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Abstract—In this study we present an efficient image catego-
rization and retrieval system applied to medical image databases,
in particular large radiograph archives. The methodology is
based on local patch representation of the image content, using
a “bag of visual words” approach. We explore the effects of
various parameters on system performance, and show best results
using dense sampling of simple features with spatial content,
and a non-linear kernel-based Support Vector Machine (SVM)
classifier. In a recent international competition the system was
ranked first in discriminating orientation and body regions in
x-ray images. In addition to organ-level discrimination, we show
an application to pathology-level categorization of chest x-ray
data, the most popular examination in radiology. The system
discriminates between healthy and pathological cases, and is also
shown to successfully identify specific pathologies in a set of chest
radiographs taken from a routine hospital examination. This is
a first step towards similarity-based categorization, which has a
major clinical implications for computer-assisted diagnostics.

Index Terms—Image categorization, x-ray, chest radiography,
visual words, image retrieval, image patches, Computer-Aided
Diagnosis (CAD), disease labeling.

I. INTRODUCTION

In the last ten years there has been an explosion in the num-
ber of images that are acquired every day in any modern hos-
pital, due to the increase in digital medical imaging techniques
and patient image-screening protocols. The Geneva University
Hospital radiology department alone produced 50,000 images
per day in 2006 [36]. In the UK over 120 National Health
Service Trusts have implemented Picture Archiving and Com-
munication Systems (PACS), with over 640 million stored
images as of March 2008 [28], and these numbers are rising
fast. One outcome of this trend is an enormous increase in the
number of images that must be reviewed by radiologists.

With the increase in number of images, there has been a
concomitant need for computerized tools to aid radiologists
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in the diagnostic process. In the radiology workflow, after the
image acquisition process, the images are archived in PACS
[45]. The radiologist retrieves a case from the PACS system
and then makes a diagnosis. Using PACS, the radiologist may
want to browse through similar-content images in the archive
to ensure an accurate diagnosis. Retrieving similar cases from
a large archive is a very challenging task and is one of the
key issues in the rapidly expanding domain of content-based
medical image retrieval [11].

The field of Content-Based Image Retrieval (CBIR) deals
with the analysis of image content and the development of
tools to represent visual content in a way that can be efficiently
searched and compared. Conventional databases allow for
textual searches, in particular using the headers of the DICOM
standard. Even though some of the important information is
contained in the DICOM headers and many imaging devices
are DICOM-compliant at this time, it remains suboptimal for
a number of reasons: first, in recent studies DICOM headers
have been shown to contain a fairly high rate of errors (error
rates of up to 16% have been reported [25]). Second, a single
image may contain a large number of regions-of-interest, each
of which may be the focus of attention for the medical expert,
depending on the diagnostic task at hand. A single chest image
for example, contains the lungs, heart, rib cage, diaphragm,
clavicle, shoulder blade, spine and blood vessels, any of which
may be the focus of attention, and all of which should be
readily accessible within an ideal retrieval system. Clinical
decision support techniques such as case-based reasoning or
evidence-based medicine can produce a strong need to retrieve
images valuable for supporting certain diagnoses [20], [30].
For the clinical decision-making process it can be beneficial
or even crucial to find other images of the same modality,
the same anatomic region or the same disease. Computer-
aided diagnostics for radiological practice, as presented at the
Radiological Society of North America (RSNA) are on the rise
and create a need for powerful data and meta-data management
and retrieval [16]. Besides diagnostics, teaching and research
can be greatly enhanced by visual access methods in existing
large repositories.

A. Datasets and medical annotation challenges

While rapidly developing, the field of medical content-
retrieval is still in its infancy. Representing a medical image
in a semantic space that captures the essence of the image
is a key challenge. It involves determining an appropriate



image representation and appropriate matching tools suitable
for categorization and retrieval. The representation needs to be
general enough to accommodate multiple modalities yet robust
enough to handle the large variability of the data.

As research groups are increasingly attracted to medical
image retrieval, international competitions are now emerging
to assist in the benchmark of feature sets, retrieval and
classification schemes. One such annual competition is known
as ImageCLEF (http://imageclef.org).

Since 2004 the ImageCLEF competition has conducted text-
based as well as image-based retrieval. As of 2005 it also
includes a medical image annotation task. Competitions are
mainly based on the IRMA project x-ray library [20], which
consists of medical radiographs taken from clinical routine
at the Dept. of Diagnostic Radiology, Aachen University
Hospital, Germany. Images are classified by medical experts
according to the imaging modality, the examined region, the
image orientation with respect to the body and the biological
system under evaluation.

The ImageCLEF competitions provide an important bench-
mark opportunity for the analysis of feature spaces (global vs
local), similarity measures as well as classification schemes.
Todate, the competitions focus on the identification of organs
and organ-level characteristics (such as viewpoint). Additional
challenges arise with the desire to shift to actual clinical
settings and to provide clinical decision support tools. In these
more realistic settings, the main challenge is how to shift from
organ-level identification to pathology-level analysis.

B. Related works

Initial systems, still mainly in the research community, have
been developed for images of a specific modality or specific
organ such as high-resolution CT lung images [ 3], mammog-
raphy [29], [2], [15] and the spine [31]. A few systems focus
on general medical categorizations (e.g. MedGIFT [34], [9],
COBRA [14] and IRMA [20]). Overview papers on the current
state of CBIR in medical applications include [35], [20], [1].

In [24], [23] a continuous probabilistic localized image rep-
resentation scheme was suggested, with information-theoretic
matching tools to match and categorize x-ray images by body
regions. The statistical framework suggested, termed ’Gaus-
sian Mixture Model Kullback Leibler’ (GMM-KL), achieved
good results on both generic and x-ray archives, due to the
information-preserving representation and the strong matching
measures. With archives of increasing size, such as the ones
present in the ImageCLEF competition, it is necessary to
return to more simplistic, discrete representations, and simple
matching measures, to preserve computational efficiency. The
paradigm of visual words, known as the bag-of-words (BoW)
model, which has recently been adapted from the text retrieval
domain to the visual analysis domain, provides the efficient
means to address the CBIR challenge in large-size archives
while maintaining solid classification rates.

The BoW model is commonly used in natural language
processing and information retrieval for text documents [33].
In this model a document is statistically modeled as an instance
of a multinomial word distribution and is represented as a

frequency of occurrence word histogram. The representation as
a frequency vector of word occurrences does not take grammar
rules or word order into account. It does, however, preserve
key information about the content of the document. This rep-
resentation can be used to compare documents, and to identify
document topics. The BoW representation is successfully used
in document classification, clustering and retrieval tasks and
is the cornerstone of all Internet search engines.

To represent an image using the BoW model, the image
must be treated as a document. Unlike the text world, there is
no natural concept for a word or a dictionary. We thus need
to find a way to break down the image into a list of visual
elements, and a way to discretize the visual element space,
since the number of possible visual elements in an image
is enormous. In the visual BoW model, the image feature
extraction step takes place in a procedure involving detection
of points-of-interest, feature description and codebook gener-
ation. The visual word model can thus take the form of a
histogram representation of the image, based on a collection
of its local features. Each bin in the histogram is a codeword
index out of a finite vocabulary of visual codewords, generated
in an unsupervised way from the data. Images are compared
and classified based on this discrete and compact histogram
representation.

In recent years the BoW approach has successfully been
applied to general scene and object recognition tasks (see
e.g. [43], [22], [37]). In [43] the idea of using the joint
distribution of intensity values over compact neighborhoods
for the task of texture classification was introduced. In [40]
vector quantization of invariant local image descriptors were
used to form clusters, referred to as visual “words”. They
then searched for objects throughout a movie sequence by
analogy to text retrieval. Natural scene categories were learned
using visual words in [22]. Local words were either grayscale
patches or Scale-Invariant Feature Transform (SIFT) descrip-
tors [32], sampled on a grid, randomly, or at interest points.
They then learned a generative hierarchical model to describe
the resulting visual word distribution. “spatial pyramids” were
introduced - a technique of partitioning the image into in-
creasingly fine sub-regions, and computing histograms of local
features within each sub-region. They demonstrated significant
performance improvement over orderless BoW in global scene
classification and object recognition tasks. A large-scale eval-
uation of the visual words approach for texture classification
and object recognition was presented in [46].

Approaches using patch-based, bag-of-visual-words con-
cepts are gradually emerging in medical tasks. In [3] BoW
is used as the representation of endomicroscopic images and
achieves high accuracy in the tasks of classifying the images
into neoplastic (pathological) and benign. In [8] an application
to texture representation for mammography tissue classifica-
tion and segmentation is presented. The use of BoW tech-
niques for large scale radiograph archive categorization can
be found in the ImageCLEF competition. In 2006 Deselaers
et al. [12] displayed the best medical annotation results using
the BoW approach, where the features were local patches
of different sizes taken at every position and scaled to a
common size. In that work, no dictionary was used; rather



the feature space was quantized uniformly in every dimension
and the image was represented as a sparse histogram in the
quantized space. The system described in [41] had the highest
score in 2007 and 2008. In that work both global and local
features were used. The global features were downscaled
versions of the images (32 x 32). The local features were
modified SIFT descriptors (128 values), sampled randomly.
The set of local features was represented as a histogram over
a dictionary, built using the K-means algorithm (K=500). Four
image quadrants were learned and represented separately. The
final representation for a given image was thus the (32 x 32)
pixel values of the global image along with 4 times the
(500) histogram bins. Classification was done with SVM using
different integration techniques for global and local features.

Todate, ImageCLEF competitions are continuing with ra-
diograph archives of increasing size, as well as new archives
and tasks. The variability between the competing groups is
mainly in the image representation space - using global vs
local representations for the image, defining the patches, and
the feature extraction per patch. The method described in
this study was ranked first in the ImageCLEF 2009 medical
annotation task. It uses dense sampling of simple features with
spatial content, and a non-linear kernel-based SVM classifier.
The system detail is presented in Section II. An extensive set of
experiments was conducted to optimize the set of components
and respective parameters comprising the system. A summary
of the optimization procedure is presented in Section III. We
present an initial application to pathology-level categorization
of chest x-ray data. Motivated by the success of chest and
viewpoint identification, we extended the system to pathology-
level discrimination. The input the radiologists provide is a
global label for the entire image (healthy/pathology), and the
categorization is conducted on the entire image, with no need
for segmentation algorithms or any geometrical rules. The
system presented here provides a new tool which can assist the
radiologist in a variety of possible scenarios. For example, it
can be utilized as a screening filter to support prioritization of
cases for the medical expert. We explore chest pathology data
in Section IV. A preliminary version of this study appeared in

(6], [5].

II. THE VISUAL WORDS FRAMEWORK FOR
CLASSIFICATION AND RETRIEVAL

In this section we describe the visual words framework.
Fig. 1 displays a block-diagram of the image representation,
which is based on a large set of image patches, and their
respective representation via a learned dictionary. Following
the representation phase, various similarity measures can be
used for retrieval and well-known categorization schemes,
such as SVM, can be used for classification. Classification
and retrieval are defined in Section II-B.

There are three main datasets used in this work: 1) The
IRMA archive [20], which is the basis for the ImageCLEF
medical annotation competitions. It contains over 12,000 x-
ray images which are categorized into 196 different, organ-
level, categories. Sample IRMA images can be seen in Fig.
3. 2) A subset of the GoldMiner collection [27], used in Im-
ageCLEF medical retrieval competitions. This is a collection

of over 66,000 medical images, taken from leading radiology
journals. 3) For our pathology experiments, we use chest x-
rays obtained in the emergency room of Sheba Medical Center.
We used 98 frontal chest images in DICOM format from the
hospital PACS, taken during routine examinations. X-ray inter-
pretations, made by two radiologists, served as the reference
gold standard. The radiologists examined all of the images
independently; they then discussed and reached a consensus
regarding the label of every image. Sample images from the
Sheba Medical Center are shown in Fig. 16. Additional details
on the IRMA, GoldMiner and Sheba datasets are provided in
Section III-A, III-D and IV, respectively.

A. Feature extraction step

Given an image, points of interest detection is used to
extract several small local patches. Each small patch shows
a localized view of the image content. These patches are
considered as candidates for basic elements, or “words”. The
patch size needs to be larger than a few pixels across, in order
to capture higher-level semantics such as edges or corners. At
the same time, the patch size should not be too large if it is
aimed to serve as a common building block for many images.
In visual word image representation we are not directly using
the image patch. There is a quantization step by choosing a
visual word from the dictionary that is most similar to the
patch. If the patch size is large this quantization process is
problematic since it is not likely that there exists a visual word
that is similar enough to this patch. We chose a patch size of
9 x9.

Common points of interest detection approaches include
using a regular sampling grid, a random selection of points,
or the selection of points with high information content using
salient point detectors. We utilize all the information in the
image, by sampling rectangular patches of fixed size around
every pixel. This simple feature detection approach has been
shown to be effective [37].

Following points of interest detection, the feature represen-
tation method involves representing the patches using feature
descriptors. In this step, a large set of images is used (ignoring
their labels). We extract patches using a regular grid, and
normalize each patch by subtracting its mean gray level, and
dividing it by its standard deviation. This step insures invari-
ance to local changes in brightness, provides local contrast
enhancement and augments the information within a patch.
Patches that have a single intensity value are abundant in x-
ray images (e.g. the brightness of the air surrounding the organ
appears uniform especially in DICOM format).

These patches are common in all categories, much like stop-
words in text documents [33]. These patches are ignored. We
are left with a large collection of several million vectors. To
reduce both the computational complexity of the algorithm and
the level of noise, we apply a Principal Component Analysis
procedure (PCA) to this initial patch collection. The first
few components of the PCA, which are the components with
the largest eigenvalues, serve as a basis for the information
description. A popular alternative approach to raw patches is
the SIFT representation [32], a scale and rotation invariant
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Fig. 1. Dictionary building and image representation flow chart.

description based on a local edge histogram. SIFT has been
shown to be advantageous in scenery images [22], [46],
where object scales can vary. We examine this option in the
experiments defining the system parameter set.

In addition to patch content information represented either
by PCA coefficients or SIFT descriptors, we add the patch
center coordinates to the feature vector. This introduces spatial
information into the image representation, without the need
to explicitly model the spatial dependency between patches.
Special care should be taken when combining features having
different units, such as coordinates and PCA coefficients. The
relative feature weights were tuned experimentally on a cross-
validation set (see Section III).

The final step of the bag-of-words model is to convert
vector-represented patches into visual words and generate a
representative dictionary. A visual word can be considered
to be a representative of several similar patches. A frequently-
used method is to perform K-means clustering over the vectors
of the initial collection. The vectors are then clustered them
into K groups in the feature space. The resultant cluster
centers serve as a vocabulary of K visual words. A sample
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Fig. 2. Image representation at multiple scales.

dictionary of 1000 visual words generated by this process is
shown in Fig. 1.

Due to the fact that we included spatial coordinates as
part of the feature space, the visual words have a localization
component in them, which is reflected as a spatial spread of
the words in the image plane. Words are denser in areas with
greater variability across images in the database.

A given (training or testing) image can now be represented
by a unique distribution over the generated dictionary of
words. In our implementation, patches are extracted from
every pixel in the image. For a 512 x 512 image, there are
several hundred thousand patches. The patches are projected
into the selected feature space, and translated (quantized) to
indices by looking up the most similar feature-vector in the
generated dictionary. We store the dictionary words in a kd-
tree, indexed by the spatial coordinates. A k-dimensional (kd)
tree is a space-partitioning data structure for organizing points
in a k-dimensional space. The nearest neighbor search can
be done efficiently by using the tree properties to quickly
eliminate large portions of the search space (see e.g. [10]).
Using the spatial indexation of dictionary words, the dictionary
lookup process is accelerated by comparing a new patch only
to dictionary words at a certain radius from it. The dictionary
generation process and the transformation from a given image
to its representative histogram, are shown in Fig. 1, left
column and right column, respectively. Note that as a result
of including spatial features, both the local content and spatial
layout of the image are preserved in the discrete histogram
representation.

Multi-scale image information may in some cases provide
additional information that supports the required discrimina-
tion. To address this, we repeat the dictionary building process
for scaled-down replications of the input image, using the same
patch size. The image representation in this case is a 1-D
concatenation of histograms from varying scales. This process,
illustrated in Fig. 2, provides a richer image representation. It
does not imply scale invariance, as in [12]. When detecting
body parts and organ orientation, objects of interest in the
radiographs appear at a roughly similar size-range across all
images, thus invariance to scale is not a necessity.



B. Image classification and retrieval

1) Classification: Image classification is based on the
ground truth of manually categorized images. We use a non-
linear multi-class SVM classifier. Several non-linear kernels
were examined, which are commonly used with histogram
data:

Histogram intersection kernel [7]:

K(z,y)=e > min(@i,yi)
Radial Basis Function kernel:
K(z,y) = e el

x? kernel:
lz;—y;12

K(z,y) = 7> Tl

Note that histogram intersection has no free kernel parame-
ters, which makes it convenient for fast parameter evaluation.
The two other kernels have a free tradeoff parameter -, and
require careful optimization. In order to classify multiple cate-
gories, we use the one-vs-one extension of the binary classifier,
where binary classifiers are trained for all pairs of categories
in the dataset. Whenever an unknown image is classified with
a binary classifier it casts one vote for its preferred class;
the final result is the class with the most votes. Since each
binary classifier runs independently, parallelization of both
training and testing phases of the SVM is straightforward. It is
implemented as a parallel enhancement of the LIBSVM library
1

2) Retrieval: Image retrieval requires a way to measure
similarity between images. Using the image representation
described in the previous section, the distance between im-
ages is defined as the sum of the bin-to-bin distance of the
representing histograms. For query image I and target image
J, the distance is d(I,J) = ", d(I;, J;), where i runs on the
bins. A popular choice for the image-to-image distance is the
L, distance: Li(I,J) =, [1; — Ji|.

3) Region-of-Interest retrieval: For image archives that are
noisy or of non-consistent quality, full image matching may
result in retrieval results that are much less consistent and
informative to the user. A step ahead in medical image retrieval
is the concept of region-of-interest (ROI) retrieval. The task in
this scenario is defined as follows: The human expert marks an
ROI in a given image. This can be a certain anatomical region
within the image or a pathology region of interest. The ROI
can also be automatically detected by computer, e.g. using
CAD algorithms. The system then prioritizes the retrieval
results such that a high-confidence matching is required within
the ROI and a low priority (or “don’t-care” score) is given
to the non-marked regions. The task of the ROI query and
retrieval is a challenging one as it requires new ways to
represent a region within an image, and new ways to compare
a region representation to a full-image representation within
the archive [39].

In our image representation, visual words have spatial coor-
dinates. This property can be utilized for ROI based retrieval
by adjusting the distance function to be more sensitive to

Uhttp://www.csie.ntu.edu.tw/~cjlin/libsvm

differences in words within the ROI. The histogram distance
between a query image I and an image in the database J is
adjusted to:

d(1,0) = w; - d(I;, J;)

where w; is a weight parameter that reflects the importance of
similarity in the ROI. For words outside the ROI w; = 1, and
w; > 1 for words inside the ROI. This modification enables
comparison of content in specific image regions, without
performing additional processing on the database.

Fig. 3.

Sample images from the IRMA database.

III. EXPERIMENTAL IMAGECLEF RESULTS

A key component in using the BoW paradigm in a cat-
egorization task is the tuning of the system parameters. An
optimization step is thus required for a given task and image
archive. We focus on three components of the system: finding
the optimal set of local features, finding the optimal dictionary
size, and optimizing the classifier parameters. We use a large
generic archive of radiographs (IRMA) [20] to tune the system
parameters. We then show comparative results of automated
organ and orientation detection and visual image retrieval in
the ImageCLEF competition.

SAE

Fig. 4. Images from IRMA category: ‘Overview image, Mediolateral, Left
hip, Musculosceletal system’. Large intra-class variability can be seen.

A. Database

The IRMA database [20] has served algorithm development
teams for many years, and in the past several years has been
a source for the ImageCLEF medical annotation competition.
Images in the IRMA database consist of scanned x-ray images,
gray scale, 512 pixels long. A sample of IRMA images is
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Fig. 5.

Different chest categories in the IRMA database: (a) ‘High beam energy, Posteroanterior’, (b) ‘Child filter, Anteroposterior - inspiration’, (¢) ‘High

beam energy, Posteroanterior - expiration’: (d) ‘High beam energy, Anteroposterior - supine’ (e) ‘High beam energy, Sagittal - lateral right-left inspiration’.

Fig. 6. Sample images with artifacts near the borders, such as misaligned
x-ray frame, blacked out bars and various labels.

shown in Fig. 3. The x-ray images are noisy with irregular
brightness and contrast, and may contain dominant visual
artifacts such as artificial limbs and x-ray frame borders.
Images in the archive are labeled according to the IRMA
coding system [19], with each category described by four
axes: 1) A technical axis that describes the image modality;
2) A directional axis that defines body orientation; 3) An
anatomical axis that describes the body region examined,
and 4) A biological axis that describes the biological system
being examined. The axes have a hierarchical description.
For example, the complete category description of the image
shown in Fig. 4 is: Technical axis: x-ray, plain radiology,
analog; Directional axis: Sagittal, mediolateral; Anatomical
axis: Lower extremity (leg), hip, left hip; Biological axis:
Musculoskeletal system.

The database has grown in size and in number of categories
over the years. In 2009 it had close to 15,000 images from 196
distinct categories, with category labels consisting of the four
axes defined above. Some classes have large intra-variability,
as seen for example in Fig. 4, while images from different
classes may be visually similar, as seen in Fig. 5. These
properties make the automatic classification task challenging.

B. Optimization of system parameters

We optimized the system parameters by classifying subsets
of the database, using several cross-validation experiments.
The optimization is performed independently in three steps:
finding the optimal set of local features, finding optimal
dictionary size, and optimizing classifier parameters. In the
following experiments, unless otherwise noted, 10 cross-
validation experiments were run per case, with 10,667 images
used for training and 2000 images used for testing. In all the
experiments there is a clear separation between train and test

datasets which are disjoint sets.

We examined three feature extraction strategies: raw
patches, raw patches with normalized variance, and SIFT
descriptors. In all cases we added the patch center coordinates
to the feature vector as described in Section II-A. We used
dense extraction of features around every pixel in the image.
There are often strong artifacts near the image border that
are not relevant to the image category. This is evident in the
IRMA dataset, as seen in Fig. 6. In this case we chose to
ignore a 5% margin from the image border. As a result of the
dense sampling, a single image (following the border removal
step) yields a large feature set of between 100,000 to 200,000
features.

It is our experience that x-ray images from the same
category usually appear with a similar scale and orientation
in a given archive. In this task the invariance of the SIFT
features to scale and orientation is thus unnecessary. We used
SIFT descriptors taken at a single scale, with no orientation
alignment [41].

The three feature sets tested: raw patches, normalized
patches and the 128 dimensional SIFT descriptors, were
reduced in dimension using PCA. Classification was done
using an SVM classifier with the histogram intersection kernel.
Images were classified into one of the IRMA categories as
defined above. Table I summarizes the percentage of correct
classification of the three feature sets, averaged over 10 runs.
In each run we used randomly chosen 10667 images for train-
ing and 2000 images for testing. Normalizing patch variance
improved the classification rate significantly compared to raw
patches (t-test p-value less than 0.0001). The gain can be
attributed to the local contrast invariance achieved in this
step. Using the normalized raw patches proved marginally
preferable to the SIFT descriptors in this task, in terms of
classification accuracy (t-test p-value of 0.0385).

The advantage of using normalized raw patches over the
SIFT descriptors is even more significant when considering
the computational cost of the process. Using raw patches, the
feature extraction step was significantly faster than with SIFT
descriptors, as seen in Fig. 7. Most of the running time was
spent in the image representation step; this step took over three
seconds per image with the SIFT features, but less than half
a second with the simpler variance-normalized raw patches.
Time was measured on a dual quad-core Intel Xeon 2.33 GHz.

Fig. 8 depicts the effect of using four to ten PCA com-
ponents for variance-normalized raw patches. It can be seen
that the number of components in this range has no effect on



TABLE 1
COMPARISON OF DIFFERENT FEATURES, USING SVM CLASSIFIER WITH
HISTOGRAM INTERSECTION KERNEL.

Features Average % | Standard Deviation
Raw Patches 88.43 0.32
SIFT 90.80 0.41
Normalized 91.29 0.56
Raw Patches ’
SIFT ((
0 200 400 600 800

Time [Seconds]

[ Build dictionary [ Extract features M Train classifier W Classify

Fig. 7. Running time using SIFT descriptors and normalized raw patches.

classification accuracy (ANOVA p-value equals 0.998). The
addition of spatial coordinates to the feature set, on the other
hand, improved classification performance noticeably, as seen
in Fig. 9. We found that when using seven PCA components,
each having standard deviation of 1, the optimal weights for
the x,y position of the patch center, (0 <z,y<1), is 6 as can
be shown in Fig. 9. The bars in Fig. 9 show means and standard
deviations from 20 cross validation experiments running on
1000 random test images. Using the optimal weight for the
spatial coordinates increased the classification accuracy by 4%
as compared to the case of not using spatial coordinates (t-test
p-value less than 0.0001). Using higher than optimal values
gradually decreases the performance. For example a weight
of 10 decreases the performance by 0.25% (t-test p-value of
0.011).
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As Fig. 10 shows, increasing the number of dictionary
words proved useful up to 1000 words. For example, 1000
words was found to be better than 800 with a t-test p-
value of 0.0146. Adding additional words after that point
increased computational time with no evident improvement
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Fig. 9. Effect of spatial features: Weight of spatial features (x-axis);
Classification accuracy (y-axis).
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Fig. 10. Effect of dictionary size on classification accuracy.

in the classification rate.

We used the SVM classifier with three possible kernels:
the histogram intersection, the Radial Basis Function and the
X2 kernels. We used the optimal features and dictionary size
consistently across all experiments. The SVM cost parameter
C, and free kernel parameter v were scanned simultaneously
over a grid to find the classifier’s optimal working point.
The histogram intersection kernel does not have a free kernel
parameter, and the optimization is one dimensional over the
SVM cost parameter. Table II summarizes the results using
the best parameters for the different kernels. The x? kernel is
ranked first by a small margin with 91.62% accuracy, followed
by the RBF kernel with 91.45%.

In the final experiment, we took information from multiple
image scales into account by repeating the dictionary creation
step on scaled-down versions of the original image. The image
representation was thus a concatenation of histograms built
on the single scale dictionaries. We used three scales: the
original image, 1/2 size and 1/8 size. Using three scales further



TABLE III
MEDICAL IMAGE ANNOTATION RESULTS FROM IMAGECLEF 2009 [21].
ERROR SCORE IS DEFINED IN [21], LOWER IS BETTER.

TABLE II
COMPARISON OF SVM KERNEL TYPES, FOR 1-SCALE AND 3-SCALE
MODELS.
Kernel Average % 1-scale | Average % 3-scales
Radial Basis 91.45 91.59
Histogram Intersection 91.29 91.89
x2 91.62 91.95

(e) ()

Fig. 11. Detecting category ‘posteroanterior, left hand’: (a),(b),(c),(d)
Correctly classified. (e) False negative, misclassified as ‘left anterior oblique,
left hand’. False positives come from categories: (f) anteroposterior, left carpal
joint (g) anteroposterior, left foot (h) right anterior oblique, right foot.

improved the accuracy for all kernels, as seen in the right-
most column of Table II. The improvement was significant
with the histogram intersection kernel (p-value=0.0454), and
insignificant with radial basis and chi-square kernels (p-value
of 0.2140 and 0.3637, respectively). When using three scales
the difference in performance between the kernels was not sig-
nificant (ANOVA p-value of 0.267). The average classification
accuracy with the x? kernel was 91.95%.

C. ImageCLEF classification results

Based on the optimization procedure described above, the
classification system has the following set of components and
parameter settings (used throughout the rest of this paper): The
system uses a set of densely extracted normalized raw patch
features, with seven PCA components, spatial features with
weight 6, and 1000 visual words. For classification we used
the SVM algorithm with a x? kernel.

Table III shows the accuracy of the classification system
on four sets of data, taken from consecutive years of the
ImageCLEF competition, as provided in the ImageCLEF 2009
medical annotation task. This task introduced a new test set of
1733 images, which were not included in the training. Results
are compared to other submitted runs, with the best result
in each column marked in bold. There were 19 submissions
from seven research groups. Our system, presented in [4],
was ranked first on three of the four sets, and first when
using an overall error score [21]. The error score measures the
classification error based on a predefined hierarchical structure

Run & Error score | 2005 | 2006 | 2007 | 2008 Sum
Our system 356 263 64 169 852
Idiap6 393 260 67 178 899
FEITIJS 549 433 128 242 | 1352
VPA-SabanciUniv 578 462 155 261 1456
MedGIFT 618 507 190 317 | 1633
IRMA 790 638 207 359 | 1994
VPA-SabanciUniv 587 | 1170 413 574 | 2744
DEU 1368 | 1183 487 642 | 3681

of the classes. The error is zero when there is a complete
match, and a positive number when there is a mismatch. The
error score is defined such that confusion between similar
classes is penalized less than a confusion between unrelated
classes.

Fig. 11 illustrates the challenge in the IRMA archive
categorization task, using the pre-defined IRMA categories.
Correctly labeled images from the ‘Posteroanterior, Left hand’
category are shown in Fig. 11(a-d). In this run there were
2000 random test images, with 57 images from the examined
category, out of which 56 were correctly detected by the
described system. A single image, (e), was falsely classified
and was detected as a neighboring category- ‘Left anterior
oblique, Left hand’ (false negative). Three images from other
categories, (f,g,h), were misclassified as ‘Posteroanterior, Left
hand’ (false positives). As can be observed, these images have
a strong visual resemblance to the left hand category.

Fig. 12. Retrieval example: First two framed images are the query images;
the following images (left to right, top to bottom) are retrieval results.

D. ImageCLEF retrieval results

The ImageCLEF 2008 [18&] retrieval competition used a
database of over 66,000 medical images which are part of
the GoldMiner collection [27]. These images are taken from
open-access content from five leading peer-reviewed radiology
journals. Images come from different imaging modalities in-
cluding radiography, CT, MRI, sonography, PET and others, as
well as digital photos and graphic charts. Images were given
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medical database [18]. Average precision over 30 queries is shown for first 5,
10, 15, 20 and 30 returned images. Results of the proposed algorithm marked
with dashed lines.

in high resolution JPEG format, in either color or grayscale,
depending on the modality.

The challenge was to answer 30 query topics, composed
of one or more sample JPEG images and a short textual
description in several languages. The objective was to return
a ranked set of 1000 images from the complete database,
sorted by their relevance to the presented queries. A sample
query from this challenge and the first few returned images
are shown in Fig. 12. The retrieved results were manually
judged for relevance by medical experts. We applied a purely
visual retrieval approach, disregarding the textual labels given
in this task. There were no parameter adjustments suited to
the specific queries or for the database of this task.

The system parameters were the same as those optimized
using the database of x-ray images on the medical image

Il Automatic Visual
[ ]Automatic Mixed
[ JAutomatic Text

[ Interactive Mixed

MAP Score for a specific query: finding chest x-ray images of cases with tuberculosis from the ImageCLEF 2008 medical retrieval task. Our runs

annotation task, described above. For image comparison, L,
distance measures between the representative histograms were
used. Retrieved images were ranked by the distance between
the target histogram and the histogram of the query image.
When there were multiple query images, we used the minimal
distance between the target and the query set. We tried two
variants. In the first run we normalized the mean gray level
and variance within a patch prior to performing PCA, for local
brightness and contrast invariance. In the second run we kept
the original gray levels.

Fig. 14 shows the precision score averaged over answer
30 query topics of our submitted runs, marked with an
asterisk (*), along with visual retrieval algorithms submitted
by additional groups [1&]. In this figure, the run labeled ‘Pro-
posed System’ used patch normalization and the run labeled
‘Not Normalized’ used the patches’ original gray levels. The
normalized patch approach system ranked first among the nine
automatic purely visual competitors.

Purely visual methods traditionally rank low relative to text-
based methods on medical image retrieval tasks [17], [18].
In absolute values, the precision of all purely visual methods
are low. Some abstract queries are extremely difficult based
only on visual similarity (for example: “Show me images
of tumors”). Nevertheless, on three of the 30 queries our
system was ranked in the top three of all 111 submitted runs,
whether textual, visual or mixed systems, or using automatic,
interactive or manual methods. In query number 15 - finding x-
ray images with Tuberculosis, our system was ranked first out
of all systems, followed by an interactive visual+textual based
system, far ahead of other automatic purely visual systems.
The mean average precision (MAP) score [33] for the top 32
runs on this query appears in Fig. 13.

The retrieval system is also computationally efficient, with
an average retrieval time of less than 400ms per query.



(a)

(b)

Fig. 15. A sample ROI query and retrieval. (a): Full image query (b): query
with selected ROL.

1) ROI-based retrieval results: A sample ROI query and
retrieval are shown in Fig. 15(a). The query image (top left)
is a left arm with a metal fixation device. Retrieved images
are returned by order of similarity from left to right, top to
bottom. Since the query image is part of the database, the first
returned image is the query image itself. Except for the first
image, images 2 and 5 have a similar metal fixation.

In Fig. 15(b) the user selects the metal fixation device as
a region of interest. The difference of visual words in the
ROI is multiplied by w; = 10 inside the ROI, and w; = 1
outside the ROI. The selection of an ROI in this case returned
images with a fixation in the top five returned images. This
exemplifies how a simple weighting of the distance function
can be used to locate an interesting object in the database.
Since the coordinates are part of the features, the similarity
distance is not invariant to large translations of the ROI. This
method is therefore limited to locating similar objects in the
near vicinity of the ROL

IV. CHEST X-RAY CHARACTERIZATION

Chest radiographs are the most common examination in
radiology. They are essential for the management of various
diseases associated with high mortality and morbidity and

10

Fig. 16. Frontal chest x-ray images, Sheba Medical Center: (a-c) Healthy; (d-
f) Enlarged heart; (g-i) Enlarged mediastinum; (j-1) Left or right effusion; (m)
Multiple pathologies: enlarged heart and mediastinum, left and right effusion.

display a wide range of potential information, many of which
are subtle. According to a recent survey [42], most of research
in computer-aided detection and diagnosis in chest radiography
has focused on lung nodule detection. Although the target
of most research attention, lung nodules are a relatively rare
finding in the lungs. The most common findings in chest x-
rays include lung infiltrates, catheters and abnormalities of the
size or contour of the heart [42]. Distinguishing the various
chest pathologies is a difficult task even to the human observer.
Research is still needed to develop an appropriate set of
computational tools to support this task.

We focus next on the analysis of chest radiographs. Our
study starts with chest identification and viewpoint determi-
nation (on the organ level) within the IRMA archive. We
conclude with an initial set of experiments on data obtained in



TABLE IV
CONFUSION MATRIX FOR CHEST CATEGORIES, FIRST 5 COLUMNS ARE
CATEGORIES SEEN IN FIG. 5.

True

Detected (a) (b) () (d) (e) | Non-chest
Frontal (a) 141 0 17 6 0 0
Frontal (b) 0 17 3 0 0 0
Frontal (c) 12 1 355 2 0 0
Frontal (d) 0 0 1 4 0 0
Lateral (e) 0 0 0 0 166 1
Non-chest 0 0 0 0 0 1212

a clinical setting, in which we deal with pathology screening as
well as the identification of individual pathologies including
right and left pleural effusion, enlarged heart and cases of
enlarged mediastinum.

Fig. 5 shows sample images from chest-related categories
in the IRMA archive. There are four IRMA categories that
contain frontal chest views, Fig. 5(a-d), and one category of
a lateral view, Fig. 5(e). We selected a random set of 2000
images from the archive. Out of the 2000, 1938 had category
labels which we could use as our ground-truth. In the first
experiment we tested our ability to discriminate between chest
(725 images) and non-chest categories (1213 images). Once
the chest images were detected, a follow-up experiment was
conducted to test the system’s ability to discriminate between
chest viewpoints with 559 frontal views and 166 lateral views
in the chest image set.
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Fig. 18. Area under curves of the ROC curves.

Table IV summarizes the experiments that were conducted.
We used 10677 images from the IRMA dataset to train an
SVM classifier and a separate set of 2000 images were used
for testing. In detecting the chest images from assorted x-
ray images of different body parts, sensitivity and specificity
reached virtually 100% (sensitivity 100%, specificity 99.92%).
In detecting chest viewpoints, 559 of 559 frontal chest images
were detected, with no false positives. 166 of 166 lateral
chest images were detected, with 1 false positive. The high
accuracy in this case is expected. Detecting a chest from a
non-chest, as well as detecting frontal vs. lateral images are
relatively easy tasks, since the categories are visually different.
Discriminating between the frontal chest categories is more
challenging. Still, there was less than 10% confusion between
the visually similar frontal chest sub-categories.

In our final investigation, we applied our system to chest

x-rays obtained in the emergency room of Sheba Medical
Center. We used 98 frontal chest images in DICOM format
from the hospital PACS, taken during routine examinations.
X-ray interpretations, made by two radiologists, served as
the reference gold standard. The radiologists examined all of
the images independently; they then discussed and reached
a consensus regarding the label of every image. For each
image and pathology type, a positive or negative label was
assigned: 38 of the images were diagnosed as normal, 55
images had at least one pathology and the other 5 images
were labeled as inconclusive. Fig. 16 shows a set of healthy
(a-c) and pathological images (d-m). Pathology data include
24 images with enlarged heart shadow (three examples shown
in Fig. 16(d,e,f)), 19 images with enlarged mediastinum, Fig.
16(g,h,i), 17 images with right pleural effusion and 21 images
with left pleural effusion, Fig. 16(j,k,l). Some patients had
multiple pathologies. For example, Fig. 16(m) exhibits all
pathologies. We treated the multiple pathology detection as a
set of binary classification tasks, where in each task we tried
to detect an individual pathology.

The original high-resolution DICOM images were initially
resized to a maximal image dimension of 1024 pixels, with
aspect-ratio maintained. We follow the method described in
Section II to extract features, build a visual dictionary, and
represent an image as a histogram of visual words in multiple
scales. We then detected each of the four pathologies using
a binary SVM classifier, with a histogram intersection kernel.
In addition to individual pathology detection, we trained a
classifier to distinguish between a healthy image vs. a non-
healthy image (with any kind of pathology).

In order to avoid overfitting and to preserve the general-
ization ability of the classifiers, system parameters were used
as found in the analysis described in Section III. Since the
database was fairly small, a leave-one-out classification was
implemented.

The data were unbalanced, usually with more healthy im-
ages than abnormal images. To address this problem we used
an asymmetric penalty in the SVM training step, as in [38],
with a higher cost to false negative errors. Modifying the
relative cost of false negative errors determines the tradeoff
point between sensitivity and specificity. This technique was
used to produce the receiver operating characteristic (ROC)
curves, shown in Fig. 17(a)-(e). The area under the curves
(AUC), shown in Fig. 18, was calculated using trapezoidal
approximation. Error bars show one standard deviation of the
AUC, estimated using [26]. The software correctly identified
abnormal mediastinum and effusions with an average AUC
of around 80%, with standard deviation around 6%. Enlarged
heart was detected with AUC of 88.19%(+4.72%). ROC
curves were compared using the Mann-Whitney U-statistics
[44]. Including spatial features improved the AUC when
detecting right and left pleural effusions (p-value=0.00017 and
0.0021, respectively), and enlarged heart (p-value=0.00856).
The improvement was not significant for abnormal medi-
astinum detection (p-value=0.1189) and for non-healthy im-
ages detection (p-value=0.93489). When including spatial fea-
tures, there was no significant difference between raw patches
and SIFT descriptors on any of the pathology detection tasks.
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Retrieval examples are shown in Fig. 19. A sample query
image is shown in the left column, with ranked results, ordered
from left to right, shown as retrieval results on the right.

V. DISCUSSION AND CONCLUSIONS

In this study we presented a visual words approach to
medical image categorization and retrieval. We provided a
comprehensive overview of the methodology and its applica-
tion to ImageCLEF and in clinical settings. Statistical analysis
of the results is shown on both the CLEF dataset, on the organ-
level, and the Sheba chest x-ray dataset, on the pathology level.
Retrieval is discussed in both domains, with initial discussion
into ROI-based retrieval.

The transition from general imagery analysis to the medical
image analysis and furthermore to applications in the clinical
settings is not a trivial one. We investigated the effects of
various parameters on overall classification, and tuned the
system to achieve high accuracy in the classification of general
x-ray images. We reported state-of-the-art results in the task
of organ and orientation identification in the ImageCLEF 2009
medical annotation challenge, Table III, and top retrieval re-
sults among the purely visual based systems in the ImageCLEF
2008 medical retrieval challenge, as shown in Figs. 14 and
15. In the chest pathology categorization task, Figs. 17 and
18 indicate detection of left and right effusions with an AUC
of 80%, abnormal mediastinum with an AUC of 79.2% and
enlarged heart with an AUC of 88.2%. Abnormal images of
any kind are detected with an AUC of 82%. These rates are
compatible with many other medical tests, such as blood tests.
We therefore view them as encouraging for further exploration
towards future clinical use.

ROC curves for pathology detection in frontal chest x-rays; Raw - normalized pixel-content; Raw+xy - content features with coordinates; SIFT+xy

Two key characteristics that were evaluated throughout this
work are the representation of the patch as normalized raw
values vs SIFT, and the use of spatial features as part of the
representation space. We found that using the raw (pixel) data,
with minimal processing (vs SIFT as commonly used (e.g.
[41]), gives good results, as long as a large amount of data
are used. We propose using all the available data, and not
subsampling it, as is common in the literature. A marginal
advantage for using normalized raw data over SIFT descriptors
is seen in Table I, for the ImageCLEF dataset. We show the
percentage of correct classification averaged over 10 runs. In
each run we used randomly chosen 10667 images for training
and the rest 2000 images were used in the test step. In the
clinical study, Fig. 17, we again see very close results between
the two representations.

Instead of coarsely binning the multi-dimensional space (as
in [12]) we use a dictionary, which provides for a data-tuned
clustering of the space. We are able to tune the representation
more closely to the data at-hand, without deterioration of the
efficiency of the retrieval.

Incorporating the spatial information is shown to be advan-
tageous in most of the scenarios. Fig. 9 shows a significant
improvement when using spatial information for the Image-
CLEF archive. Fig. 17 shows the spatial features improve the
results in most of the individual chest pathology cases, but not
in the overall pathology vs non-pathology case.

Using dense sampling while keeping the features simple
makes the system both accurate as well as computationally
efficient. The system achieves approximately half a second
training and classification time per image. The use of the
normalized raw pixel values as features together with spatial
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from left to right, shown as retrieval results on the right.

coordinates enables fast classification times: these (simple)
features are about six times faster to calculate than SIFT
descriptors. Indexing the dictionary by the spatial features
provides for accelerated lookup. Based on the optimization
experiment for the relative weighting of spatial features as
compared to the PCA components, we obtained a variance of
4 for the spatial features, as compared to a variance of 1 for the
PCA based features. This indicates that for optimal accuracy
the spatial features have more energy than content (intensity-
based) features. Therefore, the acceleration achieved by the
indexed dictionary is substantial.

The initial retrieval results presented here, although with low
precision, seem promising. For the full-image retrieval case we
were ranked in first-place for visual-only retrieval, as shown in
Fig. 14. In this task, the best average MAP score of all systems
was 0.2908. the average MAP scores of purely visual systems
was between 0.0094 (worst) and 0.0421 (ours). When looking
at scores of individual queries, 86.5% of all 3390 submitted
individual queries had a MAP score of less than 0.33. The
MAP score of purely visual queries was between 0 and 0.3369.
Overall, the score we achieved of 0.33 is considered high for
the defined task. It is exceptionally high for a purely visual
query.

Although encouraging, the mistaken images retrieved and
the low precision values indicates the need for refining the
retrieval process for the full image case, and even more
so in the ROI procedure. One possible scheme to consider
is a hierarchy of classification and retrieval, in which the
query image is first classified and retrieval results are shown
from that class only. In actual clinical settings it is important
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Image retrieval of pathology examples from the Sheba dataset. A sample query image is shown in the left column, with ranked results, ordered

to consider the combined visual information with additional
information such as the patient’s demographics and the text ex-
tracted from clinical reports. Fusion across the modalities will
facilitate an increase in retrieval performance. An additional
limitation of the current approach is the fact that the visual
word representation is a global representation of the image
content. In cases where the category characterization is local
and relatively small (e.g. lesions) a global image representation
can miss-detect the pathology and result in a misclassification
of the image.

Future work involves augmenting system capabilities by
combining a-priori task-specific knowledge such as a textual
description with the visual words framework. In the clinical
scenario we are currently working on increasing the collection
of chest images and pathology types. We believe that the
system presented here provides a new tool that can assist the
radiologist in a variety of possible scenarios. It can provide
a screening filter to support prioritization of cases for the
medical expert. It can identify suspicious pathological x-rays
and alert the referring clinicians to potential emergencies.
Overall it is hoped that the development of such systems will
contribute to the improvement of safety and quality of medical
services.
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