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Abstract

This paper presents a special hierarchical fuzzy system where the outputs of the previous layer are not used in the
IF-parts, but used only in the THEN-parts of the fuzzy rules of the current layer.

The proposed scheme can be shown to be a universal approximator to any continuous function on a compact set if
complete fuzzy sets are used in the IF-parts of the fuzzy rules with singleton fuzzi5er and center average defuzzi5er.

From the simulation of ball and beam control system, it is demonstrated that the proposed scheme approximates with
good accuracy the model nonlinear controller with fewer fuzzy rules than the centralized fuzzy system and its control
performance is comparable to that of the nonlinear controller. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the important issues in fuzzy logic systems is how to reduce the number of involved fuzzy rules
and their corresponding computation requirements. In fact, the number of fuzzy rules grows exponentially
with the number of input variables. Speci5cally, a single-output fuzzy logic system with n input variables and
m membership functions de5ned for each input variable requires mn number of fuzzy rules. To overcome the
problem, the idea of using hierarchical structure in designing a fuzzy system has been reported in 1991 by
Raju and Zhou [16,17], where input variables are put into a collection of low-dimensional fuzzy logic units
(FLUs) and the outputs of the FLUs are used as input variables for the FLU at the next layer. According to
them, the number of fuzzy rules that are employed in the hierarchical fuzzy system (HFS) is shown to be
proportional to the number of input variables.

In HFS, however, it is not trivial to retrieve physical meanings from the outputs of the FLUs at the previous
layer with or without supplementary input variables. Consequently, if they are used as input variables for the
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FLUs at the next layer, as is usually the case in HFS, then the involved fuzzy rules in the middle of a
hierarchical structure have little physical meaning, and consequently, are diIcult to design. This phenomenon
becomes prominent as the number of layers grows in HFS. To overcome the problem, we propose an HFS
where the outputs at the previous layer are never used in the IF-parts, but used only in the THEN-parts of
fuzzy rules at the next layer. As a result, all of the IF-parts of fuzzy rules use only the original input variables,
and thus, the resulting fuzzy rules come with clear physical meaning and become easy to design.

On the other hand, Wang proved in 1998 that a certain class of HFS can serve as a universal approximator
to any continuous function on a compact set. In his scheme [14,15,2], the ith rule of the FLU at the kth layer
is given by

IF xN (k−1)+1 is Ai
N (k−1)+1 and : : : and xN (k) is Ai

N (k) and yk−1 is Bi
k

THEN Jyi
k is

mN (k−1)−1−1∑
j=0

qi
kj(yk−1)j; (1)

where N (k)=
∑k

l=1 nl; nk is the number of involved input variables at the kth layer, xN (k−1)+1; : : : ; xN (k) are
the input variables, yk−1 is the output of the FLU at the (k − 1)th layer, Ai

N (k−1)+1; : : : ; A
i
N (k) and Bi

k are the
fuzzy sets, and qi

kj’s are the coeIcients.
Huwendiek and Brockmann [6–8] proved that network of fuzzy adaptive nodes (NetFAN), a special class

of HFS, can be used as a universal approximator to any continuous function on a compact set. NetFAN uses
trapezoidal membership functions, product inference engine, singleton fuzzi5er, and center average defuzzi5er
and the universal approximation capability is proved by using the Stone–Weierstrass theorem. In their scheme,
the ith rule of the FLU at the kth layer is given by

IF xk1 is Ai
k1 and xk2 is Ai

k2 and : : : and y(k−1)1 is Bi
k1 and y(k−1)2 is Bi

k2 and : : :

THEN Jyi
k is ri

k ; (2)

where xkj’s and y(k−1)j’s can be used in other FLU’s, Ai
kj’s and Bi

kj’s are fuzzy sets, and ri
k ’s are constants.

As with [8], we prove that the proposed HFS can also serve as a universal approximator to any continuous
function on a compact set. However, in contrast with [8], the theorem holds for many types of membership
functions as long as complete fuzzy sets are used for input variables with singleton fuzzi5er and center average
defuzzi5er.

This paper is organized as follows: Section 2 introduces the proposed HFS and Section 3 presents the
universal approximation capability of the proposed HFS. Section 4 shows the simulation of the control problem
of ball and beam system to demonstrate the feasibility of the proposed scheme. Finally, Section 5 summarizes
results and draws conclusions.

2. Proposed HFS

The proposed HFS with � (¿2) layer hierarchy is of the structure as shown in Fig. 1, where u is a
collection of input variables for HFS, u= (u1; u2; : : : ; un)T∈Rn; d1; d2; : : : ; d� are the number of FLUs at each
layer, xk1; xk2; : : : ; xkdk are the involved input variables for each FLU at the kth layer, yk1; yk2; : : : ; ykdk are
the outputs of the FLUs at the kth layer, and y�1 is the output of the HFS. Without loss of generality, y0’s
are set to 0 and the HFS is to be a feed forward network.
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Fig. 1. The proposed HFS with � layer hierarchy.

For the dth FLU (16d6dk) at the kth layer (16k6�) with n(kd) number of input variables, its ith fuzzy
rule is written as follows:

IF x1 is Ai
1 and x2 is Ai

2 and : : : and xn(kd) is Ai
n(kd)

THEN Jyi
kd is

N (kd)∑
j=1

pi
j%j +

∑
(u;v)∈N (kd)C2

wi
uv%u%v + ri; (3)

where N (kd) = n(kd)+dk−1; xkd = (x1; x2; : : : ; xn(kd))T ⊂ u; Ai
1; Ai

2; : : : ; A
i
n(kd) are the input fuzzy sets, pi

j ; w
i
uv; r

i

are the coeIcients in the THEN-part, %j is de5ned as

%j =

{
xj if (1 6 j 6 n(kd));

y(k−1)(j−n(kd)) if (n(kd) + 1 6 j 6 N (kd))
(4)

and N (kd)C2 denotes the number of combinations that selects two elements out of N (kd) elements. Note that
yk−1 is never used in the IF-parts of fuzzy rules because it is just the output of the previous layer with less
or no physical meaning.



178 M.G. Joo, J.S. Lee / Fuzzy Sets and Systems 130 (2002) 175–188

Now let us de5ne

�uv =
∑

i �
i(xkd)wi

uv∑
i �

i(xkd)
;

�j =

∑
i �

i(xkd)pi
j∑

i �
i(xkd)

;

� =
∑

i �
i(xkd)ri∑

i �
i(xkd)

; (5)

where �i(xkd) is the 5ring strength of the ith rule given by

�i(xkd) =




n(kd)∏
j=1

�i
Aj

(xj) if prod-operation;

min(�i
A1

(x1); �i
A2

(x2); : : : ; �i
An(kd)

(xn(kd))) if min-operation:

Since �; �; �; w; p; r are de5ned for the dth FLU at the kth layer, they should have k and d as subscripts. In
order to improve readability, however, k and d are completely omitted in their notations.

Using singleton fuzzi5er, center average defuzzi5er, and de5nition (3)–(5), we have

ykd =
∑

i �
i(xkd) Jyi

kd∑
i �

i(xkd)

=

∑
i �

i(xkd)(
∑N (kd)

j=1 pi
j%j +

∑
(u;v) w

i
uv%u%v + ri)∑

i �
i(xkd)

=

∑
i �

i(xkd)
∑N (kd)

j=1 pi
j%j∑

i �
i(xkd)

+

∑
i �

i(xkd)
∑

(u;v) w
i
uv%u%v∑

i �
i(xkd)

+
∑

i �
i(xkd)ri∑

i �
i(xkd)

=
N (kd)∑
j=1

%j

∑
i �

i(xkd)pi
j∑

i �
i(xkd)

+
∑
(u;v)

%u%v

∑
i �

i(xkd)wi
uv∑

i �
i(xkd)

+
∑

i �
i(xkd)ri∑

i �
i(xkd)

=
N (kd)∑
j=1

�j%j +
∑

(u;v)∈N (kd)C2

�uv%u%v + �: (6)

In (6), ykd is composed of additions and multiplications of involved variables, which are multiplied by the
contribution of input variables de5ned by � and �.

Remark 1. Note that Wang’s HFS uses each input variable only once for some FLU but Huwendiek’s HFS
uses the same input variable in many FLUs. Both schemes have their own drawbacks. The former has less
number of fuzzy rules than the centralized fuzzy system, but the THEN-parts of the fuzzy rules are complicated
and in the given kth layer (k = 1; : : : ; � − 1), every consequent variables Jy i

k ’s should be of diMerent values,
i.e., Jyi

k �= Jyj
k , if i �=j; which may not be easily satis5ed in the real case. In the latter scheme, however, the

THEN-parts of fuzzy rules are simple, but it may have larger number of fuzzy rules than the centralized
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Fig. 2. HFS for Lemmas 1 and 2.

fuzzy system because the input variables used in one FLU maybe used repeatedly in other FLUs. In many
applications, however, the number of fuzzy rules are less than that of the centralized fuzzy system as shown
in [8] and in the example of this paper. The structure of the latter scheme is adopted in this paper.

3. Universal approximation

In this section, we prove that the proposed HFS can serve as a universal approximator to any continuous
function on a compact set. This theorem holds for a number of membership functions such as triangular
functions, trapezoidal functions, gaussian functions, and so on, whereas only the trapezoidal membership
functions 1 was allowed to use to prove the universal approximation theorem in Huwendiek and Brockmann [8].
It is mainly due to the fact that the THEN-parts of the fuzzy rules in the proposed HFS are, as shown in (6),
composed of the terms of additions and multiplications of the outputs of the FLUs at the previous layer.

The following Stone–Weierstrass theorem is used to prove the universal approximation theorem of the
proposed HFS.

Theorem 1 (Stone–Weierstrass theorem). Let Z be a set of real continuous functions on a compact set X.
If (1) Z is an algebra; that is; the set Z is closed under addition; multiplication; and scalar multiplication; (2)
Z vanishes at no point of X; that is; for each x∈X there exists f∈Z such that f(x) �= 0; (3) Z separates
points on X; that is; for every x; x′ ∈X; x �= x′; there exist f∈ Z such that f(x) �=f(x′); then the uniform
closure of Z consists of all real continuous functions on X.

Proof. See [18].

Throughout this paper, let F be a set of all HFSs with the proposed structure, U⊂Rn be a compact set of
input variables denoted by u= (u1; u2; : : : ; un)T, and Xkd ⊂Rn(kd) be a compact set of involved input variables
denoted by xkd = (x1; x2; : : : ; xn(kd))T ⊂ u for the dth FLU at the kth layer. mj is the number of membership
functions de5ned for xj. We assume n(kd)¡n in this paper to construct a genuine HFS.

Lemma 1. F is closed under addition.

Proof. Let f1; f2 ∈F and construct an HFS as shown in Fig. 2. Let the number of hierarchical layers of the
HFS be � and, without loss of generality, the involved input variables for f1 and f2 be x(�−1)1 and x(�−1)2,
respectively. The input variable in x�1 is then selected arbitrarily from those either in x(�−1)1 or x(�−1)2.

1 It is the triangular membership functions that they are in the given compact domain.



180 M.G. Joo, J.S. Lee / Fuzzy Sets and Systems 130 (2002) 175–188

If we set

�j =

{
0 if (1 6 j 6 n(�1));

1 if (n(�1) + 1 6 j 6 n(�1) + 2 = N (�1));

�uv = 0 for all (u; v) ∈N (�1) C2;

� = 0; (7)

at the �th layer, then from (6) and (4), we have

y�1 = %n(�1)+1 + %n(�1)+2 = y(�−1)1 + y(�−1)2 = f1 + f2:

A choice of the coeIcients of (3) that meet condition (7) is as follows:

for all 1 6 i 6
n(�1)∏
j=1

mj;

pi
j =

{
0 if (1 6 j 6 n(�1));

1 if (n(�1) + 1 6 j 6 n(�1) + 2 = N (�1));

wi
uv = 0 for all (u; v) ∈N (�1) C2;

ri = 0:

Since the HFS with the above con5guration is in the form of the proposed HFS, F is closed under
addition.

Lemma 2. F is closed under multiplication.

Proof. In the same way as in the proof of Lemma 1, if we set

�j = 0 for all j ∈ {1; 2; : : : ; N (�1)};

�uv =

{
1 if (u; v) = (n(�1) + 1; n(�1) + 2);

0 otherwise;

� = 0; (8)

then the output of the HFS follows from (6) and (4) that

y�1 = %n(�1)+1%n(�1)+2 = y(�−1)1y(�−1)2 = f1f2:

A choice of the coeIcients of (3) satisfying (8) is as follows:

for all 1 6 i 6
n(�1)∏
j=1

mj;

pi
j = 0 for all j ∈ {1; 2; : : : ; N (�1)};
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wi
uv =

{
1 if (u; v) = (n(�1) + 1; n(�1) + 2);

0 otherwise;

ri = 0:

Since the HFS with the above con5guration is in the form of the proposed HFS, F is closed under multipli-
cation.

Lemma 3. F is closed under scalar multiplication.

Proof. Let an arbitrary HFS with � layer hierarchy be f�. From (5) and (6), we have

cf � = cy�1 = c




N (�1)∑
j=1

�j%j +
∑

(u;v)∈N (�1)C2

�uv%u%v + �




=
∑

j

∑
i �

i(x�1)cpi
j∑

i �
i(x�1)

%j +
∑
(u;v)

∑
i �

i(x�1)cwi
uv∑

i
�i(x�1)

%u%v +
∑

i �
i(x�1)cri∑

i �
i(x�1)

=
∑

j

∑
i �

i(x�1)p̃
i
j∑

i
�i(x�1)

%j +
∑

(u;v)

∑
i �

i(x�1)w̃
i
uv∑

i �
i(x�1)

%u%v +
∑

i �
i(x�1)r̃

i∑
i �

i(x�1)
;

where

p̃i
j = cpi

j;

r̃i = cri;

w̃i
uv = cwi

uv:

Since the HFS with above con5guration is in the form of the proposed HFS, F is closed under scalar
multiplication.

Lemma 4. For each u∈U; there exists f∈F such that f(u) �= 0; i.e.; F vanishes at no point of U.

Proof. We prove this by constructing the required f. Let u= (u1; u2; : : : ; un)T.
Choose a HFS with only one FLU at the kth layer (16k6n) as shown in Fig. 3 and set its ith fuzzy rule

to

IF uk is Ai
k THEN Jyi

k1 is y(k−1)1 + C;

where C is any nonzero constant.
Then, it follows that yk1 =y(k−1)1 + C.
Consequently, we have

f(u) = yn1 = nC �= 0 for all u ∈ U

and F vanishes at no point of U.



182 M.G. Joo, J.S. Lee / Fuzzy Sets and Systems 130 (2002) 175–188

Fig. 3. HFS for Lemmas 4 and 5.

Lemma 5. For every u; u′ ∈U and u �= u′; there exists f∈F such that f(u) �=f(u′); i.e.; F separates points
on U.

Proof. We prove this by constructing the required f. Let u= (u1; u2; : : : ; un)T and u′ = (u′1; u
′
2; : : : ; u

′
n)

T. Choose
a HFS with only one FLU at the kth layer (16k6n) as shown in Fig. 3 and set its ith fuzzy rule to

IF uk is Ai
k THEN Jyi

k1 is pkuk + y(k−1)1:

Then, it follows that yk1 =pkuk + y(k−1)1.
Consequently, we have

f(u) = yn1 =
n∑

j=1

pjuj

and

f(u) − f(u′) =
n∑

j=1

pjũj;

where ũj = uj − u′j.
If pj is set to ũj, we have

f(u) − f(u′) =
n∑

j=1

(ũj)2 �= 0 if u �= u′

and F separates points on U.

Theorem 2 (Universal approximation theorem). For any continuous function g(u) on a compact domain U
and arbitrary  ¿0; there exists f∈F that satis7es

sup
u∈U

|f(u) − g(u)| ¡  :

Proof. From (5) and (6), it is evident that F is a set of real continuous functions on U if
∑

i=1 �i(xkd)¿0
for all k and d, which are established by using complete fuzzy sets in the IF-parts of fuzzy rules. Using
Lemmas 1, 2, and 3, F is proved to be an algebra. By using the Stone–Weierstrass theorem together with
Lemmas 4 and 5, we establish that the proposed HFS possesses the universal approximation capability.
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Fig. 4. The ball and beam system.

Remark 2. This theorem just guarantees the existence of an HFS that approximates a given continuous func-
tion. A reasonable HFS that can serve as a good approximator can be found by the partial knowledge of the
plant [16,17,3,5,12] or by the structure searching routine such as genetic algorithms [11,20,19,9].

Remark 3. From (5), �; �; � can be viewed as the outputs of the 0th order Takagi-Sugeno fuzzy logic systems
(TS-FLSs). Since it is proved in [13,1,10] that TS-FLS has a universal approximation capability, �; �; � can
approximate any continuous functions on a compact set Xkd.

4. Simulation

In the ball and beam system as shown in Fig. 4, let r be the distance of a ball from origin and " be an
angle that a beam makes with a horizontal line. De5ne x= (x1; x2; x3; x4)T = (r; ṙ; "; "̇)T as the state vector of
the system and y = r as the output of the system. The objective is to design an HFS with which the output
converges to zero from arbitrary initial conditions in a certain region.

Representing the system with a state space model, we have


ẋ1

ẋ2

ẋ3

ẋ4


 =




x2

B(x1x2
4 − G sin x3)

x4

0


 +




0

0

0

1


 u

y = x1

and based on this model, we choose a control law

u∗(x) =
4BGx4 cos x3 + 6BG sin x3 − 4x2 − x1 − BGx2

4 sin x3

−BG cos x3
(9)

from the input–output linearization algorithm of Hauser et al. [4], where B and G are 0.7143 and 9.81,
respectively.

When this control law is applied to the system starting from four initial conditions x(0)=[2:4;−0:1; 0:6;
0:1]T, [1:6; 0:05;−0:6;−0:05]T, [−1:6;−0:05; 0:6; 0:05]T, and [−2:4; 0:1;−0:6;−0:1]T, the corresponding trajec-
tories are as shown in Fig. 5.

Granting that u∗(x) is the ideal controller designed by using the full state model of the ball and beam
system, we now try to design a fuzzy controller û(x) by using the proposed HFS, whose performance is
comparable to that of u∗(x). An HFS as shown in Fig. 6 may be not an optimal structure but is a natural
choice, where two FLUs with inputs (x1; x2)T = (r; ṙ)T and (x3; x4) = ("; "̇)T are placed at the 1st layer, and
their outputs are inputs to the FLU at the 2nd layer to account for the dependency shown in (9). When
three membership functions are de5ned for each input variable, the number of involved fuzzy rules becomes
32 + 32 + 32 = 27 for the proposed HFS, but it is 34 = 81 for a standard fuzzy logic system.
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Fig. 5. Output r(t) of the closed loop ball and beam system from four initial conditions when the input–output linearization algorithm
of Hauser et al. is used.

Fig. 6. A controller for ball and beam system.

In fact, when the terms in (6) are de5ned as; (a) for FLU11, %1 = x1, %2 = x2, �1 =−1, �2 =−4, �12 = 0,
�= 0; (b) for FLU12, %1 = x3, %2 = x4, �1 = �2 = 0, �12 = 0, �= 4BGx4 cos x3 +6BG sin x3 −BGx2

4 sin x3; and
(c) for FLU21, %1 = x1, %2 = x3, %3 =y11, %4 =y12, �1 = �2 = 0, �3 = �4 = 1=−BG cos x3, �uv = 0 for all (u; v),
�= 0, we have

y11 = −x1 − 4x2;

y12 = 4BGx4 cos x3 + 6BG sin x3 − BGx2
4 sin x3;

y21 = û(x) = u∗(x)

and an implementation of the fuzzy rules is given by

IF x1 is Ai
1 and x2 is Ai

2 THEN Jyi
11 is pi

1%1 + pi
2%2 for FLU11;

IF x3 is Ai
3 and x4 is Ai

4 THEN Jyi
12 is ri for FLU12; and

IF x1 is Ai
1 and x3 is Ai

3 THEN Jyi
21 is pi

3%3 + pi
4%4 for FLU21:
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Fig. 7. Membership functions for r.

The parameters of the fuzzy rules used in the proposed HFS are updated by using the gradient descent
algorithm with momentum, which is derived by minimizing the error criterion

J = 1
2(u

∗ − u)2:

Consequently, each parameter is updated as

h(k + 1) = h(k) − (1
@J
@h

+ (2Rh(k);

Rh(k) = h(k) − h(k − 1);

where (1 and (2 are adaptation gains. The parameters to be updated are the coeIcients of the THEN-parts
of fuzzy rules. Random numbers from −1 to 1 are assigned initially for these parameters and (1 and (2 are
set to 0:005 and 0:0005, respectively.

The ranges of x1; x2; x3, and x4 are set to [−5; 5], [−2; 2], [−*=4; *=4], and [−0:8; 0:8], respectively,
and target samples consist of 300 input–output pairs which are generated from (9) with randomly selected
inputs in the given ranges.

The FLUs used in the simulation are the ones with singleton fuzzi5er, product inference, and center average
defuzzi5er. Input fuzzy set is characterized by the gaussian membership function of the form

fm(x) = e−(x−xm)2=2+2
;

where xm is equally spaced and + is set to the half of the length between adjacent xm’s. Fig. 7 shows an
example when three membership functions are used for r with NE, ZE, and PO representing negative, zero,
and positive, respectively.

After updating the coeIcients of the THEN-parts, we have simulated the developed controller with 100ms
sampling time starting from four diMerent initial conditions. Fig. 8 shows that its performance is comparable
to that of u∗(x) in (9) and the proposed HFS approximates with good accuracy the nonlinear control input
u∗(x) with just 27 fuzzy rules.

Tables 1 and 2 are the resulting fuzzy rules.
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Fig. 8. Learning plot and output r(t) of the closed loop ball and beam system. (a) Learning plot (J = 1
300

√∑300
k=1 (u∗k − ûk)2) (b) r(t)

of the closed loop ball and beam system (solid: results with the input–output linearization algorithm, dotted: results with the proposed
controller).

Table 1
Fuzzy rules at the 1st layer after learning ((x1; x2; x3; x4)T = (r; ṙ; "; "̇)T)

IF THEN IF THEN

x1 x2 p1 p2 x3 x4 r

NE NE −0:932089 −0:656577 NE NE −3:669430
NE ZE −0:427016 −0:330597 NE ZE −2:605983

FLU for NE PO 0.146333 −0:459912 FLU NE PO −0:776843
ZE NE −0:091973 −0:807471 for ZE NE −1:545487

yr (y11) ZE ZE −0:158190 −0:811557 y" ZE ZE −0:005481
ZE PO −0:083643 −0:854756 (y12) ZE PO 1.530980
PO NE −0:089672 −0:620114 PO NE 0.790945
PO ZE −0:293712 −0:649295 PO ZE 2.626142
PO PO −0:553821 −0:578318 PO PO 3.768389
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Table 2
Fuzzy rules at the 2nd layer after learning

IF THEN

x1 x3 p3 p4

NE NE −0:392772 −2:568475
NE ZE −0:260173 −1:558061

FLU for NE PO −0:338405 −2:516689
ZE NE −1:174745 −2:599592

û (y21) ZE ZE −0:721210 −1:474677
ZE PO −1:218626 −2:556902
PO NE −0:607635 −2:626210
PO ZE −0:427968 −1:494636
PO PO −0:598062 −2:559922

5. Conclusion

The conventional HFS does reduce the number of fuzzy rules dramatically, but it is diIcult to design
because intermediate output variables with less or no physical meaning are used as input variables for the
FLUs at the next layer. In contrast, the proposed HFS uses only the original input variables with clear physical
meaning in all of the IF-parts of fuzzy rules, thereby rendering the involved fuzzy rules easy to interpret and
design.

Any real continuous functions on a compact set are proved to be approximated by the proposed HFS to any
degree of accuracy. From the simulation of ball and beam control system, it is demonstrated that the proposed
scheme approximates with good accuracy a nonlinear controller with fewer fuzzy rules than the centralized
fuzzy system and its control performance is comparable to that of a model nonlinear controller.
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