justice and, 
for instance, render the use of locks and identification cards obsolete. Our 
purpose here is to give a brief account of our preliminary results on the 
application of neural network ideas to the problem of fingerprint match- 
ing. In particular, we shall describe the architecture, training, and testing 
of a neural network algorithm that, when presented with two fingerprint 
images, outputs a probability p that the two images originate from the 
same finger. 

There are several reasons to suspect that neural network approaches 
may be remarkably well suited for fingerprint problems. First, finger- 
prints form a very specific class of patterns with very peculiar flavor 
and statistical characteristics. Thus the corresponding pattern recogni- 
tion problems seem well confined and constrained, perhaps even more 
so than in other pattern recognition problems, such as the recognition 

Neural Computation 5,402-418 (1993) @ 1993 Massachusetts Institute of Technology 



Neural Networks for Fingerprint Recognition 403 

of handwritten characters, where neural networks have already been ap- 
plied with reasonable success (see, for instance, Le Cun et al. 1990). 

Second, neural networks could avoid some of the pitfalls inherent 
to other more conventional approaches. It has been known for over a 
century (see Moenssens 1971 for an interesting summary) that pairs of 
fingerprint images can be matched by human operators on the basis of 
minutia and/or ridge orientations. Minutia are particular types of dis- 
continuities in the ridge patterns, such as bifurcations, islands, and end- 
ings. There is typically of the order of 50 to 150 minutia (Fig. 2a) on a 
complete fingerprint image. Ten matching minutia or so are usually esti- 
mated as sufficient to reliably establish identity. Indeed, it is this strategy 
based on minutia detection and matching that has been adopted in most 
of the previous attempts to find automated solutions. The minutia-based 
approach has two obvious weaknesses: it is sensitive to noise (especially 
with inked fingerprints, small perturbations can create artificial minu- 
tia or disguise existing ones) and computationally expensive since it is 
essentially a graph matching problem. 

Third, neural networks are robust, adaptive, and trainable from exam- 
ples. This is particularly important since fingerprint images can include 
several different sources of deformation and noise ranging from the fin- 
gers and their positioning on the collection device (translation, roll, rota- 
tion, pressure, skin condition) to the collection device itself (ink/optical). 
Furthermore, it is important to observe that the requirements in terms 
of speed, computing power, probability of false acceptance and false re- 
jection, memory and data base size can vary considerably depending on 
the application considered. To access a private residence or private car, 
one needs a small economic system with a small modifiable data base of 
a few people and a response time of at most a few seconds. On the other 
hand, forensic applications can require rapid searches through very large 
data bases of millions of records using large computers and a response 
time that can be longer. Neural networks can be tailored and trained 
differently to fit the particular requirement of specific applications. 

From a technical standpoint, there are two different problems in the 
area of fingerprint analysis: classification and matching. The classifica- 
tion of fingerprints into subclasses can be useful to speed up searches 
through large data bases. It is of interest to ask whether neural net- 
works can be used to implement some of the conventional classifica- 
tion schemes, such as the partition of fingerprints patterns into whorls, 
arches, and loops (“pattern level classification”), or to create new classifi- 
cations boundaries. Classification problems, however, will be discussed 
elsewhere. Here, we shall exclusively concentrate on the matching prob- 
lem. Indeed, at the core of any automated fingerprint system, whether 
for identification or verification purposes and whether for large or small 
data base environments, there should be a structure that, when presented 
with two fingerprint images, decides whether or not they originate from 
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the same finger. Accordingly, our goal is going to be the design and 
testing of such a neural algorithm. 

Because neural networks are essentially adaptive and need to be 
trained from examples, we next describe our data base of training and 
testing examples and how it was constructed. We then consider the 
matching algorithm that consists of two stages: a preprocessing stage 
and a decision stage. The preprocessing stage basically aligns the two 
images and extracts, from each one of them, a central region. The two 
central regions are fed to the decision stage, which is the proper neural 
network part of the algorithm and subject to training from examples. 
Whereas the preprocessing stage is fairly standard, the decision stage is 
novel and based on a neural network that implements a probabilistic 
Bayesian approach to the estimate of the probability p of a match. In 
the main experiment, the network is trained by gradient descent using a 
training set of 300 pairs of images coming from 5 fingers, 5 images per 
finger. Its performance is then validated using an additional set of 4650 
pairs coming from 15 additional fingers, 5 images per finger also. After 
training, the network achieves an overall error rate of 0.5%. Additional 
results and possible extensions are discussed at the end. 

2 Data Base 

Although there exist worldwide many fingerprint data bases, these are 
generally not available for public use. In addition, and this is a crucial 
issue for connectionist approaches, most data bases contain only one im- 
age or template per finger whereas training a neural network to recognize 
fingerprint images requires that several noisy versions of the same record 
be available for training. Therefore, to train and test a neural network, 
one must first construct a data base of digitized fingerprint images. 

Such images can be obtained in a variety of ways, for instance by digi- 
tal scanner with inked fingerprints or by more sophisticated holographic 
techniques (Igaki et al. 1990). We decided to build our own collection 
device, using a simple principle. The device basically consists of a prism 
placed in front of a CCD (charge coupled device) camera connected to a 
frame grabber board installed on a personal computer (Fig. 1). When a 
finger is positioned on the diagonal face of the prism, incoming rays of 
light from one of the square sides of the prism are refracted differently 
depending on whether they encounter a point of contact of the finger 
with the prism (corresponding to a ridge) or a point of noncontact. This 
creates a pattern of bright and dark ridges in the refracted beam that can 
easily be focused, with a lens, on the CCD camera and then digitized 
and stored in the computer. Our resulting images are 512 x 464 pixels 
in size, with 8 bits gray scale per pixel. On the corresponding scale, the 
thickness of a ridge corresponds to 6 pixels or so. This is of course not a 
very economical format for the storage of fingerprint images that contain 
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Figure 1: Collection device: diffuse light entering the prism is not reflected 
where the ridges are in contact with the prism. The corresponding pattern of 
light and dark ridges is focused on a CCD camera, digitized on a personal 
computer, and sent to a workstation for further processing. 

a much smaller amount of useful information. Yet, this format is neces- 
sary at least in the developing phase, in particular in order to fine tune 
the preprocessing. 

In this way, we have assembled a data base of over 200 fingerprint 
images using various fingers from 30 different persons. To solve the 
matching problem, it is imperative that the data base contains several 
different images of the same finger taken at different times. Thus, for 
what follows, the most important part of the data base consists of a 
subset of 100 images. These are exclusively index finger images from 20 
different persons, 5 different images being taken for each index finger at 
different times. At each collection time, we did not give any particular 
instruction to the person regarding the positioning of the finger on the 
prism other than to do so "in a natural way." In general, we made 
a deliberate attempt not to try to reduce the noise and variability that 
would be present in a realistic environment. For instance, we did not 
clean the surface of the prism after each collection. Indeed, we do observe 
significant differences among images originating from the same finger. 
This variability results from multiple sources, mostly at the level of the 
finger (positioning, pressure, skin condition) and the collection device 
(brightness, focus, condition of prism surface). 

We have conducted several learning experiments using this data base, 
training the networks with image pairs originated from up to 7 persons 
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and testing the algorithm on the remaining pairs. Here, we shall mostly 
report the typical results of one of our largest ex eriments where, out 
of the rr) = 4950 image pairs in this data base, E )  = 300 image pairs 
originated from 5 different persons are used to train the network by 
gradient descent. The remaining 4650 pairs of images are used to test 
the generalization abilities of the algorithm. 

Given two fingerprint images A and B, the proposition that they match 
(or do not match) will be denoted by M(A, B) [or M(A, B ) ] .  The purpose 
then is to design a neural network algorithm that when presented with a 
pair (A,  B) of fingerprint images outputs a number p = p(M) = p[M(A, B ) ]  
between 0 and 1 corresponding to a degree of confidence (Cox 1946) or 
probability that the two fingerprints match. Here, as in the rest of the 
paper, we shall tend to omit in our notation the explicit dependence on 
the pair (A,  B) except the first time a new symbol is introduced. 

3 Preprocessing Stage 

Any algorithm for fingerprint recognition may start with a few stages 
of standard preprocessing where the raw images may be rotated, trans- 
lated, scaled, contrast enhanced, segmented, compressed, or convolved 
with some suitable filter. In our application, the purpose of the pre- 
processing stage is to extract from each one of the two input images 
a central patch called the central region and to align the two central re- 
gions. Only the two aligned central regions are in turn fed to the decision 
stage. The preprocessing itself consists of several steps, first to filter out 
high-frequency noise, then to compensate for translation effects present 
in the images and to segment them and finally to align and compress 
the central regions. For ease of description, one of the input images will 
be called the reference image and the other one the test image, although 
there is no intinsic difference between the two. 

3.1 Low Pass Filtering. To get rid of the numerous high-frequency 
spikes that seem to be present in the original images, we replace every 
pixel that significantly deviates from the values of its four neighbors by 
the corresponding average. 

3.2 Segmentation. For each image, we first draw a tight rectangu- 
lar box around each fingerprint using an edge detection algorithm and 
determine the geometric center of the box. The central region of the ref- 
erence image is then defined to be the 65 x 65 central square patch that 
occupies the region immediately below the previously described center. 
For the test image, instead we select a similar but larger patch of size 
105 x 105 (extending the previous patch by 20 pixels in each direction). 
This larger patch is termed the window. 
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3.3 Alignment. We slide, pixel by pixel, the central region of the ref- 
erence image across the window of the test image (by 20 pixels up, down 
left and right) and compute at each step the corresponding correlation, 
until we find the position where the correlation is maximal. This, aside 
from the training period, is the most computationally expensive part of 
the entire algorithm. The central region of the test image is then deter- 
mined by selecting the central 65 x 65 patch corresponding to the position 
of maximal correlation (Fig. 2b). 

3.4 Compression and Normalization. Finally, each one of the two 
65 x 65 central regions is reduced to a 32 x 32 array by discrete convolution 
with a truncated gaussian of size 5 x 5. This 32 x 32 compressed central 
region contains a low-resolution image, which corresponds roughly to 10 
ridges in the original image. The resulting pixel values are conveniently 
normalized between 0 and 1. 

In our implementation, all the parameters and in particular the size 
of the various rectangular boxes are adjustable. The values given here 
are the ones used in the following simulations and empirically seem to 
yield good results. To avoid border effects, a 2-pixel-wide frame is usu- 
ally added around the various rectangular boxes, which explains some 
of the odd sizes. It is also natural to wonder at this stage whether a 
decision regarding the matching of the two inputs could not already be 
taken based solely on the value of the maximal correlation found during 
the alignment step (3.3) by thresholding it. It is a key empirical obser- 
vation that this maximal correlation, due in part to noise effects, is not 
sufficient. In particular, the correlation of both matching and nonmatch- 
ing fingerprint images is often very high (above 0.9) and we commonly 
observe cases where the correlation of nonmatching pairs is higher than 
the correlation of matching pairs. It is therefore essential to have a non- 
linear decision stage following the preprocessing. Finally, it should be 
noticed that during training as well as testing, the preprocessing needs 
to be applied only once to each pair of images. In particular, only the 
central regions need to be cycled through the neural network during the 
training phase. Although the preprocessing is not subject to training, it 
can be implemented, for most of its part, in a parallel fashion compatible 
with a global neural architecture for the entire algorithm. 

4 Neural Network Decision Stage 

The decision stage is the proper neural network part of the algorithm. 
As in other related applications (see, for instance, Le Cun et al. 19901, 
the network has a pyramidal architecture, with the two aligned and 
compressed central regions as inputs and with a single output p. The 
bottom level of the pyramid corresponds to a convolution of the central 
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Figure 2: (a) A typical fingerprint image: the surrounding box is determined 
using an edge detection algorithm. Notice the numerous minutia and the noise 
present in the image, for instance in the form of ridge traces left on the prism 
by previous image collections. 
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regions with several filters or feature detectors. The subsequent layers 
are novel. The final decision they implement results from a probabilistic 
Bayesian model for the estimation of p, based on the output of the con- 
volution filters. Both the filtering and decision part of the network are 
adaptable and trained simultaneously. 

4.1 Convolution. The two central regions are first convolved with a 
set of adjustable filters. In this implementation only two different filter 
types are used, but the extension to a larger number of them is straight- 
forward. Here, each filter has a 7 x 7 receptive field and the receptive 
fields of two neighboring filters of the same type have an overlap of 2 
pixels to approximate a continuous convolution operation. The output 
of all the filters of a given type form a 6 x 6 array. Thus each 32 x 32 
core is transformed into several 6 x 6 arrays, one for each filter type. The 
output of filter type j at position (x, y) in one of these arrays is given (for 
instance for A) by 

(4.1) 

where lr,s(A) is the pixel intensity in the compressed central region of 
image A at the (Y,s) location, f is one of the usual sigmoids [f(x) = 
(1 + e-')-*], w ~ , ~ , ~ , ~  is the weight of the connection from the (Y, s) location 
in the compressed central region to the (x, y) location in the array of filter 
outputs, and ti is a bias. The sum in 4.1 is taken over the 7 x 7 patch 
corresponding to the receptive field of the filter at the (x,y) location. 
The threshold and the 7 x 7 pattern of weights are characteristic of the 
filter type (so-called "weight sharing"), so that they can also be viewed 
as the parameters of a translation invariant convolution kernel. They 
are shared within an image but also across the images A and B. Thus 
dx,y,r,s = zd(x - r ,y  - s) and, in this implementation, each filter type is 
characterized by 7 x 7 + 1 = 50 learnable parameters. In what follows, 
we simplrfy the notation for the location of the outputs of the filters 
by letting (x,y) = i. For each filter type j ,  we can now form an array 
Azj(A, B) consisting of all the squared differences 

(4.2) 

and let Az = Az(A, B) denote the array of all A&A, B) for all positions i 
and filter types j (Fig. 3). 

A{(A, B) = [&A) - Zj(B)]' 

4.2 Decision. The purpose of the decision part of the network is to 
estimate the probability p = p[M(A, B)/Az(A, B)] = p(M/Az) of a match 
between A and B, given the evidence Az provided by the convolution 
filters. The decision part can be viewed as a binary Bayesian classifier. 
There are four key ingredients to the decision network we are proposing. 
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Figure 3 Network architecture: at the bottom, reference and test images A and 
B are presented to the network as two 32 x 32 arrays. The network extracts 
features from the images by convolution with several different 7 x 7 filter types. 

1. Because the output of the network is to be interpreted as a prob- 
ability, the usual least mean square error used in most backpropagation 
networks does not seem to be an appropriate measure of network per- 
formance. For probability distributions, the cross entropy between the 
estimated probability output p and the true probability P, summed over 
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all patterns, is a well-known information theoretic measure of discrep- 
ancy (see, for instance, Blahut 1987) 

where, for each image pair, Q = 1 - P and q = 1 - p. H is also known 
as the discrimination function and can be viewed as the expected value 
of the log-likelihood ratio of the two distributions. The discrimination is 
nonnegative, convex in each of its arguments, and equal to zero if and 
only if its arguments are equal. 

2. Using Bayes inversion formula and omitting, for simplicity, the 
dependence on the pair (A, B) 

(4.4) 

The effect of the priors p(M) and p(M) should be irrelevant in the case of 
a large set of examples. Our data base is large enough for the decision 
to be driven only by the data, as confirmed by the simulations (see also 
F i g 4 ) .  In simulations, the values chosen are typically p ( M )  = 0.1 and 
p(M) = 0.9 [the observed value of p(M) is roughly 16% in the training 
set and 4% in the entire data base]. 

3. We make the simplifying independence assumption that 

p(Az/M) = np(Ad/M) (4.5) 
i,j 

i,j 
P ( A m  = I I P ( A 4 / m  (4.6) 

Strictly speaking, this is not true, especially for neighboring locations. 
However, in the center of a fingerprint where there is more variability 
than in the periphery, it is a reasonable approximation, which leads to 
simple network architectures and, with hindsight, yields excellent results. 

4. To completely define our network, we still need to choose a model 
for the conditional distributions p(Ad/M) and p(Ad/M). In the case of a 
match, the probability p(Ad/M) should be a decreasing function of A4. 
It is therefore natural to propose an exponential model of the form 

where 0 < Sij < 1 and, for proper normalization, the constant Cq must 
take the value Ci j  = logsv/sij - 1. In what follows, however, we use a less 
general but slightly simpler binomial model of the form 

(4.7) 
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~ 

Figure 4: Neural decision network. This is just a neural network implemen- 
tation of equations 4.4-4.8. Except for the output unit, each unit computes its 
output by applying its transfer function to the weighted sum of its inputs. In this 
network, different units have different transfer functions including: id(x) = x, 
a(x) = (1 + e-X)-l, logx, and exp(x) = 8. The output unit is a normalization 
unit that calculates p(M/Az) in the form of a quotient x/x + y. The coefficients 
p ,  and q, of 4.7 and 4.8 are implemented in the form p ,  = a(nj) and 1 -qj = g(6j). 
T, and 6, are the only adjustable weights of this part of the network and they 
are shared with the connections originating from the convolution filter outputs. 
All other connection weights are fixed to 1 except for the connections running 
from logp, to the exponential unit, which have a weight equal to 36, the size of 
the receptive field of the convolution filters. The exponential F i t  on the left, 
for instance, computes p(Az/M)p(M) = p ( M )  f l i i p , [ ( l  - pj)/pjIA’: using the fact 
that (1 - p j ) / p ,  = -3. Notice that the priors play the role of a bias for the 
exponential units, which, after training, ends up having little influence on the 
output. 
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with 0.5 5 pj, 9, 5 1. This is again only an approximation used for its 
simplicity and for the fact that the feature differences Ad are usually 
close to 0 or 1. In this implementation and for economy of parameters, 
the adjustable parameters pj and 9j depend only on the filter type, another 
example of weight sharing. In a more general setting, they could also 
depend on location. 

In summary, the adjustable parameters of the neural network are 
zdx,y,r,s, tJ ,  pi, and q j .  In this implementation, their total number is (7 x 7 + 
1) x 2 + 2 x 2 = 104. At first sight, this may seem too large in light of the 
fact that the network is trained using only 300 pairs of images. In reality, 
each one of the 50 shared parameters corresponding to the weights and 
bias of each one of the convolution filters is trained on a much larger 
set of examples since, for each pair of images, the same filter is exposed 
to 72 different subregions. The parameters are initialized randomly (for 
instance the dx,y,r,s are all drawn independently from a gaussian distribu- 
tion with 0 mean and standard deviation 0.5). They are then iteratively 
adjusted, after each example pair presentation, by gradient descent on 
the cross entropy error measure H. The specific formula for adjusting 
each one of them can readily be derived from 4.3-4.8 and will not be 
given here for brevity. 

It should also be noticed that the adaptable pattern classifier defined 
by 4.3-4.8 is not a neural network in the most restrictive sense of a layered 
system of sigmoid units. It is rather a nonlinear model with adjustable 
parameters which can be drawn (Fig. 41, and in several different ways, in 
a neural network fashion. The number of units and their types, however, 
depends on how one decides to decompose the algebraic steps involved 
in the computation of the final output p .  

5 Results and Conclusions 

We have trained the network described in the previous sections using 
300 pairs of images from our data base and only two different filter types 
(Fig. 5). The network performance is then tested on 4650 new pairs. The 
network usually learns the training data base perfectly. This is not the 
case, however, when only one filter type is used. The separation obtained 
in the output unit between matching and nonmatching pairs over the 
entire population is good since 99% of the matching (or nonmatching) 
pairs yield an output above 0.8 (or below 0.2). The error rate on the 
generalization set is typically 0.5% with roughly half the errors due to 
false rejections and half to false acceptances. In many applications, these 
two types of error do not play symmetric roles. It is often the case, for 
instance, that a false acceptance is more catastrophic than a false rejection. 
If, by changing our decision threshold on p ,  we enforce a 0% rate of false 
acceptances, the rate of false rejections increases to 4%. This error rate 
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Figure 5: Unit activation throughout the network when two matching finger- 
print images are presented as inputs. Flow of activation is left to right. Images 
A and B are presented to the network as 32 x 32 arrays. The network has two 
filters 1 and 2, each represented by the corresponding 7 x 7 pattern of weights. 
Each filter is convolved with each array and generates the set of feature arrays 
lA, 1 B, 2A, and 2B. The next layer computes the squared feature differences for 
each filter. Finally, the similarity S = p(M/Az)  is computed. In this example the 
similarity is close to 1 (represented by a black vertical bar), close to the target 
value T = 1. Notice the essentially binary values assumed by the features and 
the compact representation of the input images with 72 bits each. 

needs of course to be reduced, but even so it could be almost acceptable 
for certain applications. 

As in other related applications, the interpretation of the filter types 
discovered by the network during learning is not always straightforward 
(Figs. 5 and 6). We have conducted various experiments with up to four 
filter types but on smaller data bases. Usually, at least one of the filter 
types always appears to be an edge or a ridge orientation detector. Some 
of the other filter types found in the course of various experiments may 
be interpretable in terms of minutia detectors, although this is probably 
more debatable. 

On the completion of the training phase, the outputs of the filters in 
the decision stage are close to being binary 0 or 1. Since the final deci- 
sion of the network is entirely based on these outputs, these provide a 
very compressed &presentation of all the relevant matching information 
originally contained in the 512 x 464 x 8 bits images. Thus, in this im- 
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Figure 6 Examples of filters learned in different experiments: one filter is repre- 
sented by the corresponding 7 x 7 patterns of weights. The size of each square 
represents the value of the corresponding weight. Black and white squares 
correspond to positive and negative weights, respectively. Whereas the first 
filter seems to be an edge or ridge orientation detector, the other two are more 
difficult to interpret. It may be tempting to describe them in terms of minu- 
tia detectors, such as an ending and a bifurcation detector, but this may not 
necessarily be the case. 

plementation, each image is roughly reduced to 36 x 2 = 72 bits, which 
is within a factor of two from a rough estimate of the theoretical lower 
bound (the number of human beings, past and present, is approximately 

In applications, the algorithm would not be used in the same way 
as it has been during the training phase. In particular, only the central 
regions of the reference images need to be stored in the data base. Since 
the forward propagation through the decision stage of the algorithm is 

233 M 8.5 x 109). 
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very fast, one can in fact envision a variation on the algorithm where the 
alignment step in the preprocessing is modified and where the reference 
image is stored in the data base only in the most compressed form given 
by the corresponding outputs of the filters in the decision stage. In this 
variation, all the possible 65 x 65 square patches contained in the 105 x 105 
window of the test image would be sent, after the usual compression and 
normalization preprocessing steps, through the convolution filter arrays 
and then matched through the neural network with the corresponding 
outputs for the reference image. The final decision would then be based 
on an examination of the resulting surface of p values. Whether this 
algorithm leads also to better decisions needs further investigation. 

To reduce the error rate, several things can be tried. One possibility 
is to use more general exponential models in 4.7 and 4.8 rather than 
binomial distributions. Alternatively, the number of filter types or the 
number of free parameters could be increased (for instance by letting pi 
and qj depend also on location) as well as the size of the training and 
validation sets. Another possibility is to use in the comparison larger 
windows or, for instance, two small windows rather than one, the second 
window being automatically aligned by the alignment of the first one. 
A significant fraction of the residual false rejections we have seems to 
be due to rotation effects, that is, to the fact that fingers are sometimes 
positioned at different angles on the collection device. The network we 
have described seems to be able to deal with rotations up to a lo" angle. 
Larger rotations could easily be dealt with in the preprocessing stage. It 
is also possible to incorporate a guiding device into the collection system 
so as to entirely avoid rotation problems. 

In this study, we have attempted to find a general purpose neural 
network matcher that could be able, in principle, to solve the matching 
problem over the entire population. In this regard, it is remarkable that 
the network, having been trained with image pairs associated with only 
five different persons, generalizes well to a larger data base associated 
with 20 persons. Obviously, a general purpose network needs also to 
be tested on a larger sample of the population. Unlike the classification 
problem, however, the matching problem should be much less sensitive 
to the size of the training and testing sets. In classifymg whorls for 
instance, it is essential to expose the network to a large sample represen- 
tative of whorl patterns across the entire population with all their subtle 
statistical variations. In our matcher, we are basically substracting one 
image from the other and therefore only the variability of the difference 
really matters. 

Specific applications, especially those involving a small data base, 
have particular characteristics that may be advantageously exploited both 
in the architecture and the training of networks and raise also some par- 
ticular issues. For a car lock application, for instance, positive matches 
occur only with a pair of fingerprints associated with a small data base 
of only a few persons. Positive matches corresponding to fingerprints 
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associated with persons outside the data base are irrelevant. They may 
not be needed for training. Conceivably, in small data base applications, 
a different network could be trained to recognize each record in the data 
base separately against possible imposters. 

Finally, the approach we have described and especially the Bayesian 
decision stage with its probabilistic interpretation is not particular to the 
problem of fingerprint recognition. It is rather a general framework that 
could be applied to other pattern matching problems where identity or 
homology needs to be established. The corresponding neural networks 
can easily be embodied in hardware, especially once the learning has 
been done off-line. As already pointed out, most of the steps in the 
preprocessing and the decision stages are in fact convolutions and are 
amenable to parallel implementation. On a workstation, it currently takes 
on the order of 10 sec to completely process a pair of images. This time 
could be reduced by a few orders of magnitude with specially dedicated 
hardware. 
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