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condition expresses what P guarantees to provide in return. This paper presents a prooftechnique that permits us to infer that a program P satis�es a rely/guarantee speci�cationR � G, given that we know P satis�es a �nite collection of rely/guarantee speci�cationsRi � Gi; (i 2 I). In a typical application, R � G will be a global property of a large pro-gram P , whereas each Ri � Gi will be a locally veri�able property of a smaller componentPi of P . In a top-down design methodology based on successive decomposition [Lis79][Wir71], the proof technique can be used as a decomposition principle for determiningspeci�cations Ri � Gi for component modules, when these component modules are usedto implement a \higher-level module" that must satisfy the speci�cation R � G.Two examples are given to illustrate the utility of the proof technique: a distributedsynchronization algorithm, in which a collection of processes communicate in a ring-likepattern to synchronize access to critical sections, and a distributed resource allocationalgorithm, in which processes communicate in a tree-like pattern to distribute a �nitecollection of resources among themselves. Although the statement of the proof techniquedoes not depend on the choice of a particular speci�cation or programming language, in theexamples we use as a programming language a concurrent version of Dijkstra's guardedcommand language [Dij76], and as a speci�cation language a version of temporal logic[Pnu77] [Lam80] [Lam83] [MP83].In the examples, we are concerned with the proof of liveness properties of systems ofconcurrent processes. In particular, we are interested in deriving global liveness propertiessatis�ed by a system from a collection of local liveness properties satis�ed by the componentprocesses. The fact that the technique applies readily to the proof of general livenessproperties is interesting, since not many useful techniques for performing such proofs havebeen developed.1.1 Related WorkThe proof rule and examples presented in this paper are adapted from [Sta84].The idea that program speci�cations are conveniently formulated and manipulated inthe form of rely/guarantee conditions is not new. Pre/postcondition speci�cations for se-quential programs are examples of rely/guarantee speci�cations, in which the preconditionexpresses the conditions on the program variables the program relies on when control en-ters it, and the postcondition expresses the conditions the program guarantees when andif control leaves it. In fact, the Floyd/Hoare techniques for proving partial correctness ofsequential programs [Flo67] [Hoa69] can be viewed as a special case of the proof technique2



presented here (see Section 2). However, our technique extends the Floyd/Hoare approach,since the former can be applied to the proof of liveness properties, whereas the applicabilityof the latter (in the usual formulation) is limited to safety, or invariance properties.For concurrent or distributed programs, a kind of rely/guarantee speci�cation andassociated proof technique was introduced in [MC81]. In that paper, a process h is speci�edby an assertion of the form rjhjs, where r and s are predicates on �nite sequences (calledtraces) of communication events. Such an assertion is interpreted as: \The predicate sholds of the empty trace, and for all traces t that can be produced by process h, if r holdsfor all proper pre�xes of t, then s holds for all pre�xes (both proper and improper) of t.Misra and Chandy's proof technique is expressed as a \Theorem of Hierarchy," whichgives conditions under which speci�cations that are satis�ed by a collection of componentprocesses can be used to infer a speci�cation that holds for the network formed by in-terconnecting the components. Their proof technique can be stated as follows: To showthat the speci�cation R0jHjS0 for the network H is a consequence of the speci�cationsrijhijsi; (i 2 I) for the components, it su�ces to show that:1. S implies S0,2. (R0 and S) implies R,where R and S denote the conjunction of the ri and si, respectively. These conditions areclosely related to the cut set conditions presented below.In [MCS82], the techniques of [MC81] are extended to encompass a weak form of livenessspeci�cation in which an additional predicate q is used to state conditions under whicha process trace is guaranteed to be extended. The Theorem of Hierarchy is augmentedwith additional conditions to permit its application to these more general speci�cations.The additional conditions do not appear to relate in a simple way to the proof techniquepresented here.The use of rely and guarantee conditions has also been proposed for safety speci�-cations by Jones [Jon81] [Jon83]. Barringer and Kuiper [BK83] (see also [BKP84]) haveproposed the use of liveness speci�cations that are partitioned into an \environment part,"which captures assumptions made about the environment, and a \component part," whichcaptures committments made by the module being speci�ed. Jones, as well as Barringerand Kuiper, exploit the rely/guarantee condition structure of speci�cations by de�ninginference rules for process composition.Hailpern and Owicki [HO80] have performed some example proofs in which livenessproperties (expressed in temporal logic) for network protocols are derived from more prim-3



itive liveness properties satis�ed by each of the constituent processes. Although they aresuccessful at constructing proofs for examples of reasonable complexity, it is di�cult todiscern much in the way of general principles that might be used to systematize the con-struction of proofs for di�erent examples. In contrast, the proof rule presented here sug-gests a way of thinking about process interaction that can systematize and simplify theconstruction of correctness proofs.2 The Proof RuleWe assume a programming language, a meaning function that assigns to each programthe set of its computations, a speci�cation language, and a binary relation j= betweencomputations and speci�cations, where if x is a computation and S is a speci�cation, thenx j= S means that computation x satis�es speci�cation S .We assume that the speci�cation language is closed under the formation rules for thelogical connectives : and �:(:) If S is a speci�cation, then :S is a speci�cation,(�) If S1 and S2 are speci�cations, then S1 � S2 is a speci�cation,and that : and � are endowed with their usual meanings:(:) x j= :S i� x 6j= S ,(�) x j= S1 � S2 i� x j= S1 implies x j= S2.The other standard logical connectives can be treated as de�nitional extensions in theusual way.We are interested in establishing statements of the form \P j= S ," which we de�ne tomean \x j= S for all computations x of program P ."To state our proof rule we do not need to make any other assumptions about theprecise form of computations or the programming or speci�cation languages. Later, indemonstrating the application of the rule to examples, we will assume that computationsare sequences of states and that speci�cations are sentences in a language of temporallogic. Although the proof rule is a logical truth that has nothing speci�c to do with thestructure of programs, speci�cations, or computations, it derives power from the fact thatthe rely/guarantee paradigm is a useful way to think about interaction between programmodules. 4



The proof rule described in this section permits us to derive a statement of the form:P j= R � Gfrom a �nite collection of statements of the form:P j= Ri � Gi; i 2 Iunder certain conditions on the speci�cations R;G;Ri, and Gi.Intuitively, R � G should be thought of as an \abstract" or \high-level" statementthat we wish to prove about the program P , and each Ri � Gi should be thought of asa \concrete" or \low-level" statement that we have already shown to hold for P . In theexamples given later on in the paper, P will be a parallel program composed of a �niteset of component processes fPi : i 2 Ig, and each Ri � Gi will express a property ofthe component process Pi that we assume has already been shown to hold by argumentsinvolving Pi alone.The proof rule presented below is based on the following intuition: If we know, foreach i 2 I, that component program Pi guarantees condition Gi under assumption Ri,then we can prove that P guarantees condition G under assumption R by showing theexistence of a set of speci�cations that \cuts," in a certain sense, the dependence betweeneach pair of component programs, and between each component program and the externalenvironment. The sense in which dependence is cut is highly analogous to the way in whicha loop invariant is used to isolate reasoning about one iteration of the loop from reasoningabout the preceding and succeeding iterations.Formally, we say that the collection of speci�cations fRGi;j : i; j 2 I [ fextgg is a cutset for the program P and speci�cations R;G; fRi; Gi : i 2 Ig if:P j= R � (Vj2I RGext;j) (1)P j= (Vi2I RGi;ext) � G (2)P j= (Vi2I[fextgRGi;j) � Rj ; for all j 2 I (3)P j= Gi � (Vj2I[fextgRGi;j); for all i 2 I: (4)Here \ext" is a special symbol that does not appear in I.If i; j are both in I, then the speci�cation RGi;j should be thought of as expressingboth what component i guarantees to component j , and dually, what component j relieson component i to provide. The speci�cation RGext;j expresses what the external envi-ronment of the entire program guarantees to component j , and also what component j5



relies on the external environment to provide. Similarly, the speci�cation RGi;ext expresseswhat component i guarantees to the external environment, and also what the externalenvironment relies on module i to provide. By convention, we de�ne RGext;ext � true. Thisspeci�cation is not used in the proof rule and has no particular intuitive signi�cance. Weinclude it merely for uniformity.Conditions (1) and (2) above can be interpreted as stating, respectively, that the relycondition R implies what each component relies on the external environment to provide,and the guarantee condition G is implied by the conjunction of what each componentguarantees to the external environment. Conditions (3) and (4) can be interpreted, re-spectively, as stating that component j 's rely condition is implied by the conjunction ofwhat the external environment and each component i guarantees to provide to j , and com-ponent i's guarantee condition implies the conjunction of what the external environmentand each component j relies on i to provide.The existence of a cut set is not su�cient to imply that P j= R � G is a consequenceof fP j= Ri � Gi : i 2 Ig. Intuitively, the reason is that even though the rely andguarantee conditions imply each other in the proper way, it might still be the case ina computation of P satisfying the rely condition R, that no component's rely conditionRi holds, hence no component's guarantee condition Gi need necessarily hold either, andhence the guarantee condition G need not hold. To avoid this kind of degeneracy, weintroduce the additional condition that, in every computation of P , every possible cycle ofmutual dependence between components is broken by at least one condition in RG thatholds for that computation.Formally, If I is a �nite set, then de�ne a cycle of I to be a nonempty �nite set of pairsof the form f(i0; i1); (i1; i2); . . . ; (in�1; in)g such that in = i0. We say that the collectionfRGi;j : i; j 2 Ig is acyclic if: P j= n�1_k=0RGik;ik+1for all cycles f(i0; i1); . . . ; (in�1; in)g of I.Note that acyclicity implies the \diagonal" elements RGi;i hold unconditionally:P j= RGi;i for all i 2 I:We now present our proof rule.Theorem 1 (Rely/Guarantee Proof Rule) { Suppose P is a program, I is a �nite indexset, and the collection RG = fRGi;j : i; j 2 I [ fextgg is an acyclic cut set for program P6



and speci�cations R;G; fRi; Gi : i 2 Ig. Then to prove the statementP j= R � G;it su�ces to show P j= Ri � Gi;for all i 2 I.Proof { Suppose RG = fRGi;j : i; j 2 I [ fextgg is a cut set for program P andspeci�cations R;G; fRi; Gi : i 2 Ig. Suppose further thatP j= Ri � Giholds for each i 2 I, but P 6j= R � G:This means that there is a computation x of P such that x j= R, but x 6j= G. We performan inductive construction to obtain a cyclef(im; im+1); . . . ; (in�1; in)gof I such that x 6j= Wn�1k=mRGik ;ik+1 . This implies that RG is not acyclic for P .As the induction hypothesis at stage k of the construction, we assume that i0; i2; . . . ; ikhave been constructed so that x 6j= Rik and x 6j= Wk�1j=1 RGij ;ij+1 .Basis: From property (1) of a cut set and the assumption that x j= R, we know thatx j= RGext;j for all j 2 I. Since x 6j= G, by property (2) of a cut set we know thatx 6j= RGi0;ext for some i0 2 I. By property (4) of a cut set we know that x 6j= Gi0 , and fromthe assumption that x j= Ri0 � Gi0 , we conclude that x 6j= Ri0 .Induction: Assume the induction hypothesis holds for some k � 0. By property (3)of a cut set we know that x 6j= RGik ;ik+1 for some ik+1 in I. If ik+1 = im for some m with0 � m � k, then we have obtained the desired cycle and the construction terminates.Otherwise, by property (4) of a cut set we know that x 6j= Gik+1 , and from the assumptionthat x j= Rik+1 � Gik+1 , we conclude that x 6j= Rik+1 . This establishes the inductionhypothesis for k + 1.Since the set I is �nite by hypothesis, we cannot extend the sequence i0; i1; . . . ; ikinde�nitely without obtaining a cycle.In a sense, Theorem 1 can be viewed as a generalization of the Floyd/Hoare technique[Flo67] [Hoa69] for proving partial correctness of sequential programs. In the Floyd/Hoare7



proof technique, a program contains a collection of control points, which are \tagged" or\annotated" by associating with them assertions about the values of the program variables.The meaning of an assertion Ap associated with control point p is the invariance property:\Whenever control is at point p, assertion Ap will be true of the program variables." Ifwe assume (which we can, without loss of generality) that to each ordered pair (Si; Sj)of program statements there corresponds at most one control point pi;j , representing thepoint at which control leaves Si and enters Sj, then the invariance property correspondingto control point pi;j can be thought of both as what statement Si guarantees to statementSj, and as what statement Sj relies on Si to provide. The collection of all such invarianceproperties therefore corresponds directly to the set RG in the proof technique presentedhere.Once an annotation for a program has been selected, proving the partial correctness ofthe program with respect to a precondition R and a postcondition G is reduced to showingthe partial correctness of each statement Si with respect to precondition Ri and postcon-dition Gi, assuming a certain relationship holds between the pre- and postconditions andthe annotations associated with the control points. In Floyd's original formulation, theprecondition for statement Si is required to be exactly the conjunction of the assertionsassociated with points at which control enters Si, and the postcondition is required to beexactly the conjunction of the assertions associated with points at which control leaves Si.In Hoare's version, the pre- and postconditions need not be exactly these conjunctions, aslong as they imply or are implied by them in an appropriate way.The precise relationship that must hold between the pre- and postconditions and theannotations of the control points corresponds to the \cut set" conditions de�ned above.Furthermore, the acyclicity condition de�ned above can be shown to follow from the factthat states in a computation are reachable from an initial state in a �nite number of steps,plus the requirement that enough control points be tagged to cut any program loop. Theproblem of annotating a program with assertions can therefore be thought of as a specialcase of the problem of �nding an acyclic cut set.3 Parallel Programs and Temporal Speci�cationsTo illustrate the use of the rely/guarantee proof rule in proving properties of concurrentprograms, we now make some speci�c assumptions about the programming and speci�ca-tion languages.We assume that expressions of both the speci�cation and programming language are8



built from two kinds of symbols: �xed symbols and variable symbols. The set of �xedsymbols includes function and relation symbols, logical connectives, and programminglanguage constructs. The set of variable symbols comprises logical variables and programvariables. Logical variables cannot appear in programs, and although both program andlogical variables can appear in speci�cations, only logical variables are permitted to bebound by quanti�ers.We assume that the semantics of the speci�cation and programming languages assignto �xed symbols a single interpretation that does not change during the course of a com-putation. An interpretation for the variable symbols is called a state. A computation isa sequence of states. We assume that all computations are in�nite; this convenient as-sumption results in no loss of generality because �nite computations can be modeled byintroducing a special \halt ag" into the state, and assuming that �nite computations aremade in�nite by repeating the �nal state with the halt ag set.For our concurrent programming language, we use a self-explanatory variant of Dijk-stra's guarded command language [Dij76], augmented with a parallel construct k. Commu-nication between processes is accomplished through the use of shared variables. A multipleassignment statement of the form:v1; v2; . . . ; vn := t1; t2; . . . ; tn;where the vi are program variables and the ti are terms, is used to read and updatea collection of variables in a single atomic step. We assume that process scheduling isfair in the sense that no process can be forever enabled without taking a step. It isstraightforward to give a formal semantics to this programming language by de�ning amapping from programs to sets of computations.We assume that our speci�cation language is the set of all sentences in the languageof �rst-order temporal logic whose atomic formulas are formed from variables, functionsymbols, and relation symbols. In addition to the usual logical connectives and quanti�ers,we assume the speci�cation language contains the temporal operators 2 (henceforth) and3 (eventually), which are applied to formulas to yield new formulas, and (next), whichcan either be applied to a formula to yield a new formula, or to a term to yield a newterm. We assume that these operators are endowed with \linear time" semantics in theusual way (see [MP83]), and we write x j= � to indicate that the computation x satis�esthe temporal sentence �.It will also be convenient to introduce the derived temporal operators ; (leads to), "9



(increases), and # (decreases), de�ned by:�;  � 2(� � 3 )t " � t <tt # � t >t;where in the latter two de�nitions we assume that t is an integer-valued term and therelation symbols > and < denote the usual ordering relations on the integers.4 Example 1: Distributed SynchronizationIn this section we consider the problem of coordinating the accesses of N user processesto critical sections, the executions of which must be mutually exclusive. The coordinationshould be done in such a way as to avoid the phenomenon of starvation, in which one processis prevented forever from entering its critical section while other processes repeatedly enterand exit their critical sections.Program Ring in Figure 1 is a distributed algorithm that solves the mutual exclusionproblem. In program Ring, each user process, represented by the code labeled Useri, hasbeen associated with an additional node process Nodei. The user process User i communi-cates with the associated node process Nodei through the boolean variables waitingi andcriticali. When process User i is ready to enter its critical section, it informs process Nodeiby setting the variable waitingi to true. Process User i then waits for the variable criticalito become true before entering its critical section. When process User i �nishes its criticalsection, it sets criticali to false.The node processes communicate with each other in a ring-like pattern; that is, processNodei communicates with processes Nodei�1 and Nodei+1, where we assume the additionand subtraction to be performed modulo N . Mutual exclusion is obtained through the useof a single token, which propagates around the ring in the forward direction (i.e., 0 to 1to 2, . . .), in response to requests, which propagate in the reverse direction. The processNodei permits its user process User i to execute in its critical section only while Nodeipossesses the token. The current position of the token is recorded by the variables tokeni,and requests are recorded by the variables requesti.The main loop of process Nodei operates as follows: If Nodei does not currently havethe token, and if either User i is waiting to enter its critical section, or Nodei+1 wants thetoken, then Nodei must request the token from Nodei�1 by setting requesti to true. If User iis not waiting, and Nodei+1 doesn't want the token, then there is nothing to do. If Nodei10



has the token, and User i is currently executing in its critical section, then there is alsonothing to do. If Nodei has the token, and Useri is not in its critical section, then Nodeimust examine the variables waitingi, requesti+1, and schedi to see what to do. If User i iswaiting, and Nodei+1 doesn't want the token, then User i is allowed into its critical section.If Nodei+1 wants the token, and User i is not waiting, then the token is passed to Nodei+1. Ifboth User i is waiting and Nodei+1 wants the token, then the choice is resolved on the basisof the scheduling variable schedi|if schedi is true, then the token is passed to Nodei+1,and if schedi is false, then User i is allowed to enter its critical section. In either case, thevariable schedi is complemented to ensure that the opposite decision will be made nexttime.Using standard concurrent program proof techniques (e.g., [OG76] [MP83]), we canshow that the program Ring satis�es the following invariants:Ring j= 2VN�1i=0 (critical i � tokeni) (1)Ring j= 2 �PN�1i=0 tokeni = 1� (2)where the expression PN�1i=0 tokeni = 1 denotes the �rst order formula that states thatprecisely one of the variables tokeni is true.1 These invariants together imply that programRing has the mutual exclusion propertyRing j= 2Vi6=j(critical i � :criticalj) :Besides the above invariants, we can show (for example, by the \proof lattice" tech-niques of [OL82] or by the \chain principle" of [MP83]), that program Ring satis�es thefollowing rely/guarantee speci�cation for all i with 0 � i � N � 1:Ring j= Ri � Gi;where Ri � criticali ; :criticali ^ requesti ; tokeniGi � requesti+1 ; tokeni+1 ^ waitingi ; criticaliTo prove these properties, we must make use of our fair scheduling assumption.Our goal is to show that if critical sections always terminate, then no process waitsforever to enter its critical section. That is,Ring j= R � G1In the sequel, we shall occasionally write expressions like this, which although not themselves �rst-orderformulas, can be regarded as denoting equivalent �rst-order formulas in an obvious way.11



Ring � boolean (tokeni initially (if i = 0 then true else false)) : (0 � i � N � 1);boolean (waitingi; critical i; requesti; schediinitially false ; false; false ; false) : (0 � i � N � 1);kN�1i=0 (User i k Nodei);User i � do Noncritical Section;waitingi := true;do :criticali ! skip;od;Critical Section;criticali := false;od;Nodei � do :tokeni ! if :requesti ^ (waiting i _ requesti+1) ! requesti := true;requesti _ (:waiting i ^ :requesti+1)! skip;�;tokeni ^ criticali ! skip;tokeni ^ :criticali ! if :waiting i ^ :requesti+1 ! skip;requesti+1 ^ (:waiting i _ schedi)! tokeni; tokeni+1; requesti+1; schedi:= false ; true; false; false;waitingi ^ (:request i+1 _ :sched i)! waitingi; criticali; schedi := false ; true; true;�;od; Figure 1: Distributed Synchronization Algorithm12



where R � VNi=1(criticali ; :criticali)G � VNi=1(waiting i ; criticali)Note that the property Ring j= Ri � Gi is local in the sense that it is stated solely interms of variables that are referenced by the process Nodei. In contrast, the propertyRing j= R � G is a global property that involves variables referenced by all processes. Ingeneral, we imagine that the proof rule presented in this paper will be most useful whenit is used, as in this example, to reduce the proof of a global property to the proof of acollection of local properties.To apply our rely/guarantee proof rule, we de�ne the set of speci�cationsRG = fRGi;j : i; j 2 f0; 1; . . .N � 1g [ fextggas follows: RGi;j � 8>>>>>>>><>>>>>>>>: waitingi ; criticali; 0 � i � N � 1; j = extcriticalj ; :criticalj; i = ext; 0 � j � N � 1requestj ; tokenj ; 0 � i; j � N � 1; j = i+ 1true; 0 � i; j � N � 1; j 6= i+ 1:With these de�nitions, the conditions required for RG to be a cut set for program Ringand speci�cations R;G; fRi; Gi : 1 � i � Ng, are tautological. To complete the proof thatRing j= R � G it therefore remains only to prove that RG is acyclic for Ring.To prove the acyclicity condition we need consider only the cycle f(0; 1); (1; 2):::; (N �1; 0)g, since all other cycles contain links (i; j ) for which j 6= i + 1 and hence for whichRGi;j � true. We show Ring j= WN�1i=0 RGi;i+1 indirectly, by assuming the existence of acomputation x of Ring such that x j= VN�1i=0 :RGi;i+1, and deriving a contradiction.Suppose x j= VN�1i=0 :RGi;i+1. Thenx j= VN�1i=0 :(requesti ; tokeni):Using the de�nition of ; and temporal reasoning, we havex j= VN�1i=0 3(request i ^ 2(:tokeni)) :Since the conjunction VN�1i=0 is �nite, it is valid (in linear-time temporal logic) to interchangeit and the temporal operator 3. Since VN�1i=0 and 2 are both of universal character, it isvalid to to interchange them as well, yieldingx j= 32VN�1i=0 :tokeni :13



This implies that x j= 32 �PN�1i=0 tokeni = 0� ;which contradicts invariant (2) above.5 Example 2: Distributed Resource AllocationIn this section we consider the problem of allocating a �xed number of resources in responseto requests from a collection of user processes. An algorithm to solve this problem shouldhave the property that as long as the total number of requests issued by users does notexceed the number of originally available resources, a resource will eventually be issued inresponse to each user request.Program Tree in Figure 2 is a distributed algorithm, based on the \dynamic match"algorithm of [FLG83], that solves the problem. As in programRing of the previous example,each user process, labeled User i, has been associated with a node process Nodei. The userprocess User i communicates with the node process Nodei through the variable pendingi,which represents the number of user requests that have not yet been satis�ed. ProcessUser i starts out with an initial number of requests IREQi, which it issues to Nodei (byincrementing pendingi) at unpredictable times during execution of the system. ProcessNodei records the number of free resources it has in the variable freei, which is initially setto the constant IFREEi. Process Nodei \responds" to requests from User i by decrementingpendingi and freei { a practical algorithm would also transmit a capability for a resourceto the user process as well, but we ignore this here.In contrast to the previous example, where the communication pattern of the nodeprocesses was a ring, the communication pattern of the node processes in this example isa tree. The set T is the set of process identi�ers, which we imagine to be arranged as abinary tree. For each process i 2 T , we write p(i); l(i); r(i) for the parent, left child, andright child, respectively, of process i. For uniformity, we introduce a special symbol nil,and de�ne p(i) = nil when i is the root of the tree, and de�ne l(i) = r(i) = nil when i is aleaf of the tree. Furthermore, we de�ne p(nil) = l(nil) = r(nil) = nil. If i 2 T , then let D(i)represent the set of all j 2 T (including i itself, but omitting nil) that are descendants of i.Certain of the steps of process Nodei, are to be omitted from the program in case i isthe root or a leaf, respectively. These branches are indicated by comments in Figure 2.If i; j 2 T and i = p(j ), then processes Nodei and Nodej communicate through thevariables owes i;j and estimi;j . Intuitively, the variable owes i;j records the net number of14



Tree � integer (owes i;j ; estimi;j initially 0;Pk2D(j) IFREEk) :((j 2 T and i = p(j )) or (i 2 T and j 2 fl(i); r(i)g));integer (pendingi; freei initially 0; IFREEi) : (i 2 T );ki2T (User i k Nodei);User i � integer requesti initially IREQi;do requesti > 0! requesti; pendingi := requesti � 1; pendingi + 1;requesti � 0! skip;od;Nodei � do pendingi > 0 ^ freei > 0 (issue resource to user)! pendingi; freei := pendingi � 1; freei � 1;owesp(i);i < 0 ^ freei > 0 (pay resource owed to parent � i not root)! owesp(i);i; freei; freep(i) := owesp(i);i + 1; freei � 1; freep(i) + 1;owesi;l(i) > 0 ^ freei > 0 (pay resource owed to left child � i not leaf )! owes i;l(i); freei; freel(i) := owes i;l(i) � 1; freei � 1; freel(i) + 1;owesi;r(i) > 0 ^ freei > 0 (pay resource owed to right child � i not leaf )! owes i;r(i); freei; freer(i) := owes i;r(i) � 1; freei � 1; freer(i) + 1;DEFCTi > 0 ^ estimi;l(i) > 0 (forward request to left child)! owes i;l(i); estimi;l(i) := owesi;l(i) � 1; estimi;l(i) � 1;DEFCTi > 0 ^ estimi;r(i) > 0 (forward request to right child)! owes i;r(i); estimi;r(i) := owesi;r(i) � 1; estimi;r(i) � 1;DEFCTi > 0 ^ estimi;l(i) � 0 ^ estimi;r(i) � 0 (reject request up to parent)! owesp(i);i; estimp(i);i := owesp(i);i + 1; 0;DEFCTi � 0 ^ (freei � 0 _ (pendingi � 0 (nothing to do; idle)^ owesp(i);i � 0 ^ owes i;l(i) � 0 ^ owes i;r(i) � 0))! skip;od;where DEFCTi = (pendingi + owes i;l(i) + owes i;r(i)) � (freei + owesp(i);i)Figure 2: Distributed Resource Allocation Algorithm15



resources that Nodei owes to Nodej. If owes i;j is positive, then Nodei owes resources toNodej. If owes i;j is negative, then Nodej owes resources to Nodei. The variable estimi;jcontains an estimate of the number of free resources remaining in the subtree headedby j . It is initially set to the total number of free resources initially available in thesubtree headed by j . The important invariant property of this estimate is that it is alwaysoptimistic; that is, estimi;j is always greater than or equal to the number of free resourcesactually available in the subtree headed by j .Intuitively, the steps of process Nodei serve either to satisfy a pending user requestwith a locally available resource, to pay a resource owed to a neighboring node, or toreduce a projected de�cit of resources at node i. The quantity DEFCTi in the code forprocess Nodei represents this projected de�cit, and should be thought of as the amount bywhich requests exceed resources at node i, once all debts have been paid. If process Nodeiprojects a de�cit (DEFCTi > 0), then to reduce this de�cit, it can either forward a requestto its left or right child, or reject a request to its parent. Requests are forwarded to a childonly in case it is estimated that there is a surplus of resources in the subtree headed bythat child. Requests are rejected to the parent only if neither of the subtrees headed bythe child nodes are estimated to have a surplus of resources.The program Tree can be shown, by standard techniques, to satisfy the following in-variants: Tree j= 2(owesnil;root � 0); (1)Tree j= 2Vi2T �owesp(i);i > 0 � owesp(i);i � Pj2D(i)(pendingj � freej)� : (2)Invariant (2) expresses the fundamental relationship between amount owed and amountneeded: If node i is owed resources by its parent, then the amount owed to i by its parentis a lower bound on the instantanous amount by which pending requests exceed availableresources in the subtree rooted at i.It can also be shown that Tree satis�es the following rely/guarantee speci�cations forall i 2 T : Tree j= Ri � Gi;where Ri � owesp(i);i > 0; owesp(i);i #^ owes i;l(i) < 0; owes i;l(i) "^ owes i;r(i) < 0; owes i;r(i) "16



Gi � pendingi > 0; pendingi #^ owesp(i);i < 0; owesp(i);i "^ owes i;l(i) > 0; owes i;l(i) #^ owes i;r(i) > 0; owes i;r(i) #The rely condition Ri states that debts owed to node i by its parent and each of its childrenwill eventually be paid. The guarantee condition Gi states that debts owed by node i toits parent and each of its children will eventually be paid. To obtain these properties,we must assume the scheduling of the branches of the main loop in the node program isstrongly fair, in the sense that no branch that is enabled in�nitely often during the courseof a computation can fail to be selected during that computation.2We are interested in establishing that, assuming the total number of user requests neverexceeds the total number of resources initially available, then a resource will eventually beissued for every user request. Formally, we would like to show:Tree j= R � G;where R � 2 (Pi2T pendingi � Pi2T freei)G � (Pi2T pendingi > 0); (Pi2T pendingi) #That this property holds is not immediately obvious. Examples of the kinds of things thatmight go wrong are resources being shuttled endlessly around the system without everreaching nodes where they are needed, and nodes with surplus resources never receivingrequests from nodes with de�cits.To apply our rely/guarantee proof rule, we de�ne the set of speci�cationsRG = fRGi;j : i; j 2 T [ fextggas follows: RGi;j � 8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>: 2(owesnil;root = 0); i = ext; j = roottrue; i = ext; j 2 T � rootpendingi > 0; pendingi #; i 2 T; j = extowes i;j > 0; owes i;j #; i; j 2 T; i = p(j )owesj;i < 0; owesj;i "; i; j 2 T; j = p(i)true; i; j 2 T; j 6= p(i); i 6= p(j ):2Actually, we can make do with the weaker fairness condition used in Example 1 if we introduce schedulingvariables as we did there. We have omitted scheduling variables here in the interests of simplicity.17



We must �rst show that RG is a cut set. To prove condition (1) in the de�nition of acut set, we must show that Tree j= R � (Vj2T RGext;j);which, applying the de�nitions of R and RGext;j, becomesTree j= 2 (Pi2T pendingi � Pi2T freei) � 2(owesnil;root = 0) :Suppose x is a computation of Tree such thatx j= 2 (Pi2T pendingi �Pi2T freei) :Then x j= 2 (Pi2T freei � pendingi � 0) : (3)From the fundamental invariant (2) above, and the fact that D(root) = T , we infer thatx j= 2(owesnil;root > 0 � owesnil;root � Pi2T pendingi � freei) :From this and (3), we conclude thatx j= 2(owesnil;root > 0 � owesnil;root � 0) ;which, combined with the invariant (1), implies thatx j= 2(owesnil;root = 0);as required.To prove condition (2) in the de�nition of a cut set, we must show thatTree j= (Vi2T RGi;ext) � G;that is, Tree j= Vi2T (pendingi > 0; pendingi #)� ((Pi2T pendingi > 0); (Pi2T pendingi) #)This is obviously true, because at most one of the pendingi can change in a single step ofexecution.To prove condition (3), we must show thatTree j= (Vi2T[fextgRGi;j) � Rj ; for all j 2 T:18



We split the proof into two cases, j = root and j 2 T � root. In case j = root, we mustshow Tree j= (2( owesnil;root = 0)^ owesroot;l(root) < 0; owesroot;l(root) "^ owesroot;r(root) < 0; owesroot;r(root) ")�(owesnil;root > 0; owesnil;root #^ owesroot;l(root) < 0; owesroot;l(root) "^ owesroot;r(root) < 0; owesroot;r(root) ")This is obviously true.In case j 2 T � root, we must showTree j= (owesp(j);j > 0; owesp(j);j #^ owesj;l(j) < 0; owesj;l(j) "^ owesj;r(j)< 0; owesj;r(j) ")�(owesp(j);j > 0; owesp(j);j #^ owesj;l(j) < 0; owesj;l(j) "^ owesj;r(j)< 0; owesj;r(j) ");which is a tautology.To prove condition (4), we must show thatTree j= Gi � (Vj2T[fextgRGi;j); for all i 2 T:Using the de�nitions of Ri and RGi;j , this becomesTree j= (pendingi > 0; pendingi #^ owesp(i);i < 0; owesp(i);i "^ owes i;l(i) > 0; owes i;l(i) #^ owes i;r(i) > 0; owes i;r(i) #)�(pendingi > 0; pendingi #^ owesp(i);i < 0; owesp(i);i "^ owes i;l(i) > 0; owes i;l(i) #^ owes i;r(i) > 0; owes i;r(i) #);which is a tautology. 19



Finally, we must show that RG is acyclic for Tree. To do this, it su�ces to show thatTree j= RGi;p(i) _RGp(i);i for all i 2 T � root. This is because every cyclef(i0; i1); (i1; i2); . . . ; (in�1; in)gof T either contains a link (ik; ik+1) for which RGik;ik+1 = true by de�nition, or else containsboth links (i; p(i)) and (p(i); i) for some i 2 T � root.To show that Tree j= RGi;p(i) _ RGp(i);i for all i 2 T � root, let i be arbitrarily �xed,and suppose, to obtain a contradiction, that x is a computation of Tree such thatx j= :RGi;p(i) ^ :RGp(i);i: (4)From (4) and the de�nition of RGi;p(i) we know thatx j= 3(owesp(i);i < 0 ^ 2:owesp(i);i ");which implies that x j= 32(owesp(i);i < 0):Similarly, from (4) and the de�nition of RGp(i);i we have thatx j= 32(owesp(i);i > 0):These two statements are contradictory, and we conclude that RG is acyclic.6 Comparison With Other TechniquesTo obtain perspective on the rely/guarantee proof method presented here, it is useful tocompare this method with other extant methods. In this section we consider two methods:the \proof lattice" method of Owicki and Lamport [OL82], and the \well-founded set"method originally applied by Floyd [Flo67] to termination proofs for sequential programs,and later adapted by Manna, Pnueli [MP83], and others to prove eventuality propertiesexpressed in temporal logic. Below we sketch how alternative proofs of the propertyRing j= R � G might be constructed for the distributed synchronization example. Thereader is challenged to produce simple proofs, at an adequate level of rigor, along the linessketched. The author's own inability to accomplish this is what led him to devise therely/guarantee proof technique. 20



6.1 Proof Lattice MethodThe proof lattice method of Owicki and Lamport is designed to permit the proof of tem-poral implications of the form � ;  from simpler implications of the same form, plusauxiliary invariance properties of the program under consideration. A proof lattice forthe program P j= � ;  is a �nite, directed, acyclic graph, whose nodes are labeled bytemporal sentences, with the following properties:1. There is a single root node, labeled by �.2. There is a single leaf node, labeled by  .3. If the children of a node labeled by � are labeled by �1; �2; . . . ; �n, thenP j= �; (�1 _ �2 _ . . . _ �n):A proof lattice for P j= � ;  represents a su�ciently rigorous proof when each nodelabeled �, with children labeled �1; �2; . . . ; �n, can be justi�ed by appeal to primitive infer-ence rules associated with the constructs of the programming language, by appeal to anauxiliary invariance property, or by appeal to a theorem of temporal logic.To use the proof lattice technique to prove the statement Ring j= R � G, we mightassume R, (that is, we consider a computation x such that x j= VN�1i=0 criticali ; :critical i),and attempt to construct a proof lattice for waitingi ; criticali. The informal contentof the argument that would be captured formally by the proof lattice is as follows: Wewould show that if waitingi holds, then a chain of requests is generated that propagatesaround the ring in the reverse direction until a node is reached that has the token. Thetoken is then forced to propagate in the forward direction around the ring until node i isreached. Once node i is reached, then depending upon the value of schedi, either criticaliwill become true right away, or the token will be passed to node i + 1. In the latter case,we have to follow another chain of requests and subsequent token passes until the tokenagain reaches node i.In the construction of the proof lattice, we would make use of simple eventuality prop-erties like the following, which can be veri�ed by local reasoning about the control owwithin the process Nodei:Ring j= waitingi ; criticali _ requestiRing j= requesti ; tokeni _ requesti�1Ring j= tokeni ^ waitingi ; criticali _ :schediRing j= waitingi ^ tokeni ^ :sched i ; criticali21



In addition, we would make use of safety properties like the following:Ring j= waitingi latches-until criticaliRing j= requesti latches-until tokeniRing j= schedi latches-until tokeni+1Ring j= :schedi latches-until criticaliRing j= tokeni latches-until tokeni+1Ring j= 2(request i � :tokeni)Ring j= 2(critical i � tokeni);where � latches-until  means, intuitively, \If � ever holds, then � remains true fromthen until the next instant at which  holds." (See [SM81] for a formal de�nition of thisconstruct.)If one actually tries to construct a proof lattice according to the preceding informalsketch, one is quickly overwhelmed by the number of branches and cases that it is necessaryto consider. Problems are also caused by the fact that the depth of the lattice is dependentupon the parameter N , which is the size of the ring. This variable parameter necessitatesthe use of elipses in the proof lattice.6.2 Well-Founded Set MethodAnother alternative to the rely/guarantee method is to use a method based on well-foundedsets. In this approach, the proof of a statement P j= �;  , might proceed by contradic-tion as follows: Assume x is a computation of P such that x j= 3(� ^ 2: ). De�ne avariant function f that maps the program state into a well-founded set W (typically thenonnegative integers under the usual ordering), and prove the following properties:P j= 2((� ^ 2: ) � 2:f ")P j= 2((� ^2: ); 23f #)The �rst condition states that, assuming � holds at some instant, and : holds for thatinstant and all future instants, then the value of the variant function f does not increasefrom that instant on. The second condition states that, under the same assumptions, thevalue of f is repeatedly decreased. If P j= 3(�^2: ), then we would have a contradictionwith the well-foundedness of W . We conclude that P j= 2(� � 3 ); that is, P j= �;  .Let us consider how a well-founded set proof of Ring j= R � G might proceed. Suppose,to obtain a contradiction, that x is a computation of Ring such that x j= R ^ :G. Then22



for some i with 0 � i � N � 1, we have that x j= 3(waiting i ^ 2:criticali). Making useof the invariant that states that there is precisely one token in the system at all times, weknow that for each state in x, there is precisely one j for which tokenj is true. We selecta variant function f that maps each program state to a nonnegative integer according tothe following intuition: The value of f on a program state measures a kind of \distance"between that state and a \desired" state (one for which criticali holds). In particular, ftakes into account:1. The distance around the ring the token has to travel from j to i.2. The distance around the ring requests have yet to propagate from i to j .3. The values of the scheduling variables schedk for k on the path the token must takefrom j to i.A appropriate f can be de�ned in the form of a polynomial inN , whose coe�cients dependupon the program variables tokeni, requesti, and schedi.Having de�ned f , we must prove:Ring j= 2((waiting i ^2:critical i) � 2:f ")Ring j= 2((waiting i ^2:critical i); 23f #)The �rst condition can be proved by a case analysis on all the kinds of steps that theprogram Ring might take. The second condition can be proved by showing that it isinvariantly the case that there is an enabled process whose steps must decrease the variantfunction (for example, a node that has the token and whose next step must pass it alongthe ring closer to node i), and therefore by the fair scheduling assumption must eventuallyexecute.Although it seems intuitively clear that such a proof can in principle be carried out,the problem of doing so in a su�ciently rigorous, perhaps machine-checkable fashion seemsformidable.7 Discussion7.1 A Decomposition PrincipleIn the examples presented in this paper, judicious selection of the local rely and guaranteeconditions Ri and Gi, resulted in tautological, or nearly tautological \cut set" conditions,23



leaving most of the interesting content of the proof to be captured in the \acyclicity" part.This phenomenon suggests that the rely/guarantee proof technique might be valuable as adecomposition principle to be used during top-down design. This decomposition principlecan be codi�ed as follows:To decompose a module M , which is to satisfy the speci�cation R � G,into a system of submodules fMi : i 2 Ig, and to determine the speci�cationsfRi � Gi : i 2 Ig that the submodules must satisfy, one should:1. By considering what each module Mi relies on and guarantees to theexternal environment and each other module Mj , determine a collectionof speci�cations RGi;j that satis�es the acyclicity condition and cut setconditions (1) and (2).2. Use cut set conditions (3) and (4) as de�nitions of the rely and guaranteeconditions Ri and Gi for component module i. Since the conditions Riand Gi should be expressed in terms of information local to module i, thisstep can actually be used to help determine what variables need to beaccessible to module i.3. Verify that the resulting component module speci�cations Ri � Gi arereasonable, in the sense of being \consistent" or \implementable." Forexample, Ri � Gi should not be logically equivalent to false. Consistencycan be checked either by completing the top-down decomposition to thelevel of primitive modules, or by performing checks at the abstract level[Sta84].7.2 A Formal Logic of Rely/Guarantee ConditionsIn this paper, we have stated the rely/guarantee proof rule as a general proof-structuringtechnique independent of any particular choice of speci�cation or programming language.However, an interesting question is how the proof rule might be formalized as a formal ruleof inference in a logic of rely/guarantee conditions. As discussed in Section 2, Hoare-likelogics represent one way to do this for safety properties. Another possibility is suggestedby the method of reasoning employed in the examples presented above. In these examples,we were concerned with establishing rely/guarantee properties R � G, where R and Gwere conjunctions of simple eventuality assertions, each of the form q ; r with q and rcontaining no temporal operators. We used the rely/guarantee technique to derive global24



rely/guarantee properties of a parallel composition of programs from local rely/guaranteeproperties of the component programs, plus auxiliary invariants satis�ed by the compositeprogram.As an example of how the sort of reasoning used in the examples might be formalizedas a rule for parallel composition of programs, consider a shared variable programminglanguage like the one used informally in this paper. Correctness assertions for such alanguage might take the form: p : hRiP hGi;where p is a predicate on states (representing an invariant), and R and G are each con-junctions of simple eventuality assertions of the form: q ; r. Informally, validity of sucha formula would mean: \For all `environment' programs E, if each step of E preservesthe truth of p, and if EkP j= R holds, then each step of EkP preserves the truth of p,and EkP j= G holds as well." (We universally quantify over environment programs in thesemantics because of our desire for the validity of an assertion about P to be independentof any particular context in which P might appear.)The rely/guarantee proof technique might be incorporated into a formal proof rule forparallel composition of the following form (for composition of two processes):p : hRGext;1 ^RG2;1iP1hRG1;ext ^RG1;2i;p : hRGext;2 ^RG1;2iP2hRG2;ext ^RG2;1i;p � Wk rkp : hRGext;1 ^RGext;2iP1kP2hRG1;ext ^RG2;exti;where Wk rk represents the conjunction of all the right-hand sides of the eventuality formulasqk ; rk occuring in the assertions RG1;2 and RG2;1. The �rst two hypotheses abovecorrespond to the cut-set conditions of our proof rule, and the third hypothesis to theacyclicity condition. We have used the special form of the eventuality assertions to simplifythe acyclicity condition to an implication between predicates on states.There are signi�cant issues that remain to be examined before a complete proof systemcan be obtained along these lines. For example, we require a suitable fairness assumption onthe parallel composition of processes, since in the absence of such an assumption there willbe no interesting valid eventuality properties. Also, a proof of completeness is likely requirean analysis of the notions of \weakest rely-condition," \strongest guarantee-condition," andthe question of their expressibility in the assertion language.25



8 ConclusionWe have examined a technique by which rely/guarantee statements of the form P j= R � Gcan be inferred from a �nite collection of rely/guarantee statements of the form fP j= Ri �Gi : i 2 Ig. The technique involves the discovery of a collection RG = fRGi;j : i 2 I [fextgg of speci�cations that \cut" the interdependence between the rely-conditionsRi andR, and the guarantee-conditionsGi andG, in a fashion analogous to the way in which a loopinvariant cuts the dependence of one iteration on the preceding and succeeding iterations.An \acyclicity" condition must also be proved, to ensure that there are no computations ofP for which the interdependence between the rely and guarantee conditions is degenerate.The utility of the proof technique was illustrated by two examples, in which the techniquewas used to infer \global" liveness properties of a system of concurrent processes from\local" liveness properties of the individual processes. We expect the inference of globalproperties from local ones to be the typical way in which the technique will be useful inpractice. An interesting feature of the proof technique is the way in which it can be applied,with equal facility, to both ring-structured and tree-structured communication patterns.In general, the discovery of a cut set RG for a program will require the use of intuitionabout why the program works correctly. Since discovery of a collection of loop invariantsin the Floyd/Hoare approach to sequential program correctness can be viewed as a specialcase of the problem of �nding a cut set, it will be at least as di�cult in general to discovercut sets as it is to discover loop invariants. We therefore consider it unlikely that the prooftechnique presented here can be fully automated. However, once a human veri�er hasdiscovered an appropriate cut set for a program, along with necessary global invariants,it seems quite possible that the checking of the cut set and acyclicity conditions is a taskthat is within the capability of an automated veri�cation system.AcknowledgementThe author wishes to thank Professor Nancy Lynch for her support and guidance duringhis thesis research. Gael Buckley, Jieh Hsiang, and Scott Smolka made helpful commentson drafts of this paper.References[BK83] H. Barringer, R. Kuiper, \A Temporal Logic Speci�cation Method Support-ing Hierarchical Development," Manuscript, University of Manchester De-26
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