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We report a reliable strategy to perform automated image cytometry of single (non-adherent) stem

cells captured in microfluidic traps. The method rapidly segments images of an entire microfluidic

chip based on the detection of horizontal edges of microfluidic channels, from where the position of

the trapped cells can be derived and the trapped cells identified with very high precision (.97%). We

used this method to successfully quantify the efficiency and spatial distribution of single-cell loading

of a microfluidic chip comprised of 2048 single-cell traps. Furthermore, cytometric analysis of

trapped primary hematopoietic stem cells (HSC) faithfully recapitulated the distribution of cells in the

G1 and S/G2-M phase of the cell cycle that was measured by flow cytometry. This approach should

be applicable to automatically track single live cells in a wealth of microfluidic systems.

Introduction

In population-based in vitro assays, the behaviour of single cells

is masked. This can be a major problem in the study of

heterogeneous populations of mammalian cells such as primary

stem cells or tumor cells, whose proliferative and differentiation

capacity can fluctuate significantly at single cell level.1,2 To

address this problem, single cell analysis platforms have been

developed that rely on the use of micro-scale technologies to

handle single cells in high-throughput3–5 or on the miniaturiza-

tion and parallelization of flow cytometry.6

Cells in such micro-devices are typically imaged using

microscopes or scanners and information on their behavior

requires challenging image analysis. First, these platforms

typically span over more than one single field of view, resulting

in large surfaces to be imaged contiguously and dynamically over

many days. Moreover, equivalent microstructures and cells are

often densely packed and thus appear many times in a single

image.7–9 The resulting large image stacks must be correctly

segmented and annotated. Secondly, the cells have to be reliably

identified in segmented images.8,9 This task is ideally performed

in brightfield and non-fluorescent images, in order to leave

fluorescence channels open for cell analysis. Finally, a fluores-

cence-based approach can be biased because brighter cells are

preferentially detected or their size is over-estimated.10

To cope with these issues, researchers have developed

algorithms to semi-automatically derive the position of the

microstructures and to identify cells on the chip. These

algorithms are either based on a manual alignment of

segmentation masks followed by an automated analysis,8,11,12

or on computationally intensive image de-convolution.9

Alternatively, fluorescently-labelled cells are first detected and,

based on the position of cells, the structure of the microfluidic

chip is inferred.13,14 However, with few exceptions,8,9 a rigorous

assessment of the performance of segmentation methods has not

been performed.

Here we report a detailed description and validation of an

automated image cytometry approach applied to a microfluidic

device consisting of 2048 arrayed single-cell traps. We developed

image-processing algorithms to segment images of the entire

microfluidic chip into cropped regions containing only the area

of the single-cell trap, and thus efficiently identified trapped cells.

This approach allowed quantifying the spatial distribution of

single-cell trapping on the microfluidic chip, automatic tracking

of dividing hematopoietic stem cells (HSC) at single cell level and

over several hours, as well as the high-throughput detection of

cell cycle phases in individual HSCs.

Materials and methods

Fabrication and operation of the microfluidic chip

Microfluidic chips were fabricated by multi-layered soft-litho-

graphy in poly(dimethylsiloxane) (PDMS).7,15,16 They consisted

of single-cell traps17 that were grouped serially in units of eight

traps, which were arranged in a parallel manner, forming an

array of 2048 single-cell traps distributed over eight columns

(Fig. 1). Cells were loaded at a flow rate of 50–100 nL min21
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onto the microfluidic chip using syringe pumps and maintained

in the trap by a constant perfusion of 10 nL min21. Experiments

were performed under a humidified atmosphere and 5% CO2.

The microfluidic chip was imaged using an automated

microscope (Zeiss Observer Z1, Zeiss, Germany) with an

integrated incubator at 106 magnification using a CoolSnap

ES2 CCD camera (Photometrics, USA). The microscope was

controlled by MetaMorph (Visitron, Germany), a multifunc-

tional imaging software that allows the generation of stitched

images using a built-in scan slide option. To this end, the chip

was first aligned to the microscope such that the columns of

traps were in line with the long side of the camera of the

microscope. The microscope was then programmed to scan the

eight areas where the single cell traps were located, to focus using

the built-in auto-focus algorithm and to produce assembled

images of these areas that were overlapping by approximately

10%. The images were then stitched by using the ‘‘stitch grid of

image’’ option of Fiji,18 a distribution of the image processing

software ImageJ that was optimized for biological images

analyses (http://fiji.sc/wiki/index.php/Fiji). The stitching was

performed without computationally optimizing the overlap,

because this option performed a cross-correlation of the images

and sometimes skipped or repeated single traps in the stitched

images.

Image segmentation to detect single-cell traps

The algorithm to segment the microfluidic single-cell traps

(‘‘m-TrapFinder’’) was written in MatlabTM (Version 7, release

14, MathWorks) and is summarized as pseudo-code in Fig. S1,

ESI{. Briefly, the images were first rotated to align the chip

along the horizontal axis. In order to detect horizontal edges that

are characteristic for the position of the single-cell trap, the

images were filtered using a Sobel filter (Fig. S2{). The filtered

images were then thresholded and the identified objects were

sorted by their x-position. Dust particles were excluded from the

analysis-based morphological criteria. In addition, non-detected

lines were identified and completed by interpolation from the

position of the neighboring traps (Fig. S3{). To threshold the

images, we applied an ‘‘Otsu’’ threshold.19

Next, the position of the trap was calculated relative to the

center of the identified lines and locally refined by aligning

the segmentation mask to neighboring vertical lines. Finally, the

image of the microfluidic chip was segmented and the resulting

images saved as TIFF stacks in which each slice contained the

Fig. 1 Image-based cytometry on a microfluidic chip. (A) The microfluidic chip consists of eight rows of microfluidic single-cell traps that are

scanned, yielding stitched images of 21 positions. Each row of the chip comprises 32 experimental units with eight microfluidic single-cell traps that

hydrodynamically capture single cells in small cavities.17 The entire chip consists of 2048 single-cell traps. Full or empty traps are labelled with a black

or white arrowhead, respectively. (B) To detect single-cell traps, the chip is Sobel-filtered, revealing the edges of horizontal channels. Since some of these

edges are denotative for the position of the single-cell traps, the identified edges are filtered according to their length, thickness and position and non-

detected elements are completed. The length of the detected lines allows a distinction between the first trap and the subsequent ones in an experimental

unit. After refining the lateral position of the mask based on local minima of a line scan, the stitched image is segmented and the cropped images are

exported. (C) The detection of short and long segments is very reliable. (D) Measurements of the relative position of the single-cell traps in the cropped

images reveals a high spatial precision of the image cropping. The local refinement step described in (B) can further improve the precision. All data are

from 3 different chips and more than 6000 single-cell traps.
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eight traps of an experimental unit. All steps were performed

automatically and required no fine-tuning, except for entering

the geometrical properties of the chip. The process can also be

batched very easily.

Measurement of image segmentation precision

To assess the spatial precision by which the microfluidic chip was

segmented, the centers of the microfluidic single-cell trap were

estimated in the stacks with the segmented images of the empty

chips. To this end, we measured the intensity profile along

horizontal and vertical lines through the trap in Fiji. The minima

of these profiles or geometric center of the two minima,

respectively, were used as the x- and y-position of the trap.

Isolation of primary HSCs

HSCs were isolated from the bone marrow of 8–12-week-old

C57BL/6 mice, stained and purified as previously described.20,21

In brief, after flushing out the bone marrows cells, red blood cells

were lysed (RBC lysis buffer, eBioScience, Switzerland) and

differentiated cells were magnetically labeled using a lineage

depletion kit (BD Bioscience) and removed from the sample

using a MidiMACS magnetic column (Miltenyi Biotech,

Germany). Cells were then stained with anti-c-Kit-PE/Cy7 and

anti-Sca1-PE (eBioScience, Switzerland) and separated by FACS

on a BD Aria instrument (BD Bioscience, USA) at the EPFL

FACS core facility. Single viable (propidium iodide negative)

Lin2ckit+ Sca1+ CD150+ cells were double-sorted. All animal

experiments were conducted in compliance with the law and the

internal guidelines of EPFL.

Transfection of HSCs with FUCCI reporters

After isolation and purification, HSCs were transferred into

StemLine II (Sigma) medium supplemented with 100 ng ml21

SCF and 2 ng ml21 Flt-3 ligand, and incubated with the

two vectors for the ‘‘Fluorescence Ubiquitination Cell Cycle

Indicator’’ (FUCCI) system at a multiplicity of infection (MOI)

of 250. After over-night incubation, the cells were washed twice

and cultured for additional four days to allow the signal of the

FUCCI reporters to come up before loading them on-chip.

Automated single cell detection and analysis

To detect trapped single cells, we tested defocusing, various

pixel statistics (Fig. S4{) and the thresholding algorithms that

are provided by Fiji. These algorithms can automatically

threshold images based on their intensity histograms (see

http://www.fiji.sc/ for more details). In brief, the cropped

images of the single-cell traps that had been acquired at

different focus positions were processed individually as 8-bit

images, optionally treated with a Mexican hat filter (also known

as Laplacian of Gaussian, LoG),22 and then thresholded using

the different algorithms provided by Fiji. The resulting binary

images were eroded to avoid the detection of microstructures

and the microstructures masked in the thresholded image

(Fig. 2A). The cells were detected using a 4-connected particle

detector for ImageJ (http://www.dentistry.bham.ac.uk/landinig/

software/software.html). Images of traps that were off-focus or

contained dust particles or cell debris were excluded from the

analysis.

To analyze cells on the microfluidic chip, de-focused images

(+8 mm) and a ‘‘Triangle’’ thresholding algorithm were used.

This algorithm is part of the Fiji distribution and is a geometric

method that automatically thresholds images based on their

intensity histogram. The algorithm recovers the maximum

distance between the histogram and the segment joining the

peak and maximum intensity of the histogram. The intersection

of this maximum with the histogram (plus an offset of 20% of the

maximum intensity) defined the threshold.23 The mask that was

obtained with the ‘‘Triangle’’ thresholding algorithm was used to

measure their fluorescence signal. These masks were also used to

determine the surface of the detected cells.

Statistical analysis

To assess the performance of our algorithms, the computed

results were compared to manually counted data. Statistical

analyses were performed using the R package (http://www.

r-project.org/). All experiments were performed in triplicate and,

unless noted otherwise, results were represented as means with

the standard deviation.

Fig. 2 Automated detection of single cells in microfluidic chips. (A) In

order to detect cells in traps, images were acquired at different focal

planes and then thresholded. In the binary images, non-cellular structures

were removed with a mask (in light gray) and the cells identified (green).

(B) Using this approach, cells are efficiently identified in the single-cell

traps (sum from three chips). However, cells are detected less efficiently

when there is exceptionally more than one cell per trap (insert).

This journal is � The Royal Society of Chemistry 2012 Lab Chip, 2012, 12, 2843–2849 | 2845
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Results

Operation and imaging of the microfluidic chip

The design of the microfluidic chip is based on our previously

published microfluidic single-cell trap system (Fig. 1).17 A trap

consists of a long looped main channel, a cavity for a single cell

and a three mm-high gap that connects the cavity to the exit of

the main channel (Fig. 1A). Media flow drags cells into the trap

and stably maintains it there. In accordance with our previous

data, loaded HSCs were efficiently trapped and more than 90%

of single-cell traps could be filled.

To facilitate imaging, the chip was spatially aligned to the

microscope such that 21 positions were sufficient to cover a row

of microfluidic cell traps, resulting in approximately 13 traps per

image. Since each column was imaged using a scanning option,

these 21 images were acquired relative to the eight starting

positions (i.e. the first trap of a row). Of note, although manually

defined, these starting positions and all subsequent images could

be defined with a high spatial resolution. As a consequence, this

semi-automated approach led to homogeneous scans where the

positions of the microfluidic channels varied usually less than

200 mm between different images.

Detection and cropping of individual single-cell traps

In these standardized image sets (Fig. 1A), the micro-structured

single-cell traps were detected. An image was first aligned

automatically to the horizontal and then filtered to detect

horizontal edges (Fig. 1B). The horizontal elements were

denotative for the position of the single-cell traps: long lines

with a length of 105 pixels indicated the presence of a first trap in

an experimental unit and 65 pixel-long lines for the subsequent

traps (Fig. 1B and Fig. S2{). Dust particles and off-focus

information could be reliably excluded from the analysis by

their length (with tolerance for the short or long segments

of ¡10 pixels and ¡20 pixels, respectively), their height (less

than 20 pixels) or the y-position. Together, these criteria were

sufficient to identify more than 98% (¡1%, n = 3) of the long

segments and 99.2% (¡0.6%) of the short segments (Fig. 1C).

The identified segments gave a framework to calculate the

position of the few non-detected segments (Fig. S3{). Due to the

known geometry of the chip, we reliably calculated the position

of all 2048 single cell traps, and after an additional sorting and

annotation step, we also correctly assembled all the experimental

units (Fig. 1C). The number of incorrectly detected units was less

than 0.5% per chip (n= 3).

Next, we determined the spatial precision of the image segmenta-

tion and whether this precision could be improved by refining the

position of the crop mask based on local features of the microfluidic

chip (Fig. 1B). We therefore assessed the relative position of the main

channels and the trap cavity in the cropped images and found that

the images were segmented precisely. The position of the trap in

cropped images varied only by 2.4 pixel in x and 0.74 pixel in y

(determined as the standard deviation of the relative position of the

trap in the cropped images, n = 3). Furthermore, the segmentation

accuracy along the x-axis could be further improved to approxi-

mately 0.6 pixels with a local refinement step (Fig. 1D).

Of note, the detection of the microfluidic structures and the

subsequent cropping is very fast. On a normal 64 bit work

station equipped with a Pentium i7 processor (3.5 GHz, 32 GB

RAM), one scan with 21 images can be processed within

30 seconds, of which only about 10 seconds are required to detect

the traps. The remaining time is due to file handling and image

rotation at the beginning of the analysis. Accordingly, an entire

chip can be processed in less than 4 minutes.

Automated segmentation of trapped cells

After obtaining cropped images of the single-cell traps, we

sought to exploit statistical analyses of the trap region to detect

occupied or empty traps (Fig. 2A and Fig. S4{). Indeed, simple

pixel statistics, such as the maximum, mean and the standard

deviation of the pixel intensities in the trap area were sufficient to

discriminate between empty and filled traps (Fig. S4{). In

particular, when the images were acquired with a strong de-

focus,10 the cells were detected with a sensitivity of up to 95%

and a specificity of up to 99% (Fig. S4{). Interestingly, while the

standard deviation and maximum intensities were most pre-

dictive for larger measurement areas, the mean of the pixel

intensities was most precise when only a few pixels were

considered in the analysis (Fig. S4{).

In order to measure other properties of trapped cells, such as

their size or a fluorescent signal, we systematically tested

different thresholding algorithms provided by Fiji at different

focus positions and we also applied a LoG filter to enhance

bright spots.22 When compared with manually counted data,

many of the tested combinations were very sensitive (.90%) and

specific (97%, Fig. S5{). Thus we were able to correctly measure

the number of cells per trap (Fig. 2B). However, in rare cases

where traps were filled with more than one cell, we also

compared whether the thresholding algorithms detected the

correct number of cells (Fig. 2B, insert). These experiments

showed that in more than 65% of events multiple cells were

correctly detected, while 30% could not detect the second cell.

Assessing single-cell dynamics on microfluidic chips

As a first application of the method, we assessed the distribution

of HSCs in the experimental units upon loading of the

microfluidic chip. When the chip was loaded only with 1000 cells,

the trap occupancy decreased nearly linearly through the

experimental units. The first traps in the experimental units were

preferentially loaded with cells, while the last traps were mostly

empty (Fig. 3A). In contrast, when the chip was loaded with about

2000 cells, almost all the traps in the experimental units were

occupied (Fig. 3A). The size of the trapped cells was 42.6 (¡0.3)

mm2 (n = 3) (Fig. S6{).

In contrast to the analysis of single cells by flow cytometry,

microfluidic chips offer the advantage of tracking single cells over

multiple time points.11,14,17 We demonstrate this capability by

loading only a few cells onto our microfluidic chip and then

repeatedly imaging them (see supplementary movie 1{). Our

algorithm can correctly detect single HSCs in these time-lapse

movies, even after HSC divisions as shown in an example of Fig. 3B.

Cytometric analysis to detect cell cycle phases in single HSCs

One of the major applications of cytometry is the measurement

of fluorescent signals from single cells, for example to probe

2846 | Lab Chip, 2012, 12, 2843–2849 This journal is � The Royal Society of Chemistry 2012
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viability or to detect the expression of a particular reporter gene.

Here we focused on determining cell cycle phases of individual

HSCs, since this parameter is an important indicator of the stem

cell state. That is to say, in vivo most long-term repopulating

HSCs are quiescent, i.e. in the G0 phase of the cell cycle.24 We

employed the FUCCI system which reports the cell cycle phase

in single cells by red (G1 or G0) and green (S/G2-M) fluorescent

reporters that are fused to the cell cycle regulators Cdt1 and

geminin, respectively.25

The two FUCCI reporters can be well detected on our chip

and we obtained ca. 12.8 (¡2.3)% of HSCs in S/G2-M and 10.5

(¡3.0)% in G1 (Fig. 4). A small fraction of cells (0.93 ¡ 0.6%)

were positive for both markers, indicating that they were in the

transition from G1 to S. The majority of HSCs were neither

green nor red, because the transduction efficiency was low.

Compared to flow cytometry, our image cytometry approach

correctly estimated the number of cells in G1 (red) and the

transition from G1 to S (double-positive), but somewhat

underestimated the number of cells in S/G2-M (green) (p , 0.05).

Discussion

Although there are versatile platforms to detect alignment marks

on microfluidic chips (e.g. IMAQ from National Instruments26)

or image analysis programs to segment single cells (e.g.

ImageJ27,28 or Cell Profiler29), none of these systems is yet able

to automatically distinguish and annotate both single cells and

microstructures in microfluidic chips. Since most microfluidic

chips are fabricated from elastic and rather soft PDMS, their

microstructures often contain local distortions. These deviations

from the ideal geometry impede the use of a few global alignment

markers,26 as are often used in the semi-conductor fabrication30

or sometimes in microarray analysis.8,11,12 For this reason, a chip

must contain regularly spaced markers26 or microstructures of a

micro-device can directly serve as fiducials that can be discovered

by template matching.9 We tested this method by using various

deconvolution masks (data not shown) but found that it was not

possible to distinguish the single-cell trap from the other micro-

channels. We therefore adapted automated edge detection,

normally used for the detection of global alignment marks,30

to detect local characteristic structures on our chip. While global

alignment marks are isolated from other structures, our fiducials

were surrounded by many other elements of the densely packed

chip. In order to reliably distinguish the fiducials from other

microstructures, we employed a directional Sobel filter, simple

morphological criteria and the known geometry of the chip. In a

second step, the exact positions of the single-cell traps were

deduced from these characteristic segments. This approach was

fast and resulted in perfectly segmented and annotated chips

(Fig. 1C). In addition, the spatial precision was very high, albeit

slightly reduced in x (Fig. 1D). To compensate for this reduced

precision, we integrated a local refinement step, such that more

than 95% of traps were segmented with a precision of less than

Fig. 3 Assessing single-cell dynamics on microfluidic chips. (A) Cell distribution in the experimental units of a partially loaded (approximately

1000 cells loaded in 2048 traps) and fully loaded microfluidic chip. The occupancy of single-cell traps declines with the distance from the first trap in a

half loaded chip. (B) Example of automated tracking of a dividing HSC. Since the microfluidic chip is perfused, the daughter cells are physically

separated by the perfusion after division.17 Our algorithm is able to correctly track this event.

Fig. 4 Cytometric analysis of FUCCI-HSCs. (A) Micrographs of

trapped HSCs that were transfected with fluorescent reporters to mark

S/G2-M (green) and G1 (red) and that were detected by the presented

algorithm (white masks). (B) Example of plot showing the populations of

green and red HSCs on the microfluidic chip. (C) Comparison of image

and flow cytometry for the analysis of the cell cycle phases.

This journal is � The Royal Society of Chemistry 2012 Lab Chip, 2012, 12, 2843–2849 | 2847
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1 pixel (trap diameter ca. 15 pixels). The refinement step also

helped to correct local distortions of the chip that may occur due

to manual fabrication. This would not be possible by aligning a

global crop mask.26

Our image segmentation was based on standardized, stitched

images of the microfluidic chip. Although such coherent images

are not a prerequisite for successful image segmentation, we

found that stitched images facilitated the identification of

outliers and non-detected microstructures. For example, when

only a few traps were detected, the chip was still correctly

annotated based on information from neighbouring images. It

should also be noted that our approach requires straight lines to

detect micro-features and will probably not work on round

shapes such as microwell arrays. However, since most micro-

fluidic chips contain straight features11,14 or can be equipped

with regularly shaped position markers,12,31 we are confident

that the algorithm can be adapted to detect microstructures on

most microfluidic devices.

Due to the very good accuracy in determine the position of

trapped cells on the microfluidic chip, it was relatively

straightforward to identify trapped single stem cells. For

example, a statistical description of the pixel intensities in the

trap area was sufficient to identify single cells very precisely (Fig.

S4{). However, since this approach would only indicate whether

a cell is present or not, but not allow any additional analyses (e.g.

on cell size, fluorescence, etc.), we did not pursue this strategy

further. Instead, we used an automated and user-unbiased

thresholding algorithm to detect cells in the microfluidic traps.

Our systematic tests demonstrated that automated thresholding

can be similarly sensitive and specific as the statistical analysis

described above (Fig. S5{), and it can assess the number of cells

per single-cell trap (Fig. 2B). Interestingly, some of the tested

thresholding algorithms were less efficient in detecting cells when

used on below-focus (28 mm, 24 mm) and in-focus images (Fig.

S5A{), likely because cells tend to appear brighter when imaged

above-focus. As a consequence, cells were more easily detected.10

These findings can also partially explain why the detection of

multiple cells posed a hurdle to some thresholding algorithms.

Either the cells were not segmented properly or, when they were

segmented, the second cell was not detected because the

geometry of the microfluidic trap immobilized the cells at the

bottom of the microfluidic chip.17 Additional cells in the trap

were mostly in the centre of the channel (Fig. 2A). This

difference in focal position most probably explains why the

two cells in the microfluidic chip were detected with different

efficiencies (Fig. 2D).

Notwithstanding these open issues, our algorithm performed

generally better compared to most other methods8,9 and we were

able to precisely quantify the efficiency and spatial distribution

of single-cell loading of a microfluidic chip (Fig. 3A) or to track

single cell divisions in microfluidic chips (Fig. 3B).

As a proof-of-concept application, we loaded FUCCI-HSCs onto

the chip and analyzed their cell cycle phases (Fig. 4). Compared to

flow cytometry, the difference between stem cells in G1 (red cells)

and the transition from G1 to S (orange cells) was correctly

measured, but the fraction of cells in S/G2-M (green) somewhat

underestimated. This error might be due to the smaller linear

dynamic range of microscopes compared to flow cytometers, a

problem that could be overcome with a higher numerical aperture.

Conclusion

Micro-devices are becoming more and more widely used for the

analysis of single cells. This also increases the need for reliable

methods to detect single cells. Here we report a quantitative

description of such an image analysis approach and demonstrate

that images of microfluidic single-cell traps can be segmented

with sub-pixel accuracy and without cropping important cellular

information. The method can be easily adapted to other

microfluidic chips. To prove the potential of combining image

cytometry and microfluidic single-cell trapping, we automatically

assessed the efficiency of cell handling, tracked single cell

divisions on-chip and successfully detected fluorescence signals

from single cells. This approach should afford on-chip cytometry

of diverse single-cell behaviors in long-term microfluidic

cultures.
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