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PREFACE 
 
 
This volume contains contributions presented at the 1st International Symposium 
on Systems Biology, called “From genomes to In silico and back” that took place 
at Murcia (Spain) during the first two days of June, 2006. 
 
The major objective of this Symposium was to point out the importance of 
Systems Biology in describing a biological system. Biological systems consist of 
a large number of heterogeneous components interacting selectively with other 
components in the system. These components must be connected in a proper 
way, so that an entire system can be functional. Precise molecular models are 
required to represent and understand biological systems, opening a broad field of 
applications. Thus, the exchange of information and experience in research and 
close communication between international participants will help identify future 
needs and new aspects in the use of this new scientific field. An intense feedback 
between fundamentals and applications of bioprocess and biomedicine research 
was stimulated. 
 
Topics 
i Fundamentals and tools of Systems Biology. 
i Systems Biology applications in bioprocesses. 
i Systems Biology applications in biomedicine 
 
Special acknowledge is to be paid to Fundación CajaMurcia, for their logistic and 
economic support, both to the Symposium and to the edition of this volume. 
Additional acknowledgements are given to the Spanish Ministry of Science and 
Education, to the Fundación Genoma España and to the Fundación Séneca for 
their economic support to the Symposium, as well as to the European Federation 
of Biotechnology and the Spanish Society of Biotechnology (SEBIOT) for their 
scientific support. 
 
Finally, we would like to thank the authors for their cooperation in the prompt 
and carefull preparations of their manuscripts. 
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A Curated Database for Reaction Kinetics 
 
Renate Kania, Ulrike Wittig, Martin Golebiewski, Olga 
Krebs, Andreas Weidemann, Saqib Mir and Isabel Rojas 
 
Scientific Databases and Visualization Group, EML Research gGmbH, 
Heidelberg, Germany. e-mail: Renate.Kania@eml-r.villa-bosch.de 
 
Keywords: Reaction kinetics, Database, Systems Biology, Enzyme kinetics. 
 
 
1. Abstract 
 
Simulations of complex biochemical reaction networks require reliable kinetic 
data. In order to facilitate the search and retrieval of kinetic data we have 
developed SABIO-RK (System for the Analysis of Biochemical Pathways - 
Reaction Kinetics), a database with information about biochemical reactions and 
their kinetics. The data is manually extracted from literature and verified by 
curators concerning standards, formats and controlled vocabularies. 
SABIO-RK does not only contain and merge information about reactions such as 
reactants and effectors (activators or inhibitors), details about the catalyzing 
enzyme, organism, tissue and cellular location, but also the reaction kinetics are 
included. The type of the kinetics, modes of inhibition or activation and 
corresponding equations are shown with their parameters, measured values and 
experimental conditions. Links to other databases like Swiss-Prot and PubMed 
enable the user to gather further information about proteins corresponding to the 
enzymes, and to refer to the original publication, respectively. 
Users can query the database by specifying reactions, enzymes, organisms, 
locations and experimental conditions. Kinetic data of the selected reactions can 
be exported in SBML (Systems Biology Mark-up Language) format, allowing 
the use of the data as the basis for the definition of biochemical network models. 
Availability: http://sabio.villa-bosch.de/SABIORK/
 
 
2. Introduction 
 
In order to understand the networks of biochemical reactions in a living cell, 
scientists are trying to combine experimental data with theoretical methods. 
Mathematical models for the simulation of biochemical networks are being 
developed. These models require information about the kinetics of each of the 
reactions participating in the network, such as the kinetic laws describing the 
dynamics of the reactions with their respective parameters determined under 
certain experimental conditions. 
Access to reliable data about reaction kinetics is thus crucial for the development 
of computer-based models of biochemical pathways. There are a couple of 

Understanding and Exploiting Systems Biology 
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databases containing relevant information as summarized in the following. 
BRENDA (Schomburg et al, 2004) is a comprehensive database on information 
about enzymes extracted from literature. The enzyme entries also contain 
information about the reactions catalysed by the enzyme and in some cases 
information about the mechanism associated with the reaction’s kinetics. In most 
cases the parameters associated to the combination enzyme-reaction kinetics are 
also given. Swiss-Prot (Boeckmann et al, 2003) started to include experimental 
data like pH- and temperature dependence and kinetic parameters as comments 
related to biophysicochemical properties. The BioModels database (Le Novere et 
al, 2006) stores published mathematical models of biological interest that are 
annotated and linked to relevant data resources (e.g. publications or databases). 
The models include kinetic law equations and their parameters represented in 
SBML (Systems Biology Mark-up Language) format (Hucka et al. 2003) and can 
be used for simulations of biochemical reactions or networks. However, none of 
these databases links experimental kinetic parameter data for single reactions to 
complete sets of information comprising the corresponding rate equations, 
environmental conditions and concentrations of reactants and modifiers used for 
the determination, independent of a simulation model. 
In order to assure the comparability, kinetic parameters need to be standardised 
and related to kinetic mechanisms, rate equations and environmental conditions. 
As kinetic constants highly depend on environmental conditions, they only can 
be specified completely by describing these conditions used for determination. 
Data sets based on experiments that are assayed under similar experimental 
conditions should be associated to each other to facilitate the comparison. 
SABIO-RK (System for the Analysis of Biochemical Pathways - Reaction 
Kinetics) is designed to merge and structure all these data to support researchers 
interested in information about biochemical reactions and their kinetics. The 
system allows the creation of complex queries for reactions, kinetic laws or 
kinetic parameters, based on their characteristics, e.g.: reaction participants 
(substrate, product, enzyme), environmental conditions (pH, temperature), 
locations, biological sources (cell type, tissue, organism) or pathways to which 
the reaction can be related to. Beside the search facilities, SABIO-RK enables the 
user to export the chosen kinetic data in a standard format such as SBML (Hucka 
et al, 2003). 
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Figure 1. Population, content and schematic relation of SABIO and SABIO-RK. 
SABIO contains general information about biochemical pathways and reactions 
in different organisms, including details about corresponding enzymes and 
reactants. Most of these data are collected from other databases like KEGG or 
Swiss-Prot. SABIO-RK extends SABIO by storing information about the 
reaction’s kinetic properties, such as the kinetic laws with their corresponding 
parameters and environmental conditions under which they were determined. 
 
 
3. The Database 
 
SABIO-RK represents an extension of the SABIO (System for the Analysis of 
Biochemical Pathways) biochemical pathway database, also developed at EML 
Research (Rojas et al, 2002). SABIO stores all fundamental information about 
biochemical pathways, like reactions and their participants (enzymes, 
compounds, etc.). SABIO-RK combines the general data about biochemical 
reactions stored in SABIO with information about their kinetic properties (Fig.1). 
A kinetic law is associated with a relation between a biochemical reaction 
(defined by its substrates, products and effectors) and a catalysing enzyme 
(typically defined by an Enzyme Classification number and a description of the 
enzyme variant, e.g. isoenzyme or mutant). This relation is originally defined 
within a publication based on experimental conditions under which the reaction 
kinetics where determined (e.g. pH, organism, temperature, etc.). Thus, a 
reaction can have multiple kinetic laws in the database, dependent on the 
environmental and experimental conditions, enzyme variants, and the absence or 
presence of effectors. The highly structured and strongly linked nature of the data 
stored in the database, facilitates the definition of complex queries, consisting of 
different search criteria. 
 
 



 6 

3.1. Database population 
For the population of SABIO-RK, we combine information about biochemical 
reactions automatically collected from other database resources with manually 
entered and curated data. In order to establish a broad information basis for the 
database, compounds, reactions, their associations with biochemical pathways 
and their enzymatic classifications are regularly downloaded from the KEGG 
(Kyoto Encyclopedia of Genes and Genomes) database (Kanehisa et al, 2006). 
Also extracted from KEGG is the information on which reactions occur in which 
organisms, based on the annotation of the enzyme proteins. This is being done in 
a progressive manner, determined by the organisms for which we have kinetic 
data. 
The information about the kinetics of the biochemical reactions is extracted 
manually from literature. It is often the case that a reaction, reported in a paper 
revised, is not part of KEGG, or sometimes not even the participating compounds 
are present. This in turn requires the definition of new compounds and reactions 
within the SABIO database. Determining whether a reaction or a compound is 
already included in SABIO, is not a trivial issue, given that the search by name 
may not suffice to determine synonymic expressions. To support the curators, 
linguistic methods are developed to obtain compound structures from names and 
compare compounds at the level of their chemical structure (see chapter 3.2). 
Students with biochemical background carry out the extraction of the information 
from text. We developed a web-based input interface to support them in entering 
the data in a consistently organized structure. The interface is also used by the 
curators to check, supplement and revise the entries and supports them in the 
administrational work (assignment of papers etc.). The publications to be revised 
have been obtained from PubMed (PubMed), by using several queries leading to 
papers, which very likely will contain information about biochemical reaction 
kinetics. Ideally students extract the following information for each reaction 
reported within a publication: 
 
• Reaction defined by substrates and products  
• Modifiers of the reaction (activators, inhibitors, catalysts, cofactors) 
• Cellular location of compounds 
• Enzyme classification number 
• SwissProt accession number (of the enzyme) 
• Variant of the enzyme (wild type or a certain isoenzyme or mutant) 
• Kinetic law type (e.g. Michaelis-Menten, Ping Pong Bi Bi)  
• Kinetic law formula 
• Kinetic parameters (e.g. Km, kcat, Vmax) 
• Concentrations used for reactants, enzymes and modifiers 
• Experimental conditions (e.g. temperature, pH, buffer composition) 
• Biological source (e.g. cell type, tissue, organism, strain) 
• Information source (reference) 
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For most of this information, comment lines are available to add information, for 
example about synthetic or labelled derivatives of physiological compounds. The 
described parameter values are entered with their standard deviations. 
The students’ work is supported by offering search facilities to look for reactions 
and lists for compound names, locations, organisms, tissues/cell types, kinetic 
law types and parameter units already existing in the SABIO or SABIO-RK 
database. This helps to avoid redundancies just because of aberrant notations or 
typing errors. Beside that, it is possible to include new entries, if the reported 
data, for example, reaction or organism is not yet in the database. All entries 
completed by the students undergo a curation process before they are loaded into 
the final database SABIO-RK. The entries are checked, complemented and 
verified by a team of biological experts to eliminate possible errors and 
inconsistencies. 
 
3.2. Curation 
As standards for publishing data of biochemical reactions and reaction kinetics 
are still missing, the curators are faced with problems like synonymic or aberrant 
notations of compounds and enzymes, multiplicity of parameter units and 
missing information about assay procedures and experimental conditions. 
Missing information about the organism or experimental conditions sometimes 
can be found by reference searches on a limited scale. Very often alternative 
substrates are tested in the experiments, but the products or the stoichiometry is 
not given in the paper. In such cases the expert knowledge is needed. 
The curation process includes the unification and standardisation of the data. 
Already existing standards for data formats are applied as well as new standards 
are defined if necessary. For example, the unification of parameter units or 
chemical compound names involves existing standards as the International 
System of Units (SI) for unit notation or the nomenclature recommendations for 
chemical compounds of the International Union of Pure and Applied Chemistry 
(IUPAC). In contrast to, for enzyme specifications (mutants, isoforms, etc.) 
database-internal norms are assigned additionally to the enzyme classification 
system of the International Union of Biochemistry and Molecular Biology 
(IUBMB). Already existing controlled vocabularies are used for the 
representation of organisms, tissues, cellular locations etc. There are cases were 
information is still stored as free text. For example a buffer description can be 
very complex containing information about coupled enzyme assays. Therefore, 
information about the buffer composition currently is stored as a free text. A 
comment line belonging to the entire data set, contain information about host 
organisms in which proteins are expressed (e.g. recombinant enzymes expressed 
in Escherichia coli) and additional information about proteins e.g. their 
composition of subunits. 
As mentioned above, many compounds are known by a variety of names and 
scientists very often use trivial names instead of the IUPAC nomenclature, 
which’s make the curators work cumbersome. If a compound name written in the 
paper can not be found in the provided compound list, the curators have to check, 
if the “new” compound is already stored in the database with another name, or if 
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it is necessary to insert a new compound into the database. The following 
workflow includes exhaustive searches in other databases storing information 
about chemical compounds like ChEBI (Chemical Entities of Biological 
Interest) (ChEBI) or PubChem (PubChem). A new compound is included in the 
database by using the names and characteristics according to the paper and 
supplemented by information from these databases. A tool for the linguistic 
analysis of the names of organic compounds has been developed, named 
CHEMorph (Anstein et al, to appear). CHEMorph analyses systematic and semi-
systematic names, class terms, and also otherwise underspecified names, by 
using a morpho-syntactic grammar developed in accordance with IUPAC 
nomenclature. It yields an intermediate semantic representation of a compound, 
which describes the information encoded in a name. The tool provides SMILES 
strings (Weininger, 1988) for the mapping of names to their molecular structure 
and also classifies the terms analysed. 
The curators’ work is also supported by some automatic routines to check the 
consistency of the entered data. For example, when a kinetic law formula is 
entered, it is verified for the correct mathematical format. Moreover, the list of 
parameters is checked, if each of the parameters contained in the kinetic law 
formula is defined. The parameters are assigned to a parameter type (e.g. Km, 
kcat, concentration), which allows an extension of database searches on 
parameter types. All parameter values are specified as scalable SI units 
compatible with the unit requirements of the SBML specification and making the 
data comparable. This procedure includes the standardisation of different 
notations for one and the same unit, as mM and mmol/l, as well as the conversion 
of comparable units, like µmol/min (International Standard Unit) and katal 
(mol/s) for enzymatic activities. 
 
 
4. Current Search Facilities 
 
The current version of the SABIO-RK web interface allows users to perform 
searches for reactions by specifying characteristics (one or many) of the reactions 
of interest (Fig2). For example the user can specify the pathway to which the 
reactions searched should belong to, e.g. Glycolysis; or can specify more 
characteristics to obtain, for example: 
 
- all reactions of the Glycolysis pathway in Yeast. 
- all reactions in human liver which use D-Glucose as substrate at pH >7.0 
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Figure 2. SABIO-RK web interface to specify search criteria. Searches for 
reactions can be defined by specifying one or more reaction participants 
(reactants or enzymes), pathways, biological sources (organisms, tissues, cell 
types), cellular locations, environmental conditions, or publications. 
 
 
The system will return all reactions and related enzymes satisfying the given 
search criteria (Fig3). The user can specify whether all reactions should be shown 
or only those for which kinetic data are available. By clicking on a reaction more 
information about it will be shown. For each reaction the result screen gives 
information whether or not there is kinetic data available in the database, using a 
three color-code to indicate this. Green means that for the associated reaction 
there are kinetic data available matching all search criteria, in the second 
example above this would mean that there is kinetic data reported on the 
respective reaction in human liver and measured at pH>7.0. Yellow means there 
are kinetic data available, but not matching all search criteria, for the same 
example this would mean that there is kinetics data available but for example not 
in liver but in heart, or not in human but in mouse. Red indicates that there are no 
kinetic data available for the reaction reported. Considering the cases where there 
are no kinetic data, or at least no kinetic data for the exact matches (no green 
entries for a given reaction) we found important to offer information about the 
availability of kinetic data for other reactions catalyzed by the same enzyme. The 
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availability of kinetic data for the enzyme is reported by another clickable box 
(using the same three color-code) beside the enzyme's classification number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
Figure 3. SABIO-RK query result page. The query result is represented as a list 
of reactions and related enzymes satisfying the search criteria. Information about 
the availability of kinetic data is shown using a three color code. 
 
 
The user can then either view the kinetic data belonging to the specified reaction, 
or all kinetic data available for the enzymes catalyzing this reaction. In a new 
window the entries containing kinetic data are listed according to the selection 
done. To get a general idea, in the overview only organism, tissue, enzyme 
classification and the variant of the enzyme are shown. The expanded version 
then shows all the kinetic data and additional information extracted from a 
publication. Also the information source of each database entry is clearly shown 
and linked to the PubMed database in order to allow the user to refer to the 
original paper to obtain additional information about the experiment described 
(Fig 4). 
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Figure 4. SABIO-RK database entry. An example data set represents a specified 
reaction including kinetic data, experimental conditions and additional 
information extracted from a publication. 
 
 
The user can create a SBML file using the selected data. A reaction can be 
included into the SBML file without any kinetic data, i.e. only its stoichiometry 
or the user can select data from an entry (displaying kinetic data) for its inclusion 
into the SBML file. Due to the limitations of the SBML file format, the data 
exported is limited and in some cases simplifications are needed. For example no 
information about the experimental conditions, under which the parameters were 
determined, can be exported, although we plan to incorporate this information as 
annotations. Because parameter values can only be single values, no ranges, we 
include as parameter value the mean of the parameter range (if given). The 
SBML file lists all the compounds (in SBML named species) belonging to the 
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reactions. If a compound is present in more than one reaction, it will only be 
defined once in the file and will be referred to in the corresponding reactions. 
The SBML file is generated using the LibSBML library (Hucka et al, 2003). 
 
 
5. Summary 
 
SABIO-RK is a web-accessible database containing curated data about 
biochemical reactions and their kinetics. The system merges general information 
about reactions, mainly retrieved from other databases, with kinetic data 
extracted from publications. The kinetic data comprises information such as the 
type of kinetics, modes of inhibition or activation and kinetic laws with their 
parameters, providing, whenever available, information about the experimental 
conditions under which this information was determined. The user can search for 
reactions (with their kinetic data) based on their characteristics, such as pathways 
in which they participate, catalysing enzyme, reactants, etc., plus the 
characteristics of the experimental conditions from the assays used to determine 
the reactions’ kinetics. To support modellers, selected kinetic data can be 
exported in SBML format to build models for the simulation of complex 
biochemical processes.  
 
 
6. Future Perspectives 
 
There are still many features that we plan to add to the database, both at the level 
of the search capabilities as well as at the level of the database content. We are 
working on a database schema that enables the insertion of detailed descriptions 
of the kinetic reaction mechanism. This should allow us to represent kinetic 
properties of elementary reaction steps or binding events in the database. 
Additional database search functions will be less reaction oriented, offering, (for 
example) capabilities to search for kinetic parameters and law types, e.g. search 
for all enzymes of the pathway glycolysis for which Km values are known. Users 
will also be able to search for reaction networks or paths of reactions between 
two defined compounds or enzymes. 
Although we already have annotated our data to some other database resources 
(like PubMed or Swiss-Prot), we will extend the annotation of the database 
content. This includes the usage of controlled vocabularies and annotation to the 
corresponding ontologies, like the Open Biomedical Ontologies (OBO) and the 
Systems Biology Ontology (SBO).
Data export functions will be expanded, since a lot of the information stored in 
SABIO-RK cannot yet be formally described in SBML, for example the 
environmental conditions like pH or temperature. At the level of the SBML file 
we will also add more annotations to the different entries, such as KEGG and 
ChEBI identifiers to the species, as well as SBO identifiers to the kinetic laws. 
A very important aim for us is to convince wet-lab scientists to use the input 
interface to enter data directly into the database. Thus, all the needed information 
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can be given by the experimenters and no information is lost. In doing so, users 
would be able to directly compare their own experimental results in SABIO-RK 
with kinetic data extracted from literature. 
Further development and implementation of tools for information extraction and 
retrieval, and supporting data curation is also planned in order to accelerate the 
database population process. However, due to the form how the data extracted is 
presented in the literature, i.e. scattered in the text, in tables, in figures, and in 
formulas, we will still require much manual processing. 
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1. Abstract 
 
Experimental research has revealed components and mechanisms of cellular 
stress sensing and adaptation. In addition, mathematical modelling has proven to 
foster the understanding of some basic principles of signal transduction and 
signal processing as well as of sensitivity and robustness of information 
perception and cellular response. Here we review some modelling principles, 
results and open questions exemplified for a model organism, the yeast 
Saccharomyces cerevisiae. 
 
 
2. Introduction 
 
During their life span, cells face a multitude of stresses and changes in the 
environment. Most of those changes are normal processes that can happen more 
or less frequently, like temperature changes, variation in nutrient supply or 
appearance of a mating partner. Therefore, species had to adapt to such types of 
stress during evolution and to develop appropriate, specific and efficient 
mechanisms to cope with such typical demands. 
In the last few years, a series of modelling approaches has been used and adopted 
to support the understanding of the complex behaviour of signalling networks. 
The concepts range from very abstract models that elucidate some key properties 
of signalling pathways (e.g. Heinrich et al., 2002, Papin and Palsson, 2004) to 
very detailed models that precisely monitor the dynamics of specific regulatory 
events (e.g. Vaseghi et al., 2001, Schoeberl et al., 2002, Yi et al., 2003, Swameye 
et al., 2003). Systematic overview on structural properties and dynamic features 
of signalling pathway models are given in (Papin et al., 2005, Tyson et al., 2003). 
The complexity of biochemical networks is far from being resolved 
experimentally. Nevertheless there is need to understand their behaviour in a 
rational way, which is often hard to achieve by intuition. Establishing models of 
such networks supports the integration of experimental knowledge into a 
consistent picture, the formulation of hypotheses and cognitions in a precise 
language. It serves to test, support, or falsify hypotheses about the underlying 

Understanding and Exploiting Systems Biology 
© The Editors and Fundación CajaMurcia, Spain, 2006 



 16 

biological mechanism. Modelling may integrate different parts of the whole and 
thereby allow analysis of properties that only emerge upon the interaction of 
elements in a comprehensive network. A sound model can produce predictions 
that can be experimentally tested and it can simulate processes that are 
experimentally hidden. 
 
 
3. Modelling: Mathematical Techniques and Tools 
 
3.1. Purpose of Modelling 
The development of a model serves the abstract and condensed representation of 
facts in order to allow for the analysis of their relations and to gain understanding 
about their internal organization and their communication with the environment. 
Although the number of data in biological research currently explodes, such data 
is useless without sufficient interpretation. A computational model can on hand 
serve the data interpretation; on the other hand it can point to biological aspects 
that are still not sufficiently experimentally resolved. Within the field of Systems 
Biology, the view has been established that experimental research and model 
development should go hand in hand in an iterative manner including 
formulation of an initial model, hypothesis generation, experimental testing of 
hypotheses, model-based experimental design, model refinement upon new data, 
and so on. 
The iterative modeling and experimentation process is hard to follow in 
publications, since they often only represent the final results. Model 
improvement with time and with accumulating experimental information is 
documented e.g. for yeast cell cycle (Novak et al., 1999, Chen et al., 2000, Chen 
et al., 2004 and others) and for signaling pathways (Bhalla, 2004, Bhalla, 2002, 
Bhalla and Iyengar, 2001, Bhalla and Iyengar, 1999). 
 
3.2. Model Development 
Usually, an experimental observation inspires the formulation of a hypothesis as 
a first step. In the second step we define what questions the model is supposed to 
answer, i.e. the scope of the model. The scope determines what components and 
processes the model will take into account or omit and it defines the system’s 
boundaries. Omitting certain processes from the models even though they might 
play a role is based on the assumption that they have only a minor influence on 
the event under study, that their values remain constant in the experimental setup, 
or that they simply cannot be described with the currently available means. For 
example, the effect of regulated gene expression is usually neglected in the 
modelling of metabolic networks although modellers are certainly aware of 
production and degradation of enzymes. But the different time scales of protein 
turnover and metabolic reactions justify this simplification in many cases. The 
initial model is usually formulated as a word model. The word model itself is 
also subjected to a process of refinement and sophistication in the course of 
model development. A graphical representation of the model structure, e.g. a 
diagram, is also helpful. 
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Subsequently, the word model is translated into a mathematical model (for an 
overview on mathematical techniques see below). To assure that our model is in 
principle able to answer our initial question we must verify whether our model 
can achieve this independently of choice of specific parameter values, i.e. in a 
qualitative way. For example, when we want to explain an observed temporal 
oscillation of a cellular compound, we must test whether our model is structured 
in a way that it is able to produce oscillations. This might not be as trivial as it 
sounds in some cases. For example, until now there exists no general theorem for 
the existence of oscillations in chemical systems with more than three 
compounds (Heinrich & Schuster 1996). When no mathematical theorem is 
available that tells us something about the general properties of our system, 
verification of the proposed model behaviour is generally obtained by playing 
around with the model structure and its parameters, checking whether it behaves 
in the way we want. Verification of the model structure is an important step in 
the process of model development because it can save much time and effort later 
on. When the model is not able to fit observed data, this might be a general 
problem of the model structure. Having checked this in advance we can avoid 
validating a model in vain. 
Generally, it is also desirable to learn more about general properties of the model, 
like e.g. steady states and bifurcation points. When we analyse metabolic 
systems, we can apply mathematical tools like Metabolic Control Theory to 
analyse the system. 
 

 
 
Figure 1: Model development flow chart. 
 
 
Having verified that the model can principally reproduce our expectations we can 
now validate that the model can also reproduce our observations in a quantitative 
manner. This is generally achieved by adjusting the model parameters such that 
the components of the model match observational data. It is important to gain 
further support for our model by testing whether it is also able to reproduce 
independent data without changing the fitted parameters. Independent in this 
sense means that the data was neither used to fit the parameters nor to develop 
our model. We need a training data set and test data set. The test data generally 
describe the same phenomena but under slightly different conditions. It is a 
prerequisite for a sound model validation that the model is able to reproduce 
observed data under different conditions but with the same parameters that were 
used to reproduce the training data set. This is supposed to reflect the fact that 
our model accurately describes the intrinsic structure of the studied system and, 
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like nature, is able to adequately adjust its reaction to a changing 
environment/input without changing internal structure and interactions. 
It is important to know the limits of applicability of a model. They determine to 
what extent possible predictions and conclusion hold. Moreover, it is important 
to know what parameters are sensitive, i.e. whose changes have a substantial 
impact on the systems behaviour, and thus have to be determined with great 
accuracy. To this end we must conduct a sensitivity analysis. Usually, this is 
achieved by changing one parameter value at a time and looking at the resulting 
change of a specific output variable. A classical measure of sensitivity is the 
relative sensitivity S that is defined as 
 

         (1) 
 
where ΔO/O is the relative change of some output of interest and Δp/p is the 
relative parameter change, compared to the initial state of parameter, 
respectively. S is easy to interpret, as S = 1 means that a certain percentage 
change of a parameter yields the same percentage change of the considered 
output. Usually, when |S| ≤ 1, p is considered as non-sensitive. When |S| >> 1, p 
is considered as sensitive. The range in which p is changed depends on the 
uncertainty with which p is determined. This can be the measurement error or 
some other knowledge about the range in which p can vary. With no such 
knowledge, it is usually a good start to change p by 50%. 
Classical sensitivity analysis studies the reaction of one or more output variable 
to the change of one parameter at a time. Generally, it cannot be assumed that 
parameters have an independent influence on the considered output. In most 
cases the sensitivity of one parameter depends on the state of one or more other 
parameters. However, manipulating individual parameters can be viewed as 
unusual perturbation of the system by, e.g. a mutation or other kind of damage. It 
is reasonable to assume that under the conditions we are mostly interested in it is 
unlikely that many parameters change or are perturbed at the same time. 
Having determined sensitive parameters gives us important information about 
our system. It not only tells us where small measurements errors can have drastic 
consequences for the system behaviour but also where additional research or 
measurements might be adequate. Sensitive parameters can also be interesting 
targets for drug developers as it makes sense to manipulate a system where it is 
most sensitive. Sensitivity analysis tells us something about the robustness and 
resilience of the system. 
It is not only important to explore the sensitivity of the system to parameter 
changes but also to changes in the input stimuli. Biological systems are always 
subjected to varying environmental conditions and we must check whether our 
system is as flexible as we expect it to be. Moreover, a structural sensitivity 
analysis, i.e. not only changing parameters but also model formulas, can give 
valuable information what features of the model are necessary to exhibit a certain 
behaviour and what parts can be omitted or simplified. 
The sensitivity analysis relates to and complements the two preceding steps 
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verification and validation. Verification tells us something about the theoretical 
properties of our model system, how the model could behave, i.e. the qualitative 
structure of the state space. Validation determines a concrete state of the system 
that reflects observed biological phenomena, i.e. tells us where our system is 
quantitatively located in the theoretical state space. Finally, sensitivity analysis 
provides us with a quantitative picture of the state space around our system. 
We can then use the model to explore more systematically regions of the state 
space that are of particular interest, i.e. make predictions. The model ideally 
should be able to predict future experiments. When the model correctly predicts 
the experiments we gain confidence in the model and also in the original 
hypothesis. Moreover, the model can be used to design future experiments. In 
combination with the sensitivity analysis we can determine where additional 
measurements give us most information about the system. 
In case, the model does not correctly predict the experiments it has to be checked 
whether the experiments still comply with the original hypothesis. If it does we 
have to modify the model, otherwise we have to modify the hypothesis. Both 
ways, we close the cycle. 
 
3.3. Mathematical Description of Dynamic Processes 
Depending on the available experimental information, the purpose of modelling, 
the experience and preference of the modeller, signalling pathways can be 
described with different techniques. In general, all approaches rely on a 
description of the network structure with a graph representing as edges the 
interaction (activation, inhibition, complex formation) between the nodes, i.e. the 
different signal molecules. Boolean networks or Petri nets describe the states of 
individual nodes in a discrete fashion and these states are updated along a 
discretised time axis according to the rules assigned to the edges. In their basic 
version, Boolean networks allow only for two states (1 or 0, i.e. active or not 
active). Petri nets assign individual tokens to the places (i.e. nodes). More 
sophisticated approaches tend to consider more different states and update rules. 
The dynamics on a continuous time scale can be simulated in a stochastic 
manner, e.g. with one of Gillespie’s methods (e.g. Gillespie, 1977) by assuming 
discrete state values, e.g molecule numbers. A frequent approach is the 
description with ordinary differential equations (ODEs), where the state space is 
continuous (concentrations or activities) and the time is continuous. In the 
following we will focus on the ODE model approach. 
The dynamics of the biochemical reaction network is expressed by the balance 
equations 
 

         (2)  
 
where S, v, and p denote the vectors of concentrations, reaction rates, and 
parameters of the system, respectively, and t is the time. The matrix N contains 
the stoichiometric coefficients. Typical expressions for the reaction rates are the 
so-called mass action rate law 
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          (3) 
 
or the Michaelis-Menten rate law  
 

         (4) 
 
or the Hill kinetic 
 

         (5)  
 
The mass action law implies a linear dependence of rate on substrate 
concentration, while hyperbolic Michaelis-Menten kinetics and sigmoid Hill 
kinetics show saturation. Note that more elaborated kinetic mechanisms are 
described, especially for more substrates and for reversible reactions (Cornish-
Bowden, 2004). 
In the cell, signalling pathways have to cross several boundaries: the cell 
membrane, the nuclear envelope, the mitochondrial membranes or others. This 
may make it necessary to include different compartments into the model. Moving 
between compartments has different effects in discrete or continuous settings: if 
one molecule leaves a compartment, then one molecule will arrive in the 
neighbouring compartment. If one µm of a substance leaves a compartment, the 
concentration change in the neighbouring department depends on their relative 
volumes. 
 
3.4. Analysis of Models 
The model can be analyzed in various ways, first to test whether its behaviour 
really reflects the aspects that we wanted to represent, second to deduce 
predictions based on a presumably appropriate description. 
Purely based on the stoichiometry, i.e. on the wiring, is the analysis of the 
stoichiometric matrix N. The linear dependence of rows of the stoichiometric 
matrix points to moiety conservation in the system, i.e. it reveals which 
compounds or moieties are neither produced nor degraded by the network in 
total, such as the sum of differently modified forms of a protein. In mathematical 
terms, one has to find a regular matrix G such that . Then     
expresses the conservation relations. The linear dependence of columns of N 
(   with regular matrix K) reveals the dependence of fluxes in steady state, 
i.e. steady state fluxes are linear combinations of the columns of matrix K. For 
example, in an unbranched pathway, all fluxes must be the same in case of steady 
state. 
Flux balance analysis (FBA) is based on the relations revealed for fluxes in 
steady state. To elucidate operation modes of the cell under different 
environmental conditions or to suggest such modes for biotechnological 
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processes, it calculates from all possible steady state fluxes that set of fluxes that 
maximizes or minimizes a certain function of these fluxes, e.g. by linear 
programming. 
Metabolic control analysis (MCA) seeks to quantify the impact of individual 
rates or parameters on the steady state values of variables by calculating the 
respective derivative. In MCA a version of the above-defined sensitivity S is 
often applied, the response coefficient R, that is actually nothing else than the 
sensitivity S of the linearised system 
 

  .       (6) 
The theorems of MCA (Reder, 1988) establish a relation between R, which is a 
property of the whole system, and the local sensitivities of the individual rates  
with respect to the compound concentrations and the network stoichiometry N. 
Especially interesting for signalling pathways is the analysis of time-dependent 
response coefficients  
 

         (7) 
 
which show the impact of a parameter value on the dynamics of a compound, not 
only on its steady state value (Ingalls and Sauro, 2003). 
 
 
4. Modelling Cell Signalling: Concept and Examples 
 
4.1. Components of Signalling Pathways 
Despite their diversity in function and design, many signalling pathways use the 
same essential components, which are often highly conserved through evolution 
and between species. For example, proteins in yeast pathways have homologs in 
human pathways and G proteins or MAP kinases are conserved throughout 
kingdoms. Here, we will introduce the most prevalent signalling pathway 
modules that are frequently connected in series. 
Receptors receive extracellular stimuli by ligand binding and transmit a signal to 
intracellular signalling molecules. Many receptors are transmembrane proteins. 
Upon signal sensing, they change their conformation and become active (Figure 
2A), now being able to initiate downstream processes. Cells can regulate the 
number and the activity of specific receptors, e.g. in order to shut off the signal 
transmission during sustained stimulation. An interplay of production and 
degradation regulates the number of receptors (for a model involving receptor 
internalization in the yeast pheromone pathway see (Yi et al., 2003)). 
Phosphorylation of serine/threonine or tyrosine residues in the cytosolic domain 
by protein kinases can regulate the activity and thereby adapt the signalling 
system to input signals of different intensity. 
A possible way of signal transmission from the receptor is the binding to and the 
activation of G proteins. The heterotrimeric G protein consists of the subunits α, 
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β, and γ (Figure 2B). Upon activation, a GDP bound to the α-subunit is 
exchanged with a GTP, and the G protein dissociates into different subunits, 
which transmit the signal to downstream processes. As soon as the GTP is 
hydrolyzed to GDP, the subunits can re-associate to form the initial 
heterotrimeric G protein. 
The change between GTP- or GDP-bound states is also characteristic for so-
called small G proteins like Ras, Rho, Rab, Ran, or Arf. They have different 
activities in both forms (Figure 2C). Transformation from the GDP state to the 
GTP state is catalyzed by the Guanine Exchange Factor (GEF), while the reverse 
process is facilitated by a GTPase-activating protein (GAP), which induces 
hydrolysis of the bound GTP (Schmidt and Hall, 2002). 
 
 

 
 
Figure 2: Building blocks of signalling pathways. A) Activation of the receptor 
by a ligand, B) G protein cycle including slow and fast mode; the fast mode is 
activated by feedback loop involving a protein (RGS), C) Small G protein switch 
between two states, GDP-bound and GTP-bound, D) the MAP kinase cascade 
involves several successive phosphorylation events. 
 
 
Extracellular signal-regulated kinase (ERK) or mitogen-activated protein kinase 
(MAPK) cascades consist of three or four different proteins that specifically 
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catalyse the phosphorylation of the subsequent proteins (Figure 2D). According 
to their roles, these kinases are called MAP kinase (MAPK), MAP kinase kinase 
(MAPKK), and so on. The dephosphorylation is ensured by phosphatases that are 
often less specific, but can also be very specific to certain targets. In some cases, 
the MAP kinases bind to a scaffold protein forming a complex. 
Several functions for such scaffold formation are discussed, such as to ensure the 
physical vicinity of components or their correct molecular orientation or an 
increase in signal amplification. Scaffolding can account for the fact that 
signalling pathways often appear to be decoupled although they contain common 
components. 
 
4.2. Stress Response Pathways in Yeast 
The response of yeast cells to external stimuli, environmental changes, nutrient 
supply or availability of a mating partner is ensured by a variety of signaling 
pathways that partly overlap by the use of common proteins (Figure 3). 
 
 

 
 
Figure 3: Selected signalling pathways of the yeast Saccharomyces cerevisiae. 
Shown are the pheromone pathway, the filamentous growth pathway (responding 
to starvation signals) and high osmolarity glycerol (HOG) pathway. These 
pathways share several components, and mechanisms for ensuring signal 
specificity and appropriate signal integration are still under investigation. 
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Signal transduction in yeast has been studied thoroughly; an overview is given 
for example in (Hohmann, 2002). Several quantitative models have been 
published so far and some of them are collected in databases like JWSonline 
(Snoep and Olivier, 2003). Yi and colleagues (Yi et al., 2003) presented a first 
model of the G protein activation within the pheromone pathway. This model 
takes into account G protein activities that have been measured using 
fluorescence resonance energy transfer (FRET). It comprises the production, 
degradation and activation of the G protein coupled α-receptor (Ste2), the activity 
cycle of the G protein and its regulation by the regulator of G protein (RGS) Sst2 
(compare Figure 3). 
This model has been adapted and incorporated into a more comprehensive model 
of the pheromone pathway (Kofahl and Klipp, 2004), which includes 
downstream processes of the activation of Gβγ. As shown in Figure 3, the 
components of the MAP kinase cascade bind to the scaffold protein Ste5. 
Binding of Ste5 to Gβγ and the MAP KKKK Ste20 brings Ste20 into the vicinity 
of Ste11, the MAP KKK, permitting its activation. Furthermore, a cycle of 
binding, phosphorylation and release of the MAPK Fus3 is considered. 
Phosphorylated Fus3 triggers the following events including the activation of the 
transcription factor Ste12, the activation of the cell cycle regulator Far1 and the 
activation of the RGS Sst2. 
The pheromone pathway model includes several feedback loops that help to 
downregulate the pathway after successful signal transduction. First, the 
activation of Fus3 leads to a repeated phosphorylation of more Fus3 molecules. 
Secondly, the activation of Sst2 itself depends on the activation of Fus3. It 
accelerates the closing of the G protein cycle by enhancing the rate of hydrolysis 
of Gα-bound GTP. Yi et al. (Yi et al., 2003) studied strains with either 
constitutively active or inactive Sst2. Third, the transcription factor Ste12 
enhances the expression of the protease Bar1, which is exported, and cleaves the 
α-factor, and thereby counteracts the input signal. Hence, the pathway design 
ensures the long-term downregulation of the pathway after successful activation 
of target processes. 
The parameters of this model have been estimated from literature values. The 
impact of individual values has been tested by sensitivity analysis. Although this 
model is not based on data specifically measured to support it, its predictions for 
graded response to increasing concentration of α-factor or for the behaviour of 
mutant cells match very well with experimental observations. 
The response of yeast to osmotic stress has been described by a model (Klipp et 
al., 2005) that comprises the high osmolarity glycerol (HOG) pathway, 
transcriptional regulation, the effect on metabolism and the change in the 
production of glycerol and an additional model describing regulation of volume 
and osmotic pressure. The HOG pathway consists of two input branches, the 
Sln1 branch and the Sho1 branch (which is not considered in the model). The 
receptor Sln1 is a membrane protein that regulates a phosphorelay system. Under 
normal conditions, it is continuously phosphorylated and transmits its phosphate 
group to Ypd1, which in turn passes it on to Ssk1. In this way, Ssk1 is kept 
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phosphorylated and inactive. Upon osmotic stress, phosphorylation of Sln1 is 
interrupted and Ssk1 switches to a non-phosphorylated, active state. In this form, 
it triggers the HOG MAP kinase cascade, which involves the redundant proteins 
Ssk2 and Ssk22 as well as Pbs2 and Hog1. Phosphorylated Hog1 can enter the 
nucleus and regulate the transcription of a series of genes. 
An interesting feature of this pathway is that it is downregulated despite 
sustained activation by external osmolarity. This cellular response could not be 
explained by modelling the signalling pathway in isolation. It was argued that the 
cells sense turgor pressure instead of the external salt concentration. The turgor 
pressure is partially regulated by glycerol. Active Hog1 activates the expression 
of genes coding for enzymes that are involved in the production of glycerol. 
The parameters for this model have been determined on the basis of a standard 
experiment applying 0.5M NaCl to wild type cells and have been tested for 
various experimental scenarios with mutant cells and different salt 
concentrations. 
Model simulations have revealed details of the signalling process, enlightening 
the role of the glycerol channel Fps1 in glycerol accumulation, and the feedback 
control exerted by protein phosphatases in the MAP kinase pathway. It turns out 
that Fps1 is responsible for the immediate control on the internal glycerol 
concentration, while the stimulated expression of GPD1/2 and GPP1/2 and the 
resulting increased glycerol production preserves a high level of glycerol during 
growth in high osmolarity. The model implies that the HOG pathway is shut off 
by to glycerol accumulation, cell re-swelling, and turgor increase rather than by 
enhanced expression of phosphatases. This result has been confirmed by the 
experimental fact that the pathway can be fully reactivated by a second osmotic 
stress. 
 
4.3. Studied Phenomena 
 
4.3.1. Relative Importance of Kinases and Phosphatases 
MAP kinase cascades are regulated by the activity of kinases that phosphorylate 
the proteins, and by phosphatases that in turn ensure the dephosphorylation. 
While kinases activate and phosphatases deactivate, both partners are necessary 
to determine the basic level of activation in absence of external stimuli, but also 
strength and duration of activation in its presence. It has been discussed that 
kinases are responsible for the amplitude of the signal, while phosphatases 
determine its duration [Hornberg, 2005]. Interestingly, this holds only for weakly 
activated cascades [Heinrich, 2002], while strongly activated cascades show the 
tendency of prolonged activation upon increase of stimulus. This is based on 
conservation of MAP kinase proteins on each level, which limits the increase of 
the active form upon strong activation (Figure 4). 
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Figure 4: Time courses of the concentration of the phosphorylated forms of three 
kinases (Raf, MEK, ERK) in the MAP kinase cascade as in Figure 2D, i.e. their 
activation profiles over time: low activation of the receptor leads to an increase 
of the amplitude, stronger receptor activation causes longer activation. All rate 
laws are mass action kinetics with rate constants of kinases and phosphatases 
equal to 1 and the initial concentration values of the phosphorylated proteins 
were 0 and of the non-phosphorylated proteins were 1. 
 
 
4.3.2. Dynamic Behaviour and Parameters 
The specific behaviour of a biochemical network is determined by (i) its wiring, 
expressed by the stoichiometric matrix N, (ii) by the kinetic laws of the 
individual reactions including the involvement of modifiers that are not substrate 
or product of this reaction, (iii) by the values of the kinetic parameters and (iv) 
by the concentrations involved, like initial concentrations and conserved 
moieties. 
In order to obtain a satisfactory picture of the studied object, all four aspects must 
be appropriate. The wiring scheme is frequently (but not always!) sufficiently 
well known from experimental information. For some metabolic reactions, the 
kinetic mechanism is also determined together with the respective parameters. 
However, kinetic laws and parameters are often not well-defined by experimental 
information, whereas concentration or number of molecules involved are often 
known to a satisfactory extent. 
To develop models with predictive value, high-quality data is necessary. Time 
series data must cover the regions, in which the dynamics of the pathways take 
place. Moreover, for sound model validation and parameterization it is necessary 
to have a measure of uncertainty for the measured data, as standard deviations, 
for instance. This requires measurement repetitions to be done that are 
unfortunately often not available. 
 
4.3.3. Signalling: Network Versus Pathway 
The original perception of signalling pathways stems from the experimental 
analysis that could connect a stimulus of the cell with a measurable effect and 
could trace the path connecting both. Nowadays, it becomes obvious that cells 
possess a comprehensive arsenal of signalling molecules that may interact in 
various combinations giving rise to the transmission of various signals, but also 
to the integration and separation of diverse types of information. 
It is now a matter of taste whether modelling starts immediately with the 
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complete signalling network, or whether one starts with the individual traditional 
pathways that are sometimes well understood and then tries to integrate them. 
Coupling of pathways may be performed in the same way as modelling 
individual pathways: pathway structure is merged and individual reaction rates 
are adopted using a mixture of handcrafted rules and intuition. Approaches for 
systematic model integration are rare. A starting point is SBMLmerge, which 
combines models implemented in SBML. 
 
4.3.4. Crosstalk Between Pathways 
There are many different ways in which signalling pathways can interact with 
each other, a phenomenon often called crosstalk. For example, different 
pathways can be triggered by the same receptor or they can share components 
that, once activated by one pathway, leak into another pathway and thereby 
activate it. For an overview of different ways of pathway crosstalk see (Schwartz 
& Baron 1999, Schwartz & Madhani 2004, Cowan & Storey 2003). In modelling 
crosstalk there has been the issue of quantifying the amount of crosstalk. Some 
studies analysed the topological and structural properties of signalling networks 
by, e.g., classifying modes of interaction (Papin & Palsson 2004) or by counting 
the theoretically possible interactions between pathways (Binder & Heinrich 
2004). 
As signalling is a transient process one can argue that it is the dynamic behaviour 
of interacting pathways that is important rather than the static features. Two 
recent studies address the dynamic features of pathway crosstalk. By analysing 
the activation of pathways by a so-called intrinsic and an extrinsic stimulus, 
respectively, one study defined measures for pathway specificity and fidelity 
(Komarova et al., 2005). These measures give useful insights how pathways 
interact with each other. However, it is important to note that these measures 
refer to responses to one stimulus at a time. However, it can be assumed that cells 
usually process multiple information in parallel and these measures give no clue 
how signals interact while being transmitted concomitantly, It can be expected 
that signals amplify or inhibit each other, when transmitted at the same time. 
Thus, it does not suffice to study each signal in isolation but also to study the 
cell’s response to multiple stimuli at the same time. Schaber et al. (under review) 
proposed crosstalk measures that include parallel multiple pathway activation 
called the intrinsic and extrinsic specificity that yield a better understanding of 
how the pathways dynamically interact. 
 
4.3.5. Modelling and Standards 
The purpose of modelling is to provide an abstract description of an instance that 
fosters the understanding/representation of specific aspects of this instance. Such 
a model must neglect other aspects for the sake of simplicity, and these neglected 
aspects will change with a change of the specific question to be answered by the 
model. Therefore, one cannot establish fixed rules for a model that are valid once 
and forever. On the other hand, the growing modelling community and the need 
to communicate with experimental researchers make it necessary to establish 
some rules how specific aspects should be expressed in a model of a certain type. 
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A prominent approach for the development of such a standard is the Systems 
Biology Markup Language (SBML) (Hucka et al., 2003), which serves as a 
unified exchange language for the description of biochemical network models. 
Another standard is the Minimal Requirements in the Annotation of Models 
(MIRIAM) (Novere et al., 2005), a standard for the description and 
documentation of models in a publication. 
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1. Abstract 
 
Due to the complexity of biochemical reaction networks the so–called 
complexity reduction algorithms play a crucial role for making simulations 
realizable “in silico”. Our first approach (Zobeley et al., 2005) of dynamic 
dimension reduction is based on different time scales of biokinetics and seizes 
the distinction between “fast” and “slow” modes detected adaptively. This 
modified ILDM method (“intrinsic low–dimensional manifold”) is suited not 
only for steady states, but for all possible dynamics and provides a systematic 
tool for an automated complexity reduction of arbitrary biochemical reaction 
networks. 
Continuing this dynamic modification of ILDM, the present study focuses on a 
numerical question that we believe to be still open: the period of “adequate” 
approximation, i.e. how long the differential–algebraic equations of ILDM 
provide acceptable approximations of the (biochemical) ODEs. 
Numerical simulations are to give a first answer here –– considering the example 
of glycolysis in yeast presented in (Wolf and Heinrich, 2000). 
 
 
2. Introduction 
 
In recent years, biochemistry has made huge steps towards quantified results. 
This is basically a consequence of improved experimental techniques providing 
more and more data about molecules in living cells (“in vivo”) –– instead of 
former experiments in separated test tubes (“in vitro”). In fact, the amount of 
experimental data and its precision has also revealed a new challenge in scientific 
computing. Today standard computing facilities come up against limiting factors 
when simulating biochemical models in their full complexity available. This 
experience leads to the important question how to reduce the “complexity” of 
both models and calculations so that the relevant effects are still simulated 
correctly. 
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Former concepts of complexity reduction in biochemistry are based on the 
restriction to the steady state behaviour of the biological system (such as 
Kauffman et al., 2002, and Price et al., 2003). Assuming steady states, however, 
is only suitable for few examples such as simple microorganisms in a fermenter 
whereas the majority of biochemical systems is characterized by highly nonlinear 
dynamics. Very popular examples are calcium oscillations (in plants and 
animals) realizing information processing in cells (see e.g. Berridge at al., 1998), 
metabolic oscillations in neutrophils (Petty et al., 2000), and glycolytic 
oscillations (Duysens et al., 1957, and Frenkel, 1968). 
Furthermore, environmental conditions exert an essential influence on organisms 
and are usually changing permanently. Thus, any satisfactory concept of 
complexity reduction has to take dynamic aspects into account. 
There are different approaches to reduce models describing complex chemical 
and physical processes. The procedures involve application of conservation 
relations, lumping of species and sensitivity analysis. One of the most popular 
approaches is based on the presence of a wide range of characteristic time scales 
in a chemical system. At present, there are several methods in chemistry which 
are built on the concept of time scale decomposition. An incomplete list includes 
the computational singular perturbation (CSP) method (as, for instance, Lam and 
Goussis, 1994) and method of intrinsic low–dimensional manifolds introduced 
by Maas and Pope in 1992. 
Time scale decomposition should be a quite promising approach to dynamic 
complexity reduction of biochemical systems since biological processes proceed 
on a wide range of time scales (from fraction of seconds by signal transduction to 
several hours  by events like gene expression). Nevertheless, there is an essential 
distinction, though, preventing us from applying immediately reduction methods 
used in chemistry. Indeed, biochemical reactions can hardly ever be described by 
the law of mass action and thus, ordinary differential equations of concentrations 
usually contain reaction terms that are more difficult to compute than 
polynomials and more sensitive with respect to calculation errors. 
As a consequence, existing numerical methods have to be reviewed whether their 
results are still reliable for biochemical reaction networks.  
In our previous paper (Zobeley et al., 2005), we have introduced an adapted 
ILDM method (based on  Deuflhard and Heroth, 1996) for the use of time–
dependent complexity reduction in the context of systems biology. This approach 
starts from the notion of different time scales and seizes the distinction between 
“fast” and “slow” modes detected adaptively. 
Continuing this dynamic modification of ILDM, the present study focuses on a 
numerical question that we believe to be still open: the period of “adequate” 
approximation, i.e. how long the differential–algebraic equations of ILDM 
provide acceptable approximations of the (biochemical) ordinary differential 
equations. This is directly related to the question how long the distinction 
between “fast” and “slow” modes is appropriate. 
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3. Mathematical Methodology 
 
3.1. The quantitative description of a biochemical reaction network 
Considering an arbitrary biochemical reaction network, each of the n species is 
described by its time–dependent concentration c = cj j(t). So in particular, spatial 
dependencies are not taken into consideration here. These scalar concentrations 
are united into a time–dependent vector and, its dynamics is described 
by an autonomous system of ordinary differential equations (shortly, ODEs) in 
combination with the initial state , i.e. 

T
ncc )( 1K=c
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 for all    ))(()( tttd
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Due to existing relations of mass conservation, such a system of ODEs often 
exhibits linear dependencies that can be detected and removed in a systematic 
and automated way. Indeed, applying the tools of stoichiometric network 
analysis (to the stoichiometric matrix) lays the basis for reducing the ODE 
system successively so that finally, we can assume the ODE system to be in its 
reduced and linearly independent form. Further details of this network analysis 
can be found in (Heinrich and Schuster, 1996) and (Reder, 1988), for example. 
 
3.2. Time scale decomposition 
Whenever several processes come together, they usually differ from each other in 
regard to their characteristic duration. To be slightly more precise, (only) the 
direct comparison reveals which process is rather fast in comparison with others 
or, in contrast, which process can be regarded as (almost) stationary in 
comparison with others. Of course, such a distinction between “quasi–stationary” 
and (highly) nonstationary need not be fixed, but has to be adapted to the current 
state . T
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As a mathematical criterion for the several time scales occurring in a reaction 
network, we seize the eigenvalues of the Jacobian matrix 
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This is because, for short times, the solutions of the ordinary differential equation 

 and of its linearization ))(()( tttd
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d cfc =  have key properties in 
common. If, in addition, the Jacobian is a constant diagonal matrix, i.e. 
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then the solution is very easy to formulate explicitly, i.e.  , and  t
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τ 1=  indicates the “characteristic time scale” of component j (if ). Even in 

the situation of complex coefficients 

0≠jλ

nλλ K1  of the constant diagonal matrix, the 
explicit solutions are the same although they might be difficult to interpret 
physically. The corresponding characteristic time scale and the qualitative 
behaviour of the solution now depend on the real part of jλ .  Indeed, for , 
the solution  is always decaying and tends to 0 (while time is increasing) 
and, for  the absolute value of  is getting arbitrarily large. A 
nonvanishing imaginary part of 

0Re <jλ

)(tc j

)(tc j,0Re >jλ

 indicates oscillatory features of . jλ )(tc j

Now we seize this simple example of calculus and try to exploit it when 
searching “fast” and “slow” modes of the ODE system ))(()( tttd

d cfc =  at a given 
initial point . In general, the Jacobian matrix  need not have diagonal 
form. So we transform the physical variables (describing the concentration 

 of species) to a new coordinate system that is easier to handle 
mathematically. The components of the transformed state vector are called 
modes. 

0c )( 0cfD

)( 1 ncc K=c

On the one hand, this transformation ought to be simple and not to complicate 
further calculations and so, we want to choose it linear and constant. On the other 
hand, the Jacobian of the transformed right–hand side f  should be similar to 
handle as the diagonal form before, but we cannot assume  to be always 
diagonalizable. So the so–called Schur decomposition provides a useful tool of 
linear algebra: 

)( 0cfD

A well–known algorithm provides an orthogonal matrix  such that the 
transformation of the Jacobian matrix has the form 
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with each diagonal submatrix  being either a )11( ×jjS –block (with a real 
eigenvalue of  ) or a –block (corresponding to a complex conjugate 
pair of eigenvalues). An adequate composition of Givens rotations facilitates in 
addition that the corresponding eigenvalues 

)( 0cfD )22( ×

 are sorted such that nλλ K1

,ReReRe 21 nλλλ ≤≤≤ K  as shown in Golub and van Loan, 1996, for example. 
Using orthogonal matrices for all these transformations implies the advantage 
that computational errors usually do not increase significantly. 
Replacing now the physical quantity  ))()(()( 1 tctct nK=c  (of concentrations) by its 
transformation 
 

, )(:)( tt cQz =

 
this time–dependent vector of modes satisfies the ordinary differential equation 
 

 ))(())(()()( 1 tttt td
d

td
d zQfQcfQcQz −⋅=⋅=⋅=

 
and thus, the Jacobian of the right–hand side at the initial state  reveals 
the wanted eigenvalues  

0cQz =)0(

nλλ K1  by construction. Furthermore the “characteristic 
time scales” of the first components of are (possibly) much larger than their 
counterparts of the last components because 

)(tz

.
Re

1
Re

1
Re

1
21 nλλλ

≥≥≥ K  So Schur 

decomposition (in combination with Givens rotations) has laid the basis for a 
time scale decomposition – at least close to the initial points  and , 
respectively. 

0c 0cQz =)0(

 
3.3. The distinction between “slow” and “fast” modes: ILDM method (of Maas 
and Pope). 
The key question now is to exploit these multiple time scales for numerical 
calculations.  
Many examples of biochemical reaction kinetics have in common that maximum 
and minimum of the characteristic time scales differ from each other 
tremendously, i.e. .

Re
1

Re
1

1 nλλ
>>  As a consequence, the last mode  seems to 

respond “instantaneously” to changes of some other modes. In other words,  
appears to be in a steady state –– after a very short time that we are willing to 
neglect. 

)(tzn

)(tzn

Mathematically speaking, this step of approximation is based on a substitution. 
Indeed, the (exact) ordinary differential equation for ,   i.e. )(tzn

( )nt))((0 1 zQfQ −⋅=( )nntd
d ttz ))(()( 1 zQfQ −⋅= ,  is replaced by the algebraic equation . 

This idea is called quasi–steady state assumption (QSSA) for . )(tzn

Of course, we are free to make QSSA for more than one component of  
Motivated by the difference in time scales, the modes with QSSA are called 
“fast” whereas the others are called “slow”.  

).(tz
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This notion leads to the method of low–dimensional intrinsic manifolds. It was 
introduced for the example of combustion by Maas and Pope in 1992. Roughly 
speaking, it consists of three basic steps: 
1) Make a suitable linear transformation revealing the eigenvalues of Jacobian 

and thus the characteristic time scales. 
2) Decide how many modes (after the transformation) are regarded as “slow”. 

The rest of the modes are considered “fast”. 
3) Use the ordinary differential equations for the “slow” modes and determine 

the corresponding “fast” modes alternately by means of their algebraic 
equations (according to their quasi–steady state assumptions). 

For implementing this algorithm, many details have to be specified. From now 
on, r abbreviates the number of slow modes and,  n – r  is the corresponding 
number of fast modes. 
Firstly, we require a “suitable” linear transformation defined by an invertible 
matrix. Starting in a given initial point , the orthogonal matrix Q resulting from 
Schur decomposition is an obvious suggestion. The linearization of the 
transformed ODE reveals a potential weakness, though. Indeed, uniting slow and 
fast modes into separated vectors leads to the form 

0c
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with the submatrix  reflecting the sensitivity of slow modes with 
respect to their fast counterparts. So in general, we cannot exclude that the slow 
modes depend very much on the exact values of fast modes. For moderating the 
necessity of precision, a further linear transformation is to provide the 
“decoupling” effect of   Choosing 
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as an ansatz for the second linear transformation, Z has to solve the Sylvester 
equation 
 

 coupfastslow SSZZS −=−

 
and thus can be calculated by a classical algorithm given in Golub and van Loan, 
1996, for example. So the composition of these two linear transformation is 
described by the matrices 
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leading to the transformed Jacobian 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== −−

fast

slow11
~0

0~~)(~)(
S

SQcfQTcfT 00 DD . 

 
Obviously,  is invertible, but it need not be orthogonal (as Q). So we 
have paid a possibly high price for the advantage of decoupling slow and fast 
modes linearly, i.e. computational errors might increase significantly. 
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and, the corresponding ordinary differential equation is 
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So the quasi–steady state assumption about the fast modes means that this ODE 
system is replaced by the differential–algebraic equation (DAE) 
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Here the initial value of  has still to be specified. Transforming the 
given (physical) state  leads to the candidate 

)(fastfast txx =
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but  might  be “inconsistent” with the DAE, i.e. it does not satisfy the 
algebraic equation 0 .  Then a solution  of 

 is required as initial value for solving the DAE and, due to 
the aim of approximation, it should be close to . Several methods are 
available for solving such a nonlinear equation numerically. Among the very 
popular examples are Newton method and its simplified modifications. 

0, fastx

0, fastˆ IR n r−∈x),( fast0,slow0,fast xxg=

)ˆ,(0 fast0,slow0,fast xxg=

0, fastx

The next important question is how many modes are regarded as “fast” and 
“slow”, respectively. This question is sometimes called  dimension monitoring  
(as e.g. in Deuflhard and Bornemann, 2002). 
Obviously, candidates for fast modes are merely those components  of xnr xx K1+  
whose (maybe complex) eigenvalues nr λλ K1+  of    
have negative real parts since this feature reflects decaying. Roughly speaking, 
the larger the absolute value 

TcfTg 0 )(),( 1
,0,0 DxxD fastslow

−=

0ReRe >−= jj λλ  is, the faster this mode  
converges to its steady state (as the linear example mentioned in the beginning 
suggests).  So we rely on the characteristic time scales 

jx

  for ∞<=
j

j λ
τ

Re
1 )1( nj K=



 38 

specifying r and exploit  nτττ ≥≥≥ K21  due to the choice of transformation in 
section 3.2. 
Deuflhard and Heroth, 1996, suggest a criterion justified by the analytical 
methods of singular perturbation theory. For a given error tolerance , the 
number r of slow modes is chosen such that the corresponding decomposition 

 still satisfies 

0>tol

rnrT −×∈= RIRI),( fastslow xxx

 
 tolr ≤−⋅+ )ˆ,(),( fast,0slow,0slowfast,0slow,0slow1 xxgxxgτ

 
with the vectors  and 0, fast 0, fastˆ, IR n r−∈x x0, slow IR r∈x denoting the initial values 
mentioned before.  
An important advantage of this criterion is that it is very cheap to calculate. 
Moreover, Deuflhard, Heroth and Maas, 1996, extend earlier reports about highly 
satisfactory results when simulating 
i Hydrogen–oxygen combustion (due to Hoppensteadt, Alfeld and Aiken, 1981) 
i Thermal decomposition of n–hexane (due to Isbarn, Ederer and Ebert, 1981) 
i Oregantor (due to Field and Noyes, 1974) 
Their numerical implementation is based on a smart combination of methods: 
The DAE system resulting from ILDM is discretized according to the linearly 
implicit Euler method and, few steps for extrapolation (with respect to the step 
size 0>τ  of time) provide sufficiently accurate results.  This implementation and 
further simplifying modifications of the Euler method are justified by the 
asymptotic error expansion presented by Deuflhard, Hairer and Zugck in 1987. 
 
3.4. Open question: How long is the distinction between “fast” and “slow” 
modes appropriate? 
From our point of view, an important question has not been investigated 
sufficiently. It concerns the period of time in which the preceding distinction 
between “fast” and “slow” modes can be preserved. 
For extending its role of an efficient reduction method to biochemical reaction 
networks, ILDM has to fulfil an essential condition. Indeed, the transition from 
the original ODE system to the approximating DAE system provides sufficient 
accuracy merely up to some time  and, this additional time scale 0ˆ >τ τ̂  ought to 
be large in comparison with the (shortest) characteristic time scale 

1Re
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1
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=+
r

r λ
τ  of 

the “fast” modes:  1ˆ +>> rττ . Otherwise all arguments of singular perturbation 
theory and asymptotic expansion (used by Deuflhard et al.) fail definitely. In fact, 
we have found an implicit remark (about this necessary feature) in Deuflhard and 
Bornemann, 2004, but there were no details available to us whether this 
condition has been verified numerically so far. 
For investigating the period 0ˆ >τ , we would like to avoid all further systematic 
errors due to approximating hypotheses. So first, the original ODE system 
describing the physical quantities of concentrations 
 

,   ))(()( tttd
d cfc = 0cc =)0(
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is solved numerically up to a fixed time maxtt = . Then we select several points 
 of time subsequently and execute the following steps: [ max0 ,0 tt ∈ ]

 
1) Calculate the time scale decomposition at time t0 according to section 3.2, i.e. 

using Schur decomposition and Givens rotations for determining the 
eigenvalues of the Jacobian . ))(( 0tD cf

2) Determine the maximal number { }1r ∈ K n  of slow modes according to the 
criterion of Deuflhard and Heroth (for given and fixed error threshold ).  0>tol

3) The transformed initial value problem 
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that is also solved numerically. 
4) Approximate the maximal period 0ˆrel >τ  such that the relative error comparing 

the DAE solution  (after the inverse transformation) with the 
original solution 

nt RI)ˆ( rel0 ∈+τyT

)ˆ( rel0 τ+tc  (of the biochemical ODEs) is below a given 
threshold. 

5) Approximate the maximal period 0ˆmatrix >τ  such that the submatrices 
   of the Jacobian  

   satisfy upper threshold conditions of  the 

following quantities: 
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SS

Indeed, the relative error mentioned in step (4) gives the best impression how 
accurate the approximation  is after its transformation back to physical 
quantities and thus, is compared with the “exact” solution . 

)(ty

)(tyT )(tc

In our opinion, the matrix indicators mentioned in step (5) also play a crucial role 
for ILDM. The period  0ˆmatrix >τ  indicates how long the time scale decomposition 
is appropriate. Here both the fastest component among the “slow” modes and the 



 

slowest component among of the “fast” modes are taken into account. For 
drawing any conclusions about time scales merely from 

and , though, the submatrix   of  “coupling” 
should be close to 0 –– as it was at time  by construction. This leads to the third 
quantity investigated in step (5). 
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So finally, we would like to verify if   and  0ˆrel >τ 0ˆmatrix >τ  can be regarded as 
“large” in comparison with . 
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4. Numerical Simulation 
In order to illustrate our theoretical considerations, we computed and analyzed 
the time scale decomposition in the glycolysis reaction system in yeast as 
described in Wolf and Heinrich, 2000. The model includes the main steps of 
anaerobic glycolysis, and the production of 
ethanol and glycerol, as well as the effect of 
intercellular coupling. Depending on the 
kinetic parameters, the model shows both 
stationary and oscillatory behaviour. 
The reaction network of a single cell is 
described in the scheme on the right–hand 
side (see Wolf and Heinrich, 2000), where J0  
is the input of glucose via the cellular 
membrane;  
 

reaction 1 lumped reactions of hexokinase, 
phosphoglucoisomerase and PFK 

reaction 2 glyceraldehydes-3-phosphate 
dehydrogenase reaction; 

reaction 3 lumped reactions of phosphoglycerate 
kinase, phosphoglycerate mutase, enolase 
and pyruvate kinase;   

reaction 4 alcohol dehydrogenase reaction;   
reaction 5 non–glycolytic ATP consumption; 
reaction 6 formation of glycerol from triose 

phosphates;   
reaction 7 degradation of the coupling substance in 

the extracellular medium. 
 
The model includes also the membrane transport of the coupling substance, 
characterized by the flux . J
The reaction rates are described by linear and bilinear functions of the 
concentrations, except for the first reaction (lumped reaction of hexokinase and 
PFK), where inhibition by ATP, according to the substrate inhibition of PFK, is 
additionally taken into account. 
We refer to Wolf and Heinrich, 2000 for justifying the model. The differential 
equation system of the model for single cell reads: 
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Kf c
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⎤
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) and 4 7(J c cκ= −   (the kinetic constant κ  is related to the 

permeability of the membrane for the coupling substance).  The concentration of 
glucose is represented by the variable , and that of 1,3–biphosphoglycerate by 

.  
1c

3c

5c ,  and  correspond to the ATP, NADH and coupling substance in the 
external solution, respectively, Owing to the fact that several glycolytic reactions 
are omitted and that other reactions are lumped, the model variables and  
denote the concentrations of pools of intermediates. 

6c 7c

2c 4c

The kinetic parameters and initial values of concentrations used in this study are 
listed in Tables 1, 2. 
 
Table 1. Kinetic parameters for    Table 2. Initial values of  
 modelling glycolysis in yeast      concentrations 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Varying the parameter  leads to different kinds of nonlinear behaviour which 
mimics the experimental observation. We explicitly studied the features for 

 and 

1k

1
1 10 mM mink −= ⋅ 1

1 50 mM mink −= ⋅  corresponding to small amplitude oscillations 

Metabolite Concentration  

c1 6.2 
c2 0.8 
c3 0.18 
c4 0.32 
c5 0.1 
c6 2.5 

                 c7 0.01 

Parameter Value  
J0 3.0 mM · min−1

k1 varied mM−1 · min−1

k2 6.0 mM−1 · min−1

k3 16.0 mM−1 · min−1

k4 100.0 mM−1 · min−1

k5 1.28 min−1

k6 12.0 mM−1 · min−1

k7 1.5 min−1

κ 3.0 min−1

q 4.0  
KI 0.52 mM 
N 1.0 mM 
A 4.0 mM 
ϕ 0.1  
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reaching the steady state (Figure 1) and high–amplitude oscillations (Figure 2), 
respectively. 
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Figure 1. Simulation of the full model  Figure 2. Simulation of the full 
  for k1= 50 mM min-1    model for k1 = 10 mM min-1

 
 

-1Table 3. Numerical analysis of glycolysis model for k1= 50 mM min : Number 
of “slow” modes r, matrix indicators (as in section 3.4) and contribution (in %) 
of metabolites to “slow” space. 
 

time t r c c c c c cc
matrix

1

ˆ
r

τ
τ +

rel

1

ˆ
r

τ
τ +

0   1 2 3 4 5 6 7

0.7500 4 5.1200 1.0737 14.3623 19.5467 22.5031 5.9761 11.6605 15.3361 10.6152 
1.2500 4 12.0000 1.0737 17.9475 18.5497 23.6323 4.2620 11.7120 10.7574 13.1390 
1.7500 4 8.0000 1.0737 16.9367 18.9644 24.6826 3.9002 12.8088 13.7319 8.9754 
2.7500 3 4.0960 1.0737 19.1841 23.3106 26.8022 2.9766 4.1741 16.7119 6.8406 

13.7500 3 154.070 953.962 20.4577 17.8148 29.1398 3.6469 4.1409 22.3181 2.4818 

 
 

-1Table 4. Numerical analysis of glycolysis model for k1= 10 mM min : Number 
of “slow” modes r, matrix indicators (as in section 3.4) and contribution (in %) 
of metabolites to “slow” space. 
 
time t r c c c c c cc

matrix

1

ˆ
r

τ
τ +

rel

1

ˆ
r

τ
τ +

0 1 2 3 4 5 6 7  

0.5000 4 1.0737 1.0737 34.4562 32.1218 0.9824 3.9576 10.7611 3.9561 13.7648 
0.7500 3 1.0737 1.0737 33.7617 32.8314 1.1462 4.0381 7.9193 16.4806 3.8226 
1.0000 3 1.0737 1.0737 13.0690 11.8107 18.6353 11.6513 16.7766 14.1726 13.9746 
1.5000 5 1.0737 1.0737 13.3830 8.0924 11.9151 18.3115 19.2211 14.5981 14.4788 
4.5000 5 1.0737 1.0737 13.7484 12.2284 10.7754 19.7374 17.9116 10.6344 14.9643 

All simulations are performed using MATLAB library routines. 
 
 
In Figure 1, the numerical simulations of the full ODE system are presented for 

. First the system displays transient relaxation oscillations and 1
1 50 mM mink −= ⋅
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then, it settles into steady states. This specific situation offers the excellent 
possibility of observing qualitatively differing behaviour in complexity reduction 
on a single run. The results of analysis are shown in Table 3. The first column 
refers to the selected points of time, the second one indicates the numbers of 
“slow” modes according (only) to the criterion of Deuflhard and Heroth, 1996. 
The comparisons between the maximal periods matrix relˆ ˆ,τ τ  and the characteristic 
time scale 1rτ +  (of the slowest “fast” mode) are listed in the third and fourth 
column, respectively. At the first 4 points of time, they are of the same order of 
magnitude. So there is no obvious reason why to neglect the “fast” modes. In 
contrast, the oscillations have almost decayed at the last point of time and thus, 
the indicators support applying the ILDM approximation. 
In order to complete our analysis of “slow” space, Table 3 summarizes the 
contributions (in %) of each metabolite to slow modes. These conclusions are 
drawn from the components of the current transformation matrix as in 
Zobeley et al., 2005.  

1−T

Figure 2 and Table 4 show the corresponding results for the kinetic parameter 
. The situation is now dominated by the oscillating features of 

metabolites. In fact, the indicating periods 

1
1 10 mM mink −= ⋅

matrix relˆ ˆ,τ τ  preserve the same order of 
magnitude as the characteristic time scale 1rτ +  and thus, we doubt that reducing to 
dimension 3–5 can be justified by asymptotic analysis. 
 
 
5. Conclusion 
 
The ILDM approach to the decomposition of the original ODE system is based 
on the assumption that the main part of dynamics, being of real interest for the 
researchers, belongs to the intrinsic “slow” manifold. The fast period of the 
motion is of minor importance. 
Nevertheless, many ODE systems of biochemical models do not meet this basic 
principle of ILDM. So an effective complexity reduction method should take 
both fast and slow parts of a trajectory into account. On the fast part, the fast 
variable changes only, whereas the slow one is constant. On the slow part of the 
trajectory, rates of changes of both variables are balanced (described by algebraic 
equations). 
The presented study is a starting point for developing such an adaptive 
“combined” method. In this context, the time step providing “acceptable” 
precision will play a crucial role for deciding which modes to focus on. It ought 
to be chosen not only in terms of the initial linearization, but depends on the 
dynamic features of the transformation matrix. Our simulation of glycolysis 
might give useful hints for further improvements in this direction. 
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1. Abstract 
 
The increasing amount of information on the strains, compounds, enzymes, 
reactions and, what we are specially interested in, regulators implicated in 
microbial biodegradation of toxic pollutants provides us with the building blocks 
for formulating a “Global Biodegradation Network”. We have created a 
relational database containing information both about the metabolism of several 
biodegradative pathways and their transcriptional regulation, covering 
transcriptional factors and their actions on promoters and operons implicated, 
thus integrating information on both metabolism and regulation features of the 
network. The information on regulation is extracted from the bibliography and it 
covers a range of 141 different species. By now, we have found data about 113 
regulatory proteins, 113 promoters and 130 regulatory binding sites. Also, we 
have information on around 200 transcriptional complexes formed by the 
proteins, binding sites and effectors. All these complexes perform 353 registered 
different actions on promoters: inducing, inhibiting and repressing them. All this 
information is stored including the DNA and protein sequences and the genomic 
context, when available. Our data model supports very detailed molecular 
information, as well as more undefined regulatory mechanisms. 
 
 
2. Introduction 
 
Natural microbial communities have acquired the ability to degrade external 
chemical compounds that are beyond their Standard Metabolism, such as 
chemical pollutants (xenobiotics) that appear as side effects of industrial activity. 
Such communities are composed of a complex mixture of species and strains 
working co-ordinately. The final chain of reactions leading to chemical 
mineralization is frequently a puzzle of reactions carried out by enzymes from 
several species. From a biological perspective this biodegradation network 
presents very interesting properties that differentiate it from the standard 
metabolic pathways, i.e., it has an inter-species composition, and it is the result 
of a fast adaptation to new environmental conditions. Interestingly, this can also 
be seen as a new scenario for analysis with a Systems Biology viewpoint, 
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offering possibilities different and complementary to the study of the 
organization and evolution of classical metabolic networks. The first steps in 
order to understand this complexity have been the study of the general properties 
of the known biodegradation network (Pazos et al., 2004). However the analysis 
of this metabolic network is not sufficient to understand its behaviour in the 
natural context. The presence of a gene that codifies for a specific enzymatic 
activity does not guarantee the presence of that enzymatic activity, that gene 
needs to be expressed in enough quantity, this being determined by the 
environmental conditions, and this expression is often integrated in layers of 
iterative regulatory networks that ensure the performance not only of the whole 
cell, but also of the bacterial population, and even the microbial community, in a 
changing environment (Cases and de Lorenzo, 2005). Therefore, the 
understanding of how specific regulation, in response to a given substrate, and 
superimposed levels of regulation, determined by the physiology of the cell or 
the presence of alternative carbon sources, is a must if we aim to describe the 
behaviour of the biodegradation network in the presence of different stimuli as it 
happens in the real microbial communities in the environment. So, we present 
here a database of regulatory elements of biodegradation pathways. This database 
includes specific and general transcription factors, their binding sites in the DNA, 
the organization of biodegradative operons and their promoters, and the 
conditions under these two elements interact giving as result transcription 
regulation. Some preliminary analysis on the collected data is also presented and 
discussed here. All this information is linked to the metabolic data already 
available, and together offer a extraordinary resource for the understanding on 
how biodegradation of xenobiotic compounds occurs in the environment. 
 
 
3. Results and Discussion 
 
As a first approach for data collection, regulatory information was extracted from 
the bibliography, taking as a starting point two reviews on the subject (Tropel et 
al., 2000, Diaz and Prieto, 2000) and searches for each regulatory protein, its 
regulated genes and the references available in the Genbank and Geneprotein 
files through Pubmed. All this data has been integrated with that extracted from 
the Minnesota Biodegradation database (Ellis et al., 2003) and the protein and 
gene sequences of the enzymes that were available from Genbank and that were 
searched in the literature. At this moment The transcriptional regulation database 
covers more than 600 genes where199 regulatory complexes, including the 
protein and gene sequences (up to 110) of their components and also of their 
target genes; 132 effectors, 130 binding sites and 113 mapped promoters for 196 
operons (all of them traceable to coordinates in a Genbank entry) and  the 
genomic context when it was available. All the structural information that was 
disposable in PDB and SCOP was included too as well as the ontology terms 
found in GO. Nevertheless, all this numbers represent an estimation as the 
regulatory framework is still under development, but still covers a significant 
part of the about 1025 reactions in 144 pathways described among 147 micro 



 49 

organisms All the information about metabolism and regulation has been stored 
in a database that will be available through a web server called BioNeMo 
(Biodegradation Network Modelling). 
We have performed preliminary analysis of some properties of the 
biodegradation transcription regulation mechanisms. We first analysed the 
Transcription Factors Binding sites  (TFBS). The average length of the binding 
sites for transcriptional regulators is somewhere between 16 and 20 nucleotides 
as is typical of bacterial transcription factors (Fig. 1a). Regarding the position of 
TFBS relative to the transcription start site, we observed a wide distribution with 
TFBS, which some as far as 250 bp upstream and some interesting ones sited 250 
bp downstream, with a peak between -25 and -50, and a second smaller one 
between -150 and -175. 

0

0,1

0,2

0,3

-3
0
0

-2
7
5

-2
5
0

-2
2
5

-2
0
0

-1
7
5

-1
5
0

-1
2
5

-1
0
0

-7
5

-5
0

-2
5 0

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
00

0,1

0,2

0,3

0,4

0,5

0,6

1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60

Position relative to start site

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Number of nucleotides

a b

 
Figure 1. Distribution of length and position of Transcription Factors Binding 
sites. a) nucleotide length of the binding sites versus the frequency (number of 
sites/total number of sites). b) position of the binding sites relative to the 
transcription start site versus the frequency (number of sites/total number of 
sites). 
 
 
The distribution of locations can be interpreted in terms of regulatory interaction: 
previous research into what is the position of a regulator binding site on the DNA 
relative to the transcription start site found that it is one of the factors that 
determine the protein regulatory function (Collado-Vides et al., 1991). The 
distance to the transcriptional start site shows that the regulators that act as 
repressors bind upstream close to the start site (from –45 to 40), maybe because 
most of them are able to disturb the transcriptional initiation by blocking the 
access of the polymerase. Most of the activators bind upstream related to the 
repressors (specially from –40 to –80, but also further), probably because they 
can interact better with the polymerase around those positions or maybe to drive 
changes in the DNA conformation that allow a better interaction with the RNA 
polymerase. Around –150 we can find the factors interacting with sigma54 that 
need to perform a loop in the DNA to interact with the polymerase and thus they 
need to be this far from the transcriptional initiation site to do so. The frequencies 
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observed fit well with the distribution of regulators and repressors present in the 
biodegradation regulatory network (Table 1). We found roughly that two thirds 
of biodegradation regulators are activators, and one third repressors. Interestingly 
this is significantly different from the E. coli transcription network, where 
repressors and activators are more or less equally represented. This difference 
between E. coli and the biodegradation network is less pronounced if we consider 
regulatory actions (single event of regulation between a transcription factor and a 
promoter).  The prevalence of activation in the Biodegradation Network could be 
related with the biochemistry of the biodegradation metabolism. Biodegradative 
pathways normally involve large number of enzymes and many reactions that are 
expensive energetically, it is tempting to hypothesise that activation can be 
favoured as a regulatory mechanism, since mutation in the regulator or the 
binding site would not lead to an spurious expression of the pathway, as it would 
happen in the case of repression. 
 
Table 1. Transcription Factors and their actions in the Biodegradation 
Regulatory Network. 

Regulators Activators Repressors 
71 (65%) 38 (35%) Biodegradation 
101 (50%) 103 (50%) E. coli 

Actions Activation Repression 
216 (61%) 137 (39%) Biodegradation 
1563 (56%) 1206(43%) E. coli 

 *E. coli data have been obtained from RegulonDB (Salgado et al., 2005) 
 
We have also look at the interaction between transcription factors and effectors 
molecules (Fig. 2). This so called effectors are molecules that interact with the 
regulators driving changes that perform actions on promoters, such as inducing 
or repressing their expression Most of regulators interact with only a few 
molecules, 75% of them with only 3 or less. Interestingly a few regulators are 
able to interact with up to 9 or 10 different molecules (Fig. 2a). 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

1 2 3 4 5 6 7 8 9 10

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 2 3 4 5 6 7

Fr
eq

ue
nc

y

Number of inducers

Fr
eq

ue
nc

y

Number of regulators

a b

 
 
 

Figure 2. Interaction between Regulators and inducers. a) number of inducers versus the 
frequency (number of regulators that interact with n inducers/total number of 
regulators). b) number of regulators versus the frequency (number of inducers that 
interact with n regulators/total number of inducers). 
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This fact could be explained in the context of the ‘regulatory noise hypothesis’ 
which proposes that “transcriptional control systems develop responsiveness to 
new signals due to the leakiness and lack of specificity of pre-existing promoters 
and regulators. When needed, these may become more specific through 
suppression of undesirable signals and further fine-tuning of the recruited 
proteins to interact with distinct chemicals” (de Lorenzo V. et al 1996). Similarly 
most of the molecules are able to interact only with one or few regulators. 
However, there are a few molecules are able to interact with many transcription 
factor, and thus are predicted to strongly effect the expression of the 
biodegradation enzymes when introduced in the environment. These molecules 
could thus used in the remediation process of polluted sites, since they will 
increase the biodegradation potential of the local microbial community. 
 
 
4. Conclusion 
 
The complex transcriptional regulation behind the biodegradation network is still 
far from being totally understood. As the first analysis show, it seems that there 
are similarities in its behaviour compared to single organisms systems (as E coli), 
but the same analysis show differences, like the higher ratio of activators in the 
biodegradation set. We have also shown that this resource also allows to ask 
question which answer can help in the better understanding of the properties and 
evolution of the regulatory mechanism involved in the biodegradation, and also 
open novel approaches for the application of bioremediation technology. Our 
effort at this moment is focused on the integration between the metabolic 
network and all the information we have been collecting about regulation to try 
to understand the mechanism of the integration between regulation and 
metabolism, and the forces that are driving the biodegradation processes in 
microbial communities. 
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1. Abstract 
 
In this paper a new approach to determine the α-spectrum is presented. The 
approach is based on the use of an interval representation of fluxes, making it 
possible to compute α-spectrum from an uncertain or even partially unknown 
flux distribution. In addition, as a complement of metabolic flux analysis, a new 
method is proposed that allows the calculation of the ranges of possible values 
for each non-calculable flux. The presented methods are illustrated with the 
example of CHO cells. 
 
 
2. Introduction 
 
This work is focused on mathematical methods for translating a metabolic flux 
distribution into an elementary modes or extreme pathways activity pattern. 
These methods determine how much flux is being carried by each e. mode or e. 
pathway under some particular set of circumstances. Hence, the pooly 
informative flux distribution can be translated into a simpler and more 
meaningful representation. Unfortunately, this translation has not a unique 
solution but a range of solutions. Thus, two options are possible: choosing a 
particular solution (Poolman et al., 2004; Schwarz et al., 2005), or dealing with 
the whole solutions region. When choosing one solution, the validity of the 
obtained activity pattern depends on the validation of the underlying 
assumptions. Following the second option, the α-spectrum, the range of possible 
values for each e. mode or e. pathway activity, can be determined (Wiback et al. 
2003). 
Herein, a new approach that allows determining the α-spectrum when fluxes are 
represented with an interval is presented. This representation is useful when a) 
flux measurements are uncertain, and b) when some non-measured fluxes cannot 
be uniquely determined (Klamt et al., 2002). In addition, a method to flux 
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calculation is presented as a complement of metabolic flux analysis (MFA). In 
many cases, when using MFA, the resulting system is undetermined and the 
complete flux distribution cannot be computed. In these cases, by using a similar 
procedure to the one used to determine the α-spectrum, it is possible to calculate 
the ranges of possible values for each non-calculable flux. 
 
 
3. Theoretical 
 
A biological network can be represented with a stoichiometric matrix N, where 
rows correspond to the m metabolites and columns to the n reactions. Including 
irreversible reactions as vi, the mass balance of the network at steady state 
(Stephanopoulos et al., 1998) can be formulated as: 
 

       (1) 00 ≥=⋅ ivvN

 
 In general, as n is bigger than m, the system is undetermined. Nevertheless, the 
solution region can be spanned by convex combination with e. modes or e. 
pathways: 
 

0≥⋅= im Ev αα        (2) 
 
Where vm is a flux distribution, E denotes the matrix formed with each e. mode or 
e. pathway as a column and α is a vector representing the non-negative activity 
for each e. mode or e. pathways. Despite differences between e. modes and e. 
pathways (Papin et al., 2004), the proposed methods can be applied in both cases, 
and therefore from this point only the term e. mode will be used. 
 
3.1. TRANSLATING A FLUX DISTRIBUTION INTO A E. MODES 
ACTIVITY PATTERN 
System (2) can be analyzed using the procedure proposed in (Klamt et al., 2002). 
The number of e. modes e is always bigger or equal than n-m, the number of 
linear independent vectors needed to span the solution region. Therefore the rank 
of E is equal to n-m. When e=n-m the system is exactly determined, and the 
unique solution can be calculated by using E-1. But in general e>n-m, and the 
system is undetermined with e-(n-m) degrees of freedom. Then, the general 
solution of (2) can be considered: 
 

      (3) 0)( ≥⋅+= ipG EK αλαα

 
Where αp denotes a particular solution, K(E) the null space of E and λ an 
arbitrary vector representing the indeterminacy of equation. Thus, only such 
elements αGi of αG whose corresponding row in K is a null row, are determined 
(its value can be taken from the non-negative least squares solution). 
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3.1.1. α-spectrum: The interval Approach 
In (Wiback et al., 2003) the concept of α-spectrum is defined to work with the 
solution region. Basically, 2*e linear programming problems are solved to 
compute the range of possible values for each e. mode activity. Here, a slight 
modification of the method makes it possible to compute the α-spectrum when 
the fluxes are represented as an interval: 
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where v+ and v- are vectors with extreme values for each flux. The interval 
representation implies reducing the restrictions of the problem, and therefore the 
solution ranges will be bigger. Nevertheless, if the interval representation is well 
justified, the obtained solution will be less precise, but more realistic. 
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Figure 1. The α-spectrum. 

 
This method makes it possible to compute the α-spectrum in two common 
situations: a) when the flux distribution is uncertain and b) when it is partially 
unknown. Additionally, it provides a straight method for dealing with 
inconsistency: Only if the flux region, defined with an interval, contains one 
consistent flux distribution, the linear programming problem has a solution. In 
figure 2, the different representations of fluxes based on certainty, consistency 
and completeness are summarized. 
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Figure 2. Fluxes as intervals. 
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3.2. METABOLIC FLUX ANALYSIS AND THE FLUX SPECTRUM 
Although intracellular fluxes can be measured in vivo with tracer experiments 
(Sauer, 2004), there are several situations where these techniques are not 
suitable. In these cases, MFA can be used to calculate intracellular fluxes by 
using a set of measured fluxes and applying mass balances around metabolites 
(Stephanopoulos et al., 1998). Basically, making a partition between measured 
(subindex m) and unknown fluxes (subindex u), equation (1) can be transformed 
into: 
 

       (5) uuuu vNvN ⋅−=⋅

 
Following (Klamt et al., 2002), the determinacy and the redundancy of (1) can be 
analyzed. If the system is determined, a unique solution can be computed; 
nevertheless, very often it is necessary to deal with underdetermined systems, 
where some fluxes cannot be uniquely computed (Klamt et al., 2002). 
 
3.2.1. Flux-spectrum 
To deal with these undetermined systems, a new approach is proposed that 
allows the calculation of the ranges of possible values for each non-calculable 
flux, resulting in a region that could be termed flux-spectrum. Again, these 
ranges can be obtained by solving a set of linear programming problems: 
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immuu
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Thus, when some fluxes cannot be calculated, the flux-spectrum provides a 
method to compute its ranges of values. Obviously, it is also possible to compute 
the flux-spectrum when the know fluxes are represented with an interval (as a 
previous step the extreme values of -Nm·vm need to be calculated). 
 
 
4. Results 
 
In (Llaneras et al., 2006), the presented methods have been applied to the central 
metabolism of CHO cells (Provost and Bastin, 2004). Including a 6x18 matrix P 
linking extracellular fluxes with intracellular ones, the extended system has 16 
metabolites (me) and 22 reactions (ne). 
 
4.1. Α-SPECTRUM AND. PARTIAL KNOWLEDGE 

(G), vFor example, when only v1 21 (CO2) and v20 (Q) are measured, the system is 
undetermined: the rank of Nu (16) is less than the number of unknown (18). 
Therefore the complete flux distribution cannot be determined by using MFA. 
Nevertheless, even when the flux distribution is partially unknown, the α-
spectrum can be computed by using the method presented in 3.1.1 (interval 
fluxes are given in Table 9). 
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Figure 3. α-spectrum computed from the complete flux distribution (●) and from 
a incomplete one (x). 
 
 
Table 1. Partially unknown flux distribution represented as a set of intervals 
(nM/(d x 109 cells)). 

(G) vv1 2- v19 v20 (Q) v21(CO2) v22
4.4305 [0,∞*] 1.186 2.5574 0 

 
 
4.2. FLUX-SPECTRUM 
As the system is undetermined, at least one flux cannot be uniquely determined. 
Moreover, there is not any calculable flux (matrix K, the kernel of N, has no null 
rows). Nevertheless, by using the concept of flux-spectrum it is possible to 
calculate the range of possible values for each non-calculable flux. 
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Figure 4. Exact flux distribution (x) and flux-spectrum computed from an partial 
flux distribution (●). 
 
 
Moreover, if a unique and exact value is needed and depending on the size of the 
ranges, the use of each range middle point as an estimation is a sensible 
approach. 
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5. Conclusion 
 
The translation of a metabolic flux distribution into an e. modes or e. pathways 
activity pattern has been investigated. A new approach to determine the α-
spectrum was presented. Additionally, a method to calculate the ranges of 
possible values for non-calculable fluxes was proposed, as a complement to 
MFA. 
 
 
Acknowledgements. This research has been partially supported by the Spanish 
Government (CICYT-FEDER DPI2005-01180). First author is recipient of a 
fellowship from the Spanish Ministry of Education and Science (FPU AP2005-
1442). 
 
 
References 
 
Klamt S, Schuster S, Gilles ED. (2002) Calculability analysis in underdetermined 

metabolic networks illustrated by a model of the central metabolism in 
purple nonsulfur bacteria. Biotechnol. Bioeng. 77(7):734-751. 

Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO. (2004) 
Comparison of network-based pathway analysis methods. Trends 
Biotechnol. 22(8):400-405. 

Poolman MG, Venkatesh KV, Pidcock MK, Fell DA. (2004) A method for the 
determination of flux in e. modes, and its application to Lactobacillus 
rhamnosus. Biotechnol. Bioeng. 88(5):601-612. 

Provost A and Bastin G. (2004). Dynamic metabolic modelling under the 
balanced growth condition. J. Process Control 14(7):717-728. 

Llaneras F, Picó J. (2006) The Linkage between flux distributions and 
elementary modes activity patterns: an interval approach. Internal Report. 
DISA, Technical University of Valencia. 

Sauer U. (2004) High-throughput phenomics: Experimental methods for mapping 
fluxomes. Curr. Opin. Biotechnol. 15(1):58-63. 

Schwarz R, Musch P, von Kamp A, Engels B, Schirmer H, Schuster S, Dandekar 
T. (2005) YANA - a software tool for analyzing flux modes. BMC 
Bioinformatics 6(1):135. 

Stephanopoulos GN, Aristidou AA, Nielsen J. (1998) Metabolic engineering: 
Principles and methodologies. San Diego: Academic Press. 

Wiback SJ, Mahadevan R, Palsson BO. (2003) Reconstructing metabolic flux 
vectors from e. pathways: Defining the alpha-spectrum. J. Theor. Biol. 
224(3):313-324. 

 



 59 

Towards a rational approach to metabolic engineering: 
Indirect Optimization Methods 
 
Marin-Sanguino A. a, Gonzalez-Alcón C. b, Voit E.O.c, and 
Torres N.V.dr

 
aDpto. Bioquimica y Biologia Molecular, Universidad de La Laguna, Spain, e-
mail: amarin@ull.es  
bDpto. Estadistica, Investigacion Operativa y Computacion, Universidad de La 
Laguna, Spain, e-mail: cgalcon@ull.es 
cDept. of Biomedical Engineering, Georgia Institute of Technology, USA, e-mail: 
eberhard.voit@bme.gatech.edu
dDpto. Bioquimica y Biologia Molecular, Universidad de La Laguna, Spain, e-
mail: ntorres@ull.es 
 
Keywords: Biochemical Systems Theory, Optimization, IOM, Geometric 
Programming. 
 
 
1. Abstract 
 
In this work we will present the family of Indirect Optimization Methods (IOM). 
Among the advantages of such methods are its computational efficiency and 
versatility. IOM are not limited to biochemical models and has also been applied 
to systems where also genetics or industrial modelling are involved (Marin-
Sanguino and Torres 2000). The main drawback of these methods are the need to 
approximate some of it’s constraints as single term power laws (monomials) in 
order to cope with them, which sometimes leads to violations of some 
constraints. As a possible answer to this problem, Geometric IOM is presented. 
This variant uses geometric programming instead of linear programming as the 
core solver in order to add flexibility to the standard linear IOM methods. The 
new method is applied to a simple theoretical model in order to illustrate the 
concepts involved and show some of its possibilities. 
 
 
2. Introduction 
 
One of the driving forces of systems biology is the need to understand 
biosystems as deeply as possible in order to obtain technological applications. 
Among the technologies that might arise from a better understanding of 
biological complexity, we find biotechnology and biomedicine. In these and 
many other applications, the aim is to modify the behaviour of part or a whole 
biological system in order to comply with certain specifications such as 
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metabolite overproduction, resistance to environmental conditions or operation 
within some limits that are considered to be healthy. 
In this endeavour, mathematical modelling based on high throughput data is a 
promising field that has received a great deal of attention. But biological models 
are often big and complex, which difficults their analysis. The optimal way of 
influencing their behaviour tends to be counter intuitive and far from trivial. The 
development of frameworks such as Biochemical Systems Theory (BST) 
(Savageau, 1969a-b, Voit 2000 ) and Metabolic Control Analysis has always paid 
a special attention to this problem, leading to different techniques for model 
driven improvement. 
The steadily increasing availability of good models of biotechnologically 
relevant systems opens the possibility of rational redesign of industrial strains to 
improve their performance. In order to achieve this, mathematical methods for 
the analysis of big non-linear systems are needed. Any method devised to deal 
with biological systems should have some features: 
 
1) It should scale well as the number of variables grows. 
2) It must be general enough to cope with the wide range of different components 

(metabolites, RNA, proteins,...) 
3) Quality tests should be provided to evaluate the viability and reliability of 

solutions. 
 
Among such are the Indirect Optimization Methods (IOM) (Voit 1992, Torres 
and Voit 2002). The aim of IOM is to find a steady state for the system that 
optimizes it's performance -usually maximizing a flux or flux ratio- while 
keeping the steady state  and guaranteeing cell viability. 
IOM methods search for a solution of model which  rely on the regular structure 
of s-systems, a formalism within Biochemical Systems Theory that 
 

∏∏ − ji,h

i
ji,g

ii xβxα=x&  
 
in the steady state can be rearranged as 

1=xx
β
α ji,hji,g

−∏  

 
Through a logarithmic transformation, these equations become linear which 
enables them to be used as constraints for linear programming. Together with the 
steady state constraints, IOM approaches allow setting further limits to the 
solutions such as establishing a range of variation to prevent some variables or 
fluxes to move too far away from their basal values, which can jeopardize cell 
viability. It is metabolic burden. Such burden can be considered of two sorts. On 
one hand, the total amount of protein present in the cell can be growth limiting. 
The cost of producing too much protein might be the cause for the instability of 
some mutations and the trend to lose some plasmids. On the other hand, the pool 
of metabolites must be added to the cell content in protein and other 
macromolecules in order to consider osmolarity issues and the activity of water. 
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For these reasons upper limits are often set to these or any other pools. As they 
are not linear in logarithmic coordinates, these constraints have to be 
approximated through power laws. The main problems when using IOM arises 
precisely due to these approximated constraints, as the obtained steady state is 
that of the approximated problem and not the original one. Therefore, IOM 
solutions are not global when applied with approximated constraints and 
sometimes lead to violations of the original constraints when the IOM solution is 
implemented in the original system. These difficulties have been addressed by 
dividing the problem in two linear phases (Marin-Sanguino and Torres 2003), 
iterative methods (Marin-Sanguino and Torres 2000) and  using additional 
constraints to estimate error (Xu, Shao and Xiu, 2005). These issues can be more 
effectively overcome due to the application of geometric programming. 
 
 
3. Theoretical 
 
Geometric programming (GP) problems have the following structure: 
 
Min P0(x) 
Subject to: 
Pi(x) < 1 i=1 ... n 
Qi(x) = 1 i= 1...m           (1) 
Qi(x)  must be monomials , also known as power law terms: 
Q(x)= a x1 b1 x2 b2 ... xn bn          (2) 
 
where all coefficient and exponents are positive real numbers (Zener, 1971). 
Pi(x) are posynomials, consisting in sums of several of the above mentioned 
monomials. Geometric programming shares many advantages with linear 
programming as they are both convex programming problems. Geometric 
programs can be solved quite efficiently and solvers are starting to become 
available (Koh et al 2006). For example, a geometric program of 1000 variables 
and 10000 constraints can be solved in less than a minute on a desktop computer 
(Boyd et al 2006). and it gets even better with sparse problems such as those 
found in metabolic engineering. Besides, optimal solutions found in GP are 
global (Boyd and Vanderberghe 2004). 
 
3.1. Case study 
We will illustrate the working of Geometric programming with a simple model 
of some genes coding for a linear pathway with feedback regulation on the 
reactions and gene expression. We will use a purely theoretical model with 
arbitrary units in which every variable is normalized such that its steady state 
value is one. 
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Figure 1. A linear pathway with the expression and regulation of its 
corresponding genes. 
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4. Results and Discussion 
 
The optimization of our test system, under conditions of a maximum total 
enzyme five times the basal level, yields the solutions presented in table 1. 
Applying the traditional IOM method,  an approximate solution is obtained that, 
not being the global optimum, yields the same flux with a negligible violation of 
the total enzyme constraint. Geometric IOM solution, not being too distant has 
been obtained in the same computation time and is guaranteed to be the global 
maximum flux attainable. Furthermore, the swiftness of IOM methods allows the 
possibility of solving the problem repeatedly for different constraint limits.  Fig 2 
shows the result of varying the maximum value of total metabolites pool.  This 
curve can be used as a guide when the total pool is suspected to be critical and 
yields the exact cost of reducing its level . It also shows clearly the futility of 
relaxing this limit beyond it’s basal level of two as no improvement is expected 
from such relaxation. 
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Table 1.  Results of optimizing the model with traditional and geometric IOM. 
 

 IOM GIOM 
x1 1.2 1.2 
x2 0.8833 0.9934 
x3 4.7844 5.1315 
x4 4.7326 4.7863 
x5 5.5205 5.0822 
x6 1 1 
x7 4.6095 5.1213 
x8 4.5597 4.7769 

5.5205 5.0822 x9 
total enzyme 15.0376 15 

Flux 303.6687 303.5257 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Substrate Optimal flux for different limits on the metabolites pool. 
 
 
5. Conclusion 
 
The IOM provide the versatility and speed needed for systems level analysis of 
biological systems. Their geometric variant keeps the advantages of the old 
versions while adding a more flexible structure and the posibility of obtaining 
global solutions in cases in which it was previously impossible. Further 
extensions of this methods such as iterative application of the geometric method 
or the use of recasting as a tool for optimizing a wider set of non-linear systems 
point to GIOM as a strong candidate for optimization in metabolic engineering. 
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1 Abstract. 
 
The Bioconductor project in Africais is an initiative for the collaborative creation 
of extensible software for computational biology and bioinformatics (CBB). 
Biology, molecular biology in particular, is undergoing two related 
transformations. First, there is a growing awareness of the computational nature 
of many biological processes and that computational and statistical models can 
be used to great benefit. Second, developments in high-throughput data 
acquisition produce requirements for computational and statistical sophistication 
at each stage of the biological research pipeline. The main goal of the 
Bioconductor project is creation of a durable and flexible software development 
and deployment environment that meets these new conceptual, computational 
and inferential challenges. We strive to reduce barriers to entry to research in 
CBB. A key aim is simplification of the processes by which statistical 
researchers can explore and interact fruitfully with data resources and algorithms 
of CBB, and by which working biologists obtain access to and use of state-of-
the-art statistical methods for accurate inference in CBB, This paper  describe 
details of our aims and methods, identify current challenges, compare 
Bioconductor to other open bioinformatics projects, and provide working 
examples. 
 
 
2. Introduction
 
The Bioconductor project in Africais IS an initiative for the collaborative 
creation of extensible software for computational biology and bioinformatics 
(CBB). Biology, molecular biology in particular, is undergoing two related 
transformations. First, there is a growing awareness of the computational nature 
of many biological processes and that computational and statistical models can 
be used to great benefit. Second, developments in high-throughput data 
acquisition produce requirements for computational and statistical sophistication 
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at each stage of the biological research pipeline.The main goal of the 
Bioconductor project in Africa is creation of a durable and flexible software 
development and deployment environment that meets these new conceptual, 
computational and inferential challenges, We strive to reduce barriers to entry to 
research in CBB. A key aim is simplification of the processes by which statistical 
researchers can explore and interact fruitfully with data resources and algorithms 
of CBB, and by which working biologists obtain access to and use of state-of-
the-art statistical methods for accurate inference in CBB. 
Among the many challenges that arise for both statisticians and biologists in 
Africa are tasks of data acquisition, data management, data transformation, data 
modeling, combining different data sources, making use of evolving machine 
learning methods, and developing new modeling strategies suitable to CBB. We 
have emphasized transparency, reproducibility, and efficiency of development in 
our response to these challenges. Fundamental to all these tasks is the need for 
software; ideas alone cannot solve the substantial problems that arise. 
 
Transparency. High-throughput methodologies in CBB are extremely complex, 
and many steps are involved in the conversion of information from low-level 
information structures to statistical databases of expression measures coupled 
with design and covariate data, Credible work in this domain requires exposure 
of the entire process. 
 
Pursuit of reproducibility. Experimental protocols in molecular biology are fully 
published lists of ingredients and algorithms for creating specific substances or 
processes. Accuracy of an experimental claim can be checked by complete 
obedience to the protocol. This standard should be adopted for algorithmic work 
in CBB. Portable source code should accompany each published analysis, 
coupled with the data on which the analysis is based. 
 
Efficiency of development. By development, we refer not only to the 
development of the specific computing resource but to the development of 
computing methods in CBB as a whole. Software and data resources in an open-
source environment can be read by interested investigators, and can be modified 
and extended to achieve new functionalities. The rest of this article is devoted to 
describing the computing science methodology underlying Bioconductor. The 
main sections detail design methods and specific coding and deployment 
approaches, describe specific unmet challenges and review limitations and future 
aims. 
 
 
3. Theoretical discussion 
 
3.1. Methodology 
The software development strategy we have adopted has several precedents. One 
of the major motivations for the project was the idea that for researchers in 
computational sciences "their creations/discoveries (software) should be 
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available for everyone to test, justify, replicate and work on to boost further 
scientific innovation"Open-source software is no longer viewed with prejudice, it 
has been adopted by major information technology companies and has changed 
the way we think about computational sciences. A large body of literature exists 
on how to manage open-source software projects: One of the key success factors 
is the Linux kernel  modular design, which allows for independent and parallel 
development of code in a virtual decentralized network. Developers are not 
managed within the hierarchy of a company, but are directly responsible for parts 
of the project and interact directly to build a complex system . Our organization 
and development model has attempted to follow these principles, In this section, 
we review seven topics important to establishment of a scientific open source 
software project and discuss them from a CBB point of view: language selection, 
infrastructure resources, design strategies and commitments, distributed 
development and recruitment of developers, reuse of exogenous resources, 
publication and licensure of code, and documentation. 
 
3.2. Language selection 
CBB poses a wide range of challenges, and any software development project 
will need to consider which specific aspects it will address.For the Bioconductor 
project we wanted to focus initially on bioinformatics problems.In particular we 
were interested in data management and analysis problems associated with DNA 
microarrays.This orientation necessitated a Programming environment that had 
good numerical capabilities, flexible visualization capabilities, access to 
databases and a wide range of statistical and mathematical algorithms. Our 
collective experience with R suggested that its range of well-implemented 
statistical and visualization tools would decrease development and distribution 
time for robust software for CBB. We also note that R is gaining widespread 
usage within the CBB community. Many other bioinformatics projects and 
researchers have found R to be a good language and toolset with which to work. 
Examples include the Spot system, MAANOVA and dChip. We now briefly 
enumerate features of the R software environment that are important motivations 
behind its selection 
 
3.3. Prototyping capabilities 
R is a high-level interpreted language in which one can easily and quickly 
prototype new computational methods. These methods may not run quickly in 
the interpreted implementation, and those that are successful and that get widely 
used will often need to be re-implemented to run faster. This is often a good 
compromise; we can explore lots of concepts easily and put more effort into 
those that are successful. 
 
3.4. Packaging protocol 
The R environment includes a well established system for packaging together 
related software components and documentation. There is a great deal of support 
in the language for creating, testing, and distributing software in the form of 
'packages' Object-oriented programming support. 
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3.5. WWW connectivity 
Access to data from on-line sources is an essential part of most CBB projects. R 
has a well developed and tested set of functions and packages that provide access 
to different databases and to web resources (via http,). and have aided our work 
towards creating an environment in which the user perceives tight integration of 
diverse data, annotation and analysis resources. 
 
3.6. Statistical simulation and modeling support 
Among the statistical and numerical algorithms provided by R are its random 
number generators and machine learning algorithms.These have been well tested 
and are known to be reliable.The Bioconductor Project has been able to adapt 
these to the requirement in CBB with minimal effort. 
 
3.7. Visualization support 
Among the strengths of R are its data and model visualization capabilities. Like 
many other areas of R these capabilities are still evolving. We have been able to 
quickly develop plots to render genes at their chromosomal locations, a heatmap 
function, along with many other graphical tools. 
 
3.8. Support for concurrent computation 
R has also been the basis for pathbreaking research in parallel statistical 
computing. Packages such as snow and rpvm simplify the development of 
portable interpreted code for computing on a Beowulf or similar computational 
cluster of workstations. These tools provide simple interfaces that allow for high-
level experimentation in parallel computation by computing on functions and 
environments in concurrent R sessions on possibly heterogeneous machines. 
 
3.9. Community 
Perhaps the most important aspect of using R is its active user and developer 
communities. R is undergoing major changes that focus on the changing 
technological landscape of scientific computing. Exposing biologists to these 
innovations and simultaneously exposing those involved in statistical computing 
to the needs of the CBB community has been very fruitful. 
 
3.10. Infrastructure base 
We began with the perspective that significant investment in software 
infrastructure would be necessary at the early stages. The first two years of the 
Bioconductor project have included significant effort in developing infrastructure 
in the form of reusable data structures and software/documentation modules (R 
packages). The focus on reusable software components is in sharp contrast to the 
one-off approach that is often adoptedTwo examples of the software 
infrastructure concepts described here are the exprSet class of the Biobase 
package, and the various Bioconductor metadata packages. 
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The adoption of designing by contract, object-oriented programming, 
modularization, multiscale executable documentation, and automated resource 
distribution are some of the basic software engineering strategies employed by 
the Bioconductor Project. 
 
3.11. Designing by contract 
In a designing by contract discipline, the provider of exprSet functionality must 
deliver a specified set of functionalities. Whatever object the provider's code 
returns, it must satisfy the exprSets contract. Among other things, this means that 
the object must respond to the application of functions exprs and pData with 
objects that satisfy the R matrix and data.frame contracts respectively. 
Satisfaction of the contract obligations simplifies specification of analysis 
procedures, which can be written without any concern for the underlying 
representations for exprSet information.A basic theme in R development is 
simplifying the means by which developers can state, follow, and verify 
satisfaction of design contracts of this sort. 
 
3.12. Object-oriented programming 
There are various approaches to the object-oriented programming methodology. 
We have encouraged, but do not require, use of the so-called S4 system of formal 
classes and methods in Bioconductor software. The S4 object paradigm is similar 
to that of Common Lisp and Dylan. The S4 system is a basic tool in carrying out 
the designing by contract discipline, and has proven quite effective. 
 
3.13. Modularization 
The notion that software should be designed as a system of interacting modules is 
fairly well established. Modularization can occur at various levels of system 
structure. We strive for modularization at the data structure, R function and R 
package levels. 
 
3.14. Multiscale and executable documentation 
Accurate and thorough documentation is fundamental to effective software 
development and use, and must be created and maintained in a uniform fashion 
to have the greatest impact. We inherit from R a powerful system for small-scale 
documentation and unit testing in the form of the executable example sections in 
function-oriented manual pages. We have also introduced a new concept of 
large-scale documentation with the vignette concept.Users of a package have 
interactive access to all vignettes associated with that package.The Sweave 
system  was adopted for creating and processing vignettes. Once these have been 
written users can interact with them on different levels. transformed documents 
are provided in Adobe's portable document format (PDF) and access to the code 
chunks from within R is available through various functions in the tools 
package.However new users will need a simpler interface. 
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3.15. Automated software distribution 
The modularity commitment imposes a cost on users who are accustomed to 
integrated 'end-to-end' environments. Users of Bioconductor need to be familiar 
with the existence and functionality of a large number of packages. To diminish 
this cost, we have extended the packaging infrastructure of R/CRAN to better 
support the deployment and management of packages at the user level. 
Automatic updating of packages when new versions are available and tools that 
obtain all package dependencies automatically are among the features provided 
as part of the reposTools package in Bioconductor. 
 
3.16. Other open-source bioinformatics software projects 
Bioinformatics Foundation supports projects similar to Bioconductor that are 
nominally rooted in specific programming languages. BioPerl, BioPython and 
BioJava are prominent examples of open-source language-based bioinformatics 
projects. 
 
 
4. Conclusion 
 
Most of the projects in CBB require a combination of skills from biology, 
computer science, and statistics. Because the field is new and there has been little 
specialized training in this area in Africa, it seems that there is some substantial 
benefit to be had from paying attention to training. From the perspective of the 
Bioconductor project, In conclusion we would like to note that the Bioconductor 
Project presently in Africa has many developers, most  of whom are authors of 
different paper, and all have their own objectives and goals. The views presented 
here are not intended to be comprehensive nor prescriptive but rather to present 
our collective experiences and the authors' shared goals. In a very simplified 
version these can be summarized in the view that coordinated cooperative 
software development is the appropriate mechanism for fostering good research 
in CBB in Africa. 
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1. Abstract 
 
In this contribution, we present a systematic methodology to detect bifurcations 
in biochemical networks. A graphical description of the biochemical networks 
based on the theory of Feinberg (1979) allows us to determine the different 
regions of the parameter space giving room to complex behaviour by varying a 
surprisingly reduced number of parameters. This approach can be of interest in 
problems such as model validation as well as parameter estimation thus 
contributing to unravel complex biochemical behaviour and biological robustness 
(Barkal and Leibler, 1997). 
 
 
2. Introduction 
 
Modelling regulatory networks and signalling pathways is a challenging topic in 
Systems Biology. The phenomenological model of ordinary differential 
equations representing a biochemical network allows us not only to predict and 
evaluate the dynamics of cellular processes, but further monitoring and even 
controlling the dynamics at the cell level. 
The highly nonlinear nature of biochemical network models may entail 
qualitative changes in the behaviour of the system as the values of the parameters 
(kinetic constants, enzyme concentrations etc) are perturbed. It is known in fact 
that biochemical systems can exhibit nonlinear complex behaviour such as 
multistability or oscillatory responses for certain ranges of the parameters, and 
that the role of this complex phenomena is crucial in the living organisms 
behaviour (Hasty et al, 2002). It seems essential for ensuring the robustness of a 
biochemical network model to explore the qualitative features (periodicity, 
stability, etc) of the system solution set for different ranges of parameter values. 
This kind of analysis can be performed using classical bifurcation techniques 
(Angeli et al, 2004) provided that the number of critical parameters is small. 
Obviously, this is not the case of most biochemical networks, where a large 
number of parameters are involved. An alternative approach (Chickarmane et al, 
2005) is stated in terms of an optimization problem, which due to the lack of 
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physical insight forces us to explore huge search-spaces, needing as well a 
different objective function for each kind of bifurcation. 
In this contribution we propose a systematic methodology to set up the regions of 
the parameter space where bifurcations appear. In (Otero-Muras et al, 2006) it is 
shown how almost the totality of metabolic and signalling pathways and 
regulatory networks can be accommodated within the graphical description 
provided by the Chemical Reaction Network Theory developed by Feinberg, 
Jackson and Horn (Feinberg, 1979). The structure contained in this description 
enables us to parameterize the curve of solutions of the model as a function of a 
reduced number of parameters, whose variation will determine the regions in the 
space of original kinetic parameters that may give room to multiplicities, and 
where the mass conservation laws will provide us with the physical insight to 
drastically reduce the search space. 
This methodology is illustrated in the well-known Edelstein network, which, as a 
candidate to undergo interesting complex behaviour has been the object of 
previous studies (Chickarmane et al, 2005). 
 
 
3. The theoretical formalism 
 
3.1. The structure and dynamics of biochemical reaction networks. The 
dynamic evolution of a chemical or biochemical network consisting of m reacting 
species with concentrations denoted by the vector C ∈ Rm is at a high extent 
conditioned by the topological structure of the network. Such network can be 
represented by a n-node graph where the edges correspond with the reaction 
steps taking place and the nodes (known as complexes) include the reactants or 
products involved. 
In this representation, each node or complex Χi

c is characterized by a set of 
integer elements Ιi with ordinality in n which denotes the nodes reached from Χi

c 
plus a pair of vectors [yi, εi]. The column vector  y ∈ Nm

i  indicates the 
stoichiometry associated with the complex, while the unitary vector ε n∈ Ni  is 
composed by ε  for j=1,...,n being δ=δij ij ij the standard Kronecker delta. The 
complete set of edges in the graph is constructed by connecting i→ Ιi for all 
j=1,...,n. 
 

 
Figure 1. Mechanism and corresponding graph for Edelstein network. 
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Reaction rates, and in particular those obeying the mass action law, are 
incorporated in the graph description by associating to each node a scalar 
function of the form: ( ) m

i C C +Ψ = → R +R

 

1

( ) ij
m

y
i i

j

C C
=

Ψ = ∏       (1) 

 
>0 for every edge leaving i and going to j ∈ Ιand a set of positive parameters kij i. 

Keeping with this description the dynamic evolution of concentrations can be 
formally encoded into the following set of ordinary differential equations: 
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where Y ∈  Nm×n is the stoichiometric matrix, with columns being the vectors yi, 
and AkΨ(C) is of the form: 
 

[ ] (
1 1

( ) ( )
n n

j
k i i

i j
A C C k ε ε

= =

Ψ = Ψ −∑ ∑      (3) 

 
This structure can also incorporate open networks by including an extra-node 
which corresponds with the environment and has a null stoichiometric vector y0. 
For details see (Otero-Muras et al, 2006). Attending to the connectivity 
properties of the networks, the so called linkage classes have an equivalence in 
graph theoretic terms in the components or “isolated sub-graphs”. Each linkage 
class i is accompanied by a vector ω n

i ∈ N  with components being unity at those 
places in the vector which correspond with the complexes present in the linkage 
class, and zero otherwise. A linkage class is said to be weakly reversible if the 
sets for every Ιi in the linkage class are non-empty. We restrict ourselves to the 
weakly reversible class of reaction networks (i. e. those constituted by weakly 
reversible linkage classes) as these are the only ones which accept strictly 
positive equilibria (Feinberg, 1979). The number and structure of the linkage 
classes can be obtained algebraically from the structure of the graph. Formally, 
the subspace spanned by ω  is defined for weakly reversible networks as: i
 

{ / 0 1,...,i k iA for iω ωΛ = = =  l }       (4) 
 
Note that since Ψ is of the form (1), we have also that: 
 

        (5) ( ) Tln C Y ln CΨ =

 
where the natural logarithm operator ln (•) acts on any vector element-wise. 
We end up the formal description of reaction networks by defining the 
stoichiometric subspace as that spanned by the columns of matrix (YAK)T and the 
reaction simplex constituted by the intersection of the positive of the 
concentration space with the family of linear varieties generated by the 
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stoichiometric subspace. Formally the simplex is defined with respect to a 
reference concentration vector C as: 0 
 

{0 0( ) / ( ) 0  0m T T
kC C B C C with A Y B+Ω = ∈ − = =R }     (6) 

 
The reaction simplex can be physically interpreted as the set of convex 
constraints imposed by the conservation of mass. In this way, for a given C0, the 
vector M=BTC0 remains constant for any initial condition C (0) ∈ Ω(C0). 
 
3.2. The subspaces associated to the equilibrium points. The trajectories of a 
kinetic system evolve in the reaction simplex (6), and consequently the equilibria 
are located in this linear manifold belonging to the positive orthant of the 
concentration space. Looking at the structure of eqn (4), every equilibrium point 
C* must satisfy: 
 

[ ]· ( *)kY A C 0Ψ =       (7) 
 
Attending to the nature of the vector Ψ, the relation (7) holds for two different 
situations. In first instance, it holds for such vectors Ψ belonging to the null 
space of the matrix Ak. This condition defines the following subspace D0: 
 

{ }0 / ( ) 0n
kD x A x= ∈ R =      (8) 

 
{ ( )} 1i i

X k
l

which can be spanned by a basis = consisting only of non-negative 
elements and with dimension equal to the number of linkage classes.  Stationary 
solutions C* connected with this subspace turn out to be unique and stable. On 
the other hand, the relation (7) also holds for such vectors Ψ whose image under 
Ak is in the null space of the matrix Y. This latter condition corresponds with the 
subspace: 
 

( ) ( ){ }n
kD x / A x null Y Im Aδ = ∈ ∈ ∩R k

    (9) 
 
which is known in CRNT as the deficiency subspace. Its dimension (the 
deficiency of the network) can be easily computed from the graph by the formula 
δ = n - l - s, where n is the number of complexes, l the number of linkage and s 
the dimension of stoichiometric subspace defined in 3.1.  If the deficiency of a 
network is zero, the subspace Dδ  contains only the zero vector and the only 
equilibrium solutions accepted are those for which Ψ(C*) belongs to D0. The 
equilibrium points are then unique and stable despite the values taken by the 
kinetic parameters. This remarkable result is part of the Deficiency Zero 
Theorem (Feinberg, 1979). 
 
3.3. The family of equilibrium solutions. Provided the conditions on the 
subspaces of R *n where a stationary vector x=Ψ(C ) must belong, there is another 



 

requirement over x imposed by eqn (1), that is, x must be also the image of a 
vector of concentrations C underΨ. The simultaneous fulfilment of eqns (7) & 
(5) is necessary and sufficient condition for being C
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* a stationary solution of (2). 
The family of all possible equilibrium solutions must then be contained in the 
following two sets respectively connected with the subspaces D0 and Dδ: 
 

( ) ( ){ }0 0* m * T * *
kS C / ln C Y lnC and A C+ ⎡ ⎤= ∈ Ψ = Ψ =⎣ ⎦R       (10) 

( ) ( )
1
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δ

δ α+

=

⎧ ⎫⎡ ⎤= ∈ Ψ = Ψ =⎨ ⎬⎣ ⎦⎩ ⎭
∑R   i

   (11) 

 
{ } 1i i
w δ

=where  is a basis for Dδ and αi are real numbers. A basis for Dδ can be easily 
computed from Y and Λ (3) by noting that each element of the basis is orthogonal 
to Im (YT)+span (Λ). As follows from 3.2, any possible multiplicity must be 
found in the set Sδ. 
 
3.3. Systematic parameterization of the family of equilibrium solutions.  
Considering the expressions (10) and (11) the family of equilibrium solutions can 
be systematically parameterized by a reduced set of scalars (α1,…,αδ) as follows: 
let us consider a deficiency 1 weakly reversible reaction network with l linkage 
classes and n ∑ 1 ii

n n
=

=
l

1,…,ni,…,nl complexes in each class so that . For convenience 

we order the complexes consecutively denoting ∑ 1

i
jj

n
=  for i=1,...,l the last 

complex in each class. Then every positive element x0 ∈ D can be expressed as: 0 
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1

0
1

i
jj

i n
i

x X k
==

= Ψ
∑∑

l        (12) 

{ ( )} 1i i
X k

=

l

 is a basis of Dwhere 0 which in general depends on the parameter set k 
and are scalar functions of the form (1). Every positive element x ∈ D1

i n jj∑ =
Ψ

δ can 
be written in terms of (12) as: 
 

( )0 0x x k ,C F( k )α= + >       (13) 
 
where the parameter dependent vector F (k) is such that Ak(F)=w. Note that this 
expression is valid for solutions in S0 adjusting α to zero.  The eqn (5) allow us to 
formulate a second set of algebraic relations: 
 

( ) ( )0
Tln x k ,C F k Y lnCα+ =⎡ ⎤⎣ ⎦      (14) 

 
that combined with (13) completes the parameterization of the curve of solutions 
as: 
 

      (15) 0H( k ,C, )α =
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4. Application case: The Edelstein network 
 
The mechanism of the Edelstein Network is illustrated with its associated graph 
in Fig. 1. The stoichiometric matrix containing the coefficients of the species A, 
B and C in each of the five nodes is: 
 

1 2 1 0 0
0 0 1 0 1
0 0 0 1 0

Y
⎡
⎢= ⎢ ⎥
⎢ ⎥⎣ ⎦

⎤
⎥       (16) 

 
For this network, the stoichiometric subspace Im (YAk) is two-dimensional and 
the associated reaction simplex will be the plane in P3+ defined by (6) with B=[0 
1 1]. The deficiency of the network is one (δ=5-2-2=1) and therefore, both the 
basis of Dδ and the set of scalars used as variation parameters will be one-
dimensional. Following 3.3 the basis of Dδ obtained is w = [1 -1 1 0 1], and the 
expression of the parameterized curve of solutions (15) results: 

 
2

1 1 1

2 1 2 3

3 3 2

p C p
H( C, p, ) p C C C

C p C

α
α α

α

⎡ ⎤− + −
⎢ ⎥= − + −⎢ ⎥
⎢ ⎥− +⎣ ⎦

      (17) 

 
where the kinetic constants have been grouped in three parameters p =k1 12/k21, 
p2=k34/k43 and p3=k45/k54. Starting from (17) one can obtain the following 
expressions of the concentrations: 
 

2
1 1

1 2 3 3
3 2 1

4 2
2

p p
C , C , C p C

p p C
α α α± ± ±

±

± +
= = =

−
            2

± −    (18) 

 
According to (18) one concludes, in first instance, that the solution C ∈ P3 will 
exist only while α ≥ α0 with α0 =-p1

2/4.  On the other hand, by setting p3=p2C1
± 

one obtains the critical value α* which determines three regions of the parameter 
space with different qualitative behaviour, as depicted in Fig. 3. 
The behaviour on the boundary between regions I and II is illustrated in Fig. 2 
(a). In this boundary the solutions belong to the subspace D0 and, as shown in the 
figure, no multiple solutions can appear. By analyzing Fig. 2 one can discard, 
within each region, the intervals of α where positive solutions do not exist, and 
among those intervals containing positive solutions, check whether a necessary 
condition for the existence of multiplicities holds. The equilibrium points are 
intersections between the curve of solutions and the reaction simplex, and one 
can then establish conditions over the relative positions of both the stoichiometric 
subspace and the curve (15) in order to detect complex behaviour. Multiplicities 
occur if BT·∇α(H)=0 for some value of α. In the Edelstein network this relation is 
equivalent to the condition dC2/dα=1/(1+p3)=-dC3/dα, that can only be fulfilled 
(as can be concluded from Fig. 2) in the region III of the parameter space (for 
values of α between α0 and α*). To illustrate the validity of the methodology 



 77 

proposed, we have chosen an arbitrary set of parameters belonging to R.III and 
depicted in Fig. 4 the solution curve (17) and the reaction simplex (6) with C0 
=30, showing how, in fact, multiplicities appear. 
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Figure 2. Equilibrium solutions as a function of α for the different regions in the 
parameter space. The grey lines represent C+ - and the black lines correspond to C . 
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Figure 3. Parameter space in 
logarithmic scale. The space is 
divided in three regions of distinct 
qualitative behaviour (R.I, R.II and R. 
III)  

Figure 4. Intersections between the 
curve of solutions and the reaction 
simplex for the Edelstein Network 
(p1=8.5, p2=1 p3=0.2)  
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5. Conclusions and future work 
 
We have presented a systematic methodology to detect bifurcations in 
biochemical networks.  The variation of a reduced set of parameters α (orders of 
magnitude lower than the actual set of k) in the algebraic equations representing 
the curve of solutions, determine the regions of the space of parameters k 
susceptible of complex behaviour, where further conditions on the relative 
position of the curve and the simplex will be checked to set up the regions giving 
room to multiplicities. Our future aim is to build up from this methodology an 
implementable algorithm. 
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1. Abstract 
 
ExtraTrain is a new database for exploring Extragenic and Transcriptional 
information in prokaryotic organisms. Transcriptional regulation processes are 
the principal mechanisms of adaptation in prokaryotes. In these processes, the 
regulatory signals located in DNA extragenic regions and the regulatory proteins 
are the key elements involved. As all extragenic spaces are putative regulatory 
regions, ExtraTrain covers all extragenic regions of available genomes and all 
regulatory proteins included in the UniProt database corresponding to bacteria 
and archaea. ExtraTrain provides integrated and easily manageable information 
for 679816 extragenic regions and for the genes delimiting each of them. 
ExtraTrain supplies a tool to explore extragenic regions, named Palinsight, 
oriented to detect and search palindromic patterns. This interactive visual tool is 
totally integrated in the database, allowing the search for regulatory signals in 
user defined sets of extragenic regions. The 26046 regulatory proteins included 
in ExtraTrain are classified in 16 families following the InterPro criteria. The 
information about regulators includes manually curated sets of references 
specifically associated to regulator entries. 
ExtraTrain is especially useful to get insight in transcriptional regulatory 
networks of bacteria. ExtraTrain database is available at 
http://www.era7.com/ExtraTrain/. 
 
 
2. Introduction 
 
The study of transcriptional regulatory networks is a challenging task that 
requires the analysis of transcription factors and their binding sites. TRANSFAC 
database (Matys V et al, 2003) compiles eukaryotic cis-acting regulatory DNA 
elements and trans-acting factors covering from yeast to humans. However, a 
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database for bacteria and archaea with a similar global approach it is not 
available. We can find information dealing with prokaryotic transcriptional 
regulation in RegulonDB (Salgado H et al, 2004) but it is centred in the network 
of transcriptional regulation in Escherichia coli K-12. 
Eukaryotic transcription factors usually bind a sufficiently numerous set of 
binding sites in a genome, allowing the determination of a motif for the DNA 
binding site for every transcription factor. Some comprehensive tools as 
PromoterPlot (Di Cara et al, 2005), MatInspector (Cartharius K et al, 2005), 
TOUCAN (Aerts S et al, 2005), EZ-Retrieve (Zhang H et al, 2002), P-Match 
(Chekmenev DS et al, 2005) or BEARR (Vega VB et al, 2004) are specifically 
oriented to the extraction and analysis of regulatory regions of mammalian genes. 
In contrast, in prokaryotes the majority of the regulators are very specific and 
usually have either just one DNA binding site or a very limited number of them 
in each genome and hence, it is not possible the definition of a DNA binding 
motif using data from only one genome. However, the increasing amount of 
available genomes of bacteria and archaea opens new possibilities for the 
definition of DNA binding motifs using the information about binding sites of 
orthologous proteins from different genomes. ExtraTrain follows an integrative 
approach with a special focus on DNA extragenic regions as the target of 
regulatory proteins, providing a new platform for analyzing transcriptional 
regulatory networks in prokaryotes. ExtraTrain includes all extragenic regions 
corresponding to all completely annotated genomes of bacteria and archaea 
available at NCBI (Pruitt KD et al, 2005) and all regulatory proteins included in 
UniProt (Bairoch A et al, 2005) belonging to all the most significant families of 
transcriptional regulatory proteins (excluding sigma factors) defined in 
prokaryotes. 
 
 
3. Theoretical 
 
In ExtraTrain the availability of integrated data about regulatory proteins and the 
extragenic regions as their putative targets facilitates the work for the extraction 
and definition of transcriptional regulatory networks between proteins. In 
response to the need of integration of biological databases we have adopted the 
UniProt definition for the regulatory protein entries, based solely on amino acid 
sequence. However, the function and regulation of a protein does not only 
depend on its sequence, but also on its genetic context. Thus, two genes encoding 
exactly the same protein but with different regulatory signals in their upstream 
regions, can play different functional roles in an organism.  Moreover, two 
identical genes with identical upstream extragenic regions can play different 
roles if they belong to different organisms because the regulatory network for 
each of them can be different. In each ExtraTrain regulatory protein entry the 
different genetic contexts can be explored clicking on the extragenic regions 
listed in the section “UPSTREAM extragenic regions corresponding to this 
protein”. This strategy allows us both to contemplate the genetic context and to 
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maintain only one entry for each protein, preserving thus a complete integration 
with Uniprot. 
 
 
4. Experimental 
 
Programs in Java have been developed for the task of constructing and 
reconstructing the automatically acquired data of ExtraTrain database with raw 
data from UniProt and NCBI genome database. 
ExtraTrain runs on a server having Apache as web server, MySQL as database 
management system and Macromedia ColdFusion as Application Server. 
The interactive tool to explore extragenic sequences (Palinsight) has been 
developed using Macromedia Flash. 
 
 
5. Results and Discussion 
 
Content of the ExtraTrain database 
i Extragenic regions. All DNA extragenic regions and the information of the 
upstream and downstream genes of available genomes of bacteria and archaea 
are included in ExtraTrain. We have included not only the extragenic regions 
corresponding to regulatory proteins but all extragenic regions of each genome. 
Thus, each regulatory protein can be analyzed in its genetic context having 
available all its possible DNA targets. ExtraTrain includes data corresponding to 
the 230 genomes available at NCBI on 11 July 2005. 
i Regulatory proteins. The set of proteins was extracted from 10-5-2005 release 
of UNIPROT (SwissProt +TrEMBL) database. The 26046 proteins are classified 
in 16 families: AraC / XylS , ArsR ,  AsnC ,  Cold shock domain (CSD) ,  CRP-
FNR ,  DeoR ,  GntR ,  IclR ,  LacI ,  LuxR ,  LysR ,  MarR ,  MerR ,  NtrC / FIS 
,  OmpR and  TetR. We have followed the InterPro definition of each family 
(Mulder NJ et al, 2005). 
i BLAST similarity. “All against all” BLAST analysis has been carried out 
within the members of each family of regulators. These results are stored in the 
database allowing fast access to similarity data. It also allows us to offer the 
possibility of selecting a set of extragenic regions upstream BLAST similar 
regulators. 
i References. ExtraTrain includes a set of references extracted from Medline 
and manually curated by experts. These references are associated with specific 
protein entries of the database, with specific families or with other ExtraTrain 
items. 
i Textual knowledge. ExtraTrain offers a system for the incorporation of 
knowledge by scientists. Each knowledge unit is always associated to a Medline 
reference and can be associated to one of eight different fields: function, 
regulated genes, regulatory network, 3D-structure, pathogenicity and virulence, 
mutations, DNA-binding, effectors and applications. Each input of knowledge is 
signed by the contributor. 
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We have established the connexion between each regulatory protein and all their 
available genetic contexts. It allows to obtain for each protein the different 
extragenic regions that have been found upstream its corresponding gene in all 
available genomes. 
The ExtraTrain user interface provides searching tools for managing extragenic 
regions, transcription regulators, references and knowledge units (Pareja E et al, 
2006). In addition ExtraTrain offers an interactive visual tool for palindromic 
pattern detection named Palinsight (Pareja E et al, 2006). Palinsight is a viewer 
for manual edition and comparison of extragenic sequences. We have 
incorporated to Palinsight a basic pattern searching tool to facilitate the task of 
manual alignment of DNA patterns in sequences. Palinsight is a palindromicity 
viewer useful in many experimental design tasks as design of mutations for the 
analysis of fundamental bases intervening in protein interaction or footprinting 
experiments. 
ExtraTrain is especially oriented to experimentalists working with specific 
transcription factor with only one or two binding-sites in the genome. The usual 
pattern discovery algorithms do not work if the user does not provide around 20 
sequences containing the common pattern.  Usually these sequences may belong 
to the same genome allowing the algorithm to work with the same background 
sequence. If we search a common pattern in extragenic regions corresponding to 
very different organisms the background sequence is very difficult to model. 
In bacteria and archaea the majority of the transcription factors are extremely 
specific and bind only one or two binding sites in the genome. Considering that 
bacterial transcriptional regulators usually autoregulate their own expression, it is 
probable to find similar signals in the DNA regions upstream a set of similar 
transcriptional regulatory proteins. For each transcription factor ExtraTrain 
allows the user to directly select the promoter regions of its corresponding 
BLAST similar proteins. Then, with a simple click, these regulatory DNA 
regions are sent to Palinsight allowing their visualization and comparison. 
Palinsight facilitates the search of shared palindromic patterns in this set of 
sequences and hence, is a tool to assist in the discovery of putative binding-sites. 
Using Palinsight the user can clusterize the sets of proteins by the presence of 
shared patterns in their regulatory regions. In addition, ExtraTrain offers the 
knowledge units and references associated to each regulatory protein 
corresponding to this selected set of regulatory regions, helping in the search of 
the biological sense of the clusters. 
ExtraTrain can be useful in the search of a DNA pattern specific for the binding 
of regulatory proteins belonging to a specific family of regulators. Many families 
of regulators are characterized by a dimeric three-dimensional structure that 
matches with a DNA palindromic pattern at the DNA-protein interface. 
Palinsight can help in the analysis of the features of the DNA-binding sites of the 
members of a family of regulators. 
ExtraTrain is complementary with the set of available useful high quality tools 
for pattern discovery (Tompa M et al, 2005). In a recent assessment of motif 
discovery algorithms ( Hu J et al, 2005) the authors conclude that it is important 
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to analyze not only the best scored hit but the set of better scored hits. The set of 
better scored hits obtained using several pattern discovery tools can be analyzed 
manually in Palinsight to refine the binding-site definition. 
 
 
6. Conclusion 
 
ExtraTrain provides a tool for managing extragenic sequences of bacteria and 
archaea, especially the extragenic regions related with transcription factors. In 
addition ExtraTrain provides a palindromicity viewer for visual comparison of 
extragenic regions.  ExtraTrain integrates data and tools to manage extragenic 
regions and transcription factors and hence can be especially useful for 
experimentalists working in transcriptional regulatory networks. 
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1. Abstract 
 
In this contribution we consider the problem of parameter estimation (model 
calibration) in nonlinear dynamic models of biological systems. Due to the 
frequent ill-conditioning and multi-modality of many of these problems, 
traditional local methods usually fail (unless initialised with very good guesses of 
the parameter vector). In order to surmount these difficulties, global optimisation 
(GO) methods have been suggested as a robust alternative. Currently, 
deterministic GO methods can not solve problems of realistic size within this 
class in reasonable computation times. In contrast, certain types of stochastic GO 
methods have shown promising results (Moles et al, 2003), although the 
computational cost remains high. Banga et al (2003) and Rodríguez-Fernández et 
al. (2005) have presented hybrid stochastic-deterministic GO methods which can 
reduce computation time by one order of magnitude while guaranteeing 
robustness. 
Here we present a novel metaheuristic for this class of problems, inspired by 
recent developments in the field of operations research (Martí, 2006). Results for 
a challenging benchmark problem are also presented, showing an excellent 
compromise between robustness and efficiency. A critical comparison with 
respect to the previous (above mentioned) successful methods is made, indicating 
that the new metaheuristic can decrease computation time very significantly (up 
to two orders of magnitude) while ensuring convergence to the global solution. 
The application of this novel metaheuristic to the related problem of optimal 
design of dynamic experiments is also discussed. 
 
 
2. Introduction 
 
Building sound dynamic models of biological systems is a key step towards the 
development of predictive models for cells or whole organisms. Such models can 
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be regarded as the keystones of Systems Biology (Wolkenhauer, 2001), 
ultimately providing scientific explanations of the biological phenomena. 
When building mathematical models one starts from the definition of the purpose 
of the model and uses the a priori available knowledge to choose a model 
framework and to propose a model structure. This model contain parameters and 
we need to know if is it possible to uniquely determine their values 
(identifiability analysis) and if so, to estimate them with maximum accuracy. 
This leads to a first working model that must be validated with new experiments, 
revealing in most cases a number of deficiencies. In this case, a new model 
structure and/or a new experimental design must be planned, and the process is 
repeated iteratively until the validation step is considered satisfactory (Walter 
and Pronzato, 1997). 
In this work, we will focus on the steps of parameter estimation and optimal 
experimental design, assuming the structure of the non-linear dynamic model as 
given. Parameter estimation (also known as the inverse problem) aims to find the 
parameters of the model which give the best fit to a set of experimental data. 
Optimal experimental design (OED) aims to devise the dynamic experiments 
which provide the maximum information content for subsequent non-linear 
model identification, estimation and/or discrimination. In this contribution, our 
main objective has been to present a novel global optimisation metaheuristic to 
be used in the steps of parameter estimation and OED, in order to reduce the 
large computational cost of the previous methods while preserving robustness. 
 
 
3. Theoretical 
 
3.1. PARAMETER ESTIMATION IN NONLINEAR DYNAMIC 
BIOLOGICAL MODELS 
Estimating the parameters of a nonlinear dynamic model is much more difficult 
than for the linear case, as no general analytic result exists. Biological models are 
often dynamic and highly nonlinear, thus, in order to find the estimates, we must 
resort to nonlinear optimization techniques where a measure of the distance 
between model predictions and experimental data is used as the optimality 
criterion to be minimized. 
The criterion selection will depend on the assumptions about the data disturbance 
and on the amount of information provided by the user. The Maximum 
Likelihood Estimator maximizes the probability of the occurrence of the 
observed measurements. In this work we make the assumption that the residuals 
are normally distributed and independent with the same variance, then the 
maximum likelihood criterion is equivalent to the least squares and we aim to 
find a set of parameters which minimizes the sum of squared residuals of all the 
responses (Battes and Watts, 1988). This is subject to the dynamics of the system 
plus possibly other algebraic constraints. The parameters are also subject to 
upper and lower bounds. This formulation is that of a non-linear programming 
problem (NLP) with differential-algebraic constraints. 
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When estimating parameters of dynamical systems a number of difficulties may 
arise, like e.g. convergence to local solutions if standard local methods are used, 
very flat objective function in the neighborhood of the solution, over-determined 
models or badly scaled model functions (Schittkowski, 2002). Due to the 
nonlinear and constrained nature of the systems dynamics, these problems are 
very often multimodal (non-convex). Thus, traditional gradient based methods, 
may fail to identify the global solution. Moreover, in the presence of a bad fit, 
there is no way of knowing if it is due to a wrong model formulation, or if it is 
simply a consequence of local convergence. Thus, there is a distinct need for 
using GO methods which provide more guarantees of converging to the globally 
optimal solution. 
 
3.2. OPTIMAL EXPERIMENTAL DESIGN IN NONLINEAR DYNAMIC 
BIOLOGICAL MODELS 
Performing experiments to obtain a rich enough set of experimental data is a 
costly and time-consuming. The purpose of OED is to devise the necessary 
dynamic experiments in such a way that the parameters are estimated from the 
resulting experimental data with the best possible statistical quality. 
Mathematically, the OED problem can be formulated as a dynamic optimisation 
problem where the objective is to find a set of input variables (controls) for the 
dynamic experiments in order to optimise the quality of the estimated parameters 
in some statistical sense. Scalar functions of the Fisher Information Matrix (FIM) 
evaluated at the nominal parameters are used as OED criteria for increasing the 
practical identifiability of the model parameters from experimental data. 
Different so-called optimal design criteria are discussed in the literature (e.g. 
Vanrolleghem and Dochain, 1998). 
Numerical solutions can be obtained using direct methods, which transform the 
original problem into a NLP via parametrizations of the controls and/or the 
states. However, because of the frequent non-smoothness of the cost functions, 
the use of gradient-based methods to solve this NLP might lead to local 
solutions. Stochastic GO methods were presented as robust alternatives by Banga 
et al. (2002), who illustrated its usefulness considering a small bioreactor case 
study. Here, we have extended that framework for the more demanding case of 
biochemical pathways. 
 
3.3. GLOBAL OPTIMISATION METHODS: A NOVEL METAHEURISTIC 
Global optimization methods can be roughly classified as deterministic, 
stochastic and hybrid strategies. Currently, no deterministic algorithm can solve 
global optimization problems of the class considered here with certainty in finite 
time. However, many stochastic methods can locate the vicinity of global 
solutions in modest computational times although they require too many 
evaluations of the objective function especially if a large solution accuracy is 
required. In order to surmount this difficulty, we have recently proposed a hybrid 
method (Rodriguez-Fernandez et al., 2006) that speeds up these methodologies 
while retaining their robustness. However, computational times were still rather 
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significant, especially if one considers possible application to larger scale 
problems. 
To further increase computational efficiency, in this work we present a novel 
metaheuristic based on modifications of Scatter Search (Martí, 2006), combined 
with various local methods. The justification for choosing and implementing this 
algorithm is that shown in a recent review comparing a number of GO solvers 
over a large set of constrained GO problems (Neumaier et al, 2005), where the 
solver OQNLP (based on Scatter Search) proved to be the best among all the 
stochastic solvers. 
Scatter Search, when the local search is activated, can be defined as a hybrid 
method since it combines a global search with an intensification (i.e. local 
search). The algorithm uses different heuristics to efficiently choose suitable 
initial points for the local search, based on merit and distance filters as well as a 
memory term. This feature helps to overcome the problem of switching from 
global to local search since the algorithm does this work by itself. 
A Scatter Search framework in a five-step template is given by Martí (2006). 
Differences among Scatter Search implementations are based in the level of 
sophistication of these steps. In our implementation, named SSm (Scatter Search 
for Matlab), we have added some advanced features including mechanisms to 
avoid flat zones, a new solution combination method, a new strategy for 
rebuilding the set of the elite solutions and a number of different local solvers to 
be chosen by the user. 
 
 
4. Results and Discussion 
 
We consider the benchmark problem presented by Moles et al. (2003), involving 
a biochemical pathway with three enzymatic steps, including the enzymes and 
mRNAs explicitly. The identification problem consists of the estimation of 36 
kinetic parameters of the nonlinear biochemical dynamic model formed by 8 
nonlinear ODEs that describe the variation of the metabolite concentration with 
time. The complete mathematical formulation is given by Rodriguez-Fernandez 
et al. (2006). 
 
4.1. PARAMETER ESTIMATION 
Moles et al. (2003) tried to solve this problem using several deterministic and 
stochastic GO algorithms. Only a certain type of stochastic algorithms, evolution 
strategies, was able to successfully solve it, although at a large computational 
cost. In Figure 1 we can see how the two-phase hybrid method recently presented 
by Rodriguez-Fernandez et al. (2006), converged to better solutions, with a 
significantly speed-up. However, the novel metaheuristic presented here, SSm, 
further improves this result in more than one order of magnitude. In short, we 
have reduced the computation time from two days to a few minutes, while 
ensuring robustness. 
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4.2. OPTIMAL EXPERIMENTAL DESIGN 
The original experimental design considered by Moles et al (2003) consists of 16 
different combinations of S and P values, which are kept constant during each 
experiment. For this experimental design, Rodriguez-Fernandez et al. (2006) 
found that the values of the E-criterion and the modified E-criterion are very 
large, indicating a large correlation among (some) parameters, making the 
identification of the system very hard. However, we are in a position of 
improving such design by formulating and solving the OED as a dynamic 
optimisation problem. 
For a new experimental design, we assume that the controls (i.e. the values of S 
and P for each experiment) must be constant during each such experiment and 
that the time horizon and sampling times are the same as in the original design. 
Thus, the optimal experimental design problem could be formulated as: given a 
desired set of N2exp new experiments, find the values of P and S for each one 
which maximizes or minimizes a certain FIM-based criterion. This leads to a 
non-linear programming problem with differential constraints, which can be 
solved as discussed by Banga et al. (2002).  
The above problem was solved for the case of the E-criterion and considering 
N2exp values of 16 and 10 experiments. We have compared various local and 
global solvers concluding that SSm outperforms all the other methods considered 
(see Figure 2). The new design of 16 experiments improves the value of the E-
criterion (the one used for the optimisation) by one order of magnitude, and 
simultaneously also improves the others (see Table 1). However, it should be 
noted that the Modified E-criterion of the new design is still very large, 
indicating that the identifiability difficulties are still present, although in smaller 
degree. 
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Table 1. Comparison of the original vs. two improved experimental designs 
maximizing the E-criterion. 

Original 
design 

Improved 
(16 exp) 

Improved Criterion (10 exp) 
( )1

max FIMλ −E-criterion =  1.658e-02 1.404e-03 2.586e-03 
Modified E= ( ) ( )max minFIM FIMλ λ  1.682e+06 8.673e+05 1.443e+06 

( )1−trace FIMA-criterion =  6.040e-02 6.162e-03 1.181e-02 
D-criterion =  2.264e+161 8.799e+185 5.428e+177 ( )det FIM

 
 
5. Conclusion 
 
In this contribution, we have presented a new metaheuristic, based on a modified 
Scatter Search, which increases very significantly the efficiency of the solution 
of parameter estimation problems while keeping robustness (i.e. avoiding 
convergence to spurious local solutions). The performance and capabilities of 
this new approach were illustrated considering a challenging benchmark problem 
presented by Moles et al. (2003) and recently studied by Rodriguez-Fernandez et 
al. (2006). Using the new algorithm (SSm) presented here, we were able to 
obtain better solutions for the estimation problem much faster (up to two orders 
of magnitude with respect to the best stochastic method).Further, the values of 
various real-valued functions of the Fisher Information Matrix for the original 
design revealed correlations among parameters which were causing most of the 
ill conditioning. By means of new optimal experimental designs, we have shown 
how this situation can be greatly improved. 
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1. Abstract 
 
Many biological phenomena such as neuron firing, cardiac rhythms or visual 
perception in the retina, as well as catalytic reactions or cellular organization 
activities, can be described by nonlinear reaction-diffusion (RD) mechanisms. A 
particular case of RD model is the FitzHugh-Nagumo (FHN). Slight variations of 
this model have been employed to represent travelling waves that induce the 
normal heartbeat or the formation of spirals, responsible for the arrhythmia 
phenomena of the heart. The objective of this paper is to propose a class of 
nonlinear feed-back controllers which avoid the spiral behaviour by stabilizing 
the plane front even in the presence of structural uncertainties (robust). In this 
way, we combine model reduction techniques with classical results on robust 
control to construct a class of nonlinear feed-back controllers ensuring front 
stabilization. Robustness and stabilizing properties of the controllers are proved 
through a numerical simulation experiment. 
 
 
2. Introduction 
 
Reaction-diffusion (RD) mechanisms are central in modelling a number of 
physiological systems such as those describing neural communication (Murray, 
2002), cardiac rhythms (Fenton et al., 2002), visual perception in the retina 
(Gorelova and Bures, 1983) or cellular organization (Lebiedz and Maurer, 2004). 
One such model is the FitzHugh-Nagumo (FHN) system -see (Fitzhugh, 1961; 
Nagumo et al., 1962)-. This model is able to capture most of the qualitative 
behaviour of biological phenomena related with the normal operation or with 
disorders such as arrhythmia associated with the formation of spirals. 
Dynamic analysis and control of RD systems has been the subject of intensive 
research, especially in what refers to bifurcation analysis leading to moving 
fronts, spiral waves and their stabilization. In (Pumir and Krinsky, 1999; Zykov 
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and Engel, 2004) feed-back control schemes were designed to “unpin” spiral 
waves or to stabilize the spatiotemporal evolution of electrical waves in cardiac 
tissue.  
Regarding theoretical work in the control of non-linear RD systems, it has been 
mostly focused on the stabilization of given stationary patterns by techniques 
which combine model reduction with results in non-linear control theory (Alonso 
and Ydstie, 2001; Christofides, 2001) to develop robust controllers which were 
able to stabilize arbitrary modes in RD systems. This approach was extended in 
(Alonso et al., 2004a) to develop robust nonlinear controllers which were able to 
stabilize arbitrary modes in RD systems and in (Vilas et al., 2006) where the 
authors developed a control law able to force the FHN system to follow a given 
non-stationary reference. 
The aim of this work is to develop a class of feed-back controllers which, acting 
on a system exhibiting the spiral behaviour, are able to ensure the stabilization of 
the travelling plane wave (reference) even in the presence of structural 
uncertainties (robust). The logic of the controllers is built on the basis of a low 
dimensional approximation of the reference. Such approximation is constructed 
using the Proper Orthogonal Decomposition (POD) technique. The stabilizing 
and robustness properties of the control are proved through a simulation 
experiment. Note however that, although we concentrate on the FHN model, the 
same methodology could be applied to a wider range of RD systems of relevance 
in biology. 
The paper is structured as follows:  In Section 2, we introduce the POD 
technique. Next, we briefly describe the FHN model, state the control problem 
we will be dealing with and apply the POD technique to it. Finally, in section 5, 
we develop the control law and illustrate its performance on a numerical 
simulation experiment. 
 
 
3. Low Dimensional Approximation of RD Systems Via the POD technique 
Consider the following general parabolic system: 
 

( ) ( )u L u u
t

σ∂
= +

∂
, (1)  

 
with appropriate boundary and initial conditions. In Eqn (1), u represents the 
vector field, L(·) a general linear operator and σ(u) a given nonlinear function. As 
it was shown in (Alonso et al., 2004a) the solution (u) of system (1) can be 
expressed as a convergent infinite series of the form: 
 

1

( , ) ( ) ( )i i
i

u t c tξ φ ξ
∞

=

= ∑ , (2)  

 
where ξ are the spatial coordinates. Time and spatial functions ci(t) and φi(ξ) are 
known as the modes and the eigenfunctions, respectively. In the POD method 
each φi(ξ) is obtained through measurements of the field (snapshots). Here, we 
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make use of an alternative to the direct POD method (Holmes et al., 1997; 
Alonso et al.,2004b), known as the method of snapshots (Sirovich, 1987), which 
requires lower computational effort. In this method, each eigenfunction is 
expressed in terms of the snapshots (ui) as: 
 

1

j
j i i

i

z uφ
=

= ∑
l

, (3)  

 
where the weights  zi

j are calculated by solving the following eigenvalue problem 
 

1 ,ij i jM u u
Ω

=
l

 j j jM Z Zλ= ,  with , (4) 

 
where 1 ,...,

T

j j jZ z z⎡= ⎣
l ⎤⎦  and the operator <·,·>  indicates the spatial integral. Ω

The eigenvalues (λj) resulting from Eqn (4) can be ordered so that 1 2( ) ( )λ λℜ ≥ ℜ  
(Christofides, 2001), where ( )jλℜ  denotes the real part of λj. This property allows 
us to partition the set of modes { } 1i i

C c ∞

=
=  in two subsets:  containing 

modes with slow dynamics and 
{ } 1

k
a i i

c c
=

=

{ } 1b i i k
c c ∞

= +
=  containing modes with fast dynamics. 

The contribution of the fast modes (cb) to the solution can be neglected so that an 
approximation (reduced order model (ROM)) to system (1) is obtained by 
projecting Eqn (1) over the set of eigenfunctions { } 1

k
a i i

S φ
=

= . 
 

, ( )a
La a a

dc
P c u

dt
σ

Ω
= + Φ ,         ( , ) a au t cξ Φ  (5) 

 
Remark that the larger the number of elements (k) in ca, the better the quality of 
the approximation. 
 
 
4. The FitzHugh-Nagumo Model 
 
We are considering a 2D version of the classical FHN model. The spatial domain 
covers the square  and the model equations are (Fenton et 
al., 2002): 

{( , ) / 0 ( , ) 200x y x yΩ = ≤ ≤ }

2 2

2 2 ( ) ; ( ) ( )( 1)v u u f v w p f v v v v
t x y

α
⎛ ⎞∂ ∂ ∂

= + + − + = − −⎜ ⎟∂ ∂ ∂⎝ ⎠
 , (6) 

( ) ; ( ) ( )w g w v g w w
t

εβ ε γ∂
= − = −

∂
 δ , (7) 

 
where v (the activator) is directly related to the membrane potential while w (the 
inhibitor), collects the contributions of ions such as sodium or potassium to the 
membrane current (Murray, 2002). The term p corresponds to the control 
variable which physically might correspond to spatially distributed electrodes 
supplying currents. 
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In the context of biological phenomena, such as cardiac or neural activity, the 
normal behaviour is related with a plane front which moves along the tissue 
without changing its shape (travelling plane wave). The FHN system (6)-(7) is 
able to reproduce such behaviour by setting the following parameters: α = 0.1, ε 
= 0.01, β = 0.5, γ   = 1, δ = 0, and with initial conditions: 
 
 . (8) 0 0

1 0 10
( , ,0) ; ( , ,0) 0 ( , )

0 10 200
if x y

v x y v w x y w x y
if x y

≤ ≤ ∀⎧
= = = = ∀⎨ < ≤ ∀⎩

 
A snapshot of this solution is shown in Figure 1(a). Under certain circumstances 
the plane front can break forcing the front and the back of the wave to meet each 
other at a given point (Fenton et al., 2002). Thereafter, the broken front rotates 
around this point resulting in the formation of a spiral. In the context of 
biological systems, this behaviour can be related to neurological disorders or 
cardiac dysfunctions such as arrhythmia. The FHN is also able to capture this 
phenomenon as illustrated in Figure 1(b). 
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Figure 1. Snapshots for system (6)-(7) corresponding with (a) the front solution 
and (b) the spiral induced by the breaking of the front. 
 
 
The aim of this contribution is to design a feed-back control scheme (p) able to 
drive the spiral to the plane front reference. Usually, in biological systems, there 
is a lack of detailed information on the structure of the nonlinear terms. In this 
way, our control law has to be able to “do the job” regardless the presence of 
model uncertainties. The underlying feedback control logic is designed on the 
basis of a ROM. The derivation of such ROM using the POD technique is 
described in the remaining of this section. 
The first step to construct the ROM is the derivation of a representative set of 
data. In our case, the snapshots were obtained by solving system (6)-(8) with the 
finite element method (FEM) with 2342 discretization points (finer grids do not 
alter significantly the solution). Our representative data set is composed of 400 
snapshots collected each 0.8 units of time. The POD basis is calculated using the 
method described in Section 3. Finally, the ROM is obtained by projecting Eqns 
(6)-(8) over the PODs. 
Table 1 shows the number of equations resulting of using two different ROMs 
and the FEM. Remark that using ROMs results in reductions of two orders of 
magnitude. 
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Table 1. Comparison between the ROMs and the FEM. 
Method Equations for the 

v-field 
Equations for the Model 

Equations  w-field 
First ROM 20 9 29 
Second ROM 32 13 45 
FEM 2342 2342 4684 
 
 
In Figure 2(a) a comparison between the modes obtained with the FEM (lines) 
and with the ROMs (marks) is depicted. For clarity reasons, only three modes are 
represented. In this picture, it is shown that the first ROM is able to reproduce 
only at a qualitative level the system behaviour, while the second ROM results in 
a much better approximation to the FEM scheme. In fact, by recovering the field 
from the modes of the second ROM (Figure 2(b)) the essential features of the 
real model (Figure 1(a)) are preserved. 
 

(b) (a) 

0 50 100 150
-40

-20

0

20

40

60

Time

cv

0 50 100 150 200
0

50

100

150

200

  
Figure 2. (a) Comparison between the modes obtained with the FEM (lines) and 
using ROMs with 29 POD (x) and 45 POD (circles). (b) v-field spatial 
distribution obtained with the second ROM. 
 
 
5. The Control Law 
 
As mentioned in section 4, the spiral behaviour in the FHN system is related with 
physiological problems such as arrhythmia or neural disorders. On the other 
hand, the travelling plane wave is associated with, for instance, the normal 
operation of the heart. The natural control objective should be, therefore, to 
actuate on a system exhibiting the spiral so as to produce and maintain the plane 
front. 
We have shown in the previous section that the FHN model can be approximated 
by a low dimensional system of ODEs (ROM). Each ODE of the ROM describes 
the evolution of a mode. We will call “relevant” modes to those which compose 
the ROM and “non relevant” to the others. The idea is to use the ROM of the 
travelling plane wave as the reference trajectory. 
The control objective is separated in two: on the one hand to stabilize, in the 
spiral behaviour, the “non relevant” modes of the reference and, on the other 
hand, to force the “relevant” modes to follow the reference. Based on classical 
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results on the robust control of finite dimensional systems, namely the Lyapunov 
redesign technique (Khalil, 1996), we propose the following control law: 
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 (9) 

 
The sub-indices a and b indicate that the subfield or the control is associated with 
the “relevant” and “non relevant” modes, respectively. As mentioned before, the 
control law is robust, this means that it do not need detailed information on the 
structure on the nonlinear term. However, some information is required. In this 
case, the information consists of given bounds on the nonlinear terms. These 
bounds are included in the control law through η and η*. 
Note that this control law needs to take measurements of the field and to actuate 
over the whole domain. In this regard, the fields and av bv  are calculated from 
these measurements through: 

1
, ;

k

a i i b
i

v v vφ φ
Ω

=

= =∑ av v− . 

The price to pay for robustness is that we cannot ensure the convergence to the 
reference but to a zone around it. It is important to remark that such region can be 
made arbitrarily small by decreasing the parameters θ  and θa b, although at the 
expense of stronger control effort. 
In order to illustrate how the control law (9) stabilizes the front behaviour, we 
have applied it to the FHN system (6)-(8) in a simulation experiment. Such 
experiment consisted of introducing, at a given time, a perturbation in order to 
produce the spiral behaviour and finally, when the spiral is formed, switching on 
the control law so as to stabilize the front. 
The effect of the controllers on the v-field is illustrated in Figure 3 where three 
snapshots are depicted. The system initially evolves as a spiral (Figure 5(a)) and, 
when the control law is switched on, the reference is reached (Figure 5(c)) after a 
short transition period (Figure 5(b)). 
The differences between the reference and the controlled field can be arbitrarily 
reduced by decreasing the values of θa and θb but at the expense of a higher 
control effort. 
 (a) 

0 50 100 150 200
0

50

100

150

200

(b) 

0 50 100 150 20
0

50

100

150

200

(c) 

0 50 100 150 20
0

50

100

150

200

Figure 3. Evolution of the FHN system under the control law (9): (a) in open 
loop, (b) an instant after entering the control law and (c) under the control law. 
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6. Conclusions 
 
In this paper, we have designed a class of controllers able to force a system 
exhibiting the spiral behaviour to follow a reference trajectory given by a 
travelling plane wave. The control law was designed in such a way that structural 
uncertainties do not affect to its stability properties. To that purpose, we have 
combined classical results on robust nonlinear control with the POD technique. 
On the basis of the ROM, the control law was constructed so as to force the 
representative modes to follow the reference trajectory, which encodes the plane 
front, while stabilizing the others. The stability properties were illustrated on a 
simulation experiment. Although these controllers were applied to the FHN 
system, they could be easily extended to other class of RD systems. 
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1. Abstract  
 
Mathematical models of complex biological systems, such as cell signalling 
cascades, usually consist of sets of nonlinear ordinary differential equations 
which depend on several non measurable parameters that must be estimated by 
fitting the model to experimental data. This model calibration is performed by 
minimizing the differences between model predictions and measurements. 
Optimal experimental design (OED) aims to design an scheme of actuations and 
measurements which will result in data sets with the maximum amount and/or 
quality of information, as measured by the Fisher Information Matrix, for the 
subsequent model calibration. 
This work presents new computational procedures for OED in the context of 
systems biology, with a focus on cell signalling. The OED problem is formulated 
as a general dynamic optimization problem and its solution is approached using a 
combination of the control vector parameterization approach and a robust global 
non-linear programming solver. 
The applicability and advantages of using optimal experimental design are 
illustrated by considering a mitogen-activated protein (MAP) kinase cascade, 
which is frequently involved in larger cell signalling pathways, and it is known to 
regulate several cellular processes of major importance. 
 
 
2. Introduction 
 
More than 10% of the proteins encoded in the human genome are involved in 
intracellular signalling cascades which regulate the typical cellular responses 
such as growth, division, differentiation and apoptosis (Pelech, 2004). The 
malfunction of these signalling pathways, particularly those involving 
phosphorylation cascades, has a strong relationship with the development of 
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diseases including cancer, diabetes, Alzheimer’s disease or Parkinson’s disease 
(Olive, 2004). 
The aim of modelling cell signalling pathways is to provide a systematic 
framework to generate hypothesis and make predictions “in silico”, in order to 
get a better insight into the disease process and ultimately to identify potential 
drug targets (Butcher et al., 2004). 
In particular, the modelling and simulation of cellular signalling pathways as 
networks of biochemical reactions has received major attention during recent 
years (see the review by Kholodenko, 2006). Most proposed models assume that 
the system is well-mixed and the mass conservation law results in sets of non-
linear ordinary differential equations (ODEs). When the spatial variations of the 
magnitudes of interest are relevant, compartmental models or partial differential 
equations have to be considered (see for example, Haugh and Lauffenburger, 
1998; Fallon and Lauffenburger, 2000). 
These models depend on several parameters (kinetic constants, molecular 
diffusivity constants, etc.) and probably some initial conditions (initial 
concentration or number of molecules of some proteins) which are not accessible 
to experimental determination and must therefore be estimated by fitting the 
model to experimental data (model calibration). 
The model calibration is performed by minimizing a cost function which 
quantifies the differences between model predictions and measurements. 
However model calibration may only be performed successfully if the sources of 
information are of a sufficiently high quality. Unfortunately, experiments in 
molecular biology are usually time consuming and expensive and rarely produce 
large and accurate data sets (Kutalik et al., 2004). Concerning this, the following 
question should be answered: can the parameters be given unique values using a 
particular experimental procedure? As illustrated later in this contribution the 
answer to this question may be negative, therefore a careful experimental design 
is required. 
Optimal experimental design consists of the determination of the scheme of 
measurements that generates the maximum amount of information for the 
purpose of estimating the parameters with the greatest precision and/or 
decorrelation (see for example, Asprey and Macchietto, 2002). The amount and 
quality of information can be measured in terms of a scalar function of the Fisher 
Information Matrix (FIM) computed for a given (near-optimal) value of 
parameters. In the context of cell signalling, Faller et al.(2003) made use of 
simulation based techniques to calculate polynomial optimal input profiles in 
order to enhance parameter estimation accuracy for a MAP kinase cascade; 
Kutalik et al. (2004) proposed the calculation of optimal sampling times so as to 
reduce the variation of the parameter estimates. 
Here, the optimal experimental design problem is formulated as a more general 
dynamic optimisation problem (see for example, Banga et al., 2002, or Asprey 
and Macchietto, 2002) and its solution is approached using the so called control 
vector parameterization approach (CVP, Vassiliadis, 1993). The CVP scheme 
proceeds dividing the duration of the experiment (time horizon) into a number of 
elements, and approximating the input functions inside these elements using low 
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order polynomials. As a result, a non-linear programming problem (NLP) is 
obtained, where the decision variables are the polynomial coefficients plus the 
sampling times and possibly the experimental initial conditions. The evaluation 
of the objective function requires the simulation of the system dynamics plus the 
calculation of the parametric sensitivities to compute the Fisher Information 
Matrix (FIM). Remark that the non-linear character of the mathematical models 
of the cell signalling pathways lead to multi-modal NLPs therefore the use of 
global optimization methods is required. 
 
 
3. Theoretical 
 
Model development can be regarded as a cycle comprising several phases. Once 
the model structure has been established based on a priori phenomenological 
knowledge and hypothesis, experimental data is  used to estimate the model 
unknown parameters. This task is often rather complicated, mainly due to the 
following reasons (Rodriguez-Fernandez et al, 2006): 
• the presence of a large number of parameters (usually dozens, or even 
hundreds) 
• the multimodal character of the optimization problem, i.e. the presence of 
several sub-optimal solutions 
• the presence of identifiability problems, that is, the impossibility of 
calculating unique values for all parameters. 
In order to detect and hopefully reduce such kind of problems, this work 
proposes an iterative procedure (see Figure 1 for a schematic representation) 
which involves the use of parametric sensitivities to rank the parameters;  the 
computation of  collinearity indexes to evaluate indentifiability problems and 
finally, the solution of an optimal experimental design problem for parameter 
estimation. 
 

 

 
Figure 1: Experimental design phases 
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3.1. PARAMETRIC SENSITIVITIES AND RANKING OF PARAMETERS 
Most of the mathematical models proposed to describe cell signalling behaviour 
consist on sets of non-linear ordinary differential equations (ODEs) as follows: 
 

( , , , )d t
dt

=
y f y u θ  (1)  

 ( , , , )t=x h y u θ  (2) 
 
where represents the vector of states and  n∈y R on∈x R  the vector of 
observables, usually related to the proteins involved on the cascade, 

corresponds to the vector of possible stimuli, un∈u R nθ∈θ R is the vector of 
model parameters and t is the time. 
Parametric sensitivities measure how the model output is affected by an slight 
modification of the parameters. Although other possibilities exist, the use of the 
absolute and relative local parametric sensitivities, as formulated in Eqn.(3), was 
selected in this work. 
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Note that a linear (or almost linear) relationship between sensitivities will mean 
high correlation between the corresponding parameters, i.e. lack of identifiability. 
Therefore, in order to analyze the parameter identifiability problem in more 
detail, it would be convenient to plot versus  for all i, j and k, so near-linear 
relationships between parameters could be detected. Unfortunately, this approach 
is not practical as it would mean an extremely large number of plots even for a 
reduced number of parameters. 

iksijs

When the number of parameters in the model is relatively large, a typical 
approach is to partition the vector of parameters  into two new vectors and κθθ

, where κ is a subset of κθ nθκ ≤ parameters, in such a way that only the 
components of κθ  are to be estimated from the experimental data whereas the 
parameters in set κθ  are kept constant. This partitioning is not straightforward, 
but a ranking of parameters and the evaluation of collinearity indexes may be 
helpful. 
 
The relative sensitivities can be used to asses the individual local parameter 
importance, that is to establish a ranking of parameters. Brun and Reichert (2001) 
suggested several importance factors: 
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The collinearity indexes (Brun and Reichert, 2001) are used to check the near-
linear dependence within the columns of matrix s. Considering the normalized 

matrix j
js =

s
s

, such that   , then the collinearity index results: s

1 , min( ( Teigκ κ
κ

γ λ
λ

= = s s ))

)

 (5)

 
This definition can be interpreted as follows: a change in the output of the model 
caused by a shift of a parameter on set κ can be approximately compensated by 
appropriate changes in the other parameters in κ. A parameter subset κ is said to 
be potentially identifiable if the observed model output is sufficiently sensitive to 
small changes in the parameters and if the collinearity index does not exceed a 
critical value (around 20). 
 
3.2. OPTIMAL EXPERIMENTAL DESIGN 
The optimal experimental design (OED) problem may be mathematically 
formulated as a general dynamic optimisation problem: 
Find the time-varying stimuli profiles (control variables), sampling times and 
(possibly) initial conditions, so as to minimize (or maximize) an scalar 
performance index related to the Fisher Information Matrix: 

 (6)  (OEDJ FIMφ=
subject to the system dynamics, Eqn.(1), and other algebraic constraints related 
to proper/safe operation or experimental limitations: 
 ( , , , ) 0t =g y u v ; (7) 
 ; (8)  ( ) ( ) ( )t t≤ ≤Lu u u tU

U  (9) ≤ ≤Lv v v
The Fisher information matrix (FIM) may be defined using the first order 
absolute sensitivities as follows (Ljung,1999): 
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with  a constant matrix representing the variance of each experimental data 
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Regarding the scalar function of the FIM, several alternatives have been 
proposed in the literature (Vanrolleghem and Dochain, 1998), like e.g.: 
 
A- optimality: 1( )A trace FIMφ −=  

 det( )D FIMφ = −D-optimality: 
min ( )E FIMφ λ= −  E-optimality: 

max

min

( )
( )
FIMabs
FIMε

λφ
λ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 Modified E-optimality: 

being λ the vector of eigenvalues of the Fisher information matrix. 
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The following interpretation can be given to each of these criteria (see for 
example, Vanrolleghem and Dochain, 1998 or Hidalgo and Ayesa, 2001): A-
optimality and D-optimality designs tend to minimize the arithmetic and 
geometric mean of the identification errors respectively, while the E-optimality 
aims at minimizing the largest error. 
The most widely used are D and E-modified optimality. D-optimality designs 
result in the smallest volume of the confidence region in the parameter space. It 
is directly related to the volume of the information hyper-ellipsoid and indicates 
the quantity of information provided by the experiments. Note that its value 
increases as the measurements are processed, but it gives no clue about the way 
the information is distributed among the parameters. The information eccentricity 
(square root of the E-modified criterion) characterizes this distribution. 
Geometrically, it represents the relationship between the longest and shortest 
semi-axes of the information hyper-ellipsoid. The closer its value is to one, the 
more homogeneous the distribution of the information among the unknown 
parameters will be. The modified E-criterion has the additional advantage that its 
theoretical lower bound is known (1.0). 
 
3.2.1. Solution approaches: Control vector parameterisation 
The solution algorithms for dynamic optimisation problems can be classified in 
three main groups: dynamic programming methods, indirect methods, and direct 
methods. The most popular, direct methods, transform the original infinite 
dimension dynamic optimisation problem into a finite dimension non-linear 
programming problem (NLP). Three are the main direct methods: multiple 
shooting, complete parameterization and control vector parameterisation. 
The multiple shooting approach (Bock and Plitt, 1984) divides the duration of the 
time domain into a number of separate elements, and an initial value problem 
solver is used to simulate the process within each element. In this formulation, 
the initial conditions for each element together with the input parameters become 
the decision variables for the master NLP. In the so called complete 
parameterisation (CP) technique both the input and state variables are discretised, 
usually employing a direct collocation approach, so that the coefficients and 
interval lengths now become the decision variables in a larger NLP (see recent 
review by Biegler et al., 2002). The control vector parameterisation (CVP) 
method proceeds dividing the duration of the experiment into a number of 
elements and approximating the input variables using low order polynomials 
(Vassiliadis, 1993). 
The CVP method is selected in this work due to its ability to handle large 
dynamic optimisation problems without solving excessively large NLPs (Balsa-
Canto et al., 2004). Once the CVP has been applied the general OED problem is 
transformed into a NLP, being the decision variables the polynomial coefficients, 
plus the experimental sampling times and initial conditions. Note that the 
solution of this NLP requires a suitable NLP solver and an IVP solver. 
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Regarding the NLP solver, both local and global methods may be selected. 
However several tests performed revealed the multimodality of the OED problem 
thus the use of global techniques is necessary. 
Regarding the IVP solver, a backward differentiation formulae based method is 
used to compute both states and parametric sensitivities. 
 
 
4. Case study: Results and Discussion 
MAP kinase family members have been found to regulate diverse biological 
functions by phosphorylation of specific target molecules (such as transcription 
factors, other kinases, etc.) found in cell membrane, cytoplasm and nucleus, and 
thereby participate in the regulation of a variety of cellular processes including 
cell proliferation, differentiation, apoptosis and immuno responses (Seger and 
Krebs, 1995). We consider here a simple signalling cascade in which stimulation 
of a receptor leads to a consecutive activation of several downstream protein 
kinases. The signal output of this pathway is the phosphorylation of the last 
kinase which can raise a cellular response. Signalling is terminated by 
phosphatases that dephosphorylate the kinases and by the inactivation of the 
receptor (Figure 2). 
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Figure 2: MEK-ERK pathway 

 
 
The application of the mass action law to each of those reactions result in the 
following set of non-linear ordinary differential equations (Heinrich, 2002): 
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since the model assumes total Erk and Pase concentrations are constant, the 
nonactivated Erk is given in terms of the total Erk concentration and the 
phosphatase is given in terms of the total Pase, as follows: 
 
  (17) * *[ ]( ) [ ] [ ]( ) [ ]( )TotalErk t Erk Erk t Erk t= − −

 * **[ ]( ) [ ] [ ]( ) [ ](TotalPase t Pase Erk Pase t Erk Pase t= − − − −  (18) 
 
The parameters ai (=0.5) denote the rates at which the substrate binds to the 
enzyme, bi (=0.6) denote the corresponding breaking rates, and ci (=0.9) denote 
the rate at which the actual activation reaction occurs. The initial concentrations 
of all phosphorylated Erks and complexes of phosphorilated  Erks with Meks or 
phosphatases are zero. Mek∗∗ serves as input, and Erk∗∗ as the output of the 
system, Erk (t=0)=50 and Pase(t=0)=20. 
 
4.1. LOCAL PARAMETRIC SENSITIVITIES AND RANKING OF 
PARAMETERS 
The sensitivities were computed by the numerical solver ODESSA (Leis and 
Cramer, 1988) which makes use of the direct decoupled approach which 
basically exploits the fact that the original ordinary differential system and the 
corresponding parametric sensitivities share the same Jacobian so as to increase 
efficiency in the simulation process. 
Ranking the parameters by one of the values in Eqns. (4), preferably in 
decreasing order, results in a parameter importance ranking. Note that these 
importance factors will depend on time, thus two figures are presented bellow, 
first corresponds to final time, and second to an intermediate instant, particularly 
when  achieves its maximum value. ( )msqr

j tδ
Note that at final time values for the different parameters are quite similar (up to 
one order of magnitude different for t=1.95) revealing that all parameters have a 
notable effect on model output. The parameter importance but also the ranking of 
parameters varies with time, however the output seems to be less sensitive to 
parameters a2, b2, b3, b4 and c2 for any case as illustrated in Figures 3. 
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Figure 3: Ranking of parameters: a) At final time, b) At t=1.95, where δmsqr 

achieves its maximum 
 
As the number of parameters in this case is relatively large (around 4000 possible 
combinations), only the most relevant (a1, a3, a4, b1, c1, c3, c4) will be considered. 
The most correlated parameters resulted to be a1and b1. Figure 4 shows all 
possible combinations. 
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Figure 4: Collinearity indices for all parameter subsets. 

 
From the results it is clear that some couples of parameters will have large 
identifiability problems, especially a1b1 and a3c3 (note that these pairs where not 
represented in the plot due to scale matters) and some combinations of 3 and 
even 4 parameters. 
Considering the previous analysis, and for illustrative purposes, the optimal 
experimental design for the estimation of the pair a1b1 will be considered in 
following sections. 
 
4.2. OPTIMAL EXPERIMENTAL DESIGN 
As it was stated before the design of experiments requires several choices, e.g., 
how to manipulate the inputs, when to measure, which are the initial conditions, 
etc. For this example several possibilities will be considered assuming that the 
length of the experiment and the initial conditions are known: 
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• Compute the optimal input profile for a given number of equidistant 
measurements. The control variable will be approximated by ρ = 5 and ρ = 10 
different length steps. 

• Compute the optimal input profile plus the optimal sampling times for a given 
number of measurements. The control variable will be approximated by ρ = 5 
variable length steps. 

As it was mentioned before, the E-modified criterion allows to distribute 
information between parameters, making the confidence region as round and 
possible, as the objective εφ  approaches the global solution (=1). The knowledge 
of the global solution makes this criterion very attractive for OED purposes. Note 
moreover, that a global optimization method was used here (Differential 
Evolution, Storn and Price, 1997) so as to avoid possible convergence to local 
solutions (Banga et al, 2002). 
 
 
Table 1: Results obtained for the OED problem with different number of 

equidistant measurements 

Confidence intervals Det(FIM)   sn εφ
200 1.000028 (0.499, 0.501); 3.61 x 1013

(0.599, 0.601) 
30 1.000074 (0.495, 0.505); 3.39 x 1010

(0.595, 0.605) 
10 1.000265 (0.490, 0.510); 1.55 x 109

(0.590, 0.610)  
 
 
Table 2: Results obtained for the OED problem with different number of non 

equidistant measurements 
 

Confidence intervals Det(FIM)   sn εφ
10 1.000012 (0.491, 0.509); 2.08 x 109

(0.591, 0.609) 
5 1.000010 (0.484, 0.516); 2.44 x 108

(0.584, 0.616) 
3 1.000001 (0.480, 0.520); 9,71 x 107

(0.580, 0.620) 
 
Some remarks: 
• The optimization reaches near-global results in all cases. As a consequence, 
the regions of confidence are all approximately round (that is, the information is 
equally distributed among parameters). However it is also important to note that, 
as the flexibility in the stimulus profiles decreases, the E-modified criterion 
rapidly increases.  
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• The experiments become less informative as the number of equidistant 
measurements decreases, which in the end results in larger confidence regions for 
the parameters. 
• From Table 2, it becomes clear that the adequate selection of sampling times 
increases the information provided by the experiments. Note for example that the 
use of 10 non equidistant measurements results in a more informative experiment 
than the one using 30 equidistant measurements. Even the use of 5 non 
equidistant measurements offers good enough performance with a very small 
confidence region. 
 
4.3. ADVANTAGES OF USING OPTIMAL EXPERIMENTAL DESIGN 
In order to show the advantages of using OED, we consider the problem of 
estimating model parameters given a sub-optimal experimental design consisting 
on a constant stimulus Mek∗∗ = 4.0 and 10 equidistant sampling times, and the 
optimal stimulus profile obtained using 5 steps and 10 non equidistant 
measurements (as illustrated in Figure 5). 
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Figure 5: OED using E-modified criterion   

 
The following figures present surface and contour plots of the least squares 
function to be minimised to estimate the model parameters: 
  (17) ( ) ( ) ( ); ( ) ( )TJ = =θ e θ Qe θ e θ x θ x%−
where  corresponds to the model predictions and  to the measured data. Note 
that log scale has been used for the plots so as to make them more clear. 
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Figure 6: for a typical case with Mek( )J κθ ∗∗ = 4.0 and ns = 10. 
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Figure 7: for a case under the optimal profile obtained with E modified 

criterion and n
( )J κθ

s = 10. 
 
 
4.4. PARAMETER ESTIMATION USING THE OPTIMAL EXPERIMENTAL 
CONFIGURATION 
In order to check whether the OED obtained will provide successful results in 
parameter estimation we generate a number of pseudo-experiments and solve the 
corresponding parameter estimation problems. To generate the pseudo-
experimental data, observational noise is introduced to the system in the 
following manner: 
 ( )σ= + ⋅x x x r%  (20) 
where r represents the normally distributed random variable vector with zero 
mean and unit standard deviation and σ represents the standard deviations of the 
observation errors. 
As illustrated in Figure 6, for non optimal experimental designs contour plots 
with long flat valleys are obtained indicating strong dependencies of parameter 
estimates (poor identifiability). The minimization of ( )J κθ  may result in any 
combination of the parameters. 
However for the case of using E-modified designs, the least squares functions 
tend to be convex (Figure 7), guarantying an unique optimum to the parameter 
estimation problem, which can be found even using a local optimization method. 
Note that the optimal solutions for these particular cases, may or not coincide 
exactly with the nominal value of the parameters but they are in the so called 
confidence region. 
Following figure illustrates the theoretical and practical confidence region for the 
E-modified design using 500 pseudo-experiments. 
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Figure 8: Theoretical (line) and practical (dots) confidence regions for the E 

modified optimal experimental design 
 
 
5. Conclusion 
 
In this contribution we illustrate the potential of  optimal experimental design of 
dynamic experiments for parameter estimation (model calibration) in systems 
biology. 
Reliable model calibration in systems biology  will largely depend on the 
quantity and quality of the experimental data. This work proposes the use of an 
iterative process based on the computation of a ranking of parameters, 
collinearity indexes and finally optimal experimental designs with the aim of 
improving model calibration conditions. 
The results obtained for a simple signalling pathway clearly indicate that 
dynamic experiments combined with optimal sampling times yield more 
information than the classical experiments using constant stimulus and 
equidistant measurements. 
Although the stimulus profile obtained here could be rather difficult to 
implement in practice, adding constraints to the stimulus and minimum distances 
between sampling times, as indicated by experimentalists, is straightforward, 
thus ensuring experimental feasibility. 
Future work involves the application of this methodology to real case studies 
related to cell signalling pathways in cooperation with specialized laboratories.  
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1. Abstract 
 
Herein, we present a gene-protein regulatory network for the establishment of the 
dorsal-ventral  boundary in the Drosophila wing imaginal disc. We perform in 
silico experiments by means of a modelling approach that reduces each 
transcriptional-translational dynamics into a single effective process where Hill-
like functions are assumed as regulatory functions. Thus, we show how short-
range (receptor-ligand dynamics) together with long-range (morphogen gradient 
signalling) interactions shape the border and constitute the gene expression 
pattern that is observed in in vivo experiments. The in silico results are 
complemented with a robustness analysis of the regulatory network. 
 
 
2. Introduction 
 
As it occurs in most biological phenomena, gene expression underlies 
morphogenesis. By means of gene expression cells specialize for shaping and 
organizing tissues. This fact poses the interesting question of how cell fate is 
determined, i.e., how a given cell and its progeny “know” what genes should and 
should not express in order to perform a particular task. The latter immediately 
suggests the concept of information and reveals an additional function that is 
carried out by gene expression and regulated by cell interactions: gene expression 
must provide positional information (Wolpert, 1996). Thus, the genetic activity 
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establishes an expression pattern, a “map”, by means of which cell fate is 
determined depending on the relative positions inside the primordium. This 
orchestrated plan sets up a dynamical coordinate system that links univocally the 
expression pattern to the resulting biological structure (Brook et al, 1996). 
Within this framework, the model organism in which most of the research has 
been conducted is Drosophila (Lawrence, 1992). Structures such as the eyes, 
antennae, or wings develop from groups of cells denominated imaginal discs 
(Held et al, 2002). By using positional information, these potentially-contained 
structures proliferate in the larvae and, during metamorphosis, the adult insect, 
imago, is produced and the structures are exposed (Gilbert, 2003). There are 
nineteen imaginal discs inside the larvae. Two of them give rise to the adult 
wings. The seminal works of García-Bellido and coworkers showed that the 
imaginal discs are divided into regions (compartments) that correspond to 
different patterns of gene expression (García-Bellido et al, 1973; Cohen et al., 
1992; Kornberg et al., 1985). The compartments are named after the position that 
their cells will occupy by the end of the developmental process. Thus, the 
imaginal disc of the wing is divided into anterior (A), posterior (P), dorsal (D), 
and ventral (V) compartments as shown in Fig. 1. 
The understanding of the mechanisms that underlie the generation of stable and 
well-defined spatial domains that separate different cell populations 
(compartmentalization) is crucial for elucidating the relations between pattern 
formation and positional information. Roughly speaking, one can classify the 
mechanisms for compartment interactions into short and long ranged. As for the 
former, cell-cell communication by means of receptor-ligand dynamics is the 
main source of near-neighbour feedback. On the other hand, morphogens are 
responsible for long ranged signalling: cells obtain their relative position 
depending on concentration gradients of diffusive proteins (Teleman et al, 2001). 
Three proteins qualify as morphogens in the wing imaginal disc development: 
Hedgehog, Decapentaplegic, and Wingless (Alberts et al, 2002). Note that 
morphogen signalling is reliable for positional information purposes if proteins 
diffuse from given spatial positions that function as references in a coordinate 
system. In the case of the wing disc, those organizing centres are actually located 
at the compartment boundaries. Thus, from two interacting cell populations, 
compartments, a third one that presents specific gene trademarks, acts as 
signalling centre, and controls cell migration between compartments is 
established: the boundary or axis. 
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Figure 1. Wing imaginal disc (left) and adult wing (right). The wing disc is 
divided into regions (compartments). The compartments are named after the 
region that their cells will occupy by the end of the developmental process. Both 
short-range (cell-cell communication) and long-range (diffusive morphogens) 
interactions take place between adjacent compartments. Compartments 
boundaries are organizing centres that control such interactions (see text). 
 
 
Herein, we will focus on how short and long ranged compartment interactions 
shape the formation of the dorsal-ventral boundary. We will show that the 
concept of refractoriness, “blindness”, to a particular gene is required for 
understanding the formation of such organizing axis. Moreover, we will address 
other open problems in this context. Namely, how the size of the border is 
regulated (refinement) and how symmetricalness for ligands expression with 
respect of the border edges is obtained. To this end, we introduce a gene-protein 
regulatory network and perform in silico experiments that we complement by 
means of robustness analysis. 
In order to frame-in appropriately our problem, we briefly review the stages that 
lead to the establishment of the Dorsal-Ventral (DV) boundary and fix the 
temporal windows of our interest. We restrict ourselves to larval third instar. 
Thus, DV compartment subdivisions are primarily established by the activity of 
the selector gene apterous in D cells (reviewed in Blair, 1995). The onset of 
apterous expression in the early wing primordium induces expression of the 
Notch ligand Serrate in D cells and restricts expression of Delta, another Notch 
ligand, to V cells (Diaz-Benjumea and Cohen, 1995; Milan and Cohen, 2000). 
Moreover, due to apterous activity, expression of the glycosyltransferase Fringe 
makes D cells more sensitive to Delta and less sensitive to Serrate  (Fleming et 
al., 1997; Panin et al., 1997). Dorsally expressed serrate and ventrally expressed 
delta activate Notch in cells on both sides of the DV compartment boundary 
(Diaz-Benjumea and Cohen, 1995; de Celis et al., 1996; Doherty et al., 1996). 
Later, an increase in dLMO levels reduces apterous activity in the wing 
primordium (Milán and Cohen, 2000). Our initial condition refers to this moment 
when apterous activity, that has already caused an asymmetric expression of 
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delta and serrate, ceases and, consequently, Notch equally respond to both 
ligands (Kim et al, 1995, de Celis et al, 1996). 
Notch activation due to short-range interactions between adjacent compartments 
induces expression of the signaling molecule Wingless in cells along the DV 
boundary. Wingless induces expression of serrate and delta in nearby D and V 
cells that can signal back to Notch. At this stage another set of cell interactions 
takes over and a stable DV boundary is finally established (de Celis and Bray, 
1997; Micchelli et al., 1997). This moment constitutes the endpoint of the 
developmental process we want to describe. By stable border we mean that a 
stationary Notch activity is reached for a narrow cell population that separate 
dorsal and ventral compartments. Moreover, the dynamics of the regulatory 
network must describe the symmetrization of the expression pattern of Notch 
ligands at two flanking stripes of the border, the refinement of notch expression, 
and the onset and stabilization of wingless expression. The latter, in subsequent 
developmental stages, organizes pattern and growth of the wing anlage. 
The paper is organized as follows. In section 3 we introduce the regulatory 
network and our modelling approach. In section 4 the results obtained from in 
silico experiments and robustness analysis are shown. Finally, the conclusions of 
our work are presented in section 5. 
 
 
3. Regulatory Network for Dorsal-Ventral Boundary Formation 
 
3.1. MODELLING APPROACH 
We implement a modelling scheme where the species of interest are the 
concentration of proteins or protein related products, e.g., a biomolecule resulting 
from protein cleavage. Our modelling approach reduces each transcriptional-
translational dynamics of a gene network, into a single effective process where 
Hill-like functions, with a given degree of cooperativeness, are assumed as 
regulatory functions. The resulting differential equations mimic the temporal 
behaviour for the concentration of proteins in a cell as a consequence of gene 
interactions. Figure 2 illustrates the interaction between three genes and shows 
schematic representations of positive and negative regulatory Hill functions. 
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Figure 2. a) Gene-protein A2 is positively regulated by gene-protein A1. Alike, 
such interaction is negatively regulated by gene-protein A3. Both, positive and 
negative, regulatory functions depending on the concentration of protein/gene, x, 
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are schematically represented in b). Hill functions with a given degree of 
cooperativeness, β, are assumed to effectively model gene-protein regulation. 
The larger β, the stronger the cooperativeness and the steeper the transition 
between the states 0 and 1 are. The parameter ε measures the concentration 
threshold of x for which the regulatory interaction, either positive or negative, 
reaches 50% intensity. 
Thus, for the network shown in Fig. 2, the regulation of gene-protein A2 due to 
interactions with genes-proteins A1 and A3 reads, 

( )( )
1 2 3 21A A A A 3A Aε εψ ψ+ −× .     (1) 

 
We also consider degradation for species by means of exponential decays. 
Therefore, the modeling differential equation for species becomes, 

2A

 
( )( )2 21 2 3 2

2
1 3A A A AA

dA k A A
dt ε εψ ψ μ+ −= × × − × 2A A ,   (2) 

 
 
where 

2
and 

2Ak Aμ stand for the expression and degradation rate constants 
respectively. As detailed below, we also take into account diffusion and 
autonomous transcription-translation dynamics for some species. The former is a 
crucial element of morphogen kinetics whereas the latter is required to reproduce 
basal levels of expression of genes that are known to occur independently of 
other genes activities. 
Cell-cell interactions due to receptor-ligand dynamics are modelled as follows. In 
the case we are focusing on, the activation of the receptor in a given cell takes 
place exclusively when it binds to a ligand that belongs to a (nearest) neighbour 
cell. Notice that receptor-ligand binding events within the same cell certainly 
happen. However, in those cases no activation of the receptor is produced and 
both, receptor and ligand, are “sequestered” and they become useless for further 
signalling purposes. The activation of the receptor produces proteolytic cleavage 
of its intracellular part that is transported to the nucleus where induces the 
expression of downstream genes. Let us denote , * , and 

ix ix jy  the receptor, its 
intracellular active part, and the ligand concentrations at cells i and j respectively. 
We ignore momentarily upstream and downstream transcription-translation 
processes and degradation. Accordingly, the receptor-ligand regulatory dynamics 
reads, 
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where ij indicates that the sums in eq.(3) run over all cells j that are nearest-
neighbours of cell i. Note that we keep Hill-like regulatory functions and that the 
activation of the receptor occurs only due to interaction between different cells. 
In other case, i.e. same cell coupling, the receptor and the ligand are simply 
“sequestered” and removed for further signalling. We do not consider unbinding 
dynamics. Moreover, the activation events are conveniently weighted in the 
regulatory functions depending on the amount of receptor-ligand couples that can 
be created within the same cell since they will reduce the probability of 
successful cell-cell bindings. Likewise, the sequestering events are weighted by 
taking into account the amount of receptor-ligand couples that are formed 
between different cells since they decrease the probability of a sequestering 
event. Altogether, this dynamics may lead to either positive or negative 
regulation of *  depending on the local concentrations of  and 

ixix jy , and on the 
values of the parameters k and ε. As shown below, a generalization of the 
modelling equations when the receptor can be signalled by several ligands is 
straightforward. 
 
3.2. GENE-PROTEIN NETWORK 
Figure 3 shows the gene-protein regulatory network that controls the 
establishment of the DV boundary. A detailed construction of such network 
based on in silico experiments for wild-type (and mutant) phenotypes, and the 
comparison with their corresponding in vivo counterparts will be published 
elsewhere (Canela-Xandri et al, 2006). Other networks and modelling approaches 
have been considered by different authors for this particular problem (Kioda and 
Kitano, 1999). However, some in vivo experimental data are disregarded therein 
and consequently the establishment of the DV boundary can not be suitably 
explained. The main characteristics of the proposed network are the following. 
Signalled Notch is the “conductor” for the establishment of the DV axis. Notch 
can be signalled by either Serrate or Delta. At this stage of development, there is 
no difference on the way the ligands signal to Notch. Therefore, we will not 
consider any difference in their dynamics apart from the aforementioned 
asymmetry in the initial condition: delta is expressed in ventral cells whereas 
serrate is expressed in dorsal cells. Nonetheless, in the model we distinguish 
both species to conveniently track how symmetric expression of both ligands is 
obtained at flanking stripes of the border. As mentioned above, depending on the 
local concentration of receptor and ligands in cells, their dynamics may lead or 
not to an effective activation of the receptor. If the receptor is activated, then the 
transcription-translation of its downstream genes starts. Downstream genes are, 
or are not, expressed, depending on the level of activity of notch. As the level of 
activation increases, notch and the ligands themselves are expressed, afterward 
wingless, and finally cut. This ordered sequence of expression as a function of 
notch activity levels, fixes an ordered sequence for the threshold values of the 
regulatory functions, ε, in our modelling approach. Independently of Notch 
activation, there is an autonomous off-network Notch transcription-translation 
dynamics that keeps the protein expression up to a basal level in the disc pouch. 
Notice also that both Notch ligands are wingless downstream genes. The ligands 
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expression levels due to Wingless are much larger than those due to Notch 
activation. This may cause downregulation of notch pathway due to sequestering 
effects. 
 

N ( )nL

C

W

*N

 
Figure 3. Gene-protein regulatory network for the establishment of the DV 
boundary at the wing imaginal disc. N stands for Notch receptor and N* for 
intracellular active Notch. Two different Notch ligands, Serrate, L(1), and Delta, 
L(2), are considered. W indicates Wingless diffusive morphogen. Finally C stands 
for Cut gene-protein. Green and red lines mean positive and negative regulations 
respectively. The dashed coloured green-red line with a rhombic end, indicates 
that receptor-ligand dynamics may lead to either positive or negative regulation. 
Note that Notch has an additional autonomous off-network regulation. 
 
 
Importantly, there is also a direct mechanism for downregulation of notch 
pathway due to wingless. This inhibitory role is mediated by dishevelled, a 
downstream gene of wingless (Axelrod et al, 1996). Such negative interaction 
between wingless and notch pathways seems to be incompatible with the 
following reported results for the expression pattern of the border cells. First, the 
larger the notch activity is, the larger the wingless expression levels are kept. 
Second, the expression of ligands is severely reduced at the border cells, where 
notch activity and wingless expression are maxima. We have recently shown that 
a new property is required in order to explain these (apparently) contradictory 
results: refractoriness to Wingless (Canela-Xandri et al, 2006). That is, there 
must be a mechanism that makes cells expressing wingless at high levels, 
refractory to (all) its effects. In this way, the border cells can simultaneously 
present a pronounced wingless-notch expression pattern and keep the ligands 
expression levels to a minimum. Such mechanism is mediated by cut (a notch 
downstream gene). Hence, cut-expressing cells are “blind” to Wingless effects. 
Notice that since Wingless is a morphogen and diffuses, its effects can be 
induced at locations where it is not expressed. Therefore ligand expression due to 
Wingless is produced off the border, at flanking cells, where cut is not being 
expressed. Finally, from flanking cells the ligands signal back to Notch at border 
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cells. The latter also explains why the size of the border population is kept to 
two-three cells and the symmetric expression pattern of the ligands at flanking 
stripes of the organizing axis. 
 
3.3. MODELLING DIFFERENTIAL EQUATIONS, PARAMETER 
ESTIMATION, AND SIMULATION DETAILS 
By taking into account the aforementioned considerations, the differential 
equations that represent the gene-protein network read, 
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where the following functions have been defined, 
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Note that there are actually 6 differential equations since the superscript n takes 
the values 1 and 2 depending of the ligand. Wingless diffusion has been included 
by means of a discrete version of a Laplacian operator (see details below). Notice 
also the first term in the r.h.s. of the equation for Notch dynamics that account 
for autonomous off-network expression, γ. Finally, we point out that we 
disregard cell proliferation and motility. The former is known to play a key role 
in subsequent developmental stages when the border has been already established 
but can be neglected within the temporal window of our interest. As for the latter, 
it can be ignored altogether within this context. 
For the sake of simplicity, we keep the set of parameters as reduced as possible. 
Still, we maintain a realistic approach and therefore such set should be large 
enough to take into account well-known biological facts. For example, as it was 
mentioned above, ligand expression rates due to notch activity are known to be 
smaller than those due to Wingless. Similarly, sequestering effects play a 
relevant role in receptor-ligand dynamics when compared to binding. Thus, as 
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shown in eqs.(4-5), whereas the degradation rate constant, μ , is kept the same for 
all species, three different regulation rate constants have been used: (binding 
and all gene/protein regulatory constants apart from ligand expression due to 
notch activity), (sequestering), and (ligand expression due to notch activity). 

1k

2k 3k

Apart from the Wingless diffusion rate, ∼1.4 μm2/s, and to the best of our 
knowledge, most of the parameter values that appear in eqs.(4-5) have not being 
measured. Fortunately, at least the order of magnitude of some of them has been 
reported for related problems. Thus, the degradation rate of proteins ranges from 

6 110 s− − to 2 110 s− − . We used an intermediate value: 3 110 s− − . As for the effective 
transcription-translation rates, we estimate them as follows. Suppose a species 
subjected to regulation and degradation, e.g. eq.(2). The maximum value of its 
concentration in the steady-state will be given by (note that the regulatory 
functions are dimensionless), 
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Obviously the minimum value is simply zero. Therefore, if the degradation rates 
and the steady concentration of protein are known quantities, then the effective 
transcription-translation rates can be estimated. The number of proteins in a cell 
commonly ranges from  to . By taking into account that the typical diameter 
of a cell is 10 μm, k∈(∼10

410 710
-1, ∼10) proteins/(μm3 s). 

Some degree of cooperativeness, β, is mandatory (see robustness analysis results 
below). However, it can not be too large because in that case the system is too 
sensitive to the value of the concentrations involved in regulatory tasks: the 
regulatory functions tend to step functions. We set their value to 2. The 
thresholds for regulation, ε’s, and the finetuning of the parameters where 
obtained by means of cloning experiments (Canela-Xandri et al, 2006). Such 
experiments allow us to either knockout or over-express a gene, or a set of genes, 
for a particular group of cells (and progeny if required). Thus, the observed 
behaviour within the clones and at neighbouring cells for in silico experiments 
and the comparison with their in vivo counterparts, allowed us to check if the 
gene interactions were appropriately defined and weighted. By testing different 
clones, we converged to a set of parameter values that reproduces the wild-type 
behaviour and cloning experiments. Table 1 summarizes the parameter used in 
our modeling approach for k’s and ε’s values. 
The value of parameter γ associated with notch basal transcription-translation is 
taken as  and ensures a minimum amount of Notch protein at 
each cell, ∼50 proteins/μm

25 10 /( )proteins m sμ−⋅ 3 ⋅
3. We implement our simulations in a two-dimensional 

hexagonal lattice by means of an explicit forward-time-centered-space scheme 
with time step  and size 410 s−

50 30× . Each lattice node represents a cell and 
therefore the in silico disc comprises 1500 cells. 
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Table 1. In silico experiments: k’s and ε’s values used for numerical simulations 
of eqs.(4-5). 
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Discretization of the Laplacian operator for such geometry leads to, 
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where  is the lattice spacing, i.e., the typical cell size, 10 mμl , and the sum runs 
over the nearest-neighbours (6 for a two-dimensional hexagonal lattice). Note 
that we have defined ( )22 / 3D l= %D , c.f. eqs. (4) and (7). The value used for D in in 
silico experiments was 3 17 10 s− −≈ ⋅D , that corresponds to a diffusion coefficient 

. 21 /D mμ=% s

/proteins m

Figure 4 shows the initial expression pattern, i.e., the initial condition. We 
initially divide our in silico imaginal disc into two domains that correspond to 
dorsal and ventral compartments. Such division is characterized by the ligand 
expression pattern: delta is expressed in one compartment (V) and serrate in the 
other (D). The value of these initial concentrations in the disc pouch is very small 
at most cells, 10 3μ , but at boundary cells. There, a larger concentration of 
ligands is expected due to the aforementioned positive feedback induced by the 
apterous onset. Moreover, at boundary cells an initial concentration of Notch and 
activated Notch is also expected. At all cells Wingless and Cut concentrations are 
initially set to zero. 
 
 
4. Results and Discussion 
 
We start by describing the results obtained for in silico experiments in regard of 
the stationary state of the expression pattern. Figure 4 shows both the initial and 
the final expression patterns of the species involved in the regulatory network 
indicated in Fig. 3. As mentioned above, the initial expression pattern show an 
asymmetry in the expression of Notch ligands (dorsal on the right and ventral on 
the left) and small picks for Notch and notch activity. Such pattern evolves up to 
a stage where the interplay between the border activity and flanking cells 
signalling is self-sustained and reaches a steady state. Border activity is pointed 
out by robust active-Notch and cut expression patterns, and by the establishment 
of a Wingless morphogen gradient towards both compartments of the disc. On 
the other hand, flanking cells signalling is emphasized by a symmetric expression 
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pattern of both ligands with respect the DV axis. Notch protein also presents a 
characteristic expression pattern with depressions located at cell positions where 
ligand expression is pronounced. 
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Figure 4. Initial (left) and final (right) expression patterns during the 
establishment of the DV boundary (in silico results). The inset (top-left corner) 
shows the colour code for both one-dimensional (top) and two-dimensional 
(bottom) plots. The former represents concentration vs. cell-number along an 
axis perpendicular to the DV border, i.e., parallel to the AP axis. The latter are 
concentration density plots for the expression pattern of different species within 
the imaginal disc pouch. In both cases dorsal is on the right and ventral on the 
left. 
 
 
This global patterned state is reached and maintained by means of an 
orchestrated dynamical process. The incipient notch activity in the border 
induces expression of ligands Serrate and Delta, and Notch protein that generates 
a positive feedback loop. However, the loop can not be sustained without large 
ligand expression levels. The latter are provided as a consequence of the wingless 
expression once notch activity is large enough. Wingless spreads and begins to 
establish a morphogen gradient. The cells signalled by Wingless start to express 
ligands that burst out notch activity that subsequently induces wingless 
expression. Such “chain-reaction” broadens the border population and helps to 
symmetrize ligand expression. The spreading is controlled by downregulation of 
notch pathway due to direct and indirect effects: Wingless inhibitory tasks and 
ligand-Notch sequestering events respectively. Thus, notch downregulation 
produces a decay of the expression levels of the aforementioned species. 
However, at boundary cells, notch activity has surpassed the cut threshold by 
then, and the latter is being expressed at appreciable levels. Refractoriness to 
Wingless induced by Cut at border cells builds up a mask at the boundary so that 
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no downregulation of notch pathway is produced and complementary wingless 
downstream genes are not expressed. 

 
Figure 5. Snapshots of the concentration of species versus cell-number along an 
axis perpendicular to the DV border (dorsal is on the right and ventral on the 
right). The sequence shows from the initial condition (a) to the stationary state 
(h) how the expression pattern is generated. Same colour code for species that in 
Fig.4 was used.  Dotted lines delimit a four-cells-wide region around the DV 
boundary and highlight the refinement process. Frame-to-frame time lapses are 
different. 
 
 
Therefore, at border cells, ligands are not highly expressed but Wingless and 
notch activity levels are kept high at the same time. Outside the border, where 
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there is no refractoriness (i.e. absence of Cut), notch activity and wingless 
expression levels decay and the broad expression pattern begins to shrink. Such 
spreading-shrinking dynamics is commonly known as refinement and, as shown 
here, is cut-mediated. The border is finally confined to cells where cut is being 
expressed and the morphogen gradient is ultimately shaped. 
Note that the levels of expression of the ligands are kept pronounced outside 
border cells since Wingless effects are noticed there. Thus, the maintenance of 
the border activity is done by flanking signalling cells: since at the border the 
ligand expression has been severely reduced, Notch is signalled by flanking cells. 
Note that receptor-ligand signalling dynamics becomes directional, i.e., one 
might wonder why flanking cells with large expression levels of ligands signal 
only towards border cells and not also against. The answer is the following. 
Wingless downregulates notch pathway outside the border and therefore no 
activation of the receptor may occur. Complementary, at the boundary there is a 
lack of ligands due to the refractory effects to Wingless induced by cut, and the 
receptor can be exclusively “fed” by neighbouring flanking cells. The resulting 
outward/inward polarization dynamics for the receptor/ligand reaches 
equilibrium as pattern expression and consolidation of the border evolve. Notice 
also that the width of the cell population is kept to two cells because of the same 
reason: if the border cell population was larger, then intermediate cells would not 
have enough ligands around to signal Notch and therefore the border would split. 
Figure 5 shows snapshots corresponding to a typical evolution toward the 
aforementioned equilibrium. From top to bottom the figure show the refinement 
dynamics and the conformation of the expression pattern. Note that activated 
Notch refines its expression and becomes restricted to the (two) cells that 
constitute the DV boundary. Moreover, notch activity refinement indeed refines 
wingless expression that becomes restricted to cells where notch activity is large. 
Such process is not clearly shown in Fig.5 since Wingless protein instead of 
wingless expressing cells is depicted there. Observe also the process that leads to 
the symmetrization of the ligands expression. Summarizing, Notch activity is the 
“conductor” of the orchestrated plan that establishes the DV boundary where 
correct maintenance and shaping is mediated by cut due to induced refractoriness 
to Wingless. 
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Figure 6. Histograms (count, i.e., no normalization) of the parameter values used 
in the  in silico experiments implemented in the robustness analysis. Units 
depend on the depicted quantity. The initial condition was also subjected to 
variation but is not shown in the figure. 

4~ 1.5 10⋅

 
 
Robustness analysis shows that the proposed regulatory network is indeed robust 
for DV boundary establishment. We implement a Gaussian distributed random 
variation of each parameter of eqs.(4-5) around the values reported in the 
previous section. The dispersion typically allows a 50% variation around the 
assumed parameter value. We stress that the parameter of each term that appears 
in eqs.(4-5) is treated separately but consistently, e.g., terms where  appears in 
eqs.(4-5) are in principle subjected to an independent random variation of  
around its mean value  and with statistical properties as described above, 
however, as indicated in eq.(3), mass conservation in receptor-ligand dynamics 
enforce the same values of , 

1k

1k

1 1k =

, , and,  in all equations. 
bindingk sequesteringk bindingε sequesteringε

Since the Gaussian distribution is unbounded, negative values can be certainly 
obtained: we obviously disregard those in our analysis. Moreover, we check that 
each parameter set ensures Biological realism in the following sense. The Notch 
activity thresholds’ sequence in order to induce regulation of downstream genes 
is experimentally well-known and part of the DV boundary formation 
mechanism. Therefore, a valid parameter set must fulfil the following condition, 
 

( )* * * nN C N W N NN L *ε ε ε ε> > >         (8) 
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This procedure implies that the generated distributions for these quantities are not 
kept independent that in turn causes their histograms to be shifted to the right as 
shown in Fig.6. Thus, by keeping unaltered the cooperativeness parameter β, we 
generate valid parameter sets. We check for each of them whether the DV 
boundary and the rest of the expression pattern are correctly obtained or not. 
Afterwards, we repeat the test for the same sets of parameters but varying β. 
Figure 6 shows the parameter distributions used in the robustness analysis. The 
values used for β, apart from β =2, either disregard cooperativeness, β =1, or 
overestimate (with respect our original guess) its value: β =3. We evaluate the 
ratio, 

4~ 1.5 10⋅

 
       (9)     successful outcomes

number of experiments
rβ =

 
As  the system becomes less/more robust. We also compute ( ) , where 

 is the size of our parameter set, i.e., the number of parameters we allow to vary 
independently: 22 in our case. We note that the initial condition is also taken into 
account in our robustness analysis. Such quantity, 
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the degree of robustness of each parameter: if all parameters are kept unaltered 
but one, then it measures the degree of robustness for single parameter variation. 
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( )
( )
( )

1/ 22

1
1

1/ 22

2 2

1/ 223
3

0.740.0012
0.1186 0.91
0.1033 0.90

rr
r r
r r

β
β

β β

β
β

=
=

= =

=
=

⎧
⎫ ⎪
⎪ ⎪↔⎬ ⎨
⎪ ⎪
⎭ ⎪

⎩

       (10) 

 
Interestingly enough, we observe that some degree of cooperativeness is required 
for a robust DV boundary establishment. Notice also the strong degree of 
robustness for the regulatory network that, in average, allows a 91% variation for 
single parameter variation experiments in the β =2 case. 
 
 
5. Conclusions 
 
Herein, we have presented a gene-protein regulatory network for the 
establishment of the DV boundary in the Drosophila wing imaginal disc. Our 
modelling approach reduces each transcriptional-translational dynamics into a 
single process where Hill-like functions, with a given degree of cooperativeness, 
are assumed as effective regulatory functions. Thus, we have shown by means of 
in silico experiments how short-range (receptor-ligand dynamics) in conjunction 
with long-range (morphogen gradient signalling) interactions shape the border 
and establish the observed expression pattern. Moreover, we have shown that a 
new property, refractoriness to Wingless, is a required element for regulation 
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within this context. Such property is induced by cut. Finally, the robustness 
analysis reveals that the proposed regulatory network is highly robust to 
parameter variation.  
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1. Abstract 
 
The recent completion of several metazoan genome sequences presents 
unprecedented opportunities to researchers studying regulatory networks. The 
Caenorhabditis elegans genome was the first metazoan genome to be sequenced 
and, as a consequence, researchers using this nematode as a model organism 
have had a head start in such studies. A few years after the C. elegans genome 
sequence was determined, various genome-wide studies have gathered extensive 
information on phenotypes, expression profiles and protein-protein interactions. 
The simple anatomy of the nematode and the stereotyped lineage of its limited 
number of somatic cells (959) facilitate a holistic view of how molecular 
networks regulate a multicellular animal. Here I review the feasibility of using C. 
elegans as a model organism for the study of complex biological systems. 
 
 
2. The model 
 
Sydney Brenner, recently awarded the Nobel Prize, wrote: “the future lay in 
tackling more complex biological problems”. In 1965, Brenner selected the 
nematode Caenorhabditis elegans to tackle how genes act to create an organism 
and a functional nervous system. The first manuscript on C. elegans genetics was 
published in 1974 (Brenner, 1974), and thirty years later thousands of researches 
around the world benefit from the multiple advantages of this little worm with its 
simple anatomy and excellent methods for genetic analysis. The 1mm adult 
animal has 959 somatic cells derived from stereotypical cell lineages that can be 
traced along development, and hundreds of germ cells (Sulston and Horvitz, 
1977). C. elegans is diploid and has five pairs of autosomal chromosomes. 
Gender is determined by sex chromosomes, which are XX in hermaphrodites and 
XO in males. C. elegans is easy to maintain in the lab since it is fed with E. coli 
bacteria and grown on agar Petri plates at temperatures between 15°C and 25°C. 
The life cycle, from embryo to adult through four larval stages, takes about three 
days at 20°C. The genetic manipulation is greatly facilitated by its short life cycle 
and the hermaphrodite’s self-fertilization that facilitates generation of 
homozygous mutant stocks. Its average life span of 2-3 weeks is a feature that, 
together with the easy genetic manipulation, did not go unnoticed by the many 
researches working on aging in C. elegans. If geneticists have numerous reasons 
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to fall in love with this nematode, cell biologists are flirting with C. elegans 
because its transparent body makes its cells visible under the microscope. In this 
chapter I encourage scientists working on systems biology to gain appreciation 
for this worm and seriously consider a date with this model organism. 
 
 
3. The Genome 
 
The nearly complete C. elegans genome sequence was published in 1998, 
providing for the first time all the genetic information required to make a 
multicellular organism (Comsortium for sequencing the C. elegans genome, 
1998). The wormbase consortium (www.wormbase.org) is constantly refining 
and updating the annotation of the genome (Schwarz et al, 2006), and the latest 
release (WS156) lists 22,698 genes, including 912 genes encoding RNA 
transcripts only. These non-coding RNA genes (ncRNAs) are, mentioned in 
order of abundance, transfer RNA (tRNA) genes, ribosomal RNA (rRNA) genes, 
trans-spliced leader RNA genes, microRNA (miRNA) genes, spliceosomal RNA 
genes, and small nucleolar RNAs (snoRNA) genes (Stricklin et al, 2001). The 
search for new C. elegans genes is still ongoing and new gene models are being 
supported thanks to the improvement of the algorithms for gene prediction, the 
growth of Expressed Sequence Tag (EST) and ORF sequence tag (OST) 
databases, and the comparison with other nematodes genomes as Caenorhabditis 
briggsae. The publication of the draft genome sequence of C. briggsae (Stein et 
al, 2003), a soil nematode estimated to have diverged from C. elegans 
approximately 80-100 million years ago, provides a drastic improvement in the 
annotation of the C. elegans genome and will facilitate comparative genomics as 
well as the study of the evolutionary changes during development (Gupta and 
Sternberg, 2003). For example, it has been observed that genes located in the 
center of the chromosome have generally more essential functions and present 
lower rate of divergence with the C. briggsae genome. 
Although unusual among animals, the sequence of C. elegans and other 
nematodes revealed the presence of operons, which are polycistronic gene 
clusters containing two or more genes (Blumenthal et al, 2002; Blumenthal and 
Gleason 2003). About 15% of all C. elegans genes are part of operons and 
frequently encode proteins related to the basic machinery of gene expression. As 
genes in operons are co-expressed, they are candidates to be involved in similar 
biological processes. 
Four years after the publication of the C. elegans genome, the Drosophila and 
human genome sequence were completed and to the surprise of many people, the 
number of genes in humans, flies and worms is surprisingly similar, roughly 
30,000, 14,000, and 20,000, respectively (Adams et al, 2000; Venter et al, 2001). 
Thus, the differences in biological complexity existing between humans and 
invertebrates might be accounted by more alternative splicing, more functional 
domains and complex control of gene expression rather than the absolute number 
of genes (Hodgkin, 2001). Interestingly, the worm genome is about 30 times 
smaller than the human, but has roughly the same number of genes. Moreover, 

http://www.wormbase.org/
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the human genome is abundant in long intergenic regions that may have 
regulatory functions. 
The scientist community highlighted the day of the publication of the C. elegans 
genome, but we should still remember the words of Sydney Brenner; "The 
sequence is not the end of the day. It's the beginning of the day”. 
 
 
4. The ORFeome  
 
The ORFeome project aims to clone full-length open reading frames (ORFs) 
corresponding to all the predicted C. elegans protein-coding genes into Gateway 
donor vectors, which made them easily transferable to any expression vector of 
interest (Reboul et al, 2003). To date, more than 12,500 ORFs, amplified on basis 
of predicted gene models, have been cloned in Gateway vectors (Lamesch et al, 
2004). The Gateway recombinational cloning system (Hartley et al, 2000) allows 
efficiency, adaptability and compatibility in the generation of resources for high-
throughput approaches. Thus, a given ORF (or any other PCR product) cloned 
into a universal donor vector could be easily transferred to a variety of 
destination vectors in parallel, and therefore, generate reagents for different 
large-scale studies as RNAi or Yeast Two Hybrid (Y2H) libraries (Figure 1). 
Moreover, multisite Gateway cloning allows the linking of two or more DNA 
fragments from different entry clones into the same destination vectors. Such 
technology could for example be used to link a cell-specific promoter, with 
(Green Fluorescent Protein) GFP, and with the collection of ORFs to study the 
subcellular location of thousands of proteins in a g  iven cell.  
In summary, C. elegans researchers can count on the ~12,500 ORFs in a flexible 
recombinational cloning format for high-throughput operations. 
 

Gene

mRNA

ORF ORF

ORFeome clone with 
recombination sites

ORF

Gateway cloning

ORF ORF ORF
RNAi GFP Y2H HIS6

Phenome Localizome Interactome Structural genomics

ORF

TOXIC GENE

ENTRY CLONE

DESTINATION VECTOR
Amp resistance

Km resistance

 
Figure 1.The C.elegans ORFeome. Thousands of ORFs are cloned into a 
Gateway donor vector that allows an efficient transference to destination vectors 
suitable for diverse functional genomics approaches. 
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5. Proteome 
Ignited by the good quality of the genome sequence, several initiatives are 
underway to characterize the C. elegans proteome. The proteome is being 
developed in two directions; one is the global annotation and classification of 
proteins, and the second is the study of protein structures and post-translational 
modifications in individual proteins. Wormbase version WS156 cataloged 23,086 
proteins, including 3,003 alternate splice forms. Importantly, about 80% of all 
predicted proteins are confirmed or partially confirmed by transcript evidence. In 
addition, the Wormbase database contains diverse information about proteins, 
including protein motifs, molecular weight, isoelectric point, and amino acids 
composition. Another web resource, the Integr8 web portal, provides easy access 
to integrated information about deciphered genomes, including C. elegans, and 
their corresponding proteomes (Pruess et al, 2005). In this database, for example, 
we can find a classification of C. elegans proteins and learn that there are 535 
protein kinases and 216 C2H2-type zinc fingers in the C. elegans proteome. An 
additional C. elegans proteome database is WormPD (Costanzo et al, 2001)(see 
Table 1). 
There is a high-throughput proteomic project under way to confirm protein-
coding genes by mass spectrometry. This project has already identified 3363 
proteins, 121 of which previously had no experimental support (Merrihew, 
Thomas and MacCoss, unpublished). Mass spectrometry approaches could also 
inform us about post-translational modifications and protein levels in a particular 
sample (Venable et al, 2004). 
Structural genomic groups are studying individual protein structures in a large-
scale format. One of the limiting factors in such studies is the low efficiency in 
the expression of recombinant proteins. In a large-scale approach, Luan and 
coworkers (Luan et al, 2004) developed a robotic pipeline for recombinant 
protein expression, applying the gateway cloning technology to transfer 10,167 
ORFs into protein expression vectors in E. coli. They observed expression for 
4,854 ORFs, and 1,536 were soluble. This group has already determined the 
crystal structure of 85 proteins or proteins fragments and solved 19 structures to 
date. Their long-term goal is to solve the three-dimensional structures by x-ray 
crystallography and NMR of the expressed proteins. 
 
 
6. Phenome 
 
The function of a gene is commonly inferred from its loss of function phenotype. 
Genes can be inactivated either by mutation or RNAi. The efforts of individuals 
and two knockout consortiums have produced mutant alleles many genes, which 
are available on request (see Table 1). Conveniently, a deletion in a gene of 
interest can be requested from these knockout consortiums and, frequently, is 
successfully generated in few months. Although the genome sequence has been 
of enormous importance in identifying the genes affected by genetic mutations, 
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1,685 classical genetic loci still remain uncloned, or not mapped to any known 
molecular loci. 
 
 
Table 1  Web resources for C.elegans  
 
 
URL Description

www.wormbase.org Main database of C.elegans biology

http://elegans.swmed.edu/ General resources of interest for C.elegans  researches

http://biosci.umn.edu/CGC/CGChomepage.htm Center for collecting, maintaining, and distributing stocks of C.elegans

http://celeganskoconsortium.omrf.org/ Consortium that produce deletion alleles at specified gene targets

http://shigen.lab.nig.ac.jp/c.elegans/index.jsp Project that produce deletion alleles at specified gene targets

http://www.geneservice.co.uk/products/rnai/index.jsp RNAi library generated in Ahringer lab (Geneservice)

http://www.geneservice.co.uk/products/clones/Celegans_Prom.jsp Promoterome library (Geneservice)

http://www.geneservice.co.uk/products/cdna/Celegans_ORF.jsp C.elegans ORFeome library version 1.1

http://www.wormatlas.org/ Database of behavioral and structural anatomy of C.elegans

http://sgce.cbse.uab.edu/index.php  Database of crystals and structures of C.elegans  proteins

http://www.wormbook.org/ Collection of peer-reviewed chapters about C.elegans biology

http://www.sanger.ac.uk/cgi-bin/blast/submitblast/c_elegans C.elegans  Blast server

http://elegans.swmed.edu/Worm_labs/ Individual C.elegans  lab servers

http://www.bio.unc.edu/faculty/goldstein/lab/movies.html C.elegans  movies

http://vidal.dfci.harvard.edu/interactomedb/i-View/interactomeCurrent.pl Interactome Database 

http://nematode.lab.nig.ac.jp/ Expression Pattern Database. In situ hybridization images.

http://elegans.bcgsc.ca/perl/eprofile/qgene Expression Pattern Database for C .elegans  promoter::GFP fusions

http://workhorse.stanford.edu/cgi-bin/genebar/generic_genegraph.pl Expression levels in experiments related with development, germline, aging, etc..

http://vidal.dfci.harvard.edu/promoteromedb/ Promoterome Database

http://www.textpresso.org/ An information retrieval and extraction system for C.elegans  literature

http://nematoda.bio.nyu.edu/cgi-bin/rnai/index.cgi Phenotypic data from RNAi studies in C. elegans

http://workhorse.stanford.edu/cgi-bin/gl/gl_mod.cgi Database for co-expressed genes classified in 48 groups 

http://inparanoid.cgb.ki.se/ To search for eukaryotic ortholog groups

http://tenaya.caltech.edu:8000/predict/ Predicitions of C. elegans Genetic Interactions

http://worm-srv1.mpi-cbg.de/dbScreen/index.html Detailed description of embryonic RNAi phenotypes corresponding to genes on Chr III

https://www.proteome.com/proteome/ Worm Proteome Database (WormPD)

 
 
However, RNA interference (RNAi) is the tool that had elevated C. elegans to 
the category of “top model” system. Discovered in C. elegans, RNAi induces 
sequence-specific degradation of homologous mRNA triggered by presence of 
dsRNA in the cell (Fire et al, 1998). The dsRNA can be administrated by 
injection (Fire et al, 1998), soaking (Tabara et al, 1998) and, conveniently, by 
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feeding worms with bacteria expressing dsRNA (Timmons and Fire, 1998). The 
two existing feeding RNAi libraries, which are reusable, were generated in the 
laboratories of Julie Ahringer (Cambridge) and Marc Vidal (Boston) and have 
been validated in genome-wide screens covering ~90% of all the C. elegans 
genes (Kamath et al, 2003; Rual and Ceron et al, 2004).  
Interestingly, only about 15% of C. elegans genes have been associated with 
phenotypes, indicating a high presence of functional redundancies. We have 
addressed this issue at the laboratory of Sander van den Heuvel by screening for 
synthetic genetic interaction with lin-35, which is the single Rb (Retinoblastoma 
tumor suppressor) related gene in C elegans. We used the ORFeome RNAi 
library to inhibit 10,953 genes by feeding RNAi in wild-type and lin-35 mutant 
viable animals and have identified 36 genes that show synthetic or enhanced 
RNAi phenotype in lin-35 Rb mutants (Ceron et al, unpublished). Thus, the work 
of our lab and others indicate that many C. elegans functions should be 
uncovered by inactivation of two or more genes in parallel (Fraser, 2004). 
The effect of RNAi is dosage dependent and therefore mutants with higher 
sensitivity to RNAi could enhance RNAi effects (Simmer et al, 2002). Moreover, 
RNAi by injection, although more laborious, produces stronger RNAi effect. 
Hence, RNAi strength can be modulated and the administration regulated by 
feeding through development. Since cellular exit of dsRNA from normal animal 
cells has not been directly observed, it is possible to perform RNAi exclusively 
in a specific tissue by using transgenes expressing hairpin dsRNA under the 
control of tissue-specific promoters (Tavernarakis et al, 2000; Timmons et al, 
2003). This method is commonly used to inactivate genes in neuronal cells, 
which seem to be resistant to systemic RNAi. 
 
 
7. Interactome 
 
A physical interaction between two proteins is a strong argument for thinking 
that those proteins act in related biological process. In order to build a large-scale 
protein-protein interaction (PPI) map, 1873 ORFs from the C. elegans ORFeome 
library were transferred into Yeast Two Hybrid (Y2H) bait destination vectors 
that were screened against two different Gal4 activation domain libraries (Li et 
al, 2004). As result, the initial version of the C. elegans interactome contains 
~4000 interactions. These interactions can be subdivided into three confidence 
classes: Core-1, Core-2 and Non-Core of 858, 1299 and 1892 interactions 
respectively. The overall quality of the dataset was experimentally validated. 
These ~4000 interactions together with interologs predicted in silico and 
interactions previously known, make for ~5500 interactions available in the 
currently available version of the Worm interactome (WI5). Interactions present 
in WI5 generate a network of 2898 nodes and 5460 edges. Still, the number of 
false positives is a concern but protocols are being optimized to maximize the 
specificity of Y2H assays (Vidalain et al, 2004). Significant correlation has been 
observed between interacting protein pairs and C. elegans expression profiles 
(Transcriptome) as well as RNAi phenotypes (Phenome), suggesting that these 
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interactions are not randomized. The integration of interactome with phenome 
and transcriptome dataset, has already contributed to the generation of numerous 
biological hypotheses related to vulva development, DNA damage response, 
germline formation, and the TGF pathway (Walhout et al, 2000; Boulton et al, 
2002; Walhout et al, 2002; Reinke et al, 2004; Tewari et al, 2004) 
 
 
8. Transcriptome 
 
Microarray technologies allow us to compare the levels of RNA molecules in 
diverse genetic or environmental conditions. Currently, commercial suppliers 
offer microarray chips for more than 20,000 C. elegans transcripts. Thus, total 
mRNA of particular worms can be extracted and used in these chips to scan for 
gene expression differences between two mRNA sets of interest. This approach 
has been widely used and, as example, facilitated the grouping of genes with 
predominant expression in the germ line (Reinke et al 2000) or in males (Jiang et 
al, 2001). Moreover, microarray analyses have also provided insights into 
cellular pathways identifying downstream genes of hda-1 Histone Deacetylase –1 
(Whetstine et al, 2005), let-60 RAS (Romagnolo B et al, 2002), or daf-16 
insulin/IGF-1 genes (Murphy et al, 2003).  
In a compilation of microarray data, the expression data involving 17,661 genes 
and 553 microarray experiments were analyzed and genes were clustered in 44 
groups based on coexpression in diverse experimental conditions (Kim et al, 
2001). Most of these microarray studies used mRNA of the whole organism 
(embryo, larval or adult), disregarding cell type or tissue specificity. The lack of 
tissue specific samples was addressed by two methods. First, by collecting 
specific embryonic cell types labeled with tissue-specific promoters expressing 
GFP (Green Fluorescent Protein) using FACS (Fluorescence Activated Cell 
Sorting) (Christensen et al, 2002; Fox et al, 2005). However, only embryos at 
certain developmental stages can be dissociated. The second approach relies on 
the expression of a tagged poly(A) binding protein (PABP) in specific cell types, 
which allows the recovery of cell specific mRNA by inmuno-precipitation (Roy 
et al, 2002; Pauli et al, 2006).  
mRNA expression can also be precisely detected by in situ hybridization. The 
Kohara lab in Japan has performed a large-scale project to localize mRNAs at 
different stages (Tabara et al, 1996; and table 1). There is a database containing 
whole-mount in situ images corresponding to 11,237 cDNA clones. These 
images could provide a general view of the expression pattern although there is 
limited cellular resolution.  
Interestingly, and supporting one more time studies in model organisms, analysis 
of microarray data in different organisms led to the identification of co-regulated 
gene clusters among yeast, worms, flies and humans (Stuart et al, 2003). 
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9. Localizome 
 
Where a protein is located at cellular and subcellular level is crucial information 
to understanding its function. In addition to traditional methods of 
immunostaining, which are often laborious and dependent on having an 
immunostaining-friendly antibody, GFP labeling methods are being widely used. 
Promoter GFP fusions are an alternative method that is more amenable to high-
throughput approaches. The Promoterome project (Dupuy et al, 2004) has 
already released Gateway compatible promoter constructs for ~ 6,500 C. elegans 
genes. Promoter GFP fusions are currently being used for live imaging and 
~2000 GFP patterns are freely available on web sites (see table 1). Unfortunately, 
there are two limitations in this approach: first, the absence of complete and 
important promoter sequences (as sequences in trans), and second, the expression 
of the reporter, frequently incorporated in large extrachromosomal arrays, is 
subjected to germ-line silencing and lost in some of the somatic cells 
(mosaicism). 
 
 
10. Integration of “–omes”: a tale of nodes and edges 
 
Understanding of the cell machinery might be better achieved by investigating 
functional modules rather than individual molecules. A functional module is 
composed of multiple molecules, which all together exhibit properties not found 
among individual components (Hartwell et al, 1999). Thus, a ribosome and a 
signal transduction pathway are examples of functional modules. These 
functional links are commonly represented by diagram of nodes and edges. 
Nodes represent the components of biological networks (genes, proteins, RNAs, 
or metabolites) and edges represent interactions between those components. As 
commented below, vast amount of genomics data have already begun to be 
successfully integrated to discover functional modules. 
 
Functional modules in early embryogenesis 
Gunsalus and coworkers have recently published a predictive model of how 
molecular nodes are assembled to work in C. elegans early embryogenesis 
(Gunsalus et al, 2005). They selected the first two cell divisions in the embryo as 
a biological system. The functional network graph for early embryogenesis 
resulted from the overlapping of specific graphs representing phenotypic 
correlation (Sonnichsen et al, 2005), physical interaction (Li et al., 2004) and 
transcriptional profile similarities (Kim et al, 2001)(Figure 2). Transcriptional 
and phenotypic correlation was considered relevant when the Pearson Correlation 
Coefficient (PCC) was above a certain statistical threshold. Importantly, they 
used a high quality phenotypic profiling based on a full-genome RNAi screen 
(19,075 genes tested) that annotated detailed phenotypic information for 661 
genes presenting altered phenotypes in the early embryo (Sonnichsen et al, 
20005). The effects of these 661 RNAi experiments in the early embryo were 
analyzed by time-lapse video recording and 45 defects were annotated. As result 
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of integrating these genomics dataset, they created a high confidence network 
containing 305 nodes joined by 1,036 edges, each supported by two or three 
types of functional evidence. From this multiple support network they predicted 
several molecular machines. To validate this innovative approach, they studied 
the expression pattern of several previously uncharacterized genes that were 
predicted nodes of functional modules and observed expected expression patterns 
in the early embryo. 
In summary, the model resulting from the integrated network suggests that C. 
elegans early embryogenesis is achieved through coordination of a limited set of 
molecular machines. 
 
Modeling vulval development 
There is a challenging ongoing project for computer modeling of several aspects 
of C. elegans development. As starting point, the Stern lab selected the process 
of cell fate acquisition in vulval precursors cells (VPCs), which is one of the 
most well known developmental systems in C. elegans.  Details of this project 
are described at: 
http://www.wisdom.weizmann.ac.il/~kam/CelegansModel/CelegansModel.htm. 
This group also plans to extend the project to nerve cells and model behavior. 
This type of approach, which mainly uses existing genetic information, is of 
great interest, especially now that an avalanche of functional data becoming 
available. Thus, the option of performing cyber experiments from a Caribbean 
beach before taking them to the lab bench does not sound too futurist anymore. 
(Fisher et al 2005). 
 
Predictions of genetic interactions 
In a different bio-informatics approach, interactome data, gene expression data, 
phenotype data and functional annotation have been computationally integrated 
to obtain a global view of functional interaction in three different model 
organisms (Saccharomyces cerevisiae, Drosophila melanogaster and C. 
elegans). A free access database has been set up for searching genes predicted to 
interact genetically with your gene of interest (Zhong and Sternberg, 2006) 
(Table 1). 
 
 
11. Extending hypotheses to other systems 
 
About 40% of C. elegans genes have apparent human homologs and almost all 
protein domains found in human are present in C. elegans. Moreover, the 
InParanoid algorithm has identified 4558 C. elegans orthologs of human genes 
(O’Brien et al, 2005). Orthologous genes are those whose last common ancestor 
split into two gene lineages through speciation. Although sequence orthology 
does not necessarily imply the same function, genes that were shown to be 
descendants of the same ancestor (orthologous genes) exhibit, in general, 
retained similar function over the course of evolution. Therefore, as long as we 

http://www.wisdom.weizmann.ac.il/%7Ekam/CelegansModel/CelegansModel.htm
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are able to establish orthology, information obtained for a gene function in one 
organism is potentially transferable to the other. 
 
 
12. Concluding Remarks 
 
The nematode C. elegans present all the tools required to assemble the numerous 
fine-tuned mechanisms that let a multicellular organism develop, growth, interact 
with the environment, and reproduce. Thus, C. elegans is leading the research in 
genomics approaches to understand where, when and how proteins, RNAs and 
other metabolites act to build functional biological networks in a complex 
animal. Although improved methods and further studies will be required to cross-
validate the data quality for each edge of the network, the actual functional map 
that can be drawn for C. elegans is an excellent tool to generate biological 
hypothesis about how a biological system works. 
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1. Abstract 
 
Stem cells are the essential precursors of all cell types in our bodies. A particular 
tissue location, known as niche, provides the necessary factors for their 
maintenance in adult organisms, i.e., stem cell self-renewal. How does a stem 
cell decide to abandon the niche and initiate the program of differentiation? One 
can readily imagine such commitment to be severely controlled, as sloppy 
decision-making can seriously risk the survival of the individual. Here, I describe 
a robust molecular control module regulating stem cell differentiation in the 
niche of the Drosophila ovary. This mode of control is based on a combination of 
interlinked positive and negative feedback loops which regulate intracellular 
signal transduction and intercellular competition among stem cells. 
Consequently, cells within the niche actively determine each other’s fate. To 
completely describe this strategy, I combine the molecular knowledge recently 
gained in the fields of stem cell and cell competition biology with ideas and tools 
from the emerging field of systems biology. This type of multidisciplinary 
approaches, the molecular and the system-level oriented, can fully elucidate how 
stem cells work and thus start opening unforeseen avenues for the development 
of novel biomedical strategies. 
 
 
2. Introduction 
 
Stem cells are the ultimate generalists. As Leonardo da Vinci was capable of 
making beautiful paintings, sketching sophisticated engineering structures, or 
dissecting bodies, stem cells are able to transform into very different functioning 
cells, competent among other things to interpret the external world, carry oxygen 
to tissues, or protect us against external radiation. This amazing capability is 
however only found in a type of stem cells, those in charge of making the adult 
individual, known as embryonic stem cells, and thus embryonic stem cells are 
considered to be pluripotent. This pluripotency is modified along the 
development process when stem cells are transformed into adult stem cells giving 
rise to different tissues and organs and being later directly involved in their 
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posterior maintenance. Initially believed to have very restricted differentiation 
possibilities, it is now known that some of these adult stem cells exhibit a much 
wider potential. For these reasons while originally considered as unipotent cells 
they are now generally accepted to be multipotent. 
Given the importance of adult stem cells for tissue homeostasis and repair, one 
can anticipate that sophisticated mechanisms must have evolved for their 
protection and for the regulation of stem-cell self-renewal and differentiation. 
What type of mechanisms could these be? Two initial hypotheses seem a priori 
equally valid. Either some cells are specifically programmed to behave as adult 
stem cells, i.e., they behave as stem cells in an almost cell-autonomously way 
with the capacity for self-renewal being also somehow genetically programmed, 
or there exists specific locations regulating the stemness of otherwise relatively 
standard-behaving cells. As in many other cases the truth is somehow in the 
middle. In particular, locations inside tissues with the role of protect and regulate 
stemness were initially identified almost four decades ago from studies of 
transplanted hematopoetic progenitors (Schofield, R., 1978). These locations 
have been later identified in many different tissues. All these reports contributed 
to clarify and characterize one of the most important concepts of stem cell 
biology: the stem cell niche. 
What is a stem cell niche? Niches are specific microenvironments constituted by 
a subset of tissue cells and extracellular substrates that can indefinitely support 
the self-renewing of stem cells. A few points in this definition are worth 
highlighting: 1) the presence of a given anatomical organization, or niche 
structure, constituted by one or more specialized cell groups, 2) the localized 
signalling cells which generally emit a principal signal (the stem factor), and, of 
course, 3) the stem cells.  Characterizing stem cell niches in vivo remained then 
the Holy Grail of stem cell biology and a task difficult to achieve. However, 
during recent years, an increasing number of niches are being localized and 
classified in different tissues such as testis, skin, or gut crypts (Fuchs, E., et al, 
2004). 
The manuscript is organized as follows. First, I describe the stem cell niche in the 
Drosophila ovary and introduce its basic molecular agents, as this scenario is the 
focus of my discussions. Second, I introduce basic concepts of cell competition 
required for the understanding of how stem cell self-renewal is achieved in this 
niche. Finally, I describe the dynamics of the molecular control module 
regulating stem cell differentiation by mathematical modelling, and analyse these 
models in detail. This module induces a two-layer regulation at both the 
intracellular and intercellular level enhancing the robustness of stem cell fate 
commitment. With this working example, I hope to illustrate the need to 
incorporate system-level thinking to standard molecular/genetic approaches to 
help developing our knowledge of how stem cells work. 
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Figure 1. A. Niche of the Drosophila ovary. This structure is mainly constituted 
by postmitotic somatic cells termed terminal filament cells and several epithelial 
stromal cap cells. The principal signal of this niche is the morphogen 
Decapentaplegic (Dpp). At a given Dpp threshold stem cells (GSCs) 
differentiate. B-C. Staining of Drosophila ovarioles with a d-Myc specific 
antibody reveals d-Myc expression in the stem cell niche. pMad (green) and d-
Myc (red) staining of the same germarium. All pMad positive cells (arrowhead) 
express high levels of d-Myc (arrow) (B-C. figures courtesy of B. Díaz, I. 
Fernandez-Ruiz). 
 
 
3. Stem cell niche in the Drosophila ovariole 
 
The Drosophila ovary is constituted of 16-20 functionally equivalent developing 
egg strings known as ovarioles. Within these strings reside two or three cells 
acting as germ line stem cells (GSCs) whose progeny differentiate into eggs 
within 8 days as they move along the ovariole. GSCs have been located at the tip 
of the germarium and this environment was later identified as a stem cell niche. 
The anatomical organization of the niche structure is mainly constituted by a 
single stack of postmitotic somatic cells termed terminal filament cells and, at the 
base of these terminal cells, several epithelial stromal cap cells. The principal 
signal of this niche has also been revealed. This stem factor is the morphogen 
Decapentaplegic (Dpp), the Drosophila homologue of the bone morphogenetic 
protein 2/4 (for details see Spradling, A., et al, 2001, and references therein). 
GSCs at the niche transduce the highest levels of Dpp and thus continue as stem 
cells. Excessive Dpp signalling was shown to block germ cell differentiation 
which suggested that Dpp downregulation is associated to differentiation, i.e., the 
transformation into a stem cell daughter named cystoblast, CBs (Kai, T. and 
Spradling, A., 2004). This transformation requires activation of the bag-of-
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marbles (bam) gene. Dpp signalling acts on Bam as follows: Dpp signal 
transduction requires phosphorylation of Mad (pMad) and its nuclear 
translocation. pMad binds to a silencer element which is in turn involved in Bam 
transcriptional shut-off (Chen D, McKearin D., 2003). This is not the only 
functional relation between Dpp signalling and Bam. More recent data also 
supports the down-regulation of Dpp activation by Bam (Casanueva M.O. and 
Ferguson E.L., 2004). Our experiments (Díaz B. et al, 2006) have further 
extended this core regulatory module by introducing a third molecular player, the 
protein Drosophila Myc (d-Myc, see Results). 
 
 
4. Cellular competition 
 
The idea that cells of multicellular organisms could compete instead of cooperate 
among them remained appealing and controversial for many years. Cellular 
competition was finally experimentally confirmed in Drosophila. In an 
experiment where cells with different metabolic rates were confronted, cells that 
in isolation shown to be completely viable disappeared due to the additional 
presence of metabolically more efficient ones. These different metabolic rates 
were achieved by generating artificially mutations of ribosomal proteins and the 
corresponding cell mutants are since then termed Minutes (Morata, G. and 
Ripoll, P., 1975). After this seminal work, several studies have revealed new 
genes able to induce competition (Díaz, B. and Moreno, E., 2005, and references 
therein). But, isn’t it strange that cells compete rather than cooperate for the 
benefit of the organism? A plausible way out to this paradox could be the idea 
that competition would act as an efficient strategy to select for cell quality, as the 
presence of naturally occurring mutants, which are generally less optimal for a 
given set of attributes, in a normal cell environment would be filtered out by this 
mechanism. 
What are cells competing for? Classical experiments hypothesized that cells 
compete with each other to fill a limited space that appears to be delineated in 
advance. Cell selection in this space could be based on the accessibility for a 
general “growth” factor, which may sometimes also be involved in the shaping of 
the battlefield itself. Two scenarios can be envisaged. In the first case, the growth 
factor is available only in small doses, and thus only cells in which the uptake of 
the growth factor is above a threshold would survive. Alternatively, all cells in 
the population have enough growth factor to survive, i.e., this factor is not 
limiting. However, not all of these cells are optimal, and thus the most 
competitive ones eliminate the others after some “quality comparison” 
mechanism. 
This story took a twist recently when, in a surprising set of discoveries, genes 
able to induce cell competition above wild-type levels were identified. In 
particular, genes of the Myc family can transform cells into such super-
competitors (de la Cova, C., et al., 2004, Moreno, E. and Basler, K., 2004).  This 
phenomenon could in this way be involved in early stages of cancers, in which 
super-competitor cells were able to invade a particular tissue location by killing 
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surrounding normal cells. Unbalanced of Myc is common in many cancers and, 
according to the previous scenario, it could alter tissue balance that in 
combination to secondary mutations would lead to tumour formation. 
 
 
5. Results and Discussion 
 
5.1. A CORE REGULATORY MOTIF FOR STEM CELL 
DIFFERENTIATION. 
I have introduced in Sec.2 the basic molecular agents involved in the 
determination of stem cell fate in the Drosophila ovary, i.e., pMad and Bam. By 
considering this pair we can completely characterize cells as GSCs, (pMad, Bam) 
= (ON, OFF), or CBs, (pMad, Bam) = (OFF, ON). This behaviour could be 
established in molecular terms by a simple repression of Bam by pMad. 
According to this, the transition from pMad-expressing to pMad-non-expressing 
cells (and viceversa for Bam) would be relatively gradual, following the Dpp 
gradient.  However, this transition is rather observed as all-or-none 
experimentally (Fig. 1). The presence of a second interaction, this time Bam 
acting on pMad, can contribute to understand such sharp pattern. Indeed, recent 
data supports the down-regulation of Dpp activation by Bam (see Sec. 2). This 
repression has important dynamical consequences since the double-negative 
motif pMad -| Bam -- Bam -| pMad constitutes a positive loop, a common 
feedback-based strategy promoting cellular differentiation (Thomas R. and D’Ari 
R., 1990, Freeman, M., 2000). One could alternatively think of a third circuit: a 
positive interaction between pMad and Bam. This structure would induce again a 
graded differentiation but probably with less variation in protein levels with 
respect to simple pMad -| Bam architecture. This is a consequence of the negative 
feedback motif pMad -| Bam -- pMad  Bam which would act as a homeostatic 
regulator of protein levels (Thomas R. and D’Ari R., 1990). 
 
A simple model describing the positive loop pMad -| Bam -- Bam -| pMad reads 
as 
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These equations describe the rate of change of the concentrations of each of the 
molecular components as a function of time. In the equation for pMad, the first 
term denotes the production of pMad with rate a1. This production is directly 
related to Dpp signalling, i.e., more Dpp implies bigger a1. Bam repression is 
incorporated by introducing a Michaelis-Menten type repression term (Thomas 
R. and D’Ari R., 1990) acting directly on pMad production. Note that this is a 
simplification to the molecular picture yet to be deciphered (but see following 
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subsection). In this repression term, (K1,n) are the Michaelis-Menten parameters 
with K1 being the concentration of Bam required to half pMad production and n 
the corresponding steepness of this repression (often associated to cooperativity 
effects, with n>1 denoting  cooperativity). Similar terms for production and 
degradation are considered to describe Bam dynamics. In this case, a2 (b2) is the 
production (degradation) rate, and (K2,m) the Michaelis-Menten parameters. 
Cooperative effects are more likely in this case since pMad represses 
transcription of Bam by forming a complex with the Medea (Med) protein and 
further recruiting other cofactors (Chen D, McKearin D., 2003). 
We can infer some of the dynamical properties of this motif and how it 
determines cell behaviour. To this aim, I associate cell types to steady states of 
the dynamical system, i.e., a state where the concentration of each protein does 
not change with time. The presence of a positive feedback has the potential to 
yield a molecular switch as the dynamical system can exhibit bistability, i.e., the 
coexistence of two stable steady states. This is in contrast with the other two 
minimal motif architectures consistent with the cell behaviour in/out the niche, 
i.e., simple repression and a negative feedback loop, that can only reach a single 
steady state. Bistability also enables the system to present hysteresis: the lack of 
reversibility as a parameter is changed (for an introduction see Strogatz. S, 2000). 
Both properties are commonly found in other cellular differentiation scenarios 
(Xiong, W. and Ferrell, J. E. Jr., 2003, Isaacs, F. J., et al, 2003 Bhalla U.S., et al, 
2002, Acar M, et al , 2005). 
These two previous features would impose some constraints on the parameters 
characterizing the interactions associated to the positive loop: they should exhibit 
a degree of non-linearity, e.g., m = n = 2, and proper balanced between both 
arms, i.e., a ~ a1 2 (Ferrell J.E., 2002). The transcriptional control of Bam 
expression by pMad seems to indicate the presence of the required non-linearity.  
I hypothesise that the strength and non-linearity of the Bam action on pMad is 
strong enough so that the system acts as a bistable switch. If this core were not 
bistable but, for instance, ultrasensitive the differentiation transition would work 
in a less robust way, e.g., there might exist some “random” events of de-
differentiation. This is shown in Fig.2. where I compare how the steady state of 
pMad concentration changes for a bistable (continuous black line) vs. a 
ultrasensitive (dotted blue line) transition as Dpp decreases, i.e., far from the 
terminal filament cells. This concentration is high in the region with more Dpp. 
As Dpp decreases, pMad concentration also decreases. Note that in this 
intermediate Dpp regime, the system is potentially able to reach three distinct 
states, two stable states (high or low pMad, respectively) and one unstable state 
(dashed black line). A further decrease in Dpp pushes the system from the upper 
stem cell state (GSCs) to the lower differentiated state (CBs). While GSCs follow 
the path denoted with the green arrows to differentiate,  CBs follow instead the 
path denoted with the blue arrows to de-differentiate. De-differentiation occurs at 
a different Dpp value to that for differentiation, i.e., there exists hysteresis. 
Unless fluctuations in Dpp are considerably large cell commitment is robust. 
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Figure 2. pMad steady states for a core module with (continuous and dashed 
black lines) and without (dotted blue line) bistability. In the bistable regime the 
system exhibits three steady states, one of them unstable (dashed line). Bistability 
enhances the robustness of the differentiation decision as the range of Dpp values 
to differentiate is different to that to dedifferentiate (hysteresis). Parameters used 
are: m= n = 2, 1 b1 = b = 1, K2 1 = K2 = 10, and a2 = 30. Inset. Positive feedback 
loop architecture between pMad (green circle) and Bam (blue circle). 
 
 
5.2. D-MYC ENHANCES THE ROBUSTNESS OF STEM CELL 
DIFFERENTIATION 
Since Dpp signalling is a basic element associated to stem cell self-renewal in the 
Drosophila niche and d-Myc was recently proposed to influence Dpp 
transduction (Díaz, B. and Moreno, E., 2005), we recently studied the possible 
role of d-Myc in the control of stem cell fate commitment (Díaz B. et al, 2006). 
In short, we have observed a boundary between d-Myc expressing and non-
expressing cells precisely located where the decision to differentiate is taking 
place (Fig.1.C).  This suggests that d-Myc is somehow under the influence of the 
previous motif core and thus plays a role in the control of differentiation. Indeed, 
our experiments were able to delineate a new functional module constituted by 
Dpp signaling (pMad), Bam and d-Myc (Inset Fig. 3). The presence of d-Myc 
enhances the robustness of stem cell differentiation by introducing dual 
regulatory actions at the intracellular and intercellular level. 
Here, I extend the previous mathematical framework to describe these features. 
Our experiments were able to show several connections to the previously core 
motif.  Firstly,  Bam is required for d-Myc repression in CBs cells and thus the 
presence (absence) of Bam directly implies the absence (presence) of d-Myc. 
Secondly, high levels of Dpp signalling slightly down-regulate d-Myc 
independent of Bam and, finally, d-Myc activates Dpp uptake.  Thus d-Myc 
establishes two new feedback loops, one positive (pMad -| Bam -| d-Myc   
pMad) and one negative (pMad  -| d-Myc  pMad). We can mathematically 
describe this new control module as follows 
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Here, the second term in eq.3 reflects a saturating repression of d-Myc 
production by pMad with c13 being maximal production rate, and (K´1, p) the 
corresponding Michaelis-Menten parameters. In eq. 5, a3 denotes maximal rate of 
d-Myc production and (K3, s) the parameters associated to Bam repression. The 
second term is a saturating repression of d-Myc production by pMad with c31 
being maximal production rate and (K´3, p´= p) controlling again the shape of this 
interaction. Finally, b3 is the rate of degradation of d-Myc. Note that I considered 
two routes to close the loop between Bam and pMad, d-Myc-independent and d-
Myc-dependent, respectively. Further experiments should elucidate whether this 
is the case or there exists a single d-Myc-dependent loop. This should not modify 
the main conclusions of the present analysis. 
What makes this modular architecture interesting? One can notice the existence 
of two d-Myc dependent feedback loops, one negative and one positive. In 
particular, pMad establishes a negative feedback loop with d-Myc which can 
buffer the system against Dpp signalling fluctuations, as negative feedbacks are 
generally linked to homeostasis (Thomas R. and D’Ari R., 1990). To show this 
effect, I compared the behaviour of two systems with d-Myc activated by Dpp 
with or without a negative feedback with pMad (all other biochemical details 
being identical). I imagined a situation in which a small perturbation, for instance 
due to Dpp fluctuations of other sources of biochemical noise, displaces the 
system from its current steady state, located near the differentiation transition 
(Fig. 3, colour circles). In Fig. 3, I plot the time it takes to pMad concentration to 
come back to its previous equilibrium for a module with (Fig. 3 inset dark green 
curve) and without the pMad/d-Myc feedback (Fig. 3 inset light green curve). 
This time is shorter when the feedback is present, an indication that in such case 
the stem cell would be able to avoid unnecessary differentiation due to random 
signalling fluctuations. 
The presence of d-Myc as part of a positive feedback loop induces also 
interesting effects. As before, it can enable the system to exhibit bistability and 
hysteresis. In this way, d-Myc modifies the transition from the GSC to the CB 
state and determines the niche size, i.e., different dosage of d-Myc 
increases/decreases the number of stem cells in the niche, a phenomenon that we 
observed experimentally. How does this dosage affect the bistable behaviour?. A 
higher dosage, i.e., higher a3 values, shifts the bifurcation diagram to lower Dpp 
values (lower a1 values) which implies higher niche sizes but also with the effect 
of making the switch less robust (the Dpp range where the system exhibits 
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bistability is smaller). This dynamical instability might avoid the establishment 
of super-competitor in the niche (see below). 
In addition, d-Myc induces cell competition and modifies the classical model of 
GSC differentiation. In the classic model all cells in the niche differentiate 
according to the same Dpp threshold value, and Dpp signalling (pMad) decreases 
following the Dpp gradient. The presence of cell competition modifies pMad 
levels in GSCs, increasing that of the “winners” and decreasing that of the 
“losers”. As a consequence losers bring forward differentiation, i.e., their Dpp-
threshold to differentiate is reached before that of the case without competition. 
In addition, cell competition decreases the chances of de-differentiation of these 
very same cells (de-differentiation occurs also at higher levels of Dpp) or even 
turns it impossible. A cell getting permanently less Dpp compared to its 
neighbours would express Bam, which at the same time blocks Dpp signalling 
and d-Myc expression, drastically cutting all possibilities to remain as a GSC. 
Therefore, d-Myc-induced competition sharpens and promotes the differentiation 
transition when compared to a hypothetical situation in which cells are just 
differentiating along a Dpp gradient. 
 

 
Figure 3. Bifurcation diagram of the cell competition control module. Steady 
states of the three molecular components, pMad (green), Bam (blue) and d-Myc 
(red) plotted as a function of Dpp signaling. The left side of the figure describes 
the situation at the tip of the germarium (Dpp levels denoted by the gradient bar). 
In this case, cells remain as stem cells with high levels of pMad/d-Myc and low 
levels of Bam. The right side of the figure describes a situation far from the tip of 
the germarium. Cells are no longer stem cells and are characterized by high 
levels of Bam. In between, there exists a parameter regime where three steady 
states of the dynamical system are available, one of them unstable (dashed lines). 
The differentiation/dedifferentiation transitions occur at different values of Dpp 
signaling, i.e., there exists hysteresis in the system. Insets. Top: Molecular 
control module between pMad (green circle), Bam (blue circle) and d-Myc (red 
circle). Bottom: Concentration of pMad as a function of time for two control 
modules with (without) the d-Myc/pMad negative feedback. The time necessary 
to recover the equilibrium value of pMad after a small stochastic concentration 
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fluctuation is shorter for the system with the feedback loop (dark green curve). 
See text for details. Parameters as follows: a1 = Dpp, a2 = 50, a3 = 10, b1 = b2 = 
b3 = 1, n = m = s = p = 2, K1 = K1’ = K2 = K3 = K3’ =10, c13 = c31 = Dpp/4. 
 
 
6. Conclusion 
 
I discussed the behaviour of a molecular module regulating stem cell renewal in 
the Drosophila niche. I highlighted the role played in this system by d-Myc as a 
key component of a two-layer, intracellular and intercellular, control mechanism. 
How is the module architecture determining its function? To understand part of 
the associated complexity, I introduced basic concepts of systems biology, such 
as feedback-based control, bistability or histeresis. Many of these concepts have 
been already used in other cellular scenarios (Xiong, W. and Ferrell, J. E. Jr., 
2003, Isaacs, F. J., et al, 2003 Bhalla U.S., et al, 2002,  Acar M, et al , 2005) and 
they also seem essential if we want to fix and understand “stem-cell radios” 
(Lazebnik Y., 2002). Further work is of course necessary to fully unravel control 
strategies used in other stem cell niches and to determine the role played by cells 
within the niche to actively influence each other’s fate. These studies can have 
major implications for understanding fundamental cellular processes and for the 
development of novel tissue replacement therapies. 
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1. Abstract  
 
Signal transduction is one of the prominent and most promising fields in systems 
biology. The development of new quantitative experimental techniques allows us 
to accumulate high-quality quantitative data required for the estimation of 
numerical parameter values in dynamic pathway models. The present paper 
presents a power-law approach to modelling signal transduction pathways and 
applies this concept to the analysis of time course data set for the JAK2-STAT5 
pathway. The power-law model offers an intuitive interpretation of biological 
observations. Our analysis of the experimental data and the model emphasize the 
role of dephosphorylation and internalisation of the receptor complex in the 
overall dynamic behaviour of the system. 
 
 
2. Introduction  
 
Signal transduction is one of the prominent and most promising fields in systems 
biology (Wolkenhauer et. al 2005). The development of new quantitative 
experimental techniques allows us to accumulate high-quality quantitative data 
required for the estimation of numerical parameter values in dynamic pathway 
models. The present paper extends previous work based on a kinetic model for 
the JAK5-STAT5 pathway (Swameye et al., 2003). The conserved JAK2-STAT5 
pathway is one of the best-studied signalling networks. Its core module is 
particularly suitable for an investigation by mathematical modelling. 
The cascade is activated through various receptors, including tyrosine kinases, G 
protein-coupled receptors, and hematopoietic cytokine receptors such as the 
erythropoietin receptor (EpoR). Signal transduction through EpoR is crucial for 
the formation of mature erythrocytes. Since cytokine receptors utilizing the 
JAK/STAT pathway lack intrinsic protein kinase activity, cytokine-activated 
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phosphorylation is mediated by the cytosolic kinase JAK2 which is associated 
with the cytoplasmic domain of the EpoR. The EpoR exists as a preformed 
dimer. Upon binding of the hormone erythropoietin (Epo) the receptor-associated 
JAK2 is activated and phosphorylates various tyrosine residues in the 
cytoplasmic domain of EpoR. Subsequently, the latent transcription factor 
STAT5 is recruited via its SH2 domain to the activated receptor, becomes 
phosphorylated by JAK2, homodimerizes and migrates to the nucleus where it 
initiates the transcription of various target genes. While the mechanism of EpoR 
activation is well understood, little is known about downregulation of the 
activated receptor. Recent studies have suggested endocytosis, proteasomal 
degradation, the recruitment of phosphatases like SHP-1 and other negative 
regulators like SOCS proteins as possible mechanisms to control cytokine 
responses. 
The present paper extends previous work on a data-based mathematical model of 
the core module of the JAK2-STAT5 signalling cascade (Swameye et al., 2003). 
Since then methods for quantitative data acquisition have been optimized, to be 
more quantitative and with more time points. The merging of multiple 
quantitative data sets has been shown to be feasible (Schilling et al., 2005). The 
previous model consisted of four coupled differential equations for cytoplasmatic 
STAT5, phosphorylated monomeric STAT5, phosphorylated dimeric STAT5 and 
nuclear STAT5. The process of translocation of nuclear deactivated monomeric 
STAT5 to the cytoplasm was modelled with a discrete time-delay. The dynamics 
of the Epo receptor were not modelled but the data related to its activation were 
used to describe the input signal of the system during the experiment. 
The model has been extended to consider receptor complex endocytosis and 
degradation. As an alternative to modelling signal transduction systems based on 
conventional chemical kinetics, we propose here a power-law model allowing for 
non-integer kinetic orders (Savageau 1969a, b, 1970). 
 
 
3. Material and Methods 
 
We have used quantitative immunoblotting techniques yielding high-quality data 
required for mathematical modelling (Schilling et al., 2005). We performed time-
course experiments in BaF3 cells stably expressing the EpoR. The cells were 
transduced with the retroviral expression vector pMOWS-(HA)EpoR. BaF3-
EpoR cells were selected in the presence of puromycin. For time-course 
experiments BaF3-EpoR cells were starved in RPMI-1640 containing 1 mg/ml 
BSA for 5 h and were stimulated with 5 units/ml Epo. For each time point, 107 
cells were taken from the pool and lysed by adding the cells to Nonidet P-40 lysis 
buffer. Following cell lysis, EpoR and STAT5 were immunoprecipitated with 
anti-EpoR and anti-STAT5 (Santa Cruz Biotechnology). To achieve 
normalization of signals appropriate calibrator proteins (GST-EpoR and GST-
STAT5) were added to lysates prior to immunoprecipitation (IP).  IP samples 
were loaded on the gel (SDS-PAGE) in randomized order to prevent correlated 
errors evolving from the immunoblotting process. The immunoblots were 
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performed under standardized conditions, incubated with chemiluminescence 
substrate (GE healthcare) for 1 min, and exposed for 10 min on a LumiImager 
(Roche Diagnostics). For quantification, LUMIANALYST software (Roche 
Diagnostics) was used. Quantitative immunoblot data was processed using the 
GelInspector software described in Schilling et al. 2005. 
Instead of a multiple shooting algorithm used in Swameye et al. 2003, the present 
paper uses a genetic algorithm for parameter estimation. The algorithm is a 
simple genetic algorithm that has been adapted and optimised to estimate 
parameters in power-law models (Hormiga et al 2006). In the estimation process, 
each element of the population of solutions represents a point in a parameter 
value space. The initial population is generated through a random exploration of 
the search space, which is defined using feasible intervals of values for the 
variables (Table 1). The best individuals of the population are selected in the 
considered iteration based on the value of the following objective function: 
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where m is the number of experimental data, xi the value for the considered data 
point, yi the value obtained after numerical integration of the solution, and �i the 
experimental error. An additional fast climbing-stochastic algorithm is applied to 
the best solutions in each iteration. The stopping criterion depends on a 
previously established maximum number of iterations or on a minimum level of 
satisfaction for the objective function. Finally, the solutions obtained are 
analysed and selected using additional biological criteria. 
The JAK2-STAT5 pathway has been modelled as a general mass action (GMA) 
model, expanded using power-law terms: 
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Here Xi are the nd variables of the model, cij the coefficients of the stoichiometric 
matrix, γj the rate constants and gjk the kinetic orders of the model. The meaning 
of the rate constants and stoichiometric coefficients is similar to the usual 
definition for conventional kinetic models. In the case of kinetic orders, the 
larger the contribution of one variable to the rate of change in signal is, the 
higher is the value of the associated kinetic order gjk. Kinetic orders can have 
non-integer values, and it is possible to assign them negative real values 
representing allosteric inhibition. 
Parameters to be estimated in the model will be rate constants, γj, (always real 
positive numbers) and kinetic orders, gjk, (positive or negative real numbers). For 
the given system, there are no inhobitory feedback mechanisms and hence kinetic 
orders can have only positive real values. A conventional model, based on 
chemical kinetics, is a special case of a GMA model, where all kinetic orders are 
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equal to one, except those describing dimerisation, in which case the order is 
equal to two. 
S-systems are the other possibility to model systems within the setting of 
Biochemical System Theory (Voit 2000). We have discarded the use of this 
simpler kind of power-law models in signal transduction pathways due to the 
adverse effects of flux aggregation, a constitutive property of these models. The 
effects of this operation can be neglected for other types of biochemical systems 
operating in a preferential steady-state, e.g. metabolic systems. Signal 
transduction networks have no such class of usual steady-states and can even 
operate with some processes switched off. In that case, the aggregation of rates 
can provoke significant alterations in essential properties of the model reducing 
the utility of this approach (Atauri et. al 1999) in signaling studies. 
Since raw data are expressed in arbitrary units a convenient normalisation of the 
data was applied to avoid numeric problems during the parameter estimation and 
simulation but also to facilitate the visualisation of the data (Vera et. al 2003). 
The remaining values of the rate constants and kinetic orders were estimated 
using a genetic algorithm for parameter estimation. Computations were 
performed on a Sun Fire V880 Server. Four processors UltraSPARC-III (1200 
Mhz, 8MB cache each) were used, and the available RAM memory was 32 GB. 
The algorithm for parameters estimation was implemented in Matlab running 
under SunOS 5.10. The algorithm was executed with a population of two 
hundred initial parameter sets, and one hundred and forty generations per 
solution were computed. This means that twenty-eight thousand points were 
explored in the parameter space to obtain a solution. The computing time spent 
for getting a solution was around two minutes. Parameters were computed for 
mathematically feasible intervals in the parameter space (see Table 1). 
 
 
Table 1. Feasible intervals of parameter values 
 

Parameter g g g g g g g gg1 2 3 4 5 6 7 8 9
Upper 
Bound 

1.25 1.25 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

Lower 
Bound 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

 
Parameter γ γ γ γ γ γ γ γ γ 1  2  3  4  5  6  7  8  9
Upper 
Bound 

0.15 0.15 0.01 0.15 0.01 0.01 0.15 0.15 0.15 

Lower 
Bound 

0.001 0.001 0.0001 0.005 0.0001 0.0001 0.005 0.005 0.005
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4. Results and discussion 
 
For all biochemical processes included in the model, the Epo receptor and the 
JAK2 kinase were assumed to form a stable complex. In the current model, two 
possible states for the EpoR/JAK2 complex were considered: 
i Epo not bound to receptor-kinase complex. 
i Epo bound to receptor-kinase complex, and therefore the receptor-kinase 
complex is activated. 

When the non-activated complex binds the ligands, it is activated which 
subsequently leads to the phosphorylation of both parts of the complex. The 
dephosphorylation of the complex by phosphatases is also included in the model. 
The structure of the model was completed by including rates that describe the 
internalisation and subsequent degradation of the EpoR/JAK2 complex, either 
activated or non-activated. The recruitment of new EpoR/JAK2 complexes to the 
plasma membrane has also been considered. In the model three possible states 
have been considered for STAT5: 
i Non-activated and monomeric STAT5 in the cytosol. 
i Activated and dimerised STAT5 in the cytosol. 
i Activated and dimerised STAT5 in the nucleus. 

Since the dimerisation of activated STAT5 is considered a very fast process, the 
variable that quantifies the single-phosphorylated STAT5 is neglected. The 
model assumes that the protein is dimerised immediately after the activation 
process driven by pEpoR/pJAK2. 
Experimental data describing the processes of translocation of 2(pSTAT5) to the 
nucleus and its dynamical behaviour inside the nucleus are currently not 
available, and the differential equations describing such processes have not been 
formulated in detail. Therefore, we model the fraction of STAT5 inside the 
nucleus with a single state. 
Figure 1 illustrates the structure of the model developed. Only the states of the 
proteins and the processes that have been justified from a biological point of 
view were included. 
The previous model (Swameye et al., 2003) focussed on the analysis of different 
states of STAT5. The structure of the current GMA model expands this model by 
incorporating the description of essential dynamical processes affecting the 
EpoR/JAK2 complex (recruitment, activation, deactivation and degradation). 
Since the dimerisation of activated STAT5 is a rapid biochemical process, the 
model was simplified by neglecting the dynamics of the variable representing 
monomeric phosphorylated STAT5. Moreover, the dynamics of depletion of the 
extracellular Epo were also modelled. 
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Figure 1. Structure of the JAK2/STAT5 pathway model. 
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where Epo represents the concentration of erytropoietin in the extracellular 
medium, EJ is the fraction of EpoR/JAK2 complex non activated, pEpJ the 
activated fraction of the complex and EJDA represents the fraction of 
dephosphorylated complex receptor. Variable S represents the fraction of STAT5 
non-activated and non-dimerised, 2(pS) the fraction of STAT5 in the cytosol 
activated and dimerized, and finally 2(pS)nc the fraction of STAT5 inside the 
nucleus that is activated and dimerized. 
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In all cases variables were normalised so that the initial total amount of 
EpoR/JAK2 complex equals one, and the total amount of STAT5 equals one 
during the experiment. With the exception of Epo, values for system variables 
were taken between zero (no proteins in the considered state) and one (total 
available amount of protein is this state). 
Since there is no complete balance between degradation and recruitment of 
receptor complex in the equations of the model, the total amount of the 
EpoR/JAK2 complex can vary during the experiment. However, the total amount 
of STAT5 is constant, that is, there is an implicit balance between degradation 
and synthesis. The effect of the dimerisation process was also considered in the 
formulation of the equations. This leads to factors two in the equations. 
The resulting model has seven dependent variables, and nineteen parameters to 
be estimated (ten kinetic orders and nine rate constants). 
In case of the EpoR/JAK2 complex and 2(pSTAT5), data from two replicate 
experiments were available. Some outliers were detected by visual inspection and 
discarded. In case of Epo, the initial concentration was known and two more 
measurements were done at 30 and 180 minutes after stimulation. 
Following normalisation, the average of time series is used for parameter 
estimation. The computed standard deviation was used as a measure of the error 
in the experiment. The final step was to appropriately scale the data. The current 
normalised and averaged data are actually not real quantitative data, because they 
do not relate to the proportion of protein in the considered state. Additional 
biological assumptions were used to establish the proportion of protein activated 
in the peaks of stimulation for both variables pEpJ and 2(pS). Once the 
proportion of protein in the peaks was known, the rest of data were adequately 
scaled to obtain the quantitative data shown in Figure 2. In case of Epo, the 
available normalised data were Epo(0)=1.0, Epo(30)=0.89 ± 0.024 and 
Epo(180)=0.83 ± 0.017. 
 
Additional algebraic equations, reflecting the relation between the measured 
quantities and the variables, were defined in the model: 
 

[Epo] = Epo 
[pEpoR] = pEpJ 

] = 2x2(pS) [pSTAT5cyt
 
The variables on the left hand-side represent measured quantities, while the right-
hand side represent the variables considered in the model. 
The initial state of the system, after starvation and before stimulation, can be 
approximated by assuming that virtually the entire amount of the EpoR/JAk2 
complex and STAT5 was in an inactivated state. This permits the assignment of 
feasible initial conditions to the variables. Both, experimental data and initial 
conditions were used to estimate parameter values. 
Under the stated biological assumptions, in the peak of activation after 
stimulation 95% of the EpoR/JAK2 on the plasma membrane was considered 
activated and 60% of the STAT5 was supposed to be activated and dimerised. 
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Parameter estimation led to the values summarised in Table 2. 
 
Table 2. Values of the parameters in the selected solution 
 

g g g g g g g g ggParameter 1 2 3 4 5 6 7 8 9 10

Value 0.82 0.75 1.28 1.14 1.02 1.28 0.99 1.02 1.0 1.02
Parameter γ γ γ γ γ γ γ γγ1 2 3 4 5 6 7 8 9

Value 0.012 0.1 0.006 0.013 0.004 0.006 0.056 0.092 0.069 
 
 
Data fitting of the selected solution is shown in Figure 2. A good fit is obtained 
in the case of pEpJ. However, the model seems not to be able to obtain an 
activation of 95% of the available EpoR/JAK2 complex at maximum activation. 
Two possibilities could be considered: i) the model is not able to simulate such a 
strong activation of the receptor complex or ii) the quantification of the peak is 
excessive, and in the real system the maximum of activation is lower than the 
supposed value. In the case of 2(pS), the data fitting is not completely 
satisfactory. 
 

Fig 2.A        Fig 2.B  

 
 
Figure 2. Data fitting of the selected solution. The quantitative data with error 
bars obtained from the experiments (points) are compared with the data fitting of 
the solution (lines). Data came from two replicates of the experiment performed 
using BaF3 cells, which expressed Epo receptor. The samples where stimulated 
using 5 units/ml of Epo during 240 minutes. Measurements were done using 
inmunoblotting. 2.A. Normalized quantity of pEpoR/pJAK2. 2.B. Normalized 
quantity of pSTAT5 in the cytosol. 
 
 
Figure 3 shows the simulations of the system after the perturbation with Epo. The 
value of Epo decreases very fast until the system reaches the peak of activation. 
Since EJ is recruited very slowly from the endoplasmic reticulum, a strongly 
reduced quantity of EJ is available at the plasma membrane, after the peak of 
activation. Therefore, the depletion of Epo becomes slower because there is no 
significant amount of EJ on the plasma membrane able to bind Epo. 
The majority of the complex which is initially at the plasma membrane is 
activated very quickly (approx. 80% after 16 minutes of stimulation). After that, 
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the concentration of pEpJ goes down very fast due to the effects of 
internalisation and subsequent degradation. The available non-activated 
EpoR/JAK2 complex, EJ, decreases very rapidly after stimulation with Epo, and 
remains low during time frame of the experiment; in that case, the rate of 
recruitment can not restore the initial concentration of EJ due to the effects of 
fast activation by Epo. 
The amount of activated STAT5 in the cytosol, 2(pS), increases very quickly 
after stimulation. In fact, it reaches the maximum 5 minutes before the maximum 
activation of pEpJ. After that, it maintains a high value during the simulation, 
even if the value of pEpJ decreases 80% with respect the maximum by the end of 
the experiment. For the fraction of activated STAT5 in the nucleus, 2(pS)NC, the 
increase in the signal after stimulation is delayed. The concentration of non-
activated, non-dimerised STAT5 decreases very fast in the beginning of the 
experiment, but the end of the experiment recovers 40% of its initial value. 
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Figure 3. Simulation of the dynamics of system after perturbation including all 
the variables of the model. 
 
 
5. Conclusions and Outlook 
 
A mathematical model, based on ordinary differential equations and derived from 
power-law terms was obtained. The structure of the model was generated using 
available knowledge and parameters were estimated by fitting the experimental 
data. The analysis of the model indicates that it can reproduce the main dynamic 
features of the system adequately. Some interesting dynamic properties were 
detected after the analysis of the model, which are related to the essential role of 
low recruitment of receptor and rapid dephosphorylation and internalisation of 
the EpoR/JAK2 complex to describe the long-term deactivation of the system. 
These properties were not described with the previous model. 
Problems of identifiability were detected for certain parameters in the model. 
These problems are apparent for some kinetic orders. This leads us to ask 
whether the inability to estimate these kinetic orders is due to a lack of enough 
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experimental data or to undesirable structural properties of the power-law 
models. Only a wider analysis of the problem, the strategy of parameter 
estimation and the structural properties of the power-law could help us to 
elucidate this question. We leave this question for further work. Towards this 
end, work on an extension of the model and further experiments to generate data 
are currently conduced. 
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1. Abstract 
 
The discovery of new drugs is a complex scientific task that requires huge 
amounts of time and money. A very promising approach to this process involves 
the integration of available biomedical data through mathematical modeling and 
data mining. We have developed a method known as the optimization drug 
discovery program (ODDP) that allows new enzyme targets to be identified in 
metabolic diseases through the integration of mathematical metabolic models and 
biomedical data in a mathematical optimization program. 
The ODDP was used to detect target enzymes in human hyperuricemia. An 
existing S-system mathematical model and bibliographic information about the 
disease were used. The method detected six single-target enzyme solutions 
involving dietary modification: inhibition of adenine phosphoribosyltransferase, 
AMP deaminase, RNases to AMP and GMP, 5’(3’)-nucleotidase, guanine 
hydrolase and xanthine oxidase. The last detected solution coincides with 
conventional treatment using allopurinol. 
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2. Introduction 
 
The predictive biosimulation has been suggested to be a promising area of 
computational biology and is considered to be among the leading technologies 
for the future of drug discovery. The mathematical models integrate available 
metabolic, genomic and proteomic information to describe and predict the 
behaviour of the simulated system. In recent years, several groups have begun to 
use mathematical modelling of metabolic systems to study biomedical systems 
(see Curto et al. 1998a,b; Guebel and Torres 2004; Voit 2002). 
In classical hyperuricemia, a functional defect in enzyme that controls the 
synthesis of de novo purines increases its activity and leads to an increase in the 
activity of degradative metabolic fluxes yielding uric acid. The symptoms of the 
disease include acute episodes of arthritic pain and inflammation and various 
kinds of nephropathy. Currently, treatment of this disease usually includes a 
symptomatic treatment for joint pain, a restricted diet that precludes consumption 
of food with high concentrations of purine precursors, and the prescription of 
allopurinol. Allopurinol is a specific inhibitor of the enzyme xanthine oxidase 
that can lead to a drastic reduction in the concentrations of uric acid and urate 
(Klinenberg 1965). 
S-system models were initially developed in the early 1970s by M.A. Savageau 
to study dynamic and steady-state properties of simple metabolic pathways 
(Savageau 1969a, 1969b, 1970). They are essentially mathematical models of 
metabolic networks expanded as ordinary differential equations with a net 
(aggregated) input flux and a net (aggregated) output flux, both developed using 
power-law terms. As a consequence of the structural simplicity of S-system 
models, biological optimization problems in biotechnology and biomedicine can 
be explored using linear programming (Torres et al. 1998, Torres and Voit 2002). 
 
 
3. Material and Methods 
 
The aim of the present work was to develop a mathematical approach to the 
rational identification of active principles for the treatment of metabolic diseases. 
The approach is based on dynamic mathematical modelling of the metabolic 
network responsible for the disease and the use of standard optimization routines. 
The optimization drug discovery program (ODDP) can be applied to those 
diseases that meet three general criteria. First, the metabolic disease should be 
caused by a structural or functional alteration that causes a total or partial loss of 
catalytic activity in one or more enzymes. Second, the enzyme deficiency should 
cause physiologically relevant changes in the concentration of one or more 
metabolic intermediates and/or fluxes. Finally, the changes should be responsible 
for the symptoms of the disease, either directly or by affecting other related 
metabolic processes. Thus, the framework for the analysis is the metabolic 
network involved in the disease rather than a single biochemical process. 
The usual steady state of a metabolic network in a typical healthy individual will 
be referred as the healthy state (HS). This HS is a metabolic configuration in 
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which metabolite concentrations and fluxes have values that do not lead to 
metabolic diseases. In contrast, the pathologic state (PS) corresponds to that of an 
individual suffering from the disease. In this state, the system contains one or 
more enzymes with significantly altered activity that provokes changes in certain 
fluxes and concentrations (called key metabolites and fluxes) that ultimately lead 
to the manifestation of the symptoms. 
We can alter a metabolic network by using drugs to modulate enzyme activities. 
In this case, the aim is to alter the values of critical metabolite concentrations and 
fluxes in the network and shift them towards those encountered in the HS. 
Eventually we can also change the initial substrate concentrations, e. g. by 
dietary restriction. Once the metabolic network and variables associated with the 
PS are known, the ODDP aims to identify modifications of enzyme activities and 
substrate concentrations that shift the system to a steady state as close as possible 
to that of the HS, while also verifying all the additionally imposed physiological 
and biological. 
 
3.1. Mathematical structure of the ODDP method. The ideas proposed above can 
be translated into a mathematical framework for the identification of new target 
enzymes for therapeutic treatment of metabolic diseases. 
The starting point for any ODDP application is a reliable mathematical model 
based on ordinary differential equations describing the essentials of the 
biochemical system. Given that the aim is to shift the PS towards the HS, we 
look for solutions in which the values of metabolite concentrations and fluxes 
that play a key role in the manifestation of the disease will be shifted towards 
those seen in the HS. This aim can be mathematically represented in the 
following objective function: 
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where 0, ≥ij λλ , and  and  are the key metabolites and fluxes, respectively. 
The values of 

iJjX

 and 
jλ iλ  are determined by the relative importance of each key 

metabolite and flux in relation to the symptoms. We model the functional origin 
of the disease by imposing a characteristic value to the enzyme activities that 
underlie the PS profile: 
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In this equation,  represents the activity value for the deficient enzyme and  
is its characteristic value in the PS. The solution near to the HS will be a stable 
steady state of the considered metabolic network, which is reflected by the 
following set of equations: 
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Moreover, we have to assume additional conditions to guarantee physiologically 
acceptable solutions. These conditions can be modelled with the following set of 
equations: 
 

, nD
UB
ii

LB
i niXXX ...1=≤≤ D number of metabolites in the network 

 
where Xi

LB and Xi
UB establish the physiologically admissible lower and upper 

bounds for each metabolite and modifiable enzyme activity. 
 
3.2. General structure of the ODDP method. The outlined approach integrates 
modelling of the system and identification of target enzymes with the analysis of 
the available information and the choice of the best solutions. The method 
includes four sequential steps: 
 
Step 1. Information gathering and construction of the disease model. Essential 
biological information about the system and the disease is collected in the first 
step. A mathematical model based on differential equations that describe the 
metabolic system has to be selected. A characterisation of the metabolic basis of 
the disease is also considered, including essential information about the genetic 
and functional origin of the disease and the features defining its associated PS. In 
addition, analysis of the critical interactions between the specific network and 
general metabolism is important to avoid undesirable interactions. 
 
Step 2. Optimization. This step involves translation of the following information 
into mathematical terms: i) definition of the pathologic state of the system, 
assigning an appropriate value for the activity of the deficient enzyme; ii) choice 
of the set of key metabolites and fluxes that deviate from the values seen in 
healthy individuals, leading to the manifestation of symptoms; iii) selection of 
the set of target enzymes that can be pharmacologically modified; iv) 
establishment of a plausible physiologically admissible interval value for each 
metabolite and modifiable enzyme; and v) definition and implementation of the 
optimization objective that integrates the available information about the key 
metabolites and fluxes. 
 
Step 3. Computation of solutions. The principle of minimum pharmacological 
effort. Each time the defined optimization program is carried out a feasible 
solution is obtained. Each solution consists of a set of predicted values for 
metabolites, initial substrates and enzyme activities that describes a biologically 
acceptable steady state of the system that shifts the PS towards the HS. 
 
Step 4. Selection and classification of solutions. Additional selection criteria are 
necessary in order to select the most feasible solutions from within the generated 
set. A minimum acceptable value for the objective function can be established to 
allow selection of the solutions that satisfy this condition. In addition, other 
biomedical criteria can be mathematically imposed. In this way, a reduced, 
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biomedically acceptable set of good candidates is obtained for experimental 
selection using conventional protocols in pharmacological research. 
The information obtained allows us to determine which enzymes or set of 
enzymes in the network are candidates for inhibition and how much we have to 
alter their activities in order to get the best therapeutic results. The computational 
core of the ODDP is contained in Step 3. The computational requirements of this 
step will depend on the characteristics of the selected mathematical model. The 
computational efficiency of the method is maximized through the use of S-
systems models. The sequentially generated optimization programs become 
linear in the logarithmic space of the variables and can then be solved using the 
Simplex algorithm (Torres at al 1997). 
 

 
 
Figure 1. Scheme of the considered model of purines metabolism in humans. 
Legend: Time dependent metabolites [S-System variable. Name]: X1. 
Phosphoribosilpyrophosphate; X2. Inosine monophosphate; X3. Adenylsuccinate;  
X4.  Pool of adenosine derivatives; X5. S-adenosyl-Lmethionine; X6. Adenine; X7. 
Xanthosine monophosphate; X8. Pool of guanosine derivatives;  X9. Pool of 
deoxyadenosine derivatives; X10. Pool of phosphated deoxyguanosine 
derivatives;  X11. Ribonucleic acid;  X12. Deoxyribonucleic acid;  X13. Pool of 
inosine derivatives;  X14. Xantine;  X15. Pool of guanosine derivatives;  X16. Uric 
acid. Non-time dependent metabolites [S-System variable. Name]: X17. Ribose-5-
phosphate;  X18. Inorganic phosphate. Enzyme Activities [S-System variable 
(abbreviation)]: X19(Vprpps);  X20(Vgprt-hprt);  X21(Vaprt);  X22(Vden);  
X23(Vpyr);   X24(Vasuc);  X25(Vasli);  X26Vimpd);  X27(Vgmps); X28(Vampd);  
X29(Vgmpr);  X30(Vtrans);  X31(Vmat);  X32(Vpoliam);  X33(Dade);  X34(Vinuc-
gnuc);  X35(Vgrna-arna);  X36(Vrnag-rnaa);  X37(Vdgnuc);  X38(Vada-dada); 
X39(Vgdrnr-adrnr);  X40(Vgua);  X41(Dgdna-adna);  X42(Vdnag-dnaa);  X43(Vhx);  
X44(Vxd-hxd);  X45(Vx);  X46(Vua). The complete name and E.C. number of the 
previously listed enzymes is available in (Curto 1998 and Voit 2000). 
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4. Results and Discussion 
 
In the following section we apply the ODDP method was applied to the detection 
of single or combined target enzymes for the treatment of classical hyperuricemia 
in humans. 
 
Step 1. Modelling purine metabolism in humans. Purine metabolism in humans 
represents a complex metabolic network that includes the synthesis, recovery and 
degradation of purine nucleotides. In the present work we have used a modified 
version of an S-system metabolic model initially developed by the Cascante 
group (Curto et al. 1997, 1998a,b, Voit 2000, see Figure 1). 
 
Step 2. Optimization program. Using the information available on the disease we 
can configure the proposed optimization program for drug discovery. The healthy 
state – HS - of the system can be defined by assigning a value equal to 1 to all of 
the variables in the model (metabolite concentrations and enzyme activities). In 
mathematical terms this translates to: 
 

 46,...,11 == iX HS
i

 
Mathematical characterization of the pathologic state. To model the PS, we 
doubled the value of the variable that represents the activity of PRPPS (X19) with 
respect to the HS: 
 

 HSPS XX 1919 2 ⋅=

 
In this way, we can model overactivity of the enzyme. The concentration of uric 
acid (X16) was considered the only key metabolite in the ODDP strategy. 
Accordingly, the optimization objective for the ODDP program will be: 
 

 HSXXMin 1616 −

 
Selection of target enzymes. Establishment of plausible, physiologically 
admissible metabolite and enzyme intervals. In a first approach to the 
optimization program, we will consider all of the enzymes (except X19) as 
optimization targets. Thus, the set of target enzymes ( )TES  is 
 

 { }462120 ,,, XXXS TR K=

 
On the basis of previous studies (Torres and Voit 2002, Vera et al. 2003a, Vera et 
al. 2004), the lower bound is established as half of the HS value for all metabolite 
concentrations, and the upper bound as up to 10 times the HS value: 
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ii
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In the model, ribose-5-phosphate (X17) is considered as independent variables 
representing the network substrates. X17 can be partially regulated by controlling 
the diet. This strategy is called prescription of diet and is usually used by 
physicians to treat gout. Therefore, we model such strategy allowing an interval 
of feasible values for X17 defined at around 50% of the HS value 
( )HSHS XXX 171717 5.15.0 ⋅≤≤⋅ . In terms of the admissible interval of values for the 
enzyme activities, we only modelled treatments in which drugs act as inhibitors 
of the target enzymes. We chose a suitable interval for each enzyme activity 
ranging from 10% of the HS value to the true HS value: 
 

 { }46,...,2011.0 =∈⋅≤≤⋅ TEiXXX HS
ii

HS
i

 
Steady-state equations. We guaranteed that the computed solution represents a 
steady state for the system by introducing the following set of equations: 
 

16,...,10 == i
dt

dX i  

 
Step 3. Computation of solutions. The principle of minimum pharmacological 
effort. We built and computed one optimization program for each possibility that 
included the following additional set of equations: 
 

 { } { } ikTEkXXiXXX HS
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ii
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where we allowed the activity of the target enzyme to vary while the others were 
fixed at the HS value. The computation of programs was carried out using the 
Matlab toolbox MetMAP (Vera and Torres 2003). The calculations were 
computed using a Pentium IV 1.6 GHz processor with 512 Mb RAM. The 
computing time was in the range of milliseconds per optimization program. 
 
Step 4. Choice of the most biomedically appropriate solutions. Additional 
biomedical criteria were defined to select the most viable and accurate solutions 
(Vera et al 2003a, and Vera et al 2003b). Firstly, we imposed an upper limit on 
the concentration of uric acid (X16) equal to 105% of the HS value: 
 

 HSXX 1616 05.1 ⋅≤

 
The solutions that verify this equation were called satisfactory solutions. A 
second criterion was defined using the Cartesian distance in the space of the 
metabolite concentrations from the considered solution (X) to the HS (XHS): 
    ( ) ( )∑ −=

16
21,
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( )( )HSXXD ,We called this the metabolic distance , which measures the deviation of 
the metabolite concentrations from the HS values in the considered solution. 
Solutions with a high value of ( )HSXXD ,  would cause metabolic disequilibrium 
and undesirable physiological side effects. Finally, solutions with the highest 
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values for the activity of the modified target enzymes (Xival) were chosen. We 
took into account the fact that higher enzyme activities imply the use of a lower 
dose of the specific drug, and reduced drug doses minimise adverse side effects. 
Six satisfactory solutions were obtained: inhibition of adenine 
phosphoribosyltransferase (Vden X22), AMP deaminase (Vampd X28), RNases to 
AMP and GMP (Vrgna Vrnaa X36), 5’(3’)-Nucleotidase (Vdgnuc X37), guanine 
hydrolase (Vgua X40), and xanthine oxidase (Vxd Vhxd X44). Further details on the 
selected solutions can be found in Table 1. Examination of the table also shows 
that all the solutions have significant values of ( )HSXXD ,  and require substantial 
inhibition of the targeted enzyme (low values in Xival). 
 
 
Table 1. Selected solutions with prescription of diet. 

X
Xi

i 
val 

D(X,
Xn) X X X X X X X X X X X X X X X X X1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 22 0.22 1.56 2.15 1.58 1.61 1.34 1.060.881.091.481.071.061.071.050.99 1 1.01 1.14
1 28 0.33 1.86 1.03 0.84 1.51 1.99 1.152.410.650.971.030.971.03 1.0 1.14 1 0.83 0.6
1 36 0.36 2.07 1.55 1.38 1.15 0.94 0.990.69 1.2 1.271.031.052.891.030.95 1 1.07 0.67
1 37 0.18 1.63 1.3 1.20 1.07 0.95 0.990.791.121.161.692.251.021.630.98 1 1.03 0.51
1 40 0.28 4.81 1.11 1.32 1.37 1.22 1.04 1.2 1.031.371.051.051.051.041.76 1 5.7 0.54

44 0.33 7.73 1.07 1.7 1.49 1.27 1.05 1.3 1.2 1.091.021.011.021.015.387.29 1.24 1 0.5
 
 

( )HSXXD ,  and XIn Figure 2, this group of solutions is shown in the space of ival. 
The figure also shows the so-called utopian solution, the potential solution which 
has the lowest computed value of ( )HSXXD ,  and the highest value of Xival. The 
solution inhibiting X ( ) 557.1, =HSXXDhas the lowest metabolic distance (22 ) but the 
highest enzyme activity value corresponds to X36 (Xival=0.356). Examination of 
Figure 2 shows that the best treatments with prescription of diet are through 
inhibition of X36 or X28 (the closest solutions to the utopian point). 
 

 
Figure 2. Solutions with a single target enzyme. The large square represents 
the utopian point, while diamonds indicate the selected satisfactory solutions. 
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Another important observation relates to the solution involving inhibition of X44. 
This solution coincides with the most common current clinical treatment for 
hyperuricemia, which is based on the use of a combination of allopurinol and a 
diet low in purine precursors (see Table 1). Moreover, our method predicts the 
well-known metabolic side effects of treatment with allopurinol, namely a strong 
increase in the concentration of xanthine and hypoxanthine (X13 and X14). This 
represents an a posteriori pragmatic verification of our model predictions. In 
fact, the ODDP not only found the current clinical treatment of the disease but 
also several other possible target enzymes with potentially lower side effects. 
 
 
5. Conclusions 
 
In this study, we analysed possible treatments involving inhibition of one enzyme 
in the network without prescription of diet. the ODDP lead us to six solutions 
based on the inhibition of one enzyme and with dietary restriction. Analysis of 
these solutions in relation to the values of ( )HSXXD ,  and Xival facilitated further 
classification. The best solutions involved inhibition of X22 (without dietary 
restriction) and X28 or X36 (with dietary restriction). This finding establishes a 
rational basis for experimental assays to verify the clinical potential of the 
proposed solutions. The method predicted a solution that coincided with the 
current clinical treatment gout (inhibition of X44) and the well-known adverse 
side effects associated with this therapy. 
The ODDP method can be used with any kind of metabolic model based on 
ordinary differential equations. As we have shown, the computation time 
associated with the solution of the total amount of optimization programs 
included in the ODDP when one uses S-system models with an intermediate 
complexity (<100 variables) and simple treatments (1-2 simultaneous target 
enzymes) is in the order of 101 seconds. In that case, the total computational time 
is not critic and efforts can be focused on refinement of the optimization program 
and the biological hypothesis formulated about the disease. Such improvements 
are not possible in other cases in which each round of optimization would take 
between 104-105 seconds. 
When we apply the ideas included in the indirect optimization method (IOM; 
Torres et al 1997; Torres and Voit 2002), the recasting of any kind of model as 
an S-system allows the described method to be used with its consequent 
computational advantages. 
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1. Abstract 
 
The aim of this work was to understand the steps controlling the 
biotransformation of trimethylamonium compounds into L(-)-carnitine by 
Escherichia coli. In a high-cell density reactor, steady state levels of carbon 
source (glycerol) and acetate (fermentation product) were pulsed by increasing 
five-fold. Following the pulse, the evolution of the enzyme activities involved in 
the biotransformation process, in the synthesis of acetyl-CoA (ACS: acetyl-CoA 
synthetase and PTA: ATP: phosphotransferase) and in the distribution of 
metabolites for the tricarboxylic acids (ICDH: isocitrate dehydrogenase) and 
glyoxylate (ICL: isocitrate lyase) cycles was monitored. In addition, the levels of 
carnitine, the cell ATP content and the NADH/NAD+ ratio were measured in 
order to assess the importance and participation of these energetic coenzymes in 
the catabolic system. The results obtained for the NADH/NAD+ pool indicated 
that it is correlated with the biotransformation process at the NAD+ regeneration 
and ATP production level in anaerobiosis. More importantly, a linear correlation 
between the NADH/NAD+ ratio and the levels of the ICDH and ICL (carbon and 
electron flows) and the PTA and ACS (acetate and ATP production and acetyl-
CoA synthesis) activity levels was assessed. The main metabolic pathway 
operating during cell metabolic perturbation with a pulse of glycerol and acetate 
in the high-cell density membrane reactor was that related to ICDH and ICL, 
both of which regulated the carbon metabolism, while PTA and ACS enzymes 
regulated ATP production. Although varying flux was predominantly caused by 
changes in the levels of reaction substrate, products and/or allosteric effectors, 
the pulses showed that repression and derepression/induction of genes or the 
action of allosteric effectors in driving the system to the steady state. To gain 
further understanding, we believe that the combination of metabolome analysis 
with cell-cycle-regulated measurements of enzyme activities, protein levels and 
gene expression is the correct way. 
 
                                         Understanding and Exploiting Systems Biology 
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2. Introduction 
 
In human cells, L-carnitine (R(-)-3-hydroxy-4-trimethylaminobutyrate) 
transports long-chain fatty acids through the inner mitochondrial membrane, 
which is why several clinical applications for this compound have been 
identified. Consequently, the demand for L-carnitine has increased worldwide 
(Seim et al., 2001) and chemical and biological processes have been developed 
for its production (Cavazza, 1981; Kulla, 1991; Hoeks et al., 1996; Kleber, 
1997). Strains belonging to the genera Escherichia, Proteus and Salmonella 
racemice D-carnitine, a waste product and an environmental problem resulting 
from the L-carnitine chemical synthesis, and/or biotransform crotonobetaine 
(dehydrated D-carnitine) to produce L-carnitine (Kleber, 1997; Castellar et al., 
1998; Obon et al., 1999; Cánovas et al., 2002). 
In E. coli, the genes responsible of L-carnitine metabolism are coded by the 
caiTABCDE and fixABCX operons. Both operons are positively modulated by 
general regulators, such as the cAMP receptor protein (CRP) or the 
transcriptional regulator responsible for anaerobic induction (FNR), and 
negatively by the DNA-binding protein H-NS, glucose or nitrate (Unden and 
Trageser, 1991; Eichler et al., 1994). In addition, it has been proposed that a 
positively controlled caiF gene, found in the 3’ adjacent region to the cai operon, 
acts as a specific transcriptional regulator for carnitine metabolism (Eichler et al., 
1996). This pathway is detectable not only in cells previously grown 
anaerobically but also in some species, such as E. coli ATCC 25922 and DSM 
8828, P. vulgaris and P. mirabilis, grown under aerobiosis in the presence of 
inducers such as D,L-carnitine mixture or crotonobetaine (Kleber, 1997; Obon et 
al., 1999; Elssner et al., 2000; Cánovas et al., 2002). It was first postulated that 
L-carnitine dehydratase reversibly catalyzed L-carnitine into crotonobetaine and 
that crotonobetaine reductase non-reversibly transformed crotonobetaine into γ-
butyrobetaine as an electron sink (Jung et al., 1989; Roth et al., 1994; Kleber, 
1997), even though this latter can be inhibited by fumarate addition as an 
alternative electron sink (Obon et al., 1999). Now that functions have been 
assigned to each putative protein of the cai operon, it is known that CaiT is an 
exchanger (antiporter) for carnitine derivates in E. coli (Jung et al., 2002) with no 
energy consume. Further, the irreversible ATP consuming ProU transporter is 
also present (Verheul et al., 1998; Cánovas et al., 2003a). The enoyl-CoA 
hydratase (CaiD) requires a CoA-transferase activity (CaiB), since the hydration 
reaction of crotonobetaine to L-carnitine (CHR) proceeds in two steps at the 
CoA-level in two steps: the CaiD-catalyzed hydration of crotonobetainyl-CoA to 
L-carnitinyl-CoA, followed by CoA-transfer from L-carnitinyl-CoA to 
crotonobetaine, catalyzed by CaiB (Elssner et al., 2001). Thus, the reversible 
biotransformation of crotonobetaine to L-carnitine requires the presence of a co-
substrate, either γ-butyrobetainyl-CoA or crotonobetainyl-CoA (Elssner et al., 
2000). CaiD was also postulated to be involved in racemisation of D-carnitine 
(Eichler et al., 1994). Further, CaiC has been suggested as a CoA-
trimethylammonium ligase (Eichler et al., 1994), activating trimethylammonium 



 

compounds upon reaching the cell. The function of protein CaiE is not totally 
understood and further studies must be undertaken. With all this information, a 
model to describe the whole activity of E. coli able to produce L-carnitine from 
crotonobetaine under anaerobic conditions has been proposed (Figure 1).  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Metabolic pathways involved in the biotransformation of 
crotonobetaine into L-carnitine in E. coli. extracellular crotonobetaine (CRout); 
extracellular L-carnitine (LCout); intracellular L-carnitine (LCin); intracellular 
crotonobetaine (CBin); L-carnitinylCoA (LCCoA); crotonobetainylCoA 
(CRCoA); Acetyl-CoA/HS-CoA transferase (CaiB), Crotonobetaine, L(-)-
carnitine or γ-butyrobetaine: acetyl-CoA/HS-CoA ligase (CaiC), Enoyl-CoA 
hydratase activity (CaiD), L(-)-carnitine protein transporter (CaiT). 
 
 
Rational optimization of this biotransformation in continuous high-cell density 
membrane reactors first requires understanding the link between cell carnitine 
metabolism and the central metabolism in E. coli. With this aim, the first 
approach to link the central carbon or primary metabolism and the metabolism of 
the secondary trimethylammonium compounds involved in the production of L-
carnitine by E. coli was performed. The stationary modelling of the whole E. coli 
central metabolism, including the carnitine metabolism in the growing and 
resting cell states would allow the design of novel optimization strategies. 
 
 
3. Theoretical 
 
3.1. MATHEMATICAL MODELLING 
 
Stationary State Approximation.  
The carnitine model developed by Cánovas et al. (2003a) was linked to the 
central large scale stationary model developed by Chassagnole et al. (2002) 
adapted to represent the central metabolism of E. coli under anaerobic conditions 
and using glycerol as the carbon source (Fig. 2). For the transport of the substrate 
and the product two systems were considered, the ATP-dependent ProU, which is 
able to get either crotonobetaine or L-carnitine into the cell in an symport manner 
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and the non-ATP-dependent CaiT, which operates as an antiport of 
crotonobetaine/L-carnitine allowing the production of L-carnitine from 
crotonobetaine without the need of energy (Fig. 1). The first transporter is fully 
operating under osmotic stress (Cánovas et al., 2003b) together with ProP, 
another trimethylammonium/H+ antiporter, also energy dependent. The CaiT 
transporter is fully operating when the carnitine metabolism has been induced in 
the presence of either L-carnitine or crotonobetaine. The reactions that were 
taken into account are presented in Appendix 1. 
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Figure 2. Representation of the anaerobic central metabolism in E. coli from 
model of Chassagnole et al. (2002) linked with the carnitine metabolism model 
of Cánovas et al. (2003a). The abbreviations are summarized on the Symbols 
section. 
 
 
4. Experimental 
 
4.1. Bacterial strain and culture media 
The bacterial strain used, E. coli O74K74 (DSM 8828), contained the complete 
cai and fix operons and was stored in a minimal medium containing glycerol 
(20%) at –20ºC. The minimal medium (MM) was that described by Obon et al. 
(1999), while the complex medium (CM) contained (g/L): bacteriological 
peptone, 20; NaCl, 5; glycerol (carbon source), 12.6; crotonobetaine, 4 and 
fumarate, 2 (as an electron acceptor to inhibit the crotonobetaine reductase 
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activity, (Cánovas et al., 2002). The pH of both media was adjusted to 7.5 with 1 
M KOH prior to autoclaving. 
 
4.2. Growth of the bacteria 
Batch and continuous experiments were performed in reactors equipped with 
temperature, pH and pump controllers (Biostat B, Braun Biotech International 
GMBH, Melsungen, Germany).  A 1 L culture vessel with 0.5-0.8 L working 
volume was used. Escherichia coli O44K74 was grown under different 
conditions in order to optimise the induction of the carnitine metabolism 
enzymes. The culture was inoculated with a 3% (v/v) of the liquid culture stored 
at -20ºC in 20% (v/v) glycerol, while the medium employed was the CM 
mentioned above. The cells were grown under anaerobiosis at 37ºC in batch or 
continuous reactors. Anaerobic conditions were maintained to induce the 
enzymes involved in the carnitine metabolism, while D,L-carnitine mixture, 
D(+)-carnitine or crotonobetaine were supplied as inducers. Nitrogen was used to 
maintain anaerobiosis during the experiments. 
 
4.3. Membrane reactor operation 
The reactor vessel was also coupled to a cross-flow filtration module (Minitan, 
Millipore, USA) equipped with four 0.1 μm hydrophilic polyvinylidene 
difluoride Durapore plates of 60 cm2 area (Millipore, USA) (Cánovas et al., 
2002). The cell broth was recycled into the reactor with a peristaltic pump 
adjusted to a high flow rate (70 mL/min) to minimise membrane fouling. E. coli 
cells for the inoculum were grown as explained previously and transferred to the 
fermenter. Continuous operation was set at 37 ºC and started by feeding with the 
CM medium (anaerobically by bubbling nitrogen previously passed through a 
water trap). 
 
4.4. Pulse experiments and sampling method 
The pulse experiments were carried out using an injection pump supplying 20-25 
mL (containing the concentrated component in turn being perturbed) in 3 s (7 to 
9 mL.s-1). Samples of 2 mL for metabolites and 5 mL for enzyme activities were 
withdraw from the high cell density reactor 1, 2, 3, 4, 5, 20, 50, 70, 90 and 120 
min. after the pulse around the steady state. The experiments were carried out 
using a sampling mode consisting of closing the outlet of the nitrogen applied (to 
keep anaerobic conditions) within the reactor, while the sampling valve with a 
minimal dead volume (∼300-400 μL) was opened. The sampling time took from 
5 to 10 s. The complete procedure was computer controlled. The valve was 
flushed with water to clean the tubing. The reactor was left to recover and after 
20 to 30 reactor residence times to ensure that a new steady state was reached, a 
new perturbation experiment was carried out. However, steady state conditions 
were assumed when biomass and glycerol concentrations remained constant 
during five times the mean residence time. Samples were collected in test tubes 
kept at -20 oC and immediately centrifuged at 16,000x g at 4 oC. The rotor was 
precooled at -20 oC. Supernatant was used for the determination of external 
metabolites, whereas pellets were used for measuring enzyme activity and ATP 
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cell content and the NADH/NAD+ ratio. The cells were inactivated in less than 
one second. 
 
4.5. Enzyme assays 
In order to allow a more informative and precise way of comparing results, 
enzyme activities are represented as normalized values. Enzyme extraction were 
performed as follows. In each case, reactor bulk liquid samples were withdrawn 
and centrifuged at 16,000x g at 4 oC. The supernatant was removed and cells 
were re-suspended within the corresponding extraction buffer. Cells were 
sonicated for 6 cycles (10 s each), at 10 μm amplitude, with a probe of 1 cm 
diameter and below 20 oC. The extract was centrifuged for 15 min at 16,000xg 
and 4 oC to remove cell debris. The protein content was determined using the 
method of Lowry et al. (1951). The methods of enzyme assays have previously 
been described (Cánovas et al., 2003a). 
 
4.6. Substrate consumption for growth and biotransformation processes 
L(-)-carnitine concentration was determined enzymatically with the carnitine 
acetyl transferase method  (Jung et al., 1989). Glycerol was analysed by HPLC 
with a Tracer Spherisorb-NH2 column, 3 μm, 25 x 0.46 cm, supplied by 
Teknokroma (Barcelona, Spain) as reported (Obon et al., 1999). The isocratic 
mobile phase was 65% acetonitrile, 35% 50 mM phosphate buffer pH 5.5 at a 
flow rate of 1 mL/min. Bacterial growth was followed spectrophotometrically at 
600 nm, using a Novaspec II from Pharmacia-LKB, (Uppsala, Sweden), and 
converted to dry weight accordingly. 
 
4.7. Determination of central metabolite concentration 
ATP content and NADH/NAD+ ratio. The energy content per unit of cell was 
determined as the ATP level and NADH/NAD+ ratio throughout the experiments. 
For ATP measurement, the HS II bioluminescence assay kit from Boehringer 
(Mannhein, Germany) was used. Reducing power as NADH/NAD+ ratio was 
calculated as in Snoep et al. (1990). The cell content was determined after 
biomass optical density transformation as dry weight and assuming either an 
intracellular volume of 1.63 μL/mg (Emmerling et al., 2000) or 1.72 mLx 10-

13/cell (worked out by flow cytometry). 
E. coli anaerobic metabolite production. The acetate, fumarate, lactate and 
formate contents of the bulk liquid reactor were determined by HPLC using a 
cation exchange Aminex HPX-87H column, supplied by BioRad Labs (Hercules, 
USA) was used. The isocratic mobile phase was 5 mM H2SO4 at a flow rate of 
0.5 mL/min. The eluent was monitored using a refractive index detector. Samples 
were withdrawn from the reactor and centrifuged at 12,000 x g for 10 min at 4 
oC. The supernatant was filtered and used for analyses. 
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5. Results 
 
5.1 IN SILICO MODELLING OF THE LINK OF THE CARNITINE TO THE 
CENTRAL METABOLISM OF E. coli. 
The model was able to describe the integration of the central and carnitine 
metabolisms. The growth and maintenance of the cells together with 
biotransformation results were in agreement with the experimental data, as is 
shown in the distribution of intracellular fluxes (Table 1). 
 
 
Table 1. Experimental and theoretical fluxes obtained in the biotransformation of 
crotonobetaine into L-carnitine by E. coli in a continuous high cell density 
reactor 
 

Transformation Experimental Theoretical 
Rate mM/h Rate mM/h 

Effluent CR (reactor) 29.49 29.49 
Influent CR (reactor) 50.0 50.0 
CaiT(cell) 2357.29 2357.24 
Pro U (cell) 3387.89 3387.89 
CDH 1030.65 1030.65 
PDH (cell) 7.21 4.42 
Cellular growth (reactor) 0.039 0.039 
Influent glycerol (reactor) 100 100 
Effluent glycerol (reactor) 43.28 43.27 
Effluent acetate (reactor) 27.08 27.07 
Effluent lactate (reactor) 26.20 26.19 

 
Based on the stoichiometric calculations and applying the Metabolic Flux 
Analysis, MFA, a balance on ATP was performed. Glycerol assimilation 
generated energy equivalents in terms of ATP from ADP as one of the products 
of the metabolism. The distribution of the relative ATP usage for the main ATP 
consuming processes in the metabolism is summarized in the Table 2. 
 
 
Table 2. Distribution of ATP consumption in the central metabolism also 
including the carnitine metabolism. 
 

Process % ATP 
Futile Cycle 57.24 
L-carnitine production 24.83 
Biomass production 15.17 
Other metabolic processes 2.76 
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More than half of the energy was possibly wasted in a futile cycle that is 
associated to the entrance of crotonobetaine by means of ProU with energy 
consumption and the function of the transporter CaiT that is able to carry L-
carnitine inside the cell with simultaneous excretion of crotonobetaine, 
generating no L-carnitine as the desired product. 
 
5.2 IN VIVO DINAMICS OF E. coli METABOLISM: PULSE EXPERIMENTS 
IN HIGH DENSITY CONTINUOUS REACTORS. 
In order to gain knowledge on the dynamic behaviour of steady state growing 
Escherichia coli cells, metabolic pulse experiments were performed. Having in 
mind the high productivities obtained in steady state high cell density membrane 
reactors, a five-fold increase of the steady state levels of glycerol (carbon source) 
and acetate (anaerobic metabolism) were performed. Following the pulse, the 
variation in isocitrate dehydrogenase (ICDH), isocitrate liase (ICL), acetyl-CoA 
synthetase (ACS), phosphotransacetylase (PTA) and carnitine dehydratase 
(CDH) activities, extracellular metabolites production and intracellular 
NADH/NAD+ ratio and ATP were analyzed. 
 
5.2.1. Pulse of glycerol during the steady state 
 
Central metabolism: enzymes expression and coenzyme levels. Glycerol 
assimilation after the pulse deeply altered the cellular redox state. A sharp and 
unexpected fall in the NADH/NAD+ ratio was assessed, possibly due to the rapid 
cellular response increasing fluxes of the cofactor regeneration pathways. In fact, 
increased synthesis of lactate and ethanol were observed during the first 20 min 
after the pulse, the reducing power starting to stabilize after 50 min (data not 
shown). Moreover, anaerobic fumarate respiration also contributed in NADH 
regeneration. Formate production and ATP content also increased after the pulse 
as a result of glycerol assimilation and use as energy source. 
The opposed effects on ICDH and ICL activities (Fig. 3), suggested that upon 
increased NADH synthesis the glyoxylate cycle was the preferred pathway for 
acetyl-CoA consumption because of the lower amount of reducing power 
generated. Further, the flux towards acetate synthesis also increased as a result of 
overflow metabolism and the cellular need of ATP synthesis. At the enzyme 
expression level, ACS and PTA activities reached a sort of 
regulation/equilibrium which depended on the ATP and acetate level. 
Remarkably, the ACS level was one hundred times the steady state level while 
PTA remained almost constant (Fig. 3). 
 
L(-)-carnitine metabolism. Despite glycerol metabolization yielded a higher 
cellular level of ATP (data not shown), which is necessary for L(-)-carnitine 
transport and activation, the crotonobetaine hydrating activity (CHR) levels 
decreased during the first 20 min after the pulse. However, bulk reactor L-
carnitine concentration increased after the pulse. 
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5.2.2. Pulse of acetate during the steady state. 
 
Central metabolism: enzymes expression and coenzyme levels. A sharp decline 
in the levels of NADH occurred and a corresponding increase of the lactate level 
was assessed. Ethanol levels decreased during the first minutes recovering 
afterwards. ATP production first fell, recovering afterwards and approaching the 
steady state values (data not shown).  Net flux for acetate uptake also occasioned 
the increase in the production of lactate. After 90 min, both lactate and ethanol 
levels had diminished, compared to initial state while the acetate uptake and 
assimilation mechanisms were triggered, reaching the initial steady state value 
and thus achieving the cellular homeostasis.  
An increase in both the ICDH and ICL enzyme activities (Fig. 3) was observed, 
greater in the case of ICL, while high formate levels revealed increased flux 
through PFL (anaplerotic pathways). Taken together, these results point to the 
built up of a high pool of intracellular acetyl-CoA during acetate assimilation. 
Furthermore, the PTA enzyme activity decreased due to the inhibition of the 
acetate synthesis after the pulse, while ACS increased, being thus this the 
preferred pathway for acetate uptake (Fig. 3). 
 
L(-)-carnitine metabolism. The decrease in the ATP levels paralleled that in    
L(-)-carnitine production, despite the increase in CHR activity. 
 
 
6. Discussion 
 
In this work, the design and the experimental validation of a model which links 
the carnitine and central metabolisms is presented. This model is based on the 
central metabolism large scale stationary model of Chassagnole et al. (2002), 
which was modified by taking into account the anaerobic conditions under which 
the biotransformation process was carried out and the L-carnitine metabolism. 
The complete model presented 11 degrees of freedom, 3 internal and 8 external, 
so that at least 11 system fluxes were required to determine it completely. After 
the MFA approach was performed, two important results were extracted: (1) The 
flux from fumarate to succinate compared with that of other reactions was 
extremely high since it is necessary to assimilate the high reduction power of the 
C-source, glycerol; (2) The flux through acetate and lactate synthesis was 
strongly high since acetate is necessary to generate energy without NAD+ 
reduction as well as lactate to regenerate the NADH formed during the glycerol 
assimilation. Besides, an ATP balance was carried out by the determination of 
the internal fluxes (MFA approach) as well as stoichiometric calculations (results 
not shown). The result was the same for both approaches: the biotransformation 
was ATP limited as a consequence of a futile cycle associated with the entrance 
of crotonobetaine by means of ProU (energy dependent irreversible transporter) 
and the transporter CaiT (reversible transporter, energy independent) the final 
result of which was the consumption of ATP.  These results are in accordance 
with the experimental results of the pulses here presented as well as with 
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previous work in our group (Sevilla et al., 2005) in which it was established that 
the limiting point of the biotransformation was the transporter step rather than the 
biochemical reaction. 
Additionally, a topological analysis was carried out and 11 elementary flux 
modes were found. The most representative were obtained for the consumption 
of glycerol to produce energy and different fermentation products as CO2, acetate 
and lactate, cellular growth as well as carnitine synthesis. Besides, it was found 
that the L-carnitine yield on glycerol could be increased 3-6 times based on that 
this value was 0.36 mole/mole (far from the calculated of 2 mole/mole) and also 
the ATP balance (56% of ATP was waste in the previously mentioned futil 
cycle). 
Fast changes in the cellular redox and energetic state were assessed after 
perturbation experiments. The metabolic state of E. coli and the intracellular 
pools of coenzymes evolved fast in order to deal with the pulsed metabolites. 
Though a high NADH/NAD+ ratio was expected after the glycerol pulse, 
metabolic changes affecting NADH regeneration rate were observed to involve 
fermentation pathways, TCA and glyoxylate shunt (Fig. 3). The ICDH activity 
diminished to limit the production of reducing power, while ICL increased since 
redox equivalents are consumed in anabolic reactions (Cánovas et al., 2003a). In 
addition, a high flux of formate production, probably through pyruvate formate 
lyase (PFL), was assessed (de Graef et al., 1999). 
As already stated, the accumulation of acetate is a consequence of the inability of 
the cell to deal with a large amount of substrate (Wolfe, 2005). The increased 
acetate level provoked opposed effects on the expression of acetate metabolism 
enzymes. Raising the level of the carbon source led to higher cell activity and 
increased ATP synthesis through the acetate metabolism. Moreover, high 
NADH/NAD+ ratio also seems to indirectly inhibit PTA and encourage ACS 
activity, this regulatory mechanism preventing the hindering of normal cell 
function by consumption of all cellular NAD+. 
In order to deal with glycerol assimilation more efficiently, it seems likely that 
the expression of secondary metabolism was left apart, since the CHR activity 
decreased during the first moments of the pulse (Fig. 3). Despite this, the levels 
of L(-)-carnitine kept on increasing, indicating that CHR activity was not a 
limiting step for the bioprocess. 



 197 

Enzymes

ICDH ICL PTA ACS CDH

N
or

m
al

iz
ed

 e
nz

ym
e 

ac
tiv

iti
es

0

2

4

6

8

74

Control (t=0 min)
Glycerol Perturbation (t=20 min)
Acetate Perturbation (t=20 min)

 
Figure 3. Effect of metabolic pulses of glycerol and acetate in the expression of 
the anaerobic central metabolism of E. coli. The analyzed activities (isocitrate 
dehydrogenase, ICDH; isocitrate liase, ICL; phosphotransacetylase, PTA; acetyl-
CoA synthetase, ACS) have already been shown to be involved in the linking of 
the carnitine metabolism (carnitine dehydratase, CDH) as proposed in Cánovas et 
al. (2003a). Enzyme activities are shown normalized to their corresponding 
steady state value. 
 
 
After the acetate pulse, the ICDH and ICL enzyme activities increased (Fig. 3) 
since an increase of the intracellular acetyl-CoA concentration would activate 
both enzymes. The NADH levels first diminished, leading afterwards to higher 
NADH and energy levels (TCA versus the glyoxylate shunt) (Fig. 3). The 
different responses observed in the ethanol and lactate pathways were possibly 
due to the lower reducing power generated during the acetate assimilation or 
even to a switch in the metabolic destination of the acetyl-CoA pool. As 
expected, the pulse also resulted in the increase in ACS activity/expression and 
inhibition of PTA (Fig. 3) through repression by catabolites (Brown et al., 1977). 
The L-carnitine level fell despite the increase in the CHR activity (Fig. 3), 
coinciding its recovery with that in the ATP level and the NADH/NAD+ ratio. 
Interestingly, the limiting step in the biotransformation was not really the 
expression of CHR activity, but more probably the cofactor-dependent processes 
such as the transport and activation of substrate, which are both ATP-dependent 
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(Cánovas et al., 2003a). Further, the assimilation of acetate would also alter the 
CoA pool, probably leading to the accumulation of acetyl-CoA, reducing the 
amount of free CoA available for substrate activation. 
The different carbon number and oxidation state of the pulsed metabolites 
resulted in different NADH/NAD+ ratio patterns, since different assimilation 
pathways were involved. Consequently, distinguishable responses in metabolites 
and metabolic fluxes were triggered. While the whole glycolytic pathway was 
perturbed during the glycerol pulse as well as metabolites closely linked to it, the 
perturbation effected in the acetate pulse was only indirect, via the NADH/NAD+ 
ratio and the ATP levels. The levels of ICL and ICDH reflected the key role of 
the glyoxylate shunt. These two competing pathways are subjected to coordinate 
functioning, through ICDH-kinase/phosphatase (coexpressesing from the 
glyoxylate shunt ace operon) which inactivates ICDH, improving opportunities 
for ICL (Cronan and Laporte, 1996). Additionally, in our work, opposite 
responses were found between these enzymes and the NADH/NAD+ ratio, 
reflecting a more complex regulation. 
The changes in acetate levels during the pulses suggest that this was produced 
through the PTA-ACK pathway during E. coli perturbations (Kleman and Strohl, 
1994) and consumed at the beginning of the transition towards the steady state, 
by the ACS enzyme, rendering energy and biosynthetic compounds, as 
previously shown to happen in batch systems (Brown et al., 1977; Kumari et al., 
2000). Therefore, the cell metabolism adjusts to nutrient shortages and acetate is 
consumed. The level of acetate was related to ACS, PTA (Fig. 3) and possibly 
PFL enzyme activities. The first two enzymes showed a regulatory behaviour, 
possibly responding to intracellular acetyl-CoA, which effects a feed-back 
negative regulation on ACS (Kumari et al., 2000). The rest of the metabolites 
studied provided information on redox cell state, since both lactate and ethanol 
consume NADH to produce NAD+, while the glyoxylate shunt generates 
reducing power. 
The existence of general cell regulators allows the coordinate expression of 
metabolic pathways. Regulation of the carnitine biotransformation pathway has 
been previously described (Eichler et al., 1994; Kleber, 1997) and depends on 
general regulators, such as FNR (transcriptional regulator under anaerobic 
conditions), catabolic repression via cAMP protein receptor (CRP), histones (H-
NS) and σS (RpoS). Regulation of acetate metabolism has also been shown to 
depend on these general regulators (Kumari et al., 2000). Further, coordinate 
functioning of glyoxylate shunt and acetate metabolism relies on IclR, which in 
its active form represses the expression of ICL and ACS (Shin et al., 1997). In 
the presence of PEP (Fig. 1), IclR protein is prevented from binding to the 
promoter region of aceBAK (Cortay et al., 1991) allowing the uptake of bulk 
reactor acetate (Sánchez et al., 2005). Also, other factors such as the two-
component ArcAB system (regulator of the anaerobic and aerobic metabolism, 
inhibiting CAT, the electron transport chain and the PDH activity in anaerobic 
conditions) activates the PFL enzyme (de Graef et al., 1999), which is also 
regulated by the one-component protein FNR (fumarate, nitrate reduction). 
Shalel-Levanon et al. (2005) observed that the internal redox potential, as 
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reflected by the NADH/NAD+ ratio, was significantly higher in cultures of an 
arcA mutant strain compared with the wild strain. However, the NADH/NAD+ 
ratio had no influence or specific effect on FNR activity. Furthermore, the 
NADH/NAD+ ratio regulates the PDH and PFL enzymes (de Graef et al., 1999). 
Previous results obtained within the research group showed that in batch systems 
the NADH/NAD+ ratio was higher in anaerobiosis than in aerobiosis while PDH 
was inhibited (Cánovas et al., 2003a). 
The results demonstrate the relationship between the central carbon and the 
carnitine metabolism under anaerobiosis, and also the importance of the 
glyoxylate and acetate metabolism during the biotransformation. In a previous 
work (Cánovas et al., 2003a), the cessation of L(-)-carnitine production was 
already shown to coincide with the decrease of the ATP pool, which is quite 
likely to be due to the involvement of ProU during biotransformation (Verheul et 
al., 1998; Jung et al., 2002) and to substrate activation into crotonobetainyl-CoA 
and γ-butyrobetainyl-CoA by CaiC activity (Elssner et al., 2001). The importance 
of the ATP pool was highlighted by the determined futile cycle (Table 2), thus 
sustaining previous experimental evidences (Cánovas et al., 2003a). Also, the 
key role of glyoxylate shunt in high cell-density systems after a sudden increase 
in carbon source (pulse of glycerol and acetate) is highlighted. High ACS 
activities were observed in both pulses, whereas for the acetate pulse the PTA 
decreased due to control in the acetate metabolism. More importantly, the highly 
stringent regulation around the redox cellular state was verified. When the 
enzyme specific activities of the central metabolism were compared within the 
different pulses it was seen that: i) the glyoxylate shunt was less active after a 
glycerol pulse; ii) the flux through the TCA cycle increased under a low 
NADH/NAD+ ratio and, iii) there was an increase in acetate metabolism enzyme 
activities, such as PTA and ACS, during the glycerol and acetate pulses, probably 
induced by the acetate bulk reactor level. Finally, the ATP/cell values were 
higher after the glycerol pulse. 
 
 
7. Conclusion 
 
The principal conclusion of the developed model was that more than half of the 
energy was possibly wasted in a futile cycle This result is in agreement with the 
previous work (Sevilla et al., 2005), the limiting factor is the transport of 
substrate, but the explanation at molecular level was found in this work, the 
simultaneous operation of CaiT and ProU carriers resulted in the waste of ATP in 
a futile cycle, since both trimethylammonium compound carriers work in the 
opposite direction leading to a waste of energy. The existence of two kind of 
transporters is probably due to the double function of L(-)-carnitine in E. coli. As 
an electron acceptor in anaerobic conditions (Kleber, 1997), a fast transporter 
which interchanges carnitine or crotonobetaine and its reduced form (γ-
butirobetaine) is needed (CaiT). As osmoprotector (Verheul et al., 1998) 
expression of ProU under osmotic stress allows to accumulate 
trimethylammonium compounds inside the cell (L-carnitine and crotonobetaine) 
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as a way of protecting itself from the extreme osmotic situation (Verheul et al., 
1998). Therefore, two possible metabolic engineering strategies can be applied in 
order to improve the L(-)-carnitine biosynthesis, increment the ATP levels or 
abolish the futil cycle generated by the simultaneous use of CaiT and ProU. 
The metabolic enzyme activities measured within these work are the result of the 
whole metabolic function involving not only the mechanisms of regulation of 
expression, but also those of functioning, such as effectors. The combination of 
all drive the system back to the steady state. Also, in vivo analysis showed that 
intracellular metabolic pools were efficiently equilibrated by the corresponding 
enzymes, meaning that enzymes function near equilibrium (Wittmann et al., 
2005). A combination of metabolome, enzyme activities, protein and gene 
expression levels analysis allows the correct understanding of cellular 
functioning and cell metabolism regulation. In fact, translational and post-
translational control on protein expression and turnover as well as enzyme 
activity is mediated by allosteric interaction and metabolic control. 
L(-)-carnitine synthesis depended mainly on the energetic state of the cell, 
especially on the ATP levels. The production of L(-)-carnitine was observed to 
be independent on the CHR activity, indicating that this enzyme is not limiting 
for the process. This study confirms that the ATP level is a critical variable for 
the biotransformation, not only due to the ProU transporter (Verheul et al., 1998), 
but, possibly, also because of the postulated trimethylammonium-CoA ligase 
activity (CaiC, Eichler et al., 1994). The connection of both metabolisms, 
outlined in Fig. 1, suggests the existence of control points where redirection of 
metabolic fluxes could be possible. However, further work concerning the 
linking between primary carbon and the carnitine metabolisms is being 
performed at our group. 
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Symbols fad  flavin-adenine-
dinucleotide, oxidized  2pg  2-phosphoglycerate 

 3pg  3-phosphoglycerate fadh2  flavin-adenine-
dinucleotide, reduced  6pg 6-phosphogluconate 

 accoA  acetyl-coenzyme A 
adp  adenosindiphosphate 
aicar  5-amino-4-

imidazolecarboxamideriboti
de 

akg.  α-ketoglutarate  
aki  α-ketoisovalerate  
amp  adenosinmonophosphate  
arg arginine  
 asn  asparagine  
asp aspartate  
atp  adenosintriphosphate  
carp  carbamoylphosphate  
cr crotonobetaine 
crcoa crotonobetainylCoA 
 cdp  cytideindiphosphate  
cho  chorismate  
cmp  cytideinmonophosphate  
co2 carbondioxide  
 coA  coenzyme A  
cr crotonobetaine 
crcoa crotonobetainylCoA 
ctp  cytideintriphosphate  
cys  cysteine  
dala D-alanine  
damp  deoxyadenosinmonophosph

ate  
dcmp deoxycytideinmonophospha

te  
dglu  D-glutamate  
dgmp  deoxyguanosinmonophosph

ate  
dhap  dihydroxyacetonephosphate 
dna  deoxyribonucleic acid  
dtmp deoxythymidinmonophosph

ate  
dipim diaminopimelate  
e4p  Erythrose-4-phosphate  
ea electron aceptor oxidized 
eah2 electron aceptor reduced 
etamp  phosphatidyl-ethanolamine  
f6p  fructose-6-phosphate  

fattyn,i  fatty acid containing n 
carbon 
 atoms and i double bonds  

fdp  fructse-1,6-bisphosphate  
fthf  formyltetrahydrofolate  
fum  fumarate  
g1p  glucose-1-phosphate  
g6p  glucose-6-phosphate  
gap  glyceraldehyde-3-

phosphate  
glc  glucose  
gln  Glutamine  
gly  glycine  
glycp  glycerol-3-phosphate  
gmp  guanosinmonophosphate  
h  proton  
h2o  water  
h  proton  
his  histidine  
hom  homoserine  
ile  isoleucine  
imp  inosinmonophosphate  
isocit  isocitrate  
kival  a-ketoisovalerate  
lala  L-alanine  
lc L-carnitine 
lccoa LcarnitinylCoA 
leu  leucine  
lglu  L-glutamate  
lys  lysine  
mal  malate  
met  methionine  
methf  methylentetrahydrofolate  
mythf  methyltetrahydrofolate  
murun
it  subunit of mureine  

diphosphopyridindinucleoti
de, oxidized  nad  

nadh  diphosphopyridindinucleoti
de, reduced  

nadp  diphosphopyridindinucleoti
de-phosphate, oxidized 
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 nadph  diphosphopyridindinucleoti
de-phosphate, reduced  

nh4  ammonium  
oac  oxaloacetate  
orn  ornithine  
p  inorganic phosphate  
pep  phosphoenolpyruvate  
phe  phenylalanine  
pgp  1,3-diphosphoglycerate  
pro  proline  

phosphoribosylpyrophosph
ate  prpp  

pyr  pyruvate  
Rib5p  ribose-5-phosphate  
ribu5p  ribulose-5-phosphate  
rna  ribonucleic acid  
sed7p  sedoheptulose-7-phosphate  
ser  serine  

sulfate  SO4 
suc  succinate  
succo
A  succinyl-coenzyme A  

thf  tetrahydrofolate  
thr  threonine  
trp  tryptophan  
tyr  tyrosine  
udp  uridindiphosphate  
ump  uridinmonophosphate  
utp  uridintriphosphate  
val  valine  
xyl5p  xylulose-5-phosphate  
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APPENDIX 1 
 
List of reaction stoichiometries for the steady-state flux model according to 
ECOCYC (Karp et al., 2004) and Neidhardt et al. (1996). The cometabolites 
amp, adp and atp are treated as external.  
Substances crossing the boundaries of the system were: glycerol, acetate, 
formiate, lactate, biomass, o2, co2, protons, h2o, L-carnitine, crotonobetaine, 
fumarate and succinate, by symport: 
 
so4 +  h  +  adp + p ← so4 + atp + h2o 
2p + h + adp ← p + atp + h2o 
nh4 + 3h + 3adp + 3p ← nh4 + 3atp + 3h2o 
cr + adp + p ← cr + atp + h2o 
 
Emden-Meyerhof-Parnas pathway: 

g6p ↔ g1p 
g6p ↔ f6p 
f6p  + p ←fdp  +  h2o 
fdp ↔ dhap  +  gap 
dhap ↔ gap 
gap  +  p  +  nad ↔ pgp  +  nadh  +  h 
pgp  +  adp  +  h ↔ 3pg  +  atp 
3pg ↔ 2pg 
2pg ↔ pep  +  h2o  +  h 
pep  +  adp  +  h → pyr  +  atp 
pyr  +  coa  +  nad → accoa  +  co2  +  nadh 

 
Pentose-phosphate pathway: 

g6p  +  nadp  +  h2o → 6pg  +  nadph  +  2h 
6pg  +  nadp → ru5p  +  nadph  +  co2 
ribu5p ↔ rib5p 
ribu5p ↔ xyl5p 
xyl5p  +  rib5p ↔ gap  +  sed7p 
gap  +  sed7p ↔ e4p  +  f6p 
xyl5p  +  e4p ↔ f6p  +  gap 

 
Tricarboxylic acid cycle: 

oac + accoa + h2o → isocit + coa + h 
isocit + nad ↔ akg + nadh + co2
akg + coa + nad → succoa + nadh + co2
succoa + adp + p ↔ suc + atp + coa 
mal + nad ↔ oac + nadh + h 

 
Phosphoenolpyruvate carboxylase: 

pep + co2 + h2o → oac + p + h 
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Amino acid synthesis: 
pyr + lglut ↔ lala + akg 
lala ↔ dala 
2h2o + co2 + gln + 2atp ↔ carp + lglut + p + 2adp + 3h 
2lglut + accoa + atp + nadph + h2o → orn + akg + coa + adp + p + nadp + 

acetate + h 
p  +  accoa ↔ acp  +  coa 
acp  +  adp ↔ acetate  +  atp 
orn + carp + asp + atp + h2o ↔ arg + fum + amp + 3p + 2h 
asp + nh4 + atp + h2o ↔ asn + 2h + amp + 2p 
oac + lglut ↔ asp + akg 
so4 + 2atp + 4nadph + 2h ↔ sulfide + 4nadp + 2adp + 2p + 2h2o 
ser + accoa + sulfide + h ↔ cys + coa + acetate 
nh4 + akg + nadph + h ↔ lglut + nadp + h2o 
lglut ↔ dglut 
lglut + nh4 + atp ↔ gln + adp + p + h 
ser + thf ↔ gly + methf + h2o 
prpp + gln + atp + 2nad + 5h2o → his + aicar + akg + 2nadh + 7h + 5p 
asp + atp + 2nadph + 2h ↔ hom + adp + p + 2nadp 
thr + pyr + nadph + lglut + 2h → ileu + nh4 + nadp + h2o + co2 + akg 
hom + succoa + cys + mythf + h2o ↔ met + coa + suc + pyr + nh4 + h+ thf

  
asp + pyr + lglut + succoa + atp + 2nadph + h → dipim + akg + suc + coa + 

adp + 2nadp + p 
2pyr + nadph + 2h ↔ aki + co2 + nadp + h2o 
aki + lglut + accoa + h2o + nad ↔ leu + akg + coa + nadh + h + co2
dipim + h ↔ lys + co2
pep  +  e4p  +  h2o  +  h → dahp  +  p 
dahp + pep + nadph + atp → cho + adp + 3p + nadp + h2o + h 
cho + lglut + h → phen + akg + co2 + h2o 
lglut + atp + 2nadph + 2h → pro + adp + p + h2o + 2nadp 
3pg + lglut + nad + h2o ↔ ser + akg + p + nadh + 2h 
hom + atp + h2o ↔ thr + adp + p + h 
cho + gln + prpp + ser → tryp + 2p + co2 + gap + lglut + h + pyr + h2o 
cho + lglut + nad → tyr + akg + co2 + nadh 
aki + lglut ↔ val + akg 

 
Nucleotide metabolism: 

rib5p  +  atp → prpp  +  amp  +  h 
prpp + 2gln + gly + 5atp + asp + fthf + 4h2o + co2 → aicar + 5adp + 7p+ 

2lglut + thf + fum + 9h 
aicar + fthf ↔ thf + imp + h2o 
imp + asp + atp ↔ amp + adp + p + fum + 2h 
amp + atp ↔ 2adp 
h2o + atp → adp + p + h 
imp + nad + atp + gln + 3h2o ↔ gmp + amp + nadh + 2p + 4h + lglut 
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carp + asp + menaquinone + prpp ↔ ump + menaquinoneh2 + co2 + 3 p 
ump + atp ↔ udp + adp 
udp + atp ↔ utp + adp 
utp + gln + atp + h2o → ctp + adp + p + 2h + lglut 
ctp + adp ↔ cdp + atp 
cdp + adp ↔ cmp + atp  
adp + atp + nadph + h ↔ datp + adp + h2o + nadp 
gmp + 2atp + nadph + h ↔ dgtp + 2adp + nadp + h2o 
cdp + atp + nadph + h ↔ dctp + adp + nadp + h2o 
udp + 3atp + 2nadph + h2o + methf ↔ dttp + 3adp + 2nadp + 2p + thf 

 
Synthesis of lipid precursors: 

dhap + nadh + h ↔ glycp + nad 
glycp + ser + ctp + h2o ↔ ethohaminp + cmp + co2 + 2p + h 
5accoa + 4atp + 8nadph + 3h + h2o → fatty10,0 + 5coa + 4adp + 8nadp+ 4p

  
6accoa + 5atp + 10nadph + 4h + h2o → fatty12,0 + 6coa + 5adp + 10nadp+ 

5p 
5accoa + 5atp + 10nadph + 4h + h2o + succoa + pyr → fatty13,0 + 6coa + 

5adp + 10nadp + 5p + oac 
5accoa + 5atp + 9nadph + 3h + h2o + succoa + pyr → fatty13,1 + 6coa + 

5adp + 9nadp + 5p + oac 
7accoa + 6atp + 12nadph + 5h + h2o → fatty14,0 + 7coa + 6adp + 12nadp+ 

6p 
7accoa + 6atp + 1nadph + 4h + h2o → fatty14,1 + 7coa + 6adp + 1nadp + 6p 
6accoa + 6atp + 12nadph + 5h + h2o + succoa + pyr → fatty15,0 + 7coa + 

6adp + 12nadp + 6p + oac 
6accoa + 6atp + 1nadph + 4h + h2o + succoa + pyr → fatty15,1 + 7coa + 

6adp + 1nadp + 6p + oac 
8accoa + 7atp + 14nadph + 6h + h2o → fatty16,0 + 8coa + 7adp + 14nadp + 

7p 
8accoa + 7atp + 13nadph + 5h + h2o → fatty16,1 + 8coa + 7adp + 13nadp + 

7p 
7accoa + 7atp + 14nadph + 6h + h2o + succoa + pyr → fatty17,0 + 8coa + 

7adp + 14nadp + 7p + oac 
7accoa + 7atp + 13nadph + 5h + h2o + succoa + pyr → fatty17,1 + 8coa + 

7adp + 13nadp + 7p + oac 
9accoa + 8atp + 16nadph + 7h + h2o → fatty18,0 + 9coa + 8adp + 16nadp + 

8p 
9accoa + 8atp + 15nadph + 6h + h2o → fatty18,1 + 9coa + 8adp + 15nadp + 

8p 
8accoa + 8atp + 16nadph + 7h + h2o + succoa + pyr → fatty190 + 9coa + 

8adp + 16nadp + 8p + oac 
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Polymerization reactions: 
β1lala + β2arg + β3asn+ β4asp + β5cys + β6gln + β7lgln + β8gly + β9his + 

β10ile + β leu + β11 12lys + β13met + β14phen + β15pro + β16ser + β17thr + 
β18trp + β19tyr + β20val + β21atp + β22h2o → protein + β21adp + β21p + 
β21h 

χ1amp + χ2gmp + χ3ump + χ4cmp + χ5atp + χ1h2o → rna + χ5adp + χ5p + 
χ5h 

δ1datp + δ dgtp + δ2 3dttp + δ4dctp + δ5atp → dna + δ5adp + δ5p + δ5h 
ε1fatty10,0 + ε2fatty + ε12,0 3fatty + ε13,0 4fatty + ε13,1 5fatty + ε14,0 6fatty14,1 + 

ε7fatty + ε15,0 8fatty + ε15,1 9fatty + ε16,0 10fatty + ε16,1 11fatty + ε17,0 12fatty17,1 

+ ε13fatty + ε18,0 14fatty18,1+ ε15fatty19,0 + ε16glycp + ε17etamp → lipid + 
ε18h2o 

(φ1 + 1)g6p  +  φ1atp + φ1h2o  → polysaccharides + φ1adp + φ1h + 2φ1p 
2f6p + 2gln + 2accoa + 7atp + pep + nadph + lala + dglut + dipim + dala + 

5h2o → murunit + 2coa + 2lglut + 6adp + amp + nadp + 1p + 9h 
γ1murunit → murein + γ2h2o 

 
, χvalues of βi i, δi, εi, φ  and γI I according to the biomass composition. 

 
Virtual biomass formation reaction: 

α1protein +  α2rna + α3dna + α4lipids + α5polysaccharides + α6mureine → 
biomass  (values of αI according to the biomass composition). 

 
Regeneration of C1-transfer cometabolites:  

thf + atp + nadh + co2 ↔ fthf + adp + p + nad 
thf + co2 + 3nadh + 3h ↔ mythf + 3nad + 2h2o 
nadh + nh4 + co2 + methf ↔ nad + gly + thf 

 
Anaerobic respiration: 

pyr  +  coa → formate  +  accoa 
pyr  +  nadh  +  h ↔ lac  +  nad 
formate  +  h → co2  +  h2

 
Glycerol assimilation 

glyc  +  atp ↔ glycp  +  adp  +  h 
 
Fumarate reduction: 

fum  +  eah2 ↔ suc  +  ea 
fum  +  menaquinoneh2 ↔ suc  +  menaquinone 
fum + h2o ↔ mal 
nadh  +  h  +  ea ↔ nad  +  eah2 

 
Carnitine metabolism: 

lc  +  crcoa ↔ lccoa  +  cr 
lccoa ↔ crcoa  +  h2o 
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1. Abstract 
 
Evaluation of the fluxes in a metabolic network is essential for understanding the 
systematic behavior of the cellular processes. Several steady state methodologies 
have been developed using metabolic reactions of the network. Elementary mode 
analysis is a promising approach as it represents minimal subset of reactions in 
the network connecting the external metabolites. In the present study, we 
evaluated the fluxes of elementary modes for a well-studied organism, C. 
glutamicum, by imposing linear optimization under the constraint of 
stoichiometry of elementary modes. Analysis shows that stoichiometric matrix 
dimension reduced drastically as matrix includes only the coefficients of the 
external metabolites. Singularity problem will not arise using the basic network 
of this organism (as observed in the case of metabolic flux analysis). Lesser 
number of experimental measurements were required when the choice of the 
objective function was proper. The method was more labile over elemental 
balance to identify the experimentally measurement errors. Further, the feasible 
solution space was evaluated using the methodology for various oxygen and 
nitrogen availability in the environment. 
 
 
2. Introduction 
 
Recent flood of huge data by virtue of “omics” demands powerful theoretical 
methods to integrate the systematic analysis of the phenotypic state of the 
organism, which explain the relationship between the structure, function and 
regulation of an organism. A rigorous quantitative evaluation of cellular 
physiology is an essential step in metabolic engineering (Bailey, 1991, 1999). In 
this regard, intracellular metabolic fluxes are of great importance for metabolic 
engineers to gain insights into cell functioning and regulation and to derive 
conclusions on promising strain modifications (Forster et al., 2002). Powerful 
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modern tools of genetic engineering allow for effective creation of large numbers 
of mutants. Clearly, adequate quantitative analysis of metabolic properties of 
these mutants generates a demand for high-throughput experimental tools. Thus, 
powerful techniques have recently emerged for analysis of intracellular 
metabolite concentrations (Duetz et al., 1996; Fiehn et al., 2000; Roessner et al., 
2001; Soga et al., 2002). For elucidation of metabolic fluxes, different 
approaches, using 13C-labeled substrates, have been developed and applied to 
various biological systems (Marx et al., 1996; van Winden et al., 2003; Wittmann 
and Heinzle, 2002). Unfortunately all these experimental protocols are extensive 
laborious and cost effective. In metabolic level, the theoretical methods have 
been developed for simultaneously predicting key aspects of network 
functionality from network structure. This can be achieved by determining and 
analyzing the non-decomposable pathways able to operate coherently at steady 
state. Among the different approaches, elementary flux mode is the most 
promising which takes the flexibility of the network compared with flux balance 
(Steffen and Stelling, 2003). Elementary flux modes indicate the all possible 
routes on which organism can grow, although depending upon the objective of 
the organism because of environmental conditions specific elementary modes 
will be active so that organism can maximize the biomass or can maximize one 
of the products. 
In the present work, we have constructed the elementary modes of 
Corynebacterium glutamicum and the fluxes of elementary modes were 
evaluated using linear optimization technique. Also, a feasible solution space has 
been constructed by this optimized method varying uptake rates of ammonia and 
oxygen, which will strengthen the possible strategies required to enhance the 
lysine productivity. 
 
 
3. Methodology 
 
For a given network, elementary modes can be generated by convex analysis and 
there are number of softwares available (Poolman at al., 2004). For the present 
work python based “ScrumPy” software (http://www.gnu.org/licenses/gpl.html) 
was used to evaluate the elementary modes connecting the external metabolites. 
Further, the accumulation rates of external metabolites can be represented using 
the coefficients of the elementary modes as describe below. 
The method for the flux assignment of elementary modes can be demonstrated 
with the help of a simple illustrative example (Figure 1a). A system boundary 
(dotted line) is considered around all the internal metabolites and the system is 
closed for this type of metabolites and the fluxes between the internal metabolites 
are the internal fluxes. But external metabolites are allowed to enter or exit of 
that theoretical system boundary and exchange flux is the flux by which one 
external metabolite can enter into the system or one internal metabolite can exit 
from the system. The biochemical network consists of three internal metabolites 
(A, B, C) and three external metabolites (XO, X1, X2). There are three exchange 
fluxes (one of them is reversible) and three internal fluxes (one of them is 

http://www.gnu.org/licenses/gpl.html
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reversible). The system consists of five elementary modes, which are depicted in 
Figure 1b. The extracellular metabolites are connecting from substrate to the 
products. Using these elementary modes, balance equations can be written that 
would be based on the stoichiometry of the reaction network. The fluxes of the 
external metabolites will be the in terms of fluxes in the elementary modes as 
given below: 
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If the objective function is the maximization of dtdX 2 , the problem formulation 
will be as: 
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Figure 1. (a) A hypothetical reaction network consisting of three internal 
metabolites (A, B, C), three external metabolites (XO, X1, X2), three exchange 
fluxes and three internal fluxes. Double-headed arrows indicate reversible 
reactions and single headed arrows indicate irreversible reactions. (b) The 
stoichiometric reactions of elementary modes of the hypothetical reaction 
network. 
 
 
The right hand side of the matrix equations are the measurable quantities (known 
parameters), while the fluxes of elementary modes ( ’s) are the unknowns to be 
evaluated by means of linear programming. The above methodology was used to 
evaluate the fluxes of elementary modes for the network of Corynebacterium 
glutamicum. 

iv

 
 
4. Experimental 
 
4.1 ORGANISM AND MATERIAL 
Corynebacterium glutamicum (CECT 79) obtained from The Spanish Type 
Culture Collection (CECT), Valencia, Spain, was used for the experiment. HPLC 
grade water was purchased form Merck (Mumbai, India). All other chemicals 
were purchased form Hi-Media (Mumbai, India). 
 
4.2 FERMENTATION PROTOCOL 
The strain was cultivated and maintained as reported previously (Vallino, 1991). 
The seed culture was prepared in medium containing 5 g/L glucose, 5 g/L yeast 
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extract, 10 g/L tryptone and 5 g/L NaCl. One loop of the organism was 
inoculated from the slant into 250 ml triple baffle conical flask containing 50 ml 
of seed media. The seed culture was grown for 10 hrs at 150 rpm maintaining 30 
0C temperature. Then, 15 ml of seed media transferred into 500 ml triple baffle 
conical flask containing 135 ml of preculturing media as reported by Vallino, 
(1991) for 8 hrs maintaining the same rpm and temperature. After growth of 
organism in preculturing medium, the culture was transferred into the 
fermentation medium (also reported by Vallino, 1991). Fermentation was 
initiated by inoculating the fermentation medium with 10% v/v precultured seed. 
Air flow rate was kept at 1 liter per minute per liter reactor volume and stirrer 
speed of 1000 rpm was maintained though out the experiment. pH was 
maintained at 7.0 by feeding ammonia. 
 
4.3 ANALYTICAL TECHNIQUES 
Samples were drawn in regular intervals during the course of fermentation to 
analyze the dry cell weight, glucose, trehalose, pyruvate, lysine, ammonium 
sulphate. Dry cell weight was estimated form the absorbance at 600 nm on 
spectrometer (V-540, Jasco, Tokyo, Japan). One unit of absorbance was 
equivalent to 0.28 g/L of dry cell weight. Glucose and trehalose was estimated by 
RI detector and pyruvate was analyzed by UV detector in HPLC (Hitachi, Merck, 
KgaA, Darmstndt, Germany) using HP-Aminex-87-H column (Biorad, Inc., 
Hercules, CA) at 600 C. The mobile phase in HPLC was 5 mM sulfuric acid and 
flow rate was maintained 0.6 mL per minute. The concentration of lysine was 
analyzed by HPLC method as reported by Pachuski et al. (2002). Ammonium 
sulfate was measured using ion analyzer (EA940 Ion analyzer, Thermo Orion, 
Beverly, MA). 
 
 
5. Results and discussion 
 
5.1 ELEMENTARY MODES OF THE NETWORK 
The metabolic network C. glutamicum is relatively complex containing core 
metabolism of glycolytic pathway, tricarboxilic acid (TCA) cycle and Pentose 
phosphate pathway (PPP). Further, glucose is transported into the organism by 
active transport and carboxylation reaction from phosphoenol pyruvate (PEP) to 
oxaloacetate (OAA) plays an important role. Ammonia is consumed through 
amino acid synthesis and the balancing of NADH/NAD+ and FADH2/FAD are 
accounted via oxidative phosphorylation. Glyoxalate shunt is neglected because 
it is reported that this shunt is not active when this organism grows on glucose. 
Dinucleotide transhydrogenase reaction is also neglected because this reaction is 
not active in this organism (Moritz et al., 2002). Chemical reactions of this 
organism were used to evaluate the elementary modes as listed in appendix 1 and 
the fluxes of elementary modes were evaluated with the help of experimental 
accumulation rates of extracellular metabolites. 
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Figure 2. Control lysine fermentation of Corynebacterium glutamucum CECT. 
pH was maintained 7.0 by addition of ammonia. Fermentation media was 
described by Vallino (1991). Glucose (■), biomass (□), lysine (○), trehalose (▲), 
pyruvate (●) profiles during the course of fermentation. 
 
 
Figure 2 shows the concentration profile of the different extracellular metabolites 
(glucose, biomass, lysine, trehaolse and pyruvate) during the course of 
fermentation. Biomass concentration reached steady state at 21 h, while lysine 
production started after 13 h and reached 20 g/L at 25 h. Synthesis of trehalose 
also started at the same time as lysine with a maximum value of 5 g/L, while 
pyruvate accumulation started later time (t = 20 h). The accumulation / uptake 
rates were evaluated by differentiating the concentration with respect to time and 
these rates were used to analyze the fluxes of the elementary modes. 
The fourteen elementary modes of the network have been evaluated using 
ScrumPy software considering the uptakes of the external metabolites as glucose, 
oxygen, ammonia and accumulation of biomass, lysine, trehalose and carbon 
dioxide (Appendix 2). It is interesting to note that this organism was not able to 
operate at anaerobic condition as all the elementary modes are associated with 
oxygen. Lysine and biomass were simultaneously produced by two elementary 
modes (2, 11). Similarly, synthesis of lysine + trehalose was associated with 
three modes (‘1’, ‘9’ and ‘14’) and synthesis of biomass + trehalose was 
associated with two modes (‘3’, ‘5’). The fluxes of the elementary modes with 
the accumulation / uptake of the extracellular metabolites (see methodology), 
were obtained under the criteria of maximization of biomass during the course of 
fermentation. 
Figure 3 shows the flux distribution of the elementary modes towards glucose, 
biomass and lysine at different time points (t = 11.5 h, 13.5 h, 15.8 h) during the 
course of fermentation.  
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Figure 3. Histogram of the absolute fluxes of elementary modes for the 
metabolic network of C. glutamicum. The fluxes were estimated by linear 
programming through the objective function of maximization of biomass and 
stoichiometric coefficient of the elementary modes was as constraint. The fluxes 
were estimated at different time points (11.5 h, 13.5 h and 15.8 h) during the 
course of fermentation. Black box indicates the distribution at 11.5 h; white box 
indicates at 13.5 h and grey box at 15.8. Fluxes are in normalized scale with 
respect to glucose (100). (a) Fluxes of elementary modes associated with 
glucose; (b) Fluxes of elementary modes associated with biomass; (c) Fluxes of 
elementary modes associated with lysine. The number on the x-axis indicates the 
serial number of the elementary modes as indicated in Appendix 2. 

Elementary modes 

 
 



 218 

The fluxes were estimated with respect to the normalized value of glucose 
(glucose = 100). The uptake of glucose was though the elementary modes 
associated with only the biomass formation at t = 11.5 h and elementary mode ‘7’ 
(this mode contained glycolysis and TCA cycle) contributed to 65 % of the total 
glucose uptake rate (Figure 3a). Almost all the modes switched on during the 
later time of fermentation and the contribution of mode ‘6’ (this mode connected 
through PPP) was highest (around 36 %) at 13.5 h. The glucose uptake rates 
depended on the lysine producing modes at 15.8 h indicating that lysine synthesis 
rate was predominating over biomass formation. Similarly, biomass synthesis 
rate was depended on the elementary modes associated with biomass formation 
at t =11.5 h. In this case, mode ‘7’ contributed to 60 % of the biomass formation 
at t = 11.5 h and mode ‘6’ contributed most of the biomass formation at t = 13.5 
h (Figure 3b). The biomass formation also depended on the modes associated 
with lysine production at later phase of fermentation (t = 15.8 h). The lysine 
production modes were switched off at early phase of fermentation (t = 11.5), 
while in later phase of fermentation, lysine production modes contributed 
dominantly and only biomass formation modes were inactive indicating that 
there is an on/off switch between lysine producing modes and biomass producing 
modes. 
 
5.2 SIMULATION OF THE NETWORK  
Feasible range of the external metabolites were obtained by varying the 
normalized oxygen consumption rate or by varying the normalized ammonia 
consumption rate (assuming glucose consumption rate to be100) under the 
criteria of an assumed objective function. It was observed that feasible 
normalized oxygen consumption rate was in the set 146 – 366 and feasible 
normalized ammonia consumption rate was in the set 40-126. 
Figure 4a shows the response of external metabolites with variation of 
normalized ammonia uptake rate keeping glucose uptake rate constant (100) 
under the criteria of maximizing biomass.  Biomass synthesis increased up to a 
peak value (121.6) at normalized ammonia consumption rate of 90 and then 
gradually declined to zero at normalized ammonia uptake rate equal to 126. 
Lysine synthesis rate started after the normalized ammonia uptake rate was 
greater than 90 and reached a peak value at normalized ammonia uptake rate 
equal of 126. This indicates that nitrogen and NADH/ NAD+ balance can not be 
compensated by biomass synthesis at high (> 90) ammonia uptake rate resulting 
in lysine synthesis. Further, trehalose synthesis rate continuously decreased with 
normalized ammonia uptake rate and reached a zero value at ammonia uptake 
value of 90. The production rate of carbon dioxide and oxygen were fluctuating 
depending upon NADH/ NAD+ load during product synthesis and reached to a 
minimum when biomass synthesis rate was maximum. It is interesting to note 
that that carbon dioxide evolution rate was higher compare to the oxygen uptake 
rate when lysine synthesis started due to the activation of PPP for requirement of 
NADPH for lysine synthesis. Biomass synthesis was zero when the criterion of 
maximization of lysine was used and lysine production rate was high at a 
maximum value of normalized ammonia uptake rate (Figure 4b). 
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Figure 4. Optimized 
solution by varying 
ammonia consumption 
rate for the different 
external metabolites of 
C. glutamicum. The 
inputs of LP optimizer 
were Glucose and NH3. 
(a) Objective function: 
maximization of 
biomass. (b) Objective 
function: maximization 
of lysine. 

 

 

 
 
The response of the external metabolites with variation of normalized oxygen 
uptake rate under the criteria of maximization of biomass synthesis is shown in 
Figure 5a. In this case, biomass accumulation rate was highest (123) at an uptake 
rate of normalized oxygen of 146 and deceased to zero at oxygen uptake rate of 
336. Lysine production started at normalized oxygen consumption rate equal to 
260 and reached 33.3 at maximum feasible value of oxygen uptake. The 
accumulation rates were also evaluated under the criterion of lysine 
maximization at various oxygen uptake rates (Figure 5b). Lysine synthesis rate 
was at the maximum (63.3) and biomass synthesis rate was zero when 
normalized oxygen consumption rate was equal to 155. The carbon dioxide rate 
was maximum and reached 400 due to the activation of PPP. 
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Figure 5. Optimized 
solution by varying 
oxygen consumption 
rate for the different 
external metabolites 
of C. glutamicum. 
The inputs of LP 
optimizer were 
Glucose and NH3. 
(a) Objective 
function: 
maximization of 
biomass. 
(b) Objective 
function: 
maximization of 
lysine 

 
 
 
6. Conclusion 
 
We have demonstrated the use of elementary modes with the help of linear 
optimization technique in quantifying metabolic networks and this methodology 
has been applied for the quantification of the network of C. glutamicum. In C. 
glutamicum, the elementary modes associated with biomass formation were 
operational at the initial experimental growth phase and later phase of 
fermentation lysine synthesis switch on. The methodology was also used to 
determine the feasible solution space for a given substrate uptake rate. Such an 
approach is generic in nature and can be used to determine the optimality of the 
accumulation rates of a metabolite in any given system. 
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Appendix 1 
 
Chemical equations of C. glutamicum 
The chemical equations representing the metabolic network of C. glutamicum as 
follows, where ‘=’ represents the reversible reaction and ‘>’ represents the 
irreversible reaction (PhD thesis of Vallino, 1991). 
 
Glucose Phosphotransferase System 
 1. GLC + PEP > GLC6P + PYR 
Storage Compounds; Trehalose 
 2. 2 GLC6P + ATP = TREHAL + ADP 
EMP Pathway 
 3. GLC6P = FRU6P 
 4. FRU6P + ATP > 2 GAP + ADP 
 5. GAP + ADP + NAD = NADH + G3P + ATP 
 6. G3P = PEP + H2O 
 7. PEP + ADP > ATP + PYR 
 8. PYR + NADH = LAC + NAD 
Carboxylation reaction 
 9. PEP + CO2 > OAA 
TCA Cycle 
 10. PYR + COA + NAD > ACCOA + CO2 + NADH 
 11. ACCOA + OAA + H2O = ISOCIT + COA 
 12. ISOCIT + NADP = AKG + NADPH + CO2 
 13. AKG + COA + NAD > SUCCOA + CO2 + NADH 
 14. SUCCOA + ADP = SUC + COA + ATP 
 15. SUC + H2O + FAD = MAL + FADH 
 16. MAL + NAD = OAA + NADH 
Acetate Production or Consumption 
 17. ACCOA + ADP = AC + COA + ATP  
Glutamate, Glutamine, Alanine, and Valine Production 
 18. NH3 + AKG + NADPH = GLUT + H2O + NADP 
 19. GLUT + NH3 + ATP > GLUM + ADP 
 20. PYR + GLUT > ALA + AKG 
 21. 2 PYR + NADPH + GLUT > VAL + CO2 + H2O + NADP + AKG 
Pentose Phosphate Pathway 
 22. GLC6P + H2O + 2 NADP > RIBU5P + CO2 + 2 NADPH 
 23. RIBU5P = RIB5P 
 24. RIBU5P = XYL5P 
 25. XYL5P + RIB5P = FRU6P + E4P 
 26. XYL5P + E4P = FRU6P + GAP 
Oxidation Phosphorylation 
 27. 2 NADH + O2 + 4 ADP > 2 H2O + 4 ATP + 2 NAD 
 28. 2 FADH + O2 + 2 ADP > 2 H2O + 2 ATP + 2 FAD 
Asparate Amino Acid Family 
 29. OAA + GLUT = ASP + AKG 
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 30. ASP + PYR + 2 NADPH + ATP > AKP + 2 NADP + ADP + H2O 
 31. AKP + SUCCOA + H2O + GLUT > MADP + COA + AKG + SUC 
 32. MDAP > LYSI 
ATP Dissipation 
 33. ATP > ADP 
Biomass Synthesis 

34. 21 GLC6P + 7 FRU6P + 126 RIB5P + 13 GAP + 150 G3P + 52 PEP + 
30 PYR + 332 ACCOA + 80 ASP + 33 LYSI + 446 GLUT + 25 GLUM + 
54 ALA + 40 VAL + 100 NADPH > 1000 BIOMASS + 364 AKG + 143 
CO2 + 100 NADP 

 
 
 
Appendix 2 
 

Sl. 

No Reaction Stoichiometry of the elementary modes 

192 GLC + 336 O2 + 192 NH3 →   12 TREHAL + 96 LYSI + 816 H2O + 432 
CO2 1 

11892 GLC + 18237 O2 + 14552 NH3 →   6540 LYSI + 49808 H2O + 2000 
BIOMAS + 25174 CO2 2 

912216 GLC + 1637634 O2 + 562304 NH3 →   86141 TREHAL + 3938420 
H2O + 764000 BIOMAS + 1789288 CO2 3 

369967 GLC + 818817 O2 + 281152 NH3  1969210 H2O + 382000 BIOMAS 
+ 894644 CO2 

→
4 

28920 GLC + 55470 O2 + 14720 NH3 →  3725 TREHAL + 125780 H2O + 
20000 BIOMAS + 59440 CO2 5 

1186920 GLC + 1730295 O2 + 1081920 NH3    5020680 H2O + 1470000 
BIOMAS + 2022090 CO2 

→
6 

10735 GLC + 27735 O2 + 7360 NH3   62890 H2O + 10000 BIOMAS + 
29720 CO2 

→
7 

8 75 GLC + 275 O2 + 50 NH3 →   25 LYSI + 550 H2O + 300 CO2 
9 20 GLC + 44 O2 + 8 X_NH3  4 TREHAL + 4 LYSI + 88 H2O + 48 CO2 →

10 18 GLC + 31 O2 + 22 NH3  11 LYSI + 80 H2O + 42 CO2 →
21040 GLC + 31384 O2 + 22112 NH3 →  5168 LYSI + 88608 H2O + 16000 

BIOMAS + 39728 CO2 11 

12 56 GLC + 112 O2 + 64 NH3 →   32 LYSI + 272 H2O + 144 CO2 
13 44 GLC + 68 O2 + 56 NH3   28 LYSI + 184 H2O + 96 CO2 →
14 38 GLC + 62 O2 + 44 NH3   TREHAL + 22 LYSI + 160 H2O + 84 CO2 →
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1. Abstract 
 
Here we describe the application of the constraint-based modeling approach, 
coupled in an iterative fashion with experimental studies, to further elucidate the 
physiology of Geobacter sulfurreducens, a well-studied representative of the 
Geobacteraceae, which play a critical role in organic matter oxidation coupled to 
Fe(III) reduction, bioremediation of groundwater contaminated with organics or 
metals, and electricity production from waste organic matter. The completed 
reconstructed metabolic network of G. sulfurreducens contained 588 genes (or 
17% of a total of 3,467 ORFs), 522 biochemical reactions, and 541 unique 
metabolites. Examination of the reconstructed metabolic network revealed that 
G. sulfurreducens has multiple reactions for acetate utilization, the main 
electron-donor for these bacteria in the subsurface. Simulations fit well with 
experimental data obtained from chemostat studies, predicting different flux rates 
and growth yield under a number of growth rates. Evaluation of the rates of 
proton production and consumption in the extracellular and cytoplasmic 
compartments revealed the energy conservation with extracellular elelctron 
acceptors as Fe(III), was limited compared to intracellular acceptors as fumarate. 
These results demonstrate that iterative modeling coupled with experimentation 
can accelerate the understanding of the physiology of poorly studied but 
environmentally relevant organisms and may help optimize their practical 
applications. 
 
 
2. Introduction 
 
The constraint-based approach to modeling microbial metabolism has proven to 
be an effective strategy for predicting the physiological responses of 
microorganisms (Price et al, 2003). This approach relies on implementing a 
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series of physico-chemical constraints including thermodynamic directionality, 
and enzymatic capacity constraints and reaction stoichiometry constraints arising 
from the requirement that fluxes consuming and producing both metabolites and 
protons are balanced. This systems approach to microbial physiology has the 
ability to predict the metabolic response of organisms to various environmental 
conditions without the need for information on kinetic parameters for each of the 
individual reactions (Edwards and Palsson, 2000). Substrates that can be 
metabolized and the nutrients that are required from the environment to support 
growth can be successfully predicted, as can growth rates under various 
conditions. 
Although all those models have been limited to Escherichia coli and pathogens 
(Edward  and Palsson, 1999; Edward and Palsson, 2000; Schilling et al., 2002) , 
this methodology should be able to predict the behaviour of microorganisms in 
more remote environments where they are of geomicrobiological relevance. Here 
we describe the application of this constraint-based modeling approach, coupled 
in an iterative fashion with experimental studies, to further elucidate the 
physiology of Geobacter species (Mahadevan et al., 2006), the first organisms 
found to have the ability to conserve energy for growth by completely oxidizing 
organic compounds to carbon dioxide with Fe(III) serving as the electron 
acceptor (Lovley et al., 1987; Caccavo et al., 1994). In addition to transferring 
electrons to *Fe(III), Geobacter species can also reduce a variety of toxic and 
radioactive metals (Lovley et al., 1991; Lloyd et al., 2000; Ortiz-Bernad et al., 
2004). Moreover, stimulating the activity of Geobacter species in the subsurface 
is an effective strategy for removing such contaminants from groundwater 
(Lovley et al. 1994). Another practical application of Geobacter species is their 
ability to oxidize organic compounds with an electrode serving as the electron 
acceptor (Bond et al., 2002; Bond and Lovley, 2003), which makes it possible to 
harvest electricity from waste organic matter. 
To develop this kind of model, a complete sequenced genome of the 
microorganism is required, thus Geobacter sulfurreducens  is the best candidate 
to be modelled because  it is closely related to the environmental strains isolated 
from the subsurface and its genome had been recently sequenced (Methe et al., 
2003). In addition, a chemostat system has been developed (Esteve-Núñez et al., 
2005), to further evaluate in silico predictions with well established growth 
conditions. Modelling growth and metabolism under relevant environmental 
conditions could provide an insight into the factors that might be limiting the rate 
and extent of bioremediation processes at contaminated sites. 
 
 
3. Theoretical 
 
This section provides a brief introduction to the constraint-based modelling 
approach that has been extensively reviewed elsewhere (Price et al., 2004). In 
this work, we have used the flux balance analysis approach which assumes that 

                                         
* These two authors have equally contributed to this manuscript. 
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the cellular objective is growth maximization, to calculate the flux distribution in 
the metabolic network given the input and output fluxes of substrates exchanged 
across the membrane. 
 
3.1. Flux Balance Analysis (FBA):  
FBA is an analysis tool to quantitatively investigate the systemic properties of a 
metabolic network. It is based on material balances for each of the internal 
metabolites and the assumption of optimal growth as the objective of the cell. 
The details of FBA and the significance of the objective function have been 
reviewed earlier . The FBA formulation includes a series of linear equations 
(material balances) and a linear objective function with flux through the reactions 
as the independent variables as shown below: 

βα ≤≤
=
v

vS
vcT

0.
Max

 

These equations (see symbols section) are solved along with constraints on the 
fluxes and an objective defined in terms of the biomass growth rate (based on the 
biomass composition) using Linear Programming (LP) techniques in the 
SimPheny platform. 
 
 
4. Experimental 
 
4.1. Strain and Culturing Conditions: Wild type Geobacter sulfurreducens 
(ATCC 51573) was obtained from our laboratory collection.   G. sulfurreducens 
was grown in ia chemostat under continuous culture and strict anaerobic 
conditions at 30 °C using previously described method (Esteve-Núñez et al., 
2005). Sodium acetate (5.5mM) was used as sole electron donor, and either 
sodium fumarate (30mM) or Fe(III)-citrate (60mM) were used as electron 
acceptor in a bicarbonate-buffered  freshwater  medium. Organic acids content in 
culture supernatant were monitored by HPLC as previously described (Esteve-
Núñez  et al., 2005), and Fe(II) was determined as described by Lovley and 
Phillips (1982). 
 
4.2. The genome-scale metabolic model for G. sulfurreducens was developed 
using the constraint-based modeling approach (Bonarius et al., 1997) and the 
SimPhenyTM (Genomatica, San Diego, CA) platform (Mahadevan et al. 2006). 
BLAST searches of publicly available databases (Overbeek et al., 2000) resulted 
in the identification of 588 genes (or 17% of a total of 3467 ORFs). The 
completed reconstructed metabolic network contained 522 biochemical reactions, 
and 541 unique metabolites. These reactions were further refined using published 
biochemical and physiological information. To allow full stoichometric 
balancing, all reactions were entered into the model database as balanced 
reactions, including the net charge of each metabolite or cofactor and the 
localization (cytoplasmic or extracellular) of reactants and products. For all 
simulations presented in this report, all genes included in the network were 
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assumed to be expressed and their associated reactions functional. Maximization 
of biomass production (growth) was the objective for all the simulations. The 
complete list of genes, reactions, applied constraints, and confidence scores is 
available at the following website (http://www.geobacter.org/). 
 
 
5. Results and Discussion 
 
5.1. Evaluation of the proton translocation stoichiometry give insights into 
the growth yield during Fe(III) and fumarate reduction. 
Geobacter sulfurreducens is able to use either the metal Fe(III) or the 
dicarboxylate acid fumarate to conserve energy from acetate oxidation. However, 
these two respiratory mechanism are quite different, fumarate reduction is an 
intracellular and well characterized process  catalyzed by the enzyme FrdCAB 
(Butler et al., 2006), while the biochemical mechanism responsible of Fe(III) 
reduction  is much more complex with a high number of cytochomes c involved 
in electron transport(Leang  et al, 2001; Lloyd et al., 2000; Butler et al., 2004; 
Kim et al., 2005, 2006). 
Fe(III) reduction was first modelled as a reaction that occurred outside the cell, 
consistent with the fact that insoluble Fe(III) oxides are the predominant form of 
Fe(III) in most soils and sediments (Lovley 1991). Under Fe(III)-reducing 
conditions, the TCA cycle operated as a closed loop (Galushko and Schink, 
2000) and produced 8 electrons per mole of acetate oxidized. However, model 
simulations using this electron transport scheme indicated that cells would not be 
capable of growth (in silico) under Fe(III)-reducing conditions. 
The inability of a single 2H+/2e- NADH dehydrogenase coupling site to support 
simulated Fe(III)-dependent growth was traced to the fact that the site of Fe(III)-
reduction  was extracellular.  The  cytoplasmic protons that were produced from 
each mole of acetate oxidized in the cytoplasm were consumed in the cytoplasm 
when fumarate was the electron acceptor (Figure 1). In contrast, during Fe(III) 
reduction, electrons were transported outside the cell, while leaving protons in 
the cytoplasm, effectively dissipating the membrane potential and acidifying  the 
cytoplasm (Figure 1). In order to generate sufficient energy to compensate for the 
production of protons in the cytoplasm, an additional coupling step was required. 
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Figure 1. A model for 
proton and electron 
consumption in fumarate 
and Fe(III) reduction by 
Geobacter sulfurreducens  
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The most likely mechanism for additional membrane potential generation during 
Fe(III)-reduction was during transfer of electrons into the periplasmic 
cytochrome pool. Based on the fact that cytochromes implicated in Fe(III) 
reduction have midpoint potentials in the range of –190 mV (omcB) (Magnuson 
et al., 2000) and –136 to –155 mV (ppcA) (Lloyd et al., 2002),  the energy 
available for coupling at this site could support translocation of 1H+/2e-.  This 
reaction was modeled as the release of menaquinol protons back to the cytoplasm 
by a protein capable of translocating 1 H+ per pair of electrons transferred to the 
cytochrome pool.  Inclusion of this reaction and accounting for all the protons 
produced and consumed during metabolism, resulted in a theoretical maximum 
yield with Fe(III) as the electron acceptor of 0.5 mol ATP/mol acetate as 
compared to the 1.5 mol ATP/mol acetate during fumarate reduction. This output 
of the model provides an explanation for the experimental finding that growth 
yields of G. sulfurreducens are ca. three-fold higher when fumarate (Eh=0.03V) 
serves as the terminal electron acceptor versus growth with Fe(III)-citrate 
(Eh=0.37V) (Esteve-Núñez  et al., 2004), in spite of the higher redox potential of 
the metal. This result is unexpected because it is generally accepted that those 
electron acceptors with higher redox potential show a more negative Gibbs free 
energy and subsequently support higher yield (Unde and Bongaerts, 1997). 
These results suggest that reducing extracellular electron acceptors such as 
Fe(III) oxides, Fe(III)-citrate, elemental sulfur (S°), or electrodes will result in 
the generation of less biomass per electron transferred than growth with 
intracellularly reduced electron acceptors. This may be an important 
consideration for applications such as bioremediation and electricity harvesting 
from waste organic matter, in which electron transfer to metals or electrodes, 
rather than production of biomass, is the primary goal. 
 
5.2. Growth yield predictions fit with the experimental data. 
The metabolic reaction network, combined with demand reactions for biomass 
synthesis, correctly predicted growth yields and acetate consumption rates for 
growth in standard acetate-limited chemostats with Fe(III)-citrate or fumarate as 
the electron acceptor (Table 1).  
 
Table 1: in silico prediction and experimental values for growth parameters of G. 
sulfurreducens growing under Fe(III)/fumarate-respiring conditions. 
 

Growth parameter 
with Fe(III) as TEA 

in silico 
(0.05h-1) 

experimental 
(0.05h-1) 

Yacetate(gdw /mol acetate)*103 4.5 3.5 
qelectron (mol/g dw h) *103 83.2 107.61 

   

Growth parameter 
with Fumarate as TEA 

in silico 
(0.05h-1) 

experimental 
(0.05h-1) 

Yacetate(gdw /mol acetate) *103 11. 5 11.5 
qfumarate (mol/g dw h) *103 16.425 19.21 
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Perturbations in variables used to construct the model, such as the biomass 
composition, which was derived from batch cultures of fumarate grown cells, had 
minimal effect on predicted acetate consumption for G. sulfurreducens under a 
number of growth rates. For instance, when a range of biomass composition 
equations (e.g., reflecting a range from 0.40 g protein/ g dw to 0.55 g protein/ g 
dw), were incorporated into the model, predicted yields were not significantly 
affected (1.5-2.5 % differences) (Fig. 2). This revealed that the model was robust 
to changes in biomass composition and nutrient availability, and was consistent 
with other work showing that variations in biomass composition produce only 
subtle effects on predicted growth yields or fluxes through central metabolic 
pathways (Pramanik and Keasling, 1998; Daae et al., 1999). Hence, it is possible 
to assume that even significant changes (10-20 %) in biomass composition would 
not affect the nature of metabolic predictions. 
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Figure 2. Acetate uptake predictions under different growth rate with Fe(III) as 
TEA. Experimental data: ( ), model prediction 40% protein ( ), model 
prediction 46% protein ( ), model prediction 55% protein ( ),  
 
 
5.3. Model-based characterization of acetate metabolism in Geobacter 
sulfurreducens 
The ability to oxidize acetate is important because acetate is the central 
intermediate in the anaerobic degradation of organic matter in sedimentary 
environments (Lovley and Chapelle, 1995). Geobacter  species metabolize 
acetate via the tricarboxylic acid cycle (TCA) cycle (Champine and Goodwin, 
1991; Galushko and Schink, 2000). In addition, it has been found that injection 
of acetate into groundwater to stimulate the uranium bioremediation activity of 
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Geobacter results in this microbial genus becoming the most abundant one in 
those environments (Anderson et al., 2003; Vrionis et al, 2005). Thus, an 
extensive analysis of acetate metabolism in Geobacter is desired. 
Examination of the reconstructed metabolic network revealed that G. 
sulfurreducens has multiple pathways for acetate utilization (acetyl CoA 
transferase, acetate kinase, and phosphotransacetylase),  interconversion of 
pyruvate to acetyl-CoA (pyruvate formate lyase, pyruvate ferredoxin 
oxidoreductase, and pyruvate dehydrogenase), and anapleurotic reactions 
(phosphoenolpyruvate carboxykinase and pyruvate carboxylase), as shown in 
Figure 3. 

 
Figure 3. Predicted flux distribution (mmol/gdw h) through central metabolism 
in G. sulfurreducens during in silico growth with limiting acetate and excess 
Fe(III)-citrate.  Ac, acetate; fum, fumarate; succ, succinate; succoA, succinyl-
CoA;. actp, acetylphosphate; for, formate; accoA, acetyl-CoA;pyr. Pyruvate; pep, 
phosphoenolpyruvate; cit, citrate; icit, isocitrate; akg, alpha-ketoglutarate;  mal, 
malate; oaa, oxalacetate; ACK, acetate kinase; ATO, acetyl-CoA transferase; 
PTA, phosphate transacetylase; PFL, pyruvate formate lyase; POR, pyruvate 
oxidoreductase; PC, pyruvate kinase; PPDK, pyruvate phospate dikinase; ENO, 
enolase; CS, citrate synthase; ACONT, aconitase; ICDH, isocitrate 
dehydrogenase; OOR, oxoglutarate oxidoreductase; SUCOAS, succinyl-CoA 
synthetase; FRD, fumarate reductase; FUM, fumarase; ME, malic enzyme. 



 232 

 
Flux from acetyl-CoA to pyruvate via pyruvate-ferredoxin oxidoreductase was 
predicted to be the sole source of carbon fixation in G. sulfurreducens, and in 
silico, 4% of consumed acetate (0.55 mmol/g dw/h) was utilized in this fixation 
reaction when Fe(III)-citrate was the electron acceptor. Simulations predicted 
that during acetate-limited growth with Fe(III)-citrate (acetate uptake rate of 
13.63 mmol/gdwh for a growth rate of 0.06 hr-1),  93.6 % of all acetate 
transported into the cell was utilized for oxidation and ATP generation via the 
TCA cycle which fit well with experimental data from chemostat cultures 
(Esteve-Núñez et al., 2005). 
 
5.4. Functional analysis of G. sulfurreducens mutant phenotypes 
The availability of a genome scale model also enabled the characterization of 
systems level properties of the metabolic network. One such property is the set of 
genes and reactions that are essential to support growth in a defined medium. 
This information is important for genetic investigations as it can provide insight 
into which mutations may or may not have an observable phenotype.  
In silico deletion analysis (Edward and Palsson, 2000) for growth with acetate as 
the electron donor and Fe(III)-citrate or fumarate as the electron acceptor 
indicated that most mutations were predicted to have either lethal (139 for 
fumarate, 143 for Fe(III)) or silent phenotypes (440 for fumarate, 437 for Fe(III)) 
(Table 2).  Lethal mutations (e.g., deletion of acetyl-CoA transferase and 
pyruvate carboxylase) reflected the inability of the perturbed network to 
synthesize essential components from acetate, a relatively simple two-carbon 
compound, or the fact that a non-fermentable substrate such as acetate presents 
few alternative energy-yielding oxidative mechanisms. 
Some silent phenotypes predicted by this analysis corresponded to reactions 
associated with seemingly redundant enzymes. The presence of functionally 
similar (but non-orthologous) enzymes could be due to selection for genetic 
robustness, in order to protect against mutations in essential reactions.  
Alternatively, this redundancy could reflect a need for metabolic robustness, 
where different enzymes are needed to favor flux in opposite directions, or are 
optimized for oxidation of different substrates. For instance, model simulations 
indicated that a mutation in any component of pyruvate-ferredoxin 
oxidoreductase would be compensated by activity of pyruvate dehydrogenase or 
pyruvate-formate-lyase. However, as pyruvate-formate-lyase strongly favors 
function in the oxidative direction, it is unlikely that this enzyme can substitute 
for pyruvate-ferredoxin oxidoreductase in vivo, and the redundancy at this node 
likely reflects the presence of enzymes specialized for different tasks. Mutational 
and biochemical investigations are underway to test these hypotheses. 
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Table 2. Impact of in silico deletion of entire reactions, on predicted growth rate 
of G. sulfurreducens. 

% lethal 
deletions 

% intermediate 
deletions 

% silent  
Growth conditions deletions 
Acetate&fumarate 40 4 58 

Acetate&Fe(III) 41 3 58 

 
 
6. Conclusion 
 
These results suggest that genome-based in silico modelling can provide 
important insights into the physiology of environmentally relevant organisms, 
such as Geobacter species. Not only may such in silico models aid in 
understanding the likely physiological responses of Geobacter species in 
environments in which they are important, but the models can serve as a guide 
for evaluating the likely outcome of various possible strategies for genetically 
engineering Geobacter species in order to improve practical applications such as 
bioremediation and electricity production.  Furthermore, the coupling of genome-
based in silico models with hydrological/geochemical models may make it 
possible to predictively model subsurface bioremediation strategies prior to 
implementation (Lovley  2003) and coupling such models with electrochemical 
models is likely to enhance the development of microbial fuel cells (Lovley, 
2006). 
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Symbols 
 
TEA Terminal Electron Acceptor 

Respiration rate mol/g dw h qelectron
Acetate consumption rate mol/gdw h qacetate
Growth Yield g dw/ mol acetate Yacetate

S Stoichometric matrix  
v Vector of the reaction fluxes  
 
GREEK LETTERS 
μ Growth rate h-1

Lower bound  α 
Upper bound  β 
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1. Abstract 
 
The micro-organism Lactococcus lactis, recently sequenced and recognised as 
the model of lactic acid bacteria, is encountered in various environments in 
which it is submitted to multiple growth-limiting stresses. Surprisingly, 
mechanisms of adaptation against these adverse environments are poorly 
characterized. 
Two stresses of major importance, glucose starvation and auto-acidification, have 
been investigated. During controlled cultures in fermentor, stresses were 
progressively imposed to observe and analyse the dynamic adaptation of L. 
lactis. Throughout the culture, whole-genome expression was measured. 
Approximately 30 % of the genes were shown to be involved in the adaptation, 
indicating that the transcriptional responses are pleiotropic. The functional 
analysis of these genes allowed the different types of responses to be identified, 
providing a better understanding of the mechanisms involved in stress adaptation. 
In order to evaluate the mRNA turnover impact on the overall regulation, the 
mRNA stability was investigated at the genomic scale (stabilome) and analyzed 
together with the transcriptomic data. A formal method allowing the 
quantification of the relative influences of transcription and degradation on the 
mRNA pool control was developed. This approach highlighted that stability 
modulation in response to adverse growth condition can govern gene expression 
to the same extent as transcription in bacteria. 
 
 
2. Introduction 
 
Lactic acid bacteria (LAB) are Gram positive microorganisms with a real 
economic impact due to their use in many food transformation processes. The 
bacterium Lactococcus lactis commonly used as starter bacterium in the 
manufacture of different dairy products such as cheese, butter and buttermilk, is 
generally considered as a model for metabolism regulation and genetic studies in 
LAB. The strain IL1403 was sequenced in 2001 (Bolotin et al., 2001). In 
industrial conditions, like in natural ecological niches (plants, animals, 
gastrointestinal tract), different stresses are encountered leading to sub-optimal 
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growth. More particularly, the carbon starvation and the auto-acidification are 
viewed as two stresses of major importance for L. Lactis. Acid stress is specific 
in that the acidification of the nutritional environment is directly dependent upon 
the metabolic activity of the bacterium. Energy metabolism of L. lactis, a homo-
fermentative lactic acid bacterium converting more than 90 % of metabolized 
sugar into lactic acid, leads to the accumulation of high concentrations of lactic 
acid coincident with a progressive acidification of the growth medium and 
subsequent growth inhibition (Even et al., 2002). Similarly carbon starvation is 
one of the most drastic stress encountered by L. Lactis since catabolism and thus 
energy supply and anabolism should completely be arrested due to carbon 
exhaustion (Kunji et al., 1993). However in natural ecosystems, short periods 
allowing growth alternated with long non-growth period caused by carbon 
starvation. Consequently, cells should have naturally evolved towards an 
improved adaptation to this particular nutritional stress. 
The response of a bacterium against a particular stress involves various 
physiological adaptations (growth, catabolism, particular metabolism, cellular 
morphology…). However fundamental knowledge is still very fragmented in L. 
lactis since studies have generally focused on bacterial survival or particular 
metabolic pathways. Recently, the development of DNA-array technology has 
enabled the mRNAs of the entire genome to be quantified simultaneously, easily 
providing an exhaustive picture of the cellular adaptation. This technology is thus 
particularly adapted for pleiotropic responses such as stress responses. 
Nevertheless, certain aspects such as mRNA degradation should be taken into 
account. Because cellular mRNA concentration provided by transcriptome 
depends on the relative rates of synthesis and decay, changes in the mRNA pool 
can occur either by transcriptional control or by modification of the mRNA 
degradation. However, mRNA stability has been rarely investigated at the 
genomic scale. Messenger half-lives have been measured in order to identify 
stability determinants in only two different bacteria, Escherichia coli and 
Bacillus subtilis (Bernstein et al., 2002; Hambraeus et al., 2003; Selinger et al., 
2003). Furthermore, no study concerning the evolution of the mRNA stability at 
the genomic scale during response to environmental changes can be found in the 
literature. Thus, despite mRNA stability can potentially participate to the 
expression of the genome metabolic functions, the extent to which mRNA half-
life regulation contributes to the modulation of gene expression has not yet been 
quantitatively determined. 
In this study, carbon starvation was investigated in a chemically defined medium 
specifically designed in order to provoke the natural exhaustion of the sugar in an 
excess of any other nutriment. The acid stress was studied in milk and associated 
with a cold shock at low pH in order to mimic cheese-making processes. In both 
cases, the stress was progressively imposed in controlled cultures in fermentor in 
order to observe and analyze the dynamic adaptation of L. lactis. In order to 
provide an exhaustive picture of the adaptation, whole-transcriptome analysis 
have been performed. Transcriptome was quantified in the various phases of the 
cultures allowing the gene with transient expressions to be detected and thus the 
cellular response to be fully characterized. The identification of complete 
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stimulons is a prerequisite of regulation network analysis. Furthermore in the 
case of carbon starvation, mRNA half-lives were measured all along the culture 
and analyzed with transcriptomic data. A formal method derived from metabolic 
control analysis was developed and allowed the relative influence of mRNA 
degradation and transcription to be evaluated during the response of L. lactis to 
carbon starvation. 
 
 
3. Experimental 
 
3.1. Organism and growth conditions 
Two strains of Lactococcus lactis ssp. lactis were used throughout this study: L. 
lactis ssp. lactis IL1403 whose genome was entirely sequenced (Bolotin et al., 
2001) and L. lactis ssp. lactis biovar diacetylactis dairy strain, LD61, provided 
by Soredab-Bongrain. For the study of carbon starvation, the strain IL 1403 was 
grown on the chemically defined CDM medium (Otto et al., 1983; Poolman and 
Koenings, 1988) complemented by glucose (55 mM) as the sole carbon source. 
Cultures were grown under anaerobic conditions in a 2-l fermentor (Setric Génie 
Industriel, Toulouse, France) at a constant temperature of 30 °C and agitation 
speed of 250 rpm. The pH was maintained at 6.6 by automatic addition of KOH 
(10 N). The strain LD61, which contains plasmids allowing optimal growth in 
milk (lactose, protease and citrate utilization), was grown in non heat-sterilized 
skim milk (“Lait G”, Standa Industrie) and in anaerobic conditions in a 20-l 
fermentor (Setric Génie Industriel, Toulouse, France) at agitation speed of 250 
rpm. The temperature was maintained at 34 °C until the culture pH reached 5.2 
(at 8 h of growth) and then was slowly decreased to 12 °C in approximately 10 
hours. 
Bacterial growth was estimated by spectrophotometric measurement at 580 nm 
directly in the case of the CDM medium or after transparisation of the milk 
culture (as described in Raynaud et al., 2005 and Redon et al., 2005a). 
 
3.2. Transcriptome analysis 
Transcriptome analysis were performed in the different phases of the cultures on 
nylon membranes after hybridization of [33P]-dCTP labeled cDNA with a 
minimum of 3 independent repetitions. L. lactis IL1403 specific PCR products 
and some plasmidic genes of industrial relevance were provided by Eurogentec 
and spotted in duplicate on positively charged nylon membranes (4 deposits per 
spot of PCR at a concentration ranging between 40 and 180 µg.ml-1) by the 
Plateforme Génomique (Toulouse). 2053 ORFs upon 2310 identified on the 
genome (89 %) and 63 plasmidic ORFs were effectively available on these 
membranes. RNA extraction, cDNA preparation, hybridization and detection 
were previously described (Redon et al., 2005b; Raynaud et al., 2005). 
 
3.3. Determination of mRNA half-lives 
For mRNA half-life quantification, 3 growth conditions (exponential, 
deceleration, and carbon starvation phases) were studied in independent but 
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physiologically identical cultures. At the required growth state, transcription was 
arrested by rifampicin addition to a final concentration of 500 µg.ml-1. Cell 
samples were taken over 10 min in exponential phase or 45 min in deceleration 
and starvation phases. Four different time-points, including the reference sample 
(before rifampicin addition), were analyzed simultaneously by trancriptome 
measurement as previously described (Redon et al., 2005b). At least three 
independent time-courses were analyzed for each condition. mRNA half-lives 
(t1/2) were calculated from the degradation rate constant (k) corresponding to the 
slope of a semi-logarithmic plot of mRNA amount as a function of time with the 
relation t   = ln2/k. 1/2
 
 
4. Results and discussion 
 
4.1. Overview of dynamic analysis 
The culture of the IL1403 strain in CDM medium was characterized by an 
exponential phase associated to nutrient excess (0-5 h), a short deceleration phase 
due to decreasing glucose concentration and a non-growth stationary phase 
characterized by glucose exhaustion after 6 h of fermentation. The industrial 
strain LD61 was grown in conditions as close as possible as that used in some 
cheese making processes (milk, uncontrolled pH, temperature downshift). Thus, 
two physico-chemical stresses (acidic stress and cold stress) likely to modulate 
bacterial growth and metabolism overlapped during the fermentation. The growth 
phase ended at 11 hours of culture when the temperature was only 27 °C and 
while the pH had decreased from 6.41 (initial value) to 4.94. The temperature 
decrease continued after the growth arrest to reach a value of 12 °C after 17.5 
hours of culture. During the stationary phase, milk acidification still continued 
(post-acidification phase), while at a slower rate, leading to a final pH of 4.64 at 
180 h of culture. 
In order to obtain a chronological view of gene expression, the transcriptome was 
analyzed comparatively in four samples taken during different stages of the 
culture. For each of the 2 conditions, cells were collected in the rapid growth 
phase (reference), then at reduced growth rate due to the progressive imposition 
of the stress and two times in the stationary phase when no-growth is occurring 
anymore because of the stress intensity. Transcriptomic data were normalized by 
the whole membrane intensity and thus corresponded to mRNA abundances in 
total mRNA population. In each condition, 30 % of the genes was differentially 
expressed, confirming that the stress responses were highly pleiotropic. Indeed 
during carbon starvation and acidic conditions, respectively 704 and 702 genes 
showed at least one significant expression variation (Student’s test with P-value 
below 0.05). 
 
4.2. Functional analysis of transcriptomic data 
A functional analysis of the differentially expressed genes was realized taking 
into account the categories established by Bolotin et al. (2001) for the IL1403 
strain genome. Among the 704 and 702 selected genes, the proportion of genes 
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with unknown function was similar to that on the entire L. lactis genome (36 %), 
indicating that unknown and known genes are equally involved in the stress 
responses. Adaptation of L. lactis towards these two stresses is mediated by three 
different types of transcriptomic responses. 
 
i) global response: 
For most of the genes involved in general processes associated to cellular growth, 
a general decline of expression was observed during the stress responses. This is 
consistent with growth arrest though not necessarily linked to protein decrease 
and physiological activities diminution. This general decrease of expression was 
more markedly observed during the carbon starvation and occurred earlier (at the 
onset of the decelerating phase) than in the milk culture (in the stationary phase). 
In the two experiments, the various RNA polymerase subunits encoding genes 
and most of the genes of translation apparatus were under expressed. Similarly 
most of genes involved in cell division process were under expressed. Genes 
involved in purine and pyrimidine biosynthesis were under expressed during 
carbon starvation culture, though activation of purine metabolism was observed 
in the milk medium probably due to the poor milk content of these compounds. 
 
ii) specific responses functionally related to the imposed stress: 
Alternative carbon sources utilization was favoured during glucose starvation. 
Induction was observed at 3 different levels: utilization pathways, transport and 
regulation. For instance, genes specifically involved in galactose, lactose, 
maltose, ribose and other sugars utilization (galM, lacZ, malQ, msmK, rbsA, 
rbsC, rbsK, uxaC, ygjD, yidC, yngF, ypbD, ypdA, xylX and xynT), 
polysaccharides degradation (apu and yucG) or citrate utilization (citC, E and F) 
were over expressed. Glycerol metabolism seemed to play a crucial role in 
carbon starvation response since 5 genes involved in this pathway were induced 
at high levels from deceleration phase: dhaL and M encoding DHA kinases 
(respective ratios of 7.1 and 3.9), glpD and K encoding respectively glycerol-3-P 
dehydrogenase and glycerol kinase, and glpF1 encoding glycerol uptake enzyme 
(ratio of 6 at the onset of carbon starvation). Such induction of various alternative 
carbon sources metabolism, already observed in B. subtilis during carbon 
starvation (Bernhardt et al., 2003), may be a general response to counteract the 
carbon starvation. 
In both experiments, the expression of most of the genes of the ADI pathway was 
increased (arcA, B, C1 and argF during carbon starvation and arcA, B, C1, C2 
and D1 in acidic conditions). The switch-on of ADI pathway in L. lactis enabled 
the cells to be supplied with maintenance energy since one ATP per arginine is 
produced and allowed cytoplasm alcalinization by the production of one NH3 per 
arginine. Thus this pathway is directly involved in the fighting against both 
carbon starvation and auto-acidification. 
The temperature decrease did not provoke however a strong cold-shock response 
since none of the 2 csp genes was induced, and only 3 genes, llrC, ptsH and 
osmC, encoding known cold-induced proteins (CIPs) (Wouters et al., 2000) were 
over-expressed. 



 

Carbon starvation is known to confer an increased resistance towards various 
stresses such as heat, osmotic, acid, ethanol and oxidative stresses (Hartke et al., 
1994). However, unlike in B. subtilis (Bernhardt et al., 2003; Hecker and Volker, 
2001), the general stress response was not observed in L. lactis during carbon 
starvation (no induction of gene encoding chaperones, Clp proteases or known 
stress proteins), suggesting that the previously described cross protection should 
be linked to a different mechanism. At the opposite, during acidic conditions the 
heat-shock response was partially observed, since some of the genes of the heat-
shock regulon were induced (groES, grpE, clpB and clpE). Similarly a massive 
induction of genes involved in oxygen metabolism and cross protection was 
observed. Lastly some genes linked to UV stress and DNA reparation or 
degradation, were also induced probably to fight against mutagen effects of acid 
stress. 
 
iii) other responses 
In the two experiments, various genes linked to competence (mostly in the case 
of the carbon starvation), phage and prophage related function or ion uptake were 
over expressed. These responses apparently not related to the stresses were never 
described previously, but were observed here in the two stressing conditions. 
Therefore they may be under the control of the same mechanism and thus belong 
to a general stress response. 
 
4.3. Modulation of mRNA stability in response to carbon starvation 
Like transcriptome, stabilome (the whole genome mRNA stability) was 
examined during the carbon starvation at the same degree of culture 
advancement. Respectively 817, 452 and 579 messenger half-lives could have 
been measured in exponential phase, in the decelerating phase and in the 
stationary phase (corresponding to the first point of transcriptome in the 
stationary phase). mRNA stability was gene dependent since data of stability 
were scattered between 1 and more than 30 min for the same culture condition 
(figure 1A). mRNAs were stabilized in response to carbon starvation as shown 
by the mRNA distribution moving towards higher half-lives (figure 1A) and the 
4-fold increase of median half-lives from 4.2 to 17.3 min (table I). Efficient and 
sensitive sensors should be involved in this mRNA decay phenomena, since the 
stabilization occurred before glucose exhaustion (in the decelerating phase). 
Increase of bulk mRNA half-life has been reported previously in E. coli and 
Vibrio S14 (Albertson et al., 1990; Alberston and Nystrom, 1994), suggesting 
that stabilization mechanism during carbon starvation could be widespread in 
bacteria. 
 
Table 1: mRNA half-life determination during carbon starvation adaptation of L. 
lactis. 
 
 Exponential phase Deceleration phase Starvation phase 
Mean half-life (min) 5.8 ± 5.6 17.6 ± 13.0 19.4 ± 10.0 
Median half-life (min) 4.2 14.4 17.3 
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Stabilization factors, expressed as a ratio of half-lives, were calculated for each 
mRNA between the exponential and the deceleration phases and between the 
deceleration and stationary phases. As shown in figure 1B the statistical partition 
of these stabilisation factors differed and median ratio between exponential and 
deceleration phases was much higher than between deceleration and stationary 
phases (3.9 and 1.1 respectively). Taking into account the precision in 
stabilization factor determination, it was estimated that 92 % of transcripts were 
stabilized during deceleration phase in comparison to exponential phase. The 
evolution of mRNA half-lives was more contrasted between deceleration and 
starvation phases, since 37 % of messengers were further stabilized while 28 % 
were destabilized. 
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Figure 1: (A) Half-life frequencies distribution in exponential (□), deceleration 
(■) and starvation (■) phases during carbon starvation adaptation of L. lactis; (B) 
stabilization factor frequency distribution between exponential and deceleration 
phases (  ) and between deceleration and starvation phases (  ) during carbon 
starvation adaptation of L. lactis. 
 
 
4.4. Stabilome and transcriptome integration: mRNA pool regulation 
analysis 
Stabilome data were compared to trancriptome ones but using mRNA 
concentrations rather than aboundances. Raw transcriptome data without any 
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normalisation were corrected by total RNA concentration in each growth 
conditions (11.7 ± 1.3, 7.6 ± 0.8 and 8.2 ± 1.4 g.(100 g dried cells-1) in 
exponential, deceleration and starvation phases respectively). mRNA 
concentrations were showing a general decreasing profile except for a minority 
of genes (1.6 %) while the profile was more contrasted for abundances. 
Changes in mRNA concentrations in the cells can be achieved by changes in 
transcriptional and/or degradation rates. To quantify the relative importance of 
the two modes of regulation during carbon starvation adaptation, the approach 
developed by ter Kuile and Westerhoff (2001) for enzyme regulation was 
adapted to the level of mRNA. At any time, the transcription rate VT is equal to 
the dilution rate due to cellular growth Vµ plus the degradation rate VD and the 
time derivative of the mRNA concentration: 

[ ]
t

mRNAVVV DT ∂
∂

++= μ  

The dilution rate Vµ and the degradation rate VD can be expressed as a function 
of growth rate (µ) and the degradation constant rate (k) as following: 

 = µ.[mRNA] Vµ

 = k.[mRNA] with k = ln2/tVD 1/2 

Dilution rate of the messengers Vµ could be neglected compared to the 
degradation rate VD, since µ was significantly lower than k in the 3 samples 
explored during the culture. Furthermore, since the time derivative of the mRNA 
concentration, estimated by the variation of the concentration between the 
different samples of the culture, was in the mean 26-fold lower than the 
degradation rate, it could also be neglected. Therefore, [mRNA] could be 
expressed as a simple function of the rate of transcription and degradation as VT 
= k.[mRNA]. And assuming that VT and k were independent, the derivative of 
the [mRNA] equation allows the degradation (ρD) and transcription (ρT) 
regulation coefficients to be defined as following: 

]ln[
ln
mRNAd

Vd T

]ln[
ln
mRNAd

kd
−ρD = , ρT = , ρ  + ρD T = 1 

The degradation regulation coefficient ρD was calculated as the opposite slope of 
the double-logarithmic plot of degradation rate k versus mRNA concentration 
between exponential and deceleration phases and between deceleration and 
starvation phases. Between exponential and deceleration phases, 92 % of genes 
exhibited low ρD values (ρD < 0; Figure 2). This indicated that mRNA 
concentrations were mostly controlled by transcription but with an antagonist 
influence of degradation. This transcription control associated with a general 
mRNA concentration decrease indicated that the transcription rate decreased 
strongly during the carbon starvation. In this context, mRNA were stabilized to 
counteract the effects of transcription and limit the drop of mRNA pool in the 
cells. Among the 7 genes under degradational regulation (ρD > 1), some of them 
(dhaL, M and msmK) were previously identified to play a crucial role in the 
adaptation to carbon starvation (sugar and glycerol metabolism), underlying the 
importance of decay phenomenon in the response to carbon starvation. 
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Figure 2: Frequency of genes exhibiting regulation coefficient ρD inferior to 0 
(transcriptional control), between 0 and 1 (shared control) and superior to 1 
(degradation control) between exponential and deceleration phases (   ) and 
between deceleration and starvation phases (  ) during carbon starvation 
adaptation of L. lactis. 
 
 
Between deceleration and starvation phases, the influence of the two modes of 
regulation was more balanced (figure 2). Indeed, mRNA concentration was still 
controlled at the transcriptional level for 51 % of genes (ρD < 0) while 25 % of 
genes were controlled by degradation (ρD > 1) and 24 % presented a shared 
control (0 < ρD < 1), indicating that mRNA stability plays a significant, if not 
over-riding effect, on modulating the adaptation of this bacterium to carbon 
starvation. 
 
 
5. Conclusion 
 
This control analysis at the genomic scale formally demonstrated that mRNA 
stability is a significant part of the gene expression regulation in response to 
adverse conditions, alongside the more classically studied transcriptional 
phenomenon. Therefore, modulation of gene expression is not necessarily linked 
only to transcriptional regulations. This important biological result was provided 
through an integrative approach based on the comparison of transcriptome and 
stabilome data. This particular domain of System Biology allowing the various 
levels of observation to be connected will probably in the future offer a more 
realistic vision of global cellular regulation. 
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1. Abstract 
 
System Biology allows cellular complexity analysis and the optimization of cell 
metabolic pathways by using cell component enumeration, structured 
relationship between them, mathematical representation of the metabolic 
networks, knowledge of the metabolic properties and comparison with 
experimental outputs of the cell processes involved. In this work metabolic 
engineering strategies and system biology principles for maximizing L(-)-
carnitine production by E. coli based on the Biochemical System Theory are 
presented. The model integrates the metabolic and the bioreactor levels using 
power-law formalism. Experimental results using a high-cell density reactor were 
compared with optimized predictions. The model shows control points at 
macroscopic (reactor operation) and microscopic (molecular) levels where 
conversion and productivity can be increased. In accordance with the optimized 
solution, the next logical step to improve the L(-)-carnitine production rate will 
involve metabolic engineering of the E. coli strain by overexpressing the 
carnitine transferase, CaiB, activity and the protein carrier, CaiT, responsible for 
substrate and product transport in and out of the cell. By this means, it is 
predicted that production may be enhanced by up to three times the original 
value. 
 
 
2. Introduction 
 
In human cells, L-carnitine (R(-)-3-hydroxy-4-trimethylaminobutyrate) 
transports long-chain fatty acids through the inner mitochondrial membrane, 
which is why several clinical applications for L-carnitine have been identified. 
Consequently, the demand for L-carnitine has increased worldwide (Seim et al., 
2001) and chemical and biological processes have been developed for its 
production (Cavazza, 1981; Kulla, 1991; Hoeks et al., 1996; Kleber, 1997). 
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Strains belonging to the genera Escherichia, Proteus and Salmonella racemice D-
carnitine, a waste product and an environmental problem resulting from the L-
carnitine chemical synthesis, and/or biotransform crotonobetaine (dehydrated D-
carnitine) to produce L-carnitine (Kleber, 1997; Castellar et al., 1998; Obon et 
al., 1999; Canovas et al., 2002). 
In E. coli, the responsible genes for L-carnitine metabolism are in the operons 
caiTABCDE and fixABCX. These operons are modulated positively by general 
regulators, such as the cAMP receptor protein (CRP) or the transcriptional 
regulator responsible for anaerobic induction (FNR), and negatively by the DNA-
binding protein H-NS, glucose or nitrate (Unden and Trageser, 1991; Eichler et 
al., 1994). In addition, it has been proposed that a positively controlled caiF 
gene, 3’ adjacent region to the cai operon, acts as a specific transcriptional 
regulator for carnitine metabolism (Eichler et al., 1996). This pathway is 
detectable not only in cells previously grown anaerobically but also in some 
species, such as E. coli ATCC 25922 and DSM 8828, P. vulgaris and P. 
mirabilis, grown under aerobiosis in the presence of inducers such as D-L-
carnitine mixture or crotonobetaine (Kleber, 1997; Obon et al., 1999; Elssner et 
al., 2000; Canovas et al., 2002). It was first postulated that L-carnitine 
dehydratase reversibly catalyzed L-carnitine into crotonobetaine and that 
crotonobetaine reductase non-reversibly transformed crotonobetaine into γ-
butyrobetaine as an electron sink (Jung et al., 1989; Roth et al., 1994; Kleber, 
1997), even though this latter in E. coli can be inhibited by fumarate addition as 
another electron sink (Obon et al., 1999). Now that functions have been assigned 
to each putative protein of the cai operon, it is known that CaiT is an exchanger 
(antiporter) for carnitine derivates in E. coli (Jung et al., 2002) with no energy 
consume. Another type of transport of these compounds with ATP consume and 
irreversible is present (Canovas et al., 2003a); this transport is  equivalent to the 
transporter ProU (Verheul et al., 1998). The enoyl-CoA hydratase (CaiD) is 
composed of two identical subunits, requiring a CoA-transferase activity (CaiB). 
It has been verified that the hydration reaction of crotonobetaine to L-carnitine 
(CHR) proceeds at the CoA-level in two steps: the protein CaiD-catalyzed 
hydration of crotonobetainyl-CoA to L-carnitinyl-CoA, followed by CoA-
transfer from L-carnitinyl-CoA to crotonobetaine, catalyzed by CaiB (Elssner et 
al., 2001). Thus, CaiD and CaiB from E. coli have been found to catalyze the 
reversible biotransformation of crotonobetaine to L-carnitine in the presence of a 
co-substrate, either γ-butyrobetainyl-CoA or crotonobetainyl-CoA (Elssner et al., 
2001). CaiD was also postulated to be involved in racemisation of D-carnitine 
(Eichler et al., 1996). Further, CaiC has been suggested as a CoA-
trimethylammonium ligase (Eichler et al., 1996), activating crotonobetaine/γ-
butyrobetaine/L-carnitne when they reach the cell. The function of protein CaiE 
is not totally understood and further studies must be undertaken. With all this 
information, we have proposed a model to describe the whole activity of E. coli 
able to produce L-carnitine from crotonobetaine under anaerobic conditions 
(Figure 1). 
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Figure 1. Metabolic pathways involved in the biotransformation of 
crotonobetaine into L-carnitine in E. coli. extracellular crotonobetaine (X2);  
extracellular L-carnitine (X3); intracellular L-carnitine (X5);  intracellular 
crotonobetaine (X6); L-carnitinylCoA (X7); crotonobetainylCoA (X8); ATP (X9); 
CoA (X10); CaiT (X11); ProU (X12); CaiB (X13); CaiC (X14); CaiD (X15). 
 
 
Rational optimization of this biotransformation in continuous high-cell density 
membrane reactors first requires understanding the link between cell carnitine 
metabolism and the connection between the microkinetics of both metabolisms 
and the macrokinetics of the cell population behaviour in the reactor. From this 
point a dynamic model was built for the biotransformation of crotonobetaine into 
L-carnitine including all the genes involved in the carnitine metabolism. 
 
 
3. Theoretical 
 
3.1. MATHEMATICAL MODELLING 
 
3.1.1. S-System model 
Biochemical System Theory offers some choices for the formulation of 
biochemical systems, among which the most relevant for our purposes is the S-
System (Voit, 2000). In an S-System model, each net rate law for synthesis and 
degradation is represented by a product of power-law functions of the whole set 
of variables that influence the net rate law in question. For example, the synthesis 
rate of a given process Vi

+ is written as: 
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to dependent variables, while j = n+1, …, n+m refer to independent 
variables. The processes that characterize process forming Xi are aggregated to 
give a single law for the net synthesis Vi

+. Similarly, those rate laws that 
characterize reactions removing the same Xi are aggregated to give a single law 
for net degradation Vi

-. The descriptive equations for a process can then be 
written in terms of power-law functions as follows: 
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The parameters αi and gi,j are rate constants and kinetic orders associated with the 
rate law for net production of Xi . Similarly, βi and hi,j are associated with the rate 
laws of net degradation of Xi. The kinetic order parameters gi,j and hi,j are defined 
as follows: 
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where subscript 0 indicates that a quantity is evaluated at steady-state stage of the 
system. Values for the parameters αi and βi are determined in such a way that the 
modelled rate and the power-law approximation are equivalent in steady-state. 
 
 
4. Experimental 
 
4.1. Chemicals 
L(-)-Carnitine and trans-crotonobetaine were gifts from Biosint. S.p.A. (Rome, 
Italy). Acetyl-CoA, acetyl-phosphate, 5,5´-dithiobis-(2-nitrobenzoic) acid, ATP, 
D,L-carnitine, carnitine acetyl-transferase, coenzyme A, and thiamine 
pyrophosphate were from Sigma Chem. Co. (St. Louis, MO. USA). 
Bacteriological peptone was purchased from Oxoid (Basingstoke, England). All 
other chemicals employed were of analytical grade. 
 
4.2. Growth of the bacteria 
Escherichia coli 044 K74 stored as liquid culture, in glycerol 20% (v/v), at -20 
ºC was used to inoculate a culture medium composed of (g·l-1): glycerol, 12.60; 
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KH2PO4, 5.44; K2HPO4, 10.49; (NH4)2SO4, 2.0; MgSO4·7H2O, 0.05; 
MnSO4·4H2O, 0.05 y FeSO4·7H2O, 0.00013. The pH of the medium was adjusted 
to 7.5 with 0.1 M KOH prior to autoclaving. Assays were preformed under 
aerobic conditions in an orbital stirrer (150 rev. min-1) in 250 ml Erlenmeyer 
flasks containing 100 ml culture medium at 30 ºC that were inoculated with 5% 
(v/v) culture concentration for 6-8 hours. Cells were grown in the following 
culture medium (g·l-1): bacteriological peptone 20; NaCl, 5; fumarate, 2; glycerol, 
12.6 and crotonobetaine, 5 as inducer. The pH of the medium was adjusted to 7.5 
with 1 M KOH prior to autoclaving. After inoculation of cultures with 5% (v/v), 
cultivation was carried out in the high-cell density recycle continuous bioreactor 
in anaerobic conditions. 
 
4.3. Cell recycle bioreactor 
The experimental set-up for the membrane cell-recycle system has been 
presented elsewhere (Obon et al., 1999). The fermentation vessel of 500 ml 
capacity was coupled to a cross-flow filtration module (Minitan, Millipore, USA) 
equipped with four 0.1 μm hydrophilic polyvinylidene difluoride Durapore plates 
of 60-cm2 surface area (Millipore, USA). The cell broth was recycled into the 
reactor with a peristaltic pump adjusted to a high flow rate (70 ml/min) to 
minimize membrane fouling. E. coli O44 K74 cells for the inocula were grown as 
explained elsewhere (Obon et al., 1999) and transferred to the fermenter. 
Continuous operation was set at 37 ºC and was started up by feeding with the 
medium. The culture was grown anaerobically by bubbling nitrogen previously 
passed through a water trap. 
 
4.4. Enzyme assay, metabolites and biomass determination 
L(-)-carnitine dehydratase was assayed according to Jung et al. (Jung et al., 
1993). ATP was measured by bioluminescence assay (Bioluminescence Assay 
Kit HS II, Boehringer Mannheim, Germany) using FluoStar (BGP, Germany) 
without filters. Then intracellular concentration was calculated assuming an 
intracellular volume of 63 μl·mg-1 (Canovas et al., 2003b). Acetyl-CoA and 
coenzyme A concentrations were measured by HPLC (Shimadzu Co., Kyoto, 
Japan) following the method proposed by Debuysere and Olson (1983), using a 
μ-BondapakTM C18 Millipore (4.5 mm x 25 cm) column with a pre-column (4,5 
mm x 4 cm), packed with a C18 phase. Detection was performed at 254 nm. The 
mobile phase was 0.12 M H3PO4, 0,05% ß-mercaptoethanol, (85 v/v) and 15 
(v/v), methanol (98%) and chloroform (2%), adjusted to pH 4.0 and the flow rate 
was 0.8 ml/min. L(-)-carnitine concentration was measured by the carnitine 
acetyl transferase method (Jung et al., 1989). Glycerol and crotonobetaine 
concentrations were determined by HPLC using a 25 x 0.46 cm Tracer 
Spherisorb-NH2 3 μm column (Tecknokroma, Barcelona, Spain). The mobile 
phase was acetonitrile/H3PO4, 0.05 M, pH 5.5 (65/35), with a flow rate of 1 
mL/min. Cell growth was determined spectrophotometrically at 600 nm using a 
Novaspec II spectrophotometer (Pharmacia-LKB, Uppsala, Sweden) and then 
translated to dry weigh. 
 



 

5. Results and Discussion 
 
5.1. S-System Model 
Considering cell growth, biotransformation equations and enzyme kinetics we 
built the following S-System model: 
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where  
dt

dXX i'
i =  

X1 is glycerol outside the cell, X2 crotonobetaine outside the cell , X3 L-carnitine 
outside the cell, X4 cell concentration, X5 L-carnitine inside the cell, X6 
crotonobetaine inside the cell, X7 L-carnitinyl-CoA, X8 crotonobetainyl-CoA, X9 
CoA, X10 ATP, X11 CaiT, X12 Pro U, X13 CaiB, X14 Cai C, X15 CaiD, X16 flow 
rate, X17 glycerol inlet, X18 crotonobetaine inlet, X19 specific grow rate and X20 
the constant for biomass decay. 
The proposed model was useful for representing the whole set of metabolites in 
the E. coli carnitine metabolism, the function of cell transporters (CaiT and 
ProU), the influence of the pool of energetic compounds (ATP and Acetyl-
CoA/HS-CoA ratio). In Table 1, experimental and simulation results for enzyme 
activities from the secondary and central metabolism of E. coli as well as reactor 
productivity and conversion are presented. Furthermore, although the model is 
applied to represent the biotransformation of crotonobetaine into L-carnitine, it is 
also useful for understanding any biotransformation process where a single 
enzyme or several are involved, even when coenzyme regeneration is required. 
 
Table 1. Comparison between experimental and simulated data from studies 
carried out with E. coli O44 K74 in a minimal medium with glycerol 75 mM and 
crotonobetaine 50 mM. Productivities and conversion values were calculated at 
the time of steady-state value. 

 Experimental value Simulated value
Enoyl-CoA hydratase (U) 180 212 
Crotonobe-taine reductase(U) 20 27 
Acetyl-CoA synthetase (mU/mg prot) 394 405 
Isocitrate lyase (mU/mg prot) 5.60 7.0 
Productivity (g/L/h) 0.16 0.18 
Conversion (%) 25 30 
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Biotransformation simulation results matched experimental results, meaning that 
the microkinetics of the cell metabolism matched the macrokinetics of the reactor 
system. Moreover, simulations allowed the determination of certain keypoints 
where to improve cell metabolism and the L-carnitine production process by 
metabolic engineering. 
 
5.2. Dynamic Simulation 
The assessment of dynamic responses, such as a transient following a 
perturbation, can be simulated using PLAS (Ferreira, 1998). For the present 
purpose, we carried out an extensive series of such analyses, which pointed to a 
common pattern, that is, the system returned in a short time to the initial steady 
state and never reached extreme, unfeasible values for any of the intermediate 
pools. It should be stated that the range of the sudden perturbation was between 
20 to 50% of the steady state concentration. 
As an illustrative example, Figure 2 shows the dynamics observed after a 50% 
increase in the CaiT activity.  
 

Figure 2. Response of the model to 
a 50% increase in CaiT activity 
between 0 and 7 hours. At time 2, a 
bolus of CaiT activity (X12) was 
carried out. Time evolutions 
crotonobetaine outside the cell 
(CRext, X2), L-carnitine outside the 
cell (LCext, X3), L-carnitine inside 
the cell (LCint, X5), crotonobetaine 
inside the cell (CRint, X6), L-
carnitinyl-CoA (LCCoA, X7), 
crotonobetainyl-CoA (CRCoA, X8) 
are shown. Other intermediates 
showed no significant variations. time (h)
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It can be seen a higher efficiency of the system, as a consequence of a higher 
inlet of crotonobetaine inside the cell as it was reflected in its increment. 
However, the most important result was the increase in the external concentration 
of carnitine. 
Another example is reflected in the Figure 3. In this pulse the activity of CaiB is 
increased a 50% from its basal level. The most important consequence is the 
increment of the L(-)carnitine inside as well as outside the cell as a consequence 
of a faster interchange of the CoA group carried out by this enzyme. 
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Figure 3. Response of the model to a 
20% increase in CaiB activity 
between 0 and 7 hours. At time 2, a 
bolus of CaiB activity (X13) was 
carried out. Time evolutions 
crotonobetaine outside the cell 
(CRext, X2), L-carnitine outside the 
cell (LCext, X3), L-carnitine inside the 
cell (LCint, X5), crotonobetaine inside 
the cell (CRint, X6), L-carnitinyl-CoA 
(LCCoA, X7), crotonobetainyl-CoA 
(CRCoA, X8) are shown. Other 
intermediates showed no significant 
variations. time (h)
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In the Figure 4 is represented the dynamic evolution of the biotransformation of 
L(-)-carnitine when a bolus of the inlet of the external crotonobetaine was carried 
out. The concentration of the external L(-)-carnitine was consequently increased. 
However, the transformation yield dropped dramatically as a probably 
consequence of the saturation of the L-carnitine biosynthesis at the transport 
level. 
 

Figure 4. Response of the model to a 
20% increase in crotonobetaine inlet 
between 0 and 7 hours. At time 2, a 
bolus of the crotonobetaine inlet 
(X18) was carried out. Time 
evolutions crotonobetaine outside the 
cell (CRext, X2), L-carnitine outside 
the cell (LCext, X3), L-carnitine inside 
the cell (LCint, X5), crotonobetaine 
inside the cell (CRint, X6), 
crotonobetainyl-CoA (CRCoA, X8) are 
shown. Other intermediates showed 
no significant variations. 
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The obtained results are in agreement with the IOM approach (Marin-Sanguino 
and Torres, 2003), carried out for the L(-)-canitine metabolism (Sevilla et al., 
2005b). This work assessed that it is possible to increase by a factor bigger than 3 
the current productivity of L-carnitine. This enhanced productivity can be 
attained by modifying the current values of five parameters of the system, two 
bioreactor-operating values and three enzyme activities: the initial concentration 
of cronotobetaine, the dilution rate, the activities of  CaiT and CaiB have to be 
overexpressed but ProU should be inhibited. The better performance here 
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encountered is thus due to the role of the transport processes. A possible 
explanation of this behavior is that any increase in the activity of ProU, a non-
reversible trimetilamonium transport systems associated to osmotic stress 
(Verheul et al., 1998) has a negative influence on the whole carnitine 
biotransformation due to the negative effect on the combined reaction capacity of 
CaiT (an antiport crotonobetaine /carnitinein out) because in this process a futil 
cycle is generated (Sevilla et al., 2005a). In this process CaiB, an enzyme that 
catalyzes the transfer of CoA groups between different betaines (Elssner et al., 
2001), seems to be the controlling enzyme whereas the control of CaiD 
(responsible of the biotransformation, Fig. 1) seems to be non significant. 
Another conclusion is that the connection of both metabolisms sketched in Figure 
1, suggests the existence of control points, not only at the central but also at the 
carnitine metabolism, where it would be possible to act to redirect the metabolic 
fluxes (i.e. energy metabolism for transport processes). Therefore, future studies 
to optimize the biotransformation should also be addressed at redirecting the 
metabolic fluxes towards an increase in energy levels and the levels of 
metabolites required for biotransformation by using System Biology. This work 
means modifying and redirecting pathways by the use of genetic engineering 
tools and having the image of the complete cell system to maintain cell 
homeostasis and viability. 
 
 
6. Conclusion 
 
i The control points at macroscopic (reactor operation) level are the dilution 
rate and the initial crotonobetaine concentration as well as at microscopic 
(molecular) level are the carnitine transferase, CaiB, activity and the protein 
carrier, CaiT, responsible for substrate and product transport. Modifying these 
points, the production of crotonobetaine biotransformation may be enhanced by 
up to three times the original value. 
i The control of the biotransformation is at the transport level not at the reaction 
level. This control is exerted by the simultaneous connection of two kind of 
transporters involved in the carnitine metabolism: CaiT is a reversible non ATP 
dependent antiporter but ProU summarized the action of a group of irreversible, 
energy dependent transporters. 
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1. Abstract 
 
Human activities produce a remarkable amount of compounds, many of them 
harmful to the natural environment. Microbial communities have developed a 
natural capacity to degrade xenobiotic and pollutants compound and so to clean-
up polluted areas. In an attempt to understand this process better, we have studied 
the Global Biodegradation Network, which consisting on all biodegradation 
reactions, regardless of their microbial host, and in which reactions are nodes that 
are connected if the product of one can be the substrate of the other. More over, 
we have been able to associate protein sequences to a large number of reactions 
in the network. This has allowed us, in one hand, to analyze the topological 
characteristic of network from a reaction-centric view, on the other hand, to 
localize the regions in which their study has been more intensive. We propose 
that this improvement in the understanding of the internal structure of the 
network could help to steer the prospective efforts to complete the global 
knowledge of the system to a sequence level, and so, to discover functional 
relations hidden in it. 
 
 
2. Introduction 
 
Thousands of chemical compounds are been released to the environment every 
day as a consequence of human activities, ranging from chemical industry to 
agriculture. Many of these compounds are relatively new in nature (the so called 
xenobiotic compounds) and microbial communities have had to adapt to   them, 
and develop mechanism for overcome their toxic effect, and even in some cases, 
have learn to metabolize them in their own benefit. While some xenobiotic 
compounds are modified until the point in which they can enter into the central 
metabolism, some others are just partially transformed and during the process, 
and the whole sequence of reactions can be preformed by several bacterial 
species. Hundreds of biodegradation reactions have been already experimentally 
characterized in different conditions, accounting for an interesting collection of 
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data for analysis, even if they are probably only a small proportion of the larger 
biological reality. All this area of research is not  unrelated to the study of the 
complete genetic repertory present in a given ecosystems (a field now known as 
“metagenomics”), whose first spectacular results have been recently published 
(Venter el al., 2004). 
We carried out a first study of the general properties of the known biodegradation 
network (Pazos et al., 2003), in which we determined the scale-free structure of 
the network, including the input/output reactions, with characteristics similar to 
the ones observed for the standard metabolic networks. This similarity fits well 
with the biological model that describes the collective behavior of the 
biodegradation networks as similar to the one of single organisms, even if its 
nature and evolution are necessarily very different. This first analysis of the 
biodegradation network also allowed us to propose a first model for its evolution. 
More over, we were able to develop a set of bioinformatic tools (Pazos et al., 
2005a) that, beside facilitating storing updating and querying the available 
information, allowed us for complex data mining. For instance, the system was 
able to uncover new alternative pathways for the degradation of certain 
compounds, and compare them to those that appear in bacterial genomes. In this 
work, we present our new results on the study of global biodegradation network. 
If the previous analyses were performed over a classical metabolic network 
formulation, were the compounds are treated as nodes connected by reactions, we 
have now transformed the network in such a way that now the nodes are reaction 
that are connected if the product of one can be the substrate of the other. Also, 
we have been able to associate protein sequences to a large number of 
biodegradative reactions, a so far pending task. We believe that this new 
formulation, by focusing in the biological entities (reactions, and the proteins that 
perform them) instead of chemical entities (the compounds) will be able retrieve 
new information regarding structure, behavior and evolution of the 
biodegradation network. 
 
 
3. Materials and Methods 
 
3.1. Network reconstruction 
The biodegradation network introduced here is a directed graph in which the 
nodes are the reactions. A reaction consists of its substrate(s), the protein that 
achieve the transformation and the product(s). The edges represent the 
connection between two reactions in which the product of the first one is the 
substrate of the second one. When a reaction has more than one substrate or 
product, all the possible connections are constructed. The initial set of data was 
obtained from the University of Minnesota Biocatalysis/Biodegradation Database 
(UMBBD: April 2005 version, Ellis et al., 2003). The chemical compounds that 
are consider in the UMBBD as cofactors, are not included in the network. All the 
reactions in UMBBD are included, regardless of their aerobic and anaerobic 
nature and the organism in which the enzymes are present. A reaction is linked 
with the Central Metabolism (CM) when its product belongs to it according with 



 263 

UMBBD. The distance of a given reaction to the CM is defined as the minimum 
number of steps (edges in the network) to reach it. 
 
3.2. Protein sequence retrieval and association  
The sequence of the proteins that participate in each reaction were retrieved by a 
manual search taking as starting point the bibliographic references included in 
UMBBD and adding others obtaining from their context in the system. As result, 
a group of vectors with a different combination of data as the author, organism, 
operon, pathway, enzymatic activity, etc, were built to query the GenBank 
Protein Database (Benson et al., 2005) and retrieve the sequences. Result were 
manually inspected to guarantee consistency with the available literature. 
 
3.3. Data availability 
The data used in this work are included in the BioNeMo (Biodegradation 
Network Modelling) database. This application has been created to store and 
maintain the enzymatic and regulatory activity of the transformations in 
biodegradation, in an integrated way. It will be available soon via web server 
(Trigo et al., 2006). 
 
 
4. Results and discussion 
 
4.1. Topological properties 
Previous studies about biodegradation from the Systems Biology approach have 
been focused to the understanding of the relations between the compounds that 
appear in the biodegradation process (the initial and final products of each 
transformations). In this way, the topological properties of the resulting global 
network have been discussed (Pazos et al., 2005b). In this work, nevertheless, we 
have used a different approach. The interest now is concentrated into the 
biological entities that achieve the transformations (reactions), the proteins. It 
will allow us to analyze the network in a more biological and no so biochemical 
way, since the relation between the proteins, their distribution inside the network 
and their topological properties can be studied. We started by studying the 
topological properties of this new network. Since the network is a directed graph, 
two different connectivity properties can be considered, incoming connections, 
and outgoing connections. As most biological networks, the reaction network 
reveals a scale-free structure, regardless if you consider incoming, outgoing or 
the total number of connections. The log-log plot of connectivity against the 
number of nodes show that the number of compounds (k) and the probability of 
the number of connections (p(k)) can be expressed as p(k) ~ k-�, with an 
exponent between 2 and 3. This indicates the presence of a few highly connected 
reactions connecting the mass of poorly connected reactions (Fig. 1). 
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Figure 1. Log-log plots of the number of compounds versus connectivity 
 
 
One biologically relevant property of the reactions is its connection to the central 
metabolism (CM). Reactions that are connected to it contribute to the full 
degradation of compounds, while those that are not connected only contribute to 
their transformation. Similarly the distance to CM, can also have biological 
relevance. Thus, we have studied the properties of the nodes according to their 
distance to the CM. While most of the reactions have only 1 or 2 incoming and 1 
or 2 outgoing connections (Fig 2a and 2b), independently of the distance to the 
CM, there is a clear tendency for the reactions with high inputs or high outputs or 
high total connectivity, to be closer to the CM and decrease their number 
according with the distance to the CM 
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Figure 2. Connections of the reactions. (a) Relationship between the number of 
incoming connections and its distance to the central metabolism (CM). (b) 
Relationship between the number of outgoing connections and its distance to the 
CM. 
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Then we studied the relation between the number of incoming (ci) and outgoing 
(co) connections. This analysis revealed a light “dispersing” structure in the 
network; there are more nodes with more incoming than outgoing connections 
(Fig. 3). However, in general, the reactions tend to maintain the flux to the CM, 
without concentrating or dispersing it, since the more common pair is 1 income, 
1 output. It is also noticeable that most of the nodes with no input connection 
(that is the points were the compound enter the network) has only one output 
connection. Taken together, all this results display a quite sparse network, with 
long linear pathways that start to interconnect when close to the central 
metabolism. This is remarkably different from what was observed when the 
compound network was studied. In that case, a funnel structure was detected 
(Pazos et al., 2003). 
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Figure 3. Relationship between the number of incoming connections and the 
number of outgoing ones. 
 
 
4.2. Sequence association and its distribution in the network 
While it is usual to describe a enzyme by its biochemical activity, i.e. its Enzyme 
Commission Code (EC Code), this is not enough to uniquely identify the real 
biological entity that achieves the reaction. More than 60% of the reactions in the 
biodegradation network share their EC code with other reactions and while in 
many cases, it does not imply that they can realize the same transformation. This 
is mainly due to the ambiguity in the definition of the EC code and in its 
assignation to a reaction. In this manner, to expect that assigning a sequence (or 
set of homologous sequences) to each reaction would allow a much precise 
characterization of the reactions of the network. The global biodegradation 
network consists of 996 reactions, of which, for around 400 have been able to 
associate a sequence by manual curation of the available bibliography and 
specific queries to sequence databases. We have focused our analysis in the 
distribution of the reactions to which we could associate a sequence. This 
analysis would get insight to the level of knowledge of the system and the 
regions in which it has been more studied. At the same time, it allows to focus 
the future work to have a complete description of the network. 
A first inspection of the distribution of sequences in the reaction network, 
revealed that, interestingly,  half of the reactions with an associated sequence are 
completely isolated (42) or in small groups of 2 or 3 elements (140). 215 
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reactions belong to a interconnected sub network distributed in linear paths often 
parallel (Fig. 4). 
 

 
Figure 4. A global view of the biodegradation network from a reaction-centric 
approach. The dark nodes represent the reaction with a sequence. The rectangle 
node in the low part of the graph is the entrance to the CM. 
 
 
In order to get a more detailed analysis of this distribution, we started by taken 
apart reactions connected to the central metabolism and those not connected (Fig. 
5). Nearly two thirds of the reactions reach the CM and for around 45 % of them 
a sequence has been assigned. This percentage is a 50 % higher than for the 
nodes without a path to the CM (30%). This suggest a tendency to identify 
proteins involve in the full degradation of chemicals, as result of the efforts of 
experimentalist groups to find ways to turn pollutants into innocuous compounds. 
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Then we turned our attention to the group of reactions connected to the CM, and 
studied the relation between the distance to the CM and the fact of have an 
associated protein. The biodegradation network has approximately 80 % of the 
total number of nodes are less than 6 steps away from the CM. In the same way, 
82 % of the reactions with an associated sequence are placed in this region. 
Making a more detailed study (Fig. 6) we can observe that until a distance 5, 
50% of the reactions have an associated sequence. From this point, the 
percentage decreases and to distances higher than 11 steps, we were unable to 
associate a sequence to those reactions. The constant proportion of reactions for 
which a sequence have been obtained at all this distance under 5 can be related to 
the notion of pathways. It is most likely that sequences are obtained for pathways 
that appear normally forming operons, or closely associated in DNA fragments, 
and most biodegradation operons have between 4 and 6 genes (Carbajosa, G. 
personal communication). 
 

No.Total nodes No. Known nodes % known nodes

 
 
Figure 6. Relationship between the total reactions and those with sequence, and 
their distance to the CM. The left y-axis means the number of nodes (reactions) 
and the right y-axis the percentage of nodes with sequence regarding the total one 
(“known nodes”). 
 
 
Traditional pathways are a chain of reactions that have been related based in the 
description from experimental groups, however in many cases their physiological 
relevance of theses pathaways it is not clear. In fact, our defined network does 
not incorporate the notion of pathways , we treat the ecosystem as a global no-
compartmentalized entity and reactions from different described pathways are 
allowed to interconnect. However, given the structure of the network described in 
the previous section and the results regarding the knowledge of sequences 
relative to distance to CM, we decided to study the distribution of reactions with 
associated sequences in previously described pathways. 
The reactions in our network have been  described in 144 pathways, of which 
around 35% have not any reactions with an associated sequence, while  21% 
have been completely characterized to sequence level, and for 27% of pathways 
more than the half of their reactions have an associated sequence. Half of the 
pathways are characterized more than a 50%, and the other half less than a 50%. 
Since we have observed a clear turning point in distances around 6 from the CM, 
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we wondered if there is a correlation between the pathway size and the level of 
characterization. Out of the 144 pathways included in the network, 75% are 
shorter than 8 reactions, and 5 is the more common length. Still, there are a small 
but significant group of 25 pathways longer than 10 reacctions up to 28 (Fig. 7a). 
When we studied the relation between pathway length and sequence association, 
we observed a clear tendency of the shorter pathways to be better characterized 
than the longer ones, and all completely characterized pathways are shorter than 
8 reactions (Fig. 7b). A few exceptions can be observed among the long 
pathways. mainly model pathways, such as the one for degradation of xylene and 
toluene, which have become the paradigm for  molecular biology studies of 
biodegradation pathways. 
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Figure 7. (a) Distribution in the network: number of pathways according with 
their length. (b) Relation between the length of the pathways and their number of 
reactions with an associated sequence. 
 
 
5. Conclusions 
 
In this work, we presented a new analysis of the Global Biodegradation with 
involved a number of improvements over previous ones. First, we have 
constructed a new formulation of the network in which the reactions occupy the 
central role, and on top of that we have incorporated sequence information to the 
description of the reactions.  As shown in our topology analysis, this new 
network have interesting properties, some similar those of the network centred 
around the chemical compounds, such us the scale-free structure, and other 
different, such a more linear structure that contrast with the preciously described  
“funnel” structure. We expect that the analysis of these differences will reveal 
relevant information about their properties and evolution. 
In this first analysis we have also studied the distribution of knowledge in the 
network, information that we expect will help in focussing subsequent 
experimental efforts.  Our results indicates that so far the experimental work have 
been centred around reactions connected to the central metabolism, in accordance 
with the prevalence of the interest for bioremediation (removal of pollutants from 
the environment by the use of living organisms) in the field of biodegradation. 
Biotransformation reactions have gained much less attention so far, probably 
because they do not help to the full mineralization of pollutants. However, given 
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the actual need of green catalyst and sustainable practices in synthetic chemistry 
industry, they could be potentially useful, and should therefore be more 
characterized. 
Our results also shown that so far, reactions characterized at the level of 
sequence are in a large proportion unconnected, restricted to short linear 
pathways. This makes global analyses more difficult, and constrains our 
predictive potential on how biodegradation is taken place in the natural 
environment, where chemical flow almost freely and many different interactions 
between microorganisms are taking place. 
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1. Abstract 
 
Cofactor level is a control parameter used by cells for flux regulation through 
metabolic pathways, since it not only affects enzyme activity but also regulates 
gene expression, finally altering the metabolic state. Perturbation of coenzyme 
pools, also known as cofactor engineering, is an emerging strategy for metabolic 
flux redirection with a high potential for metabolic engineering. 
Though L(-)-carnitine is a secondary metabolite of E. coli, biotransformation 
occurs at the coenzyme-A level. Coenzyme-A and its thioester derivatives 
participate in over 100 different reactions in the intermediary metabolism of 
microorganisms. While coenzyme-A regulates the central and intermediary 
metabolism, acetyl-CoA has a key role in the link between glycolisis, the Krebs 
cycle, the glyoxylate shunt and acetate metabolism. The enzymes involved in 
trimethylammonium compounds activation (CaiC) and CoA transfer between 
substrates and products (CaiB) are crucial in the biotransformation, suggesting 
that CoA derivatives act as a feasible bottleneck. In this work, the effect of 
carnitine:coenzyme-A ligase (CaiC) and carnitine:crotonobetaine:CoA 
transferase (CaiB) overexpression in E. coli LMG194 is analyzed. A three to ten 
fold increase in the biotransformation yield was assessed. Further, the effect of 
different carbon sources on enzymes and coenzyme A esters pool of the central 
metabolic pathways was analyzed. Interrelation between L(-)-carnitine and 
coenzyme-A metabolism is discussed in relation with energetic primary 
metabolism. 
 
 
2. Introduction 
 
L(-)-carnitine (R(-)-3-hydroxy-4-trimethylaminobutyrate) transports long-chain 
fatty acids through the inner mitochondrial membrane, which is why several 
clinical applications have been identified for L(-)-carnitine and its demand has 
increased worldwide, chemical and biological processes having been developed 
for its production (Kleber, 1997). Strains belonging to the genera Escherichia, 

Understanding and Exploiting Systems Biology 
© The Editors and Fundación CajaMurcia, Spain, 2006 

mailto:jliborra@um.es


 272 

Proteus and Salmonella racemice D(+)-carnitine or biotransform crotonobetaine, 
both of which are waste products and represent an environmental problem 
resulting from the L(-)-carnitine chemical synthesis (Kleber, 1997; Obón et al., 
1999; Cánovas et al., 2003). In E. coli, the trimethylammonium compounds 
metabolism has been studied, because of its implication in stress survival and 
anaerobic respiration, although its role is not totally understood (Eichler et al., 
1994; Kleber, 1997; Elssner et al., 2001; Engemann et al., 2005). 
Though L(-)-carnitine is a secondary metabolite of E. coli, biotransformation 
occurs at the coenzyme-A (CoA) level (Elssner et al., 2000; Cánovas et al., 
2003). In brief, crotonobetaine is transformed into L(-)-carnitine by the 
involvement of two enzymes, an enoyl-CoA hydratase and a CoA-transferase 
(Elssner et al., 2001) which are induced anaerobically in the presence of D,L-
carnitine mixture and/or crotonobetaine. Using batch and continuous stirred tank 
reactors with growing and resting E. coli cells it was observed that the link 
between the central and carnitine metabolism was at the level of ATP and the 
pool of acetyl-CoA/CoA (Cánovas et al., 2003). However, the limitation imposed 
by the composition of the cellular CoA esters pool in  the biotransformation and 
the need to decipher the limiting steps imposed by the ICDH/ICL and PTA/ACS 
enzyme ratios still remain unclear. Trimethylammonium compounds activation is 
performed by a coenzyme-A ligase (CaiC), while CoA transfer between 
substrates and products is performed by a transferase (CaiB). Both enzymes are 
crucial in the biotransformation. 
Cofactor level is one of the control parameters, which the cell utilizes to regulate 
fluxes through various metabolic pathways, since not only affects enzyme 
activity but also regulates gene expression. Coenzyme-A and its thioester 
derivatives participate in over 100 different reactions in the intermediary 
metabolism of microorganisms. While CoA regulates the central and 
intermediary metabolism, acetyl-CoA has a key role in the link between 
glycolisis, Krebs cycle, glyoxylate shunt and acetate metabolism. Perturbation of 
coenzyme pools, also known as cofactor engineering, is an emerging strategy for 
metabolic flux redirection with a high potential for metabolic engineering (San et 
al., 2002). In fact, the manipulation of the NADH/NAD+ ratio and the CoA 
esters pool has been used to increase production of industrially useful compounds 
(Berrios-Rivera et al., 2004; Vadali et al., 2004). 
In this work, the effect of carnitine:coenzyme A ligase (CaiC) and 
carnitine:crotonobetaine:CoA-transferase (CaiB) overexpression in E. coli 
LMG194 is analyzed. Further, the effect of different carbon sources on enzymes 
and CoA esters pool of the central metabolic pathways was analyzed. 
Interrelation between L-carnitine and coenzyme A metabolism is discussed. 
 
 
3. Materials and methods 
 
3.1. Strain and plasmids 
E. coli O44 K74 (DSM 8828) and E. coli LMG194 (ATCC 47090) were used 
throughout this study. Both strains contain the complete divergent structural cai 
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and fix operons, expressing, carnitine racemase and carnitine dehydratase 
activities. E. coli O44K74 has been isolated as an overexpressing strain for 
carnitine metabolism (Kleber et al., 1997; Obón et al., 1999). E. coli LMG194 [F- 
ΔlacX74 galE galK thi, rpsL ΔphoA (PvuII) Δara714 leu::Tn10] is defective in 
L-arabinose metabolism (Guzmán et al., 1995) and was used as expression host. 
The strains were stored on culture medium containing glycerol (20%) at –20ºC. 
Arabinose inducible pBAD24 was employed as expression vector (Guzmán et al., 
1995). caiB and caiC were PCR-amplified and cloned downstream of the 
multicloning site of the plasmid. Constructions were verified through sequencing. 
The construction of pBADcaiB and pBADcaiC was performed employing 
standard molecular biology techniques (Sambrook et al., 2001), using pBAD24 
(Guzmán et al., 1995) as expression vector. For the cloning of caiB and caiC 
genes, specific oligonucleotide primers were designed to anneal the 5’ and 3’ 
ends of each gene. Futher, specific restriction enzyme cleavage sites for XbaI and 
PstI were introduced at the ends of the amplified genes and these were employed 
to perform directed-cloning into the expression vector. Genomic DNA of the L-
carnitine overproducing strain Escherichia coli O44K74 (DSM 8288) was 
extracted using Genelute Sigma-Aldrich kit. Plasmid extraction and purification 
were performed using Qiagen kits. 
 
3.2. Batch cultures 
Cells were grown using Miller’s LB medium (g/L): 10.0 tryptone, 5.0 yeast 
extract, 10.0 NaCl. The final pH of the medium was adjusted to 7.5 with KOH. 
Ampicillin was added at 100 µg/mL. For the biotransformation experiments, 50 
mM crotonobetaine was added prior to autoclaving. Anaerobic conditions were 
maintained to induce the enzymes involved in the carnitine metabolism, while 
D,L-carnitine mixture, D-carnitine or crotonobetaine were supplied as inducers 
of cai operon, while L-arabinose was used as inducer of the cloned genes at the 
different concentrations stated in the text. 
Batch experiments in anaerobic (under nitrogen atmosphere) assays were 
performed in reactors equipped with temperature, pH, oxygen and pumps 
controllers (Biostat B, Braun, Germany).  A 1 L culture vessel with 0.5-0.8 L 
working volume was used. 
 
3.3. Assays 
Sample optical density (OD) was followed at 600 nm with a spectrophotometer 
(Novaspec II, Pharmacia-LKB, Sweden) as a measure of cell concentration. L-
carnitine concentration was determined by an enzymatic test (Cánovas et al., 
2003), while D,L-carnitine, crotonobetaine and γ-butyrobetaine were determined 
by HPLC (Obón et al., 1999). 
 
3.4. Enzyme activity determination 
The L(-)-carnitine dehydratase and crotonobetaine reductase assays were carried 
out as previously stated (Cánovas et al., 2003), both using crotonobetaine as 
substrate. On the other hand, for the determination of D(+)-carnitine racemase 
activity, D(+)-carnitine was used as the substrate. Enzyme activity was defined 
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either as the total mmols of substrate consumed per hour (U) or as specific 
activity, mmol of substrate consumed per hour and mg of protein (mU/mg). 
 
 
4. Results and Discussion 
 
In order to determine the effect of the pool of coenzyme A derivatives in the 
biotransformation of L(-)-carnitine, two recombinant strains overexpressing key 
enzymes in trimethylammonium compounds metabolism were constructed. The 
genes selected for overexpression experiments were caiB and caiC, because of 
their implication in a) coenzyme A transfer between substrate and products and 
b) synthesis of coenzyme A derivatives of trimethylammonium compounds. 
PCR primers were designed upon the database sequences of caiB and caiC genes 
(Accession Number: X73904). XbaI and PstI sites were included at the 5’ and 3’ 
ends of the genes to be used in direct cloning (Fig. 1). The ara promoter based 
pBAD24 was used as an expression vector (Guzmán et al., 1995). L-arabinose 
was used as inducer and its presence in the culture medium was assessed by 
HPLC. All results are thus referred to the E. coli LMG194 strain, which carries 
an almost completely deleted ara operon, which was used as cloning and 
expression host. 
 

 
Figure 1. Carnitine operon (cai) in Escherichia coli (Eichler et al., 1994) and 
cloned genes. caiB and caiC ORFs were PCR-amplified and cloned into the 
arabinose inducible pBAD24 expression vector (Guzmán et al., 1995). 
 
 
It has been previously said that at low concentrations of inducer, induction is 
directly proportional to the concentration. In order to set optimized levels of 
expression of CaiB and CaiC proteins, the concentration of arabinose was 
studied. Results showed that optimal concentration of L-arabinose was 0.1-0.2 
both in the case of CaiB and CaiC overexpressing strains (Table 1). 
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Table 1. Optimization of L-arabinose concentration. E. coli LMG194 strains 
were grown in Miller’s LB medium. Anaerobiosis was kept in order to ensure 
efficient expression of carnitine metabolism. 
 

E. coli LMG194 E. coli LMG194 
pBADcaiB 

E. coli LMG194 
pBADcaiC 

 

[Ara] DCW [Lcar] 
(mM) 

DCW [Lcar] 
(mM) 

DCW [Lcar] 
(mM) (%) (g/L) (g/L) (g/L) 

0.0001 0.23 0.24 0.25 0.25 0.29 13.03 
0.001 0.23 0.40 0.21 0.21 0.28 15.25 
0.01 0.26 0.41 0.23 0.23 0.24 16.52 
0.1 0.23 0.39 0.28 0.28 0.27 15.12 
0.2 0.24 0.50 0.28 0.28 0.20 14.51 
1.0 0.20 0.30 0.28 0.28 0.21 11.97 

 
 
Since crotonobetaine can act as an electron acceptor, the presence of an 
alternative electron sink in the growth media enhances L-carnitine production by 
inhibiting the crotonobetaine reductase activity (Kleber, 1997; Cánovas et al., 
2003), and thus the γ-butyrobetaine production. Fumarate concentration was also 
optimized and results showed an enhancement in L-carnitine production not only 
in the wild type strain, but also in the transformed strains. Maximum production 
was assessed at 2 g/L for both strains. 
 
Table 2. Optimization of fumarate concentration. E. coli LMG194 strains were 
grown in Miller’s LB medium. Arabinose was added at the optimal concentration 
for each strain. Anaerobiosis was kept in order to ensure efficient expression of 
carnitine metabolism. 
 

E. coli LMG194 E. coli LMG194 
pBADcaiB 

E. coli LMG194 
pBADcaiC 

 

[Fum] DCW [Lcar] 
(mM) 

DCW [Lcar] 
(mM) 

DCW [Lcar] 
(mM) (g/L) (g/L) (g/L) (g/L) 

0.25 0.21 0.97 0.20 3.68 0.26 14.44 
0.50 0.21 1.19 0.20 3.21 0.25 15.49 
1.00 0.28 2.64 0.20 3.88 0.37 19.03 
1.50 0.25 1.78 0.24 3.28 0.34 18.21 
2.00 0.27 2.18 0.25 5.33 0.26 20.60 
4.00 0.28 1.88 0.23 4.37 0.40 19.54 

 
 
In order to determine the importance of the existence of a functionally active 
glyoxylate shunt pathway and the role of the ratio between acetyl-CoA and free 
CoA, experiments of growth and biotransformation in the presence of pyruvate 
and acetate were performed. Yield in growth was very different in these two 
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conditions but in both cases L(-)-carnitine production was inhibited to a great 
extent (results not shown). The built up of big intracellular pool of acetyl-CoA 
upon this cultivation conditions, reducing the availability of free CoA for the 
activation of trimethylammonium compounds would explain this effect assessed. 
CaiB protein was the first enzyme in the carnitine metabolism of E. coli O44K74 
to be characterized. Identification of caiB was the milestone which allowed the 
complete cai and fix operons sequencing and characterization. On the other hand, 
although CaiC remains uncharacterized, a possible carnitine/crotonobetaine/γ-
butyrobetaine:CoA ligase activity has been proposed on the basis of sequence 
similarities (Eichler et al., 1994; Engemann et al., 2005). The activation of L(-)-
carnitine and derivatives by CaiC is a requirement for the biotransformation, 
since this metabolism proceeds at the CoA level. Further, the action of CaiB, 
transferring the CoA moiety between substrate and products allows the 
biotransformation to proceed through an energetically unexpensive way. Despite 
this, the fact was that overexpression of CaiC enhanced L-carnitine production 
with growing E. coli cells much more than CaiB. 
Addition of fumarate to the growth media allowed to further increase production. 
It should also be considered the effect of fumarate on central metabolism of E. 
coli. Results recently obtained within our research group pointed to the metabolic 
modifications suffered by E. coli O44K74 upon metabolic pulsing (Cánovas et 
al., in press). 
 
 
5. Conclusion 
 
There is a deep relation between coenzyme A availability and carnitine 
metabolism. The enzymes involved in trimethylammonium compounds 
activation (CaiC) and CoA transfer between substrates and products (CaiB) are 
crucial in the biotransformation, suggesting that activation of 
trimethylammonium compounds into CoA derivatives and CoA transfer between 
them act as feasible bottlenecks. Further experiments are being accomplished. 
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1. Abstract 
 
The protective role played by disaccharide trehalose against oxidative challenges 
in Candida albicans has been investigated in the homozygous tps2Δ/tps2Δ 
mutant deficient in trehalose-6P-phosphatase activity (encoded by the TPS2 
gene). Whereas growing cultures of the parental strain (SC5314) were able to 
withstand both moderate (5 mM H2O2) and acute oxidative exposures (50 mM 
H2O2), the tps2Δ null mutant underwent a marked loss of cell viability. The 
differential measurement of trehalose and trehalose-6P (T-6P) by a new method 
based on HPLC analysis, revealed a significant accumulation of T-6P in mutant 
cells. Remarkably, tps2Δ also stored free trehalose, indicating that 
dephosphorylation of T-6P is rather unspecific. In turn, in parental cells, T-6P 
was undetectable and the oxidative treatment promoted an additional 
accumulation of free trehalose. Preliminary analysis revealed a minor resistance 
of tps2Δ cells to lysis mediated by murine macrophages. Collectively, our results 
strongly support that in C. albicans, TPS2 gene is involved in the cellular 
protection against oxidative stress. 
 
 
2. Introduction 
 
Candida albicans has become the most prevalent opportunistic pathogen fungus 
in humans, causing from superficial mucosal injuries to life-threatening systemic 
diseases (Eggimann et al., 2003). In the course of an in vivo infection, C. 
albicans should counteract the high levels of reactive oxygen species (ROS), 
which include the radicals O .-

2, H2O2 and OH. They are produced from both 
oxidative metabolism and phagocytic cells. ROS cause oxidative stress and are 
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toxic for essential cellular components (lipids, proteins and nucleic acids), 
resulting ultimately in cell death (Hohmann and Mager, 2003). 
In yeasts, the non-reducing disaccharide trehalose behaves both as a main reserve 
carbohydrate and as a cellular protector against a variety of nutritional and/or 
environmental stress challenges (Argüelles, 2000). We have previously 
demonstrated that trehalose is a specific protector against oxidative damage 
caused by H2O2 (Alvarez-Peral et al., 2002). Trehalose is synthesized in two 
sequential steps: (i) The transfer of a glucosyl unit from UDP-glucose to glucose-
6P leads to the formation of trehalose-6P, a reaction catalysed by trehalose 
synthase (TPS1) (Zaragoza et al., 1998); (ii) Dephosphorylation by a specific 
phosphatase (TPS2) gives rise to free trehalose, the physiological stored 
compound (Van Dijck et al., 2002; Zaragoza et al., 2002). In turn, the 
disaccharide mobilisation is brought about by two trehalases: a cytosolic neutral 
enzyme (Ntc1p) and a cell wall-linked acid trehalase (Atc1p), being the ATC1 
gene cloned by in silico screening of a C. albicans genome data base 
(http://genolist.fr/CandidaDB/) (Pedreño et al., 2004). 
The involvement of trehalose genes as contributory elements in the resistance to 
oxidative stress has been analyzed. Thus, tps1Δ null mutant was very sensitive to 
in vitro oxidative treatments (Álvarez-Peral et al., 2002) and to phagocytic lysis 
carried out by macrophages, whereas atc1Δ cells exhibited higher resistance to 
oxidative exposures concomitant with a lower capacity to undergo dimorphism 
and a reduced infectivity in a mouse model (Pedreño et al., manuscript in 
preparation). In this study, we have investigated the hypothetical role of TPS2 
gene as a component of the defensive machinery of C. albicans against oxidative 
challenges caused by H2O2. 
 
 
3. Experimental 
 
3.1 Yeast strains and culture conditions 
The following strains of Candida albicans were used throughout: a wild type 
SC5314 (SC; TPS2/TPS2/URA+) and its isogenic derivative homozygous mutant 
tps2Δ/tps2Δ (tps2::HISG/tps2::HISG/URA+) deficient in trehalose-6P-
phosphatase activity (Tps2p). Yeast cell cultures were grown at 30ºC by shaking 
in a medium consisting of 2% peptone, 1% yeast extract and 2% glucose (YPD). 
The strains were maintained by periodic subculturing in solid YPD. Growth was 
monitored by measuring the changes in optical density of cultures at 600 nm in a 
Shimadzu U/V spectrophotometer. 
 
3.2 Oxidative stress treatments  
Exponentially YPD-growing cultures (O.D.600 = 0.8-1.2) were divided into 
several identical aliquots, which were treated with the indicated H202 
concentrations (or maintained without H202 as a control) and incubated at 30ºC 
for one hour. The percentage of cellular viability was determined after 
appropriate dilution of the samples with sterile water by plating in triplicate on 

http://genolist.fr/CandidaDB/
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solid YPD. Between 30 and 300 colonies were counted per plate. Survival was 
normalized to control samples (100% viability). 
 
3.3 Determination of trehalose and trehalose-6-phosphate (T-6P) 
Intracellular trehalose was extracted from 20-50 mg yeast samples and measured 
following the method described by Alvarez-Peral et al. (2002). For T-6P 
measurements, identical samples were broken by vigorous shaking with Ballotini 
glass beads (0.45 mm) for 5 min at 4ºC, and the cell-free supernatant boiled 
during 30 min was resuspended in 2 ml water (milliQ) and analyzed by HPLC 
using a CHO-682 column with a CHO-682 guard-column, both from Interaction 
(San Jose, CA, USA). High quality water was used as the eluent at a constant 
flow of 0.4 ml/min and 80ºC. Detection was carried out by RID. Pure trehalose 
and trehalose-6P from (Sigma) were used as standards. Supernatants from 
intracellular extracts were centrifuged (16.390 xg-5 min) to remove insoluble 
solids, in advance to direct injection for HPLC analysis. 
 
3.4 Quantification of macrophage fungicidal activity 
The murine macrophage-like tumour cell line J774 (from a female BALB/c 
mouse) was obtained from ATCC (Rockville, MD, USA). Adherent cells were 
cultured at 37ºC in an atmosphere containing 5% CO2 in DMEM (Biowhittaker, 
Verviers, Belgium) supplemented with 10% heat-inactivated foetal calf serum 
(Gibco, NY, USA), 5 mM L-glutamine (Seromed Biochrom), 100 μg/ml 
streptomycin and 50 μg/ml penicillin (Flow lab., Irvine, UK) here referred as 
complete medium. For experiments, J774 cells were distributed into 24-well 
culture plates at 4x105 cells/well. After 18 h, the adherent cells were washed with 
culture medium and monolayer cells were incubated 2 h with C. albicans 
blastoconidia at 10/1 yeasts/macrophage ratio. Next, the monolayers were 
washed thoroughly twice with cold PBS, resuspended in 1 ml of sterile distilled 
water at 37º C for 5 min and vigorously shaken with a micropipette to lyse the 
cells. Inspection of the initial lysate revealed only single colonies, 98% of which 
were still in the yeast phase. Finally, appropriate dilutions of lysates were plated 
and incubated at 28°C for 48 h. The colony-forming units (CFU) were counted 
and the percentage of surviving yeast was calculated by comparison to the CFU 
obtained in absence of macrophages. 
 
 
4. Results and Discussion 
 
4.1 Effect of H202 exposures on cell survival and trehalose storage. 
The sensitivity to oxidative stress (H202) is examined in logarithmic yeast cells 
(blastoconidia) of the wild type (SC) and the trehalose-6P-deficient mutant 
(tps2Δ/tps2Δ). Addition of moderate non-lethal concentration of H202 (5 mM) 
caused a partial loss of cellular viability compared to control samples, which was 
more pronounced in mutant cells (Fig. 1). A 10-fold increase (until 50 mM H202) 
was necessary in order to get a several reduction in cell survival (Fig. 1). Again, 
the strongest phenotype corresponded to tps2Δ mutant. However, the degree of 



 

cell killing recorded was clearly lower respect to that recorded in the trehalose 
synthase-deficient mutant tps1Δ (Alvarez-Peral et al., 2002). 
 

 
 
 
The simultaneous determination of endogenous trehalose in SC blastoconidia, 
revealed a basal level of the disaccharide, that underwent a marked augment 
upon a subsequent oxidative challenge whether gentle or acute (Table 1).  
 
 
Table 1. Changes in the content of intracellular trehalose (T) and T-6P after 
an oxidative challenge induced by H202. The same cultures and conditions used 
for the experiment depicted in Fig.1 were employed for these metabolic 
determinations. 
 

 TREHALOSE* TREHALOSE-6P (T-6P)# 
[H2O2] SC5314 tps2Δ SC5314 tps2Δ 

CONTROL 2.8 1.7 <0.5 0.06 
5 mM 7.4 2.6 <0.5 0.31 

50 mM 11.2 3.3 <0.5 0.27 
*nmoles/mg weight wt. 
#mM 

 
Interestingly, in tps2Δ cells, significant amounts of trehalose also were 
accumulated, with a weaker up-shift after oxidative stress (Table 1). Although 
previously observed (Van Dijck et al., 2002), this result is somehow surprising, 
since this mutant lacks the phosphatase (Tps2p) that renders free trehalose. 
Apparently, C. albicans contains one or several non-specific phosphatases which 
are able to dephosphorylate T-6P, but with minor efficiency than T-6P 
phosphatase. 
In the course of this study, we have also developed an easy and reliable 
procedure for the differential measurement of trehalose-6P (T-6P), clearly 
distinguishable from trehalose (Fig. 2), which is based on HPLC technology (see 
Methods for details). HPLC analysis of samples from microbial sources revealed 

Figure 1. Levels of cellular survival in 
parental and tps2Δ strains of C. 
albicans after an oxidative stress 
treatment. YPD-grown exponential 
cultures (O.D. 1.0) were divided in 
three identical samples and subjected 
for 60 min with 5 mM and 50 mM H202. 
The percentage of viability is referred to 
an identical, untreated sample (100% 
viability). The values are the average of 
two independent determinations. 
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to be a powerful tool (Hellín et al., 2001; 2003). Under the chromatographic 
conditions employed, T-6P was clearly separated from trehalose, with retention 
times of 10.9 and 17.0 min, respectively (Fig. 2). 
 

Figure 2. High performance liquid 
chromatography elution profile of 
trehalose and trehalose-6P. Samples 
containing: the pure standards 
trehalose-6P (T-6P) and trehalose (T) 
(lower plot); the supernatants from 
cell-free extracts of C. albicans 
parental (SC5314) (middle plot), and 
of the tps2Δ null mutant, were loaded 
on a CHO-682 column. The latter two 
samples were subjected to an 
oxidative stress treatment. Average 
retention times were 10.9 min for T-
6P (trehalose-6P) and 17.0 min for T 
(trehalose). For other details related to 
the specific HPLC procedure, see the 
Experimental section. 
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The refractive index detector used had a sensibility well enough to measure 
amounts at the nmol range. A different elution profile between the “natural” T-6P 
and the “standard” T-6P was observed (Fig. 2). The reason of this behaviour is 
not yet evident and is under investigation. However, since “standard” T-6P 
consists in the dipotassium salt form, it is possible that in a solution some kind of 
aggregation occurred, appearing dimers, trimers, tetramers, etc. of T-6P, which 
can elute early respect to the “single” monomer of T-6P. This behaviour is 
consistent with the elution profile of carbohydrates according to the degree of 
polymerization in the CHO-682 column used. Since “natural” T-6P does not 
contain the dipotassium salt form like the pure standard, a different HPLC 
behaviour could be detected. 
According to the results obtained (Fig. 2, Table 1), T-6P might also serve as a 
sensor of oxidative stress, since larger accumulation is achieved after H202 
exposures (Table 1). Furthermore, an excess of T-6P induces toxicity (Zaragoza 
et al., 2002); this effect could contribute to the cell susceptibility recorded in 
tps2Δ cells subjected to oxidative treatments (Fig. 1). 
 
4.2 SC5314 is more resistant than tps2Δ/tps2Δ mutant to macrophage killing. 
To assess the defensive the role of trehalose in the ability of C. albicans to 
survive the stress conditions triggered during phagocytosis mediated by 
macrophages, we compared the degree of cell viability in the two C. albicans 
strains engulfed by J774 cells. As shown in Fig. 3, exponential cells from the 
tps2Δ null mutant are less resistant to killing mediated by murine macrophages 
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than their counterpart SC parental. Although new experiments are currently in 
progress, this outcome might probably be attributed to the deficient cellular 
protection against oxidative stress within the phagolysosome, as consequence of 
tps2Δ inability to synthesize substantial levels of endogenous trehalose. 
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Figure 3. Intracellular yeast survival after 
phagocytosis. J774 cells were co-cultured at 1:10 
cell/yeast ratio, with C. albicans SC5314 or 
tps1/tps1 strains for 2 h at 37º C. Endocytosed 
yeasts were recovered from macrophages by 
osmotic lysis and the number of colony forming 
units (CFU) was scored after 48 h.  
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1. Abstract 
 
PGI from Mycobacterium tuberculosis H37Rv was cloned and expressed in E. 
coli. Wild type recombinant phosphoglucose isomerase (rPGI) from soluble 
fraction was purified to near homogeneity by Ni-NTA ion-exchange 
chromatography. Mycobacterial PGI exhibits catalytic and biochemical 
properties belonging typically to enzymes of the PGI superfamily. The enzyme is 
a homodimer and Mass spectrum analysis of the purified rPGI revealed it to be of 
61.45 kDa. The Km of rPGI was determined as 0.27±0.03 mM for fructose-6-
phosphate and Ki was 0.75 mM for 6-phosphogluconate. The rPGI had optimal 
activity at 37°C and pH 9.0 and did not require mono or divalent cations for its 
activity. The specific activity of recombinant enzyme was 600 U/mg protein. 
Further, to evaluate the role of crucial amino acid residues, site directed 
mutagenesis was carried out targeting specific residues to generate mutant 
proteins. 
 
2. Introduction 
 
Mtb virulence is correlated with a shift from a strict aerobic respiratory mode to 
anaerobic metabolism. Although ambient expression of glycolytic enzymes is 
necessary for steady state metabolism, the coordinated increased expression of 
genes encoding glycolytic enzymes is particularly important for adaptation to 
hypoxia.  In vivo growth studies of the organism have indeed indicated that up to 
70% of glucose metabolizes through EMP pathway (Ramakrishnan et al, 1962: 
JayanthiBai et al, 1975). Thus, glycolysis is central to the organism’s survival 
and consequently a potential drug target. Phosphoglucose isomerase (PGI; 
EC.5.3.1.9) is a key enzyme in glycolysis that functions at the juncture of 
gluconeogenesis and catabolism. It catalyzes the reversible isomerization of D-
glucopyranose-6-phosphate and D-fructofuranose-6-phosphate by promoting the 
transfer of proton between C1 and C2 and thus exerts considerable control at a 
pivotal point at the juncture of three metabolic pathways, i.e. the Embden-
Meyerhoff-Parnas, the Entner-Doudoroff, and the phosphogluconate pathways. 
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Further, it also plays a key role in the pathway of cell wall biosynthesis in 
mycobacteria as glucose-6-phosphate is required for the galactan residue of 
arabinogalactan (Trejo et al, 1970: Trejo et al, 1971).  These key roles that PGI 
plays in the biology of mycobacterium make it a potential drug target. Hence, a 
detailed biochemical characterization of Mtb PGI is necessary for effective drug 
designing. In the past, the biochemical characterization of metabolic enzymes has 
been exploited for the development of potential drug against various pathogens 
like Plasmodium falciparum, Trypanosomes, HIV etc. 
 
 
3. Theoretical 
 
PGI from Mycobacterium tuberculosis (Cole et al, 1998) shows 30% sequence 
homology with the human PGI. Multiple sequence alignment of the amino acid 
sequence of the enzyme across different species showed that the two sequences - 
[DENS]-X-[LIVM]-G-G-R-[FY]-S-[LIVMT]-X-[STA]-[PSAC]-[LIVMA]-G- 
and [GS]-X- [LIVM]-[LIVMFYW]-XXXX-[FY]-[DN]-Q-X-G-V-E-X-X-K- 
have remained conserved. 
The probable crystal structure of Mtb PGI was constructed using PyMOL 
program (Delano 2002) and on the basis of probable location of these conserved 
residues four amino acids were chosen for single amino acid mutations on 
PGI.T212 and G156 lie in the cavity where the substrate sugar is thought to bind. 
N314 and G360 are surface residues and might be involved in interaction 
between two subunits. Thus, it is speculated that mutation of these residues can 
provide us with better insights into factors responsible for enzyme catalysis. 
 
 
4. Experimental 
 
4.1. Cloning of pgi gene in the expression vector, pET-22b(+) 
The pgi gene was amplified using gene specific primers (Forward-
5’CCCCATATGACCTCCGCGCCAATC-3’ and Reverse- 5’ 
CAAACTCGAGTTAGCCCG CGCGGCCACGTT-3’) designed on the basis of 
genome sequence information of Mtb H37Rv. NdeI and XhoI sites (underlined) 
were introduced in the forward and reverse primers, respectively for convenient 
cloning in expression vector. BAC clone Rv103 was used as a template. The 
amplified product of approximately 1.7 Kb corresponding to the complete pgi 
gene was cloned into pGEM-T Easy vector and transformed into E. coli DH5α 
cells. The integrity of the cloned pgi gene was verified by automated DNA 
sequencing. 
The 1659 bp pgi gene fragment released from the recombinant pGEM-T.pgi 
clone by XhoI and NdeI digestion, was ligated to plasmid pET-22b(+) digested 
with the same enzymes. The ligation mixture was transformed into E. coli BL21 
(DE3) cells (Novagen, USA) and selected on LB-Agar plate containing 
ampicillin (100 μg/ml). Recombinant colonies were analyzed by restriction 
digestion with XhoI and NdeI for the release of the insert. 
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4.2. Site Directed Mutagenesis 
The in vitro mutagenesis system Quickchange® (Stratagene, Germany) was used 
to introduce mutations in the pgi gene. Oligonucleotides were designed against 
the regions surrounding the codons to be mutated. After mutagenesis, plasmid 
DNA was extracted and purified following the manufacturer’s instructions. The 
clones were screened for the presence of a mutation by direct sequencing. 
 
4.3. Enzyme Preparations 
rPGI was purified from the soluble fraction of induced culture by one step Ni-
NTA affinity chromatography and eluted in 250 mM imidazole. Proteins were 
dialyzed against Tris-PO4 (0.01 M Tris, 0.1 M sodium dihydrogen phosphate) to 
remove imidazole and checked on 12% SDS-PAGE. BCA protein assay kit 
(Pierce, USA) was used for protein estimation using bovine serum albumin 
(BSA) as standard. 
 
4.4. Kinetic measurements 
All enzyme kinetics experiments were performed at ambient temperature in 1cm 
path length quartz cuvettes. Phosphoglucose isomerase activity was determined 
as described previously (Mathur et al, 2005) by monitoring the increase in 
absorbance due to the reduction of NADP+ to NADPH at 340 nm. The assay 
mixture in a total volume of 1ml contained 0.1 mM Tris-chloride buffer (pH 7.6), 
2 mM EDTA, 0.5 mM NADP+, 1mM frutose-6-phosphate, 1U glucose-6-
phosphate dehydrogenase and ≈0.5 U of the purified recombinant enzyme. The 
reaction mixture was incubated at 25 °C for 10 minutes and the reaction was 
initiated by the addition of the enzyme. The reaction was followed for 5 min. The 
activity was measured by monitoring the change in the absorbance at 340 nm 
using spectrophotometer Lambda25 (Perkin Elmer, USA).One unit of PGI 
activity is defined as the amount of enzyme that catalyzes the conversion of 1μM 
of fructose-6-phosphate to glucose-6-phosphate per minute under the above assay 
conditions. 
 
 
5. Results and Discussion 
 
Comparison of amino acid sequence between different species using ClustalW 
(Thompson et al, 1994) showed that the percentage identities/similarities of the 
Mtb PGI with the  PGIs of  human, mouse,  pig, rabbit, drosophila, leishmania, 
plasmodium, trypanosoma and  bacillus were  46%, 47%, 48%, 49%, 48%, 49%, 
37%, 47% and 17%, respectively. The clone containing the pgi gene in the pET 
vector at the XhoI and NdeI sites was named pET.pgi (Fig.1) and was induced 
with IPTG. rPGI was purified from the soluble fraction of the induced culture 
using the one step Ni-NTA affinity chromatography. 
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Fig. 1 Schematic representation of cloned pgi in the expression vector 
pET22b(+) 
 
 
The native molecular mass of the rPGI determined by gel filtration 
chromatography was ~120 kDa (Fig.2) whereas the molecular mass of the 
purified rPGI by Mass spectrum analysis was determined to be of 60.266 kDa 
(Fig.3). These data collectively suggest a homodimeric nature of Mtb PGI. 
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Fig. 2 Gel filtration of recombinant PGI  Fig. 3 Mass spectrometry of  

mycobacterial rPGI 
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Fig. 4 pH optima of rPGI    Fig. 5 Thermostability of rPGI 



 291 

 
No significant change in the activity of Mtb rPGI was observed with change in 
the concentration of monovalent (Na+ and K+) and divalent cations (Mg++ and 
Ca++) (data not shown). The activity of phosphoglucose isomerase from Mtb was 
determined at different pH.  The rPGI exhibited bell shaped curve and was active 
over a broad pH range from 6-11, with maximum activity at pH 9.0. 

and VThe enzyme followed Michaelis-Menten kinetics and the Km max were 
calculated using Lineweaver-Burk plot. At room temperature, the Km of rPGI 
(WT) was determined to be 0.27 ± 0.03 mM for fructose-6-phosphate with a Vmax 
of 0.032 μmol / min /mg. The inhibition of the rPGI by 6-phosphogluconate was 
examined and the inhibition constant (Ki) for 6-phosphogluconate was calculated 
to be 0.75 mM. 
 
 
Table 1. Oligonucleotides for site directed mutagenesis of rPGI. The residues for 
mutation are underlined. 
 
                                    Oligonucleotides for mutagenesis of pgi  

Pgi1F 5’-
GTCAACATCGGCATCGGTTAC

Mutation 
Glycine156-Y TCGGATTTGGGTCCG -3’ 

Pgi1R 5’-
CGGACCCAAATCCGAGTAACCGATGCCGATGTTGAC -3’
Pgi2F 5’-
CTTTTCATCGTCGCGTCGAAGGCG

Mutation 
Threonine212-
A 

TTCTCGACGCTG- 3’ 
Pgi2R 5’-
CAGCGTCGAGAACGCCTTCGACGCGACGATGAAAAG-3’
Pgi3F 5’-CCGCTGGAATCCCGCMutation 

Aspargine314-
R 

GCGCCGGTGCTG -3’ 
Pgi3R 5’-CAGCACCGGCGCGCGGGATTCCAGCGG -3’ 

Pgi4F 5’-
CAGTTGACCATGGAATCCAACGAG

Mutation 
Glycine360-E AAGTCCACGCGCG

CC -3’ 
Pgi4R 5’-
GGCGCGCGTGGACTTCTCGTTGGATTCCATGGTCAACT
G-3’ 

 
 
Single amino acid replacement mutations were made in the pgi gene using PCR 
based mutagenesis. The oligonucleotides used for the purpose are shown in Table 
1. The mutations were confirmed by direct DNA sequencing of the clones. The 
purification and characterization of the mutants is underway to fathom the affect 
of these mutations on enzyme activity. 
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6. Conclusion 
 
The present investigation on Mtb rPGI revealed that there are no significant 
differences in the biochemical/catalytic properties of Mtb PGI and the PGIs from 
other species. Therefore, we can conclude that all PGIs have the same 
evolutionary origin and employ the same catalytic mechanism. 
Crystal structure of PGI from few species has been established. Despite having 
the similar overall fold, there are significant structural differences mainly in the 
large domain of the enzyme (Graham Solomons et al, 2004). Subtle differences 
can also be found in conformation of the small domain of different PGIs 
(Cordeiro et al, 2004). The structural differences between the host and pathogen 
PGIs can be exploited for designing drugs, specifically targeting the pathogen.  
Therefore, elucidation of crystal structure of Mtb PGI and its mutants involving 
structurally and functionally important residues is necessary to identify the 
characteristics unique to Mtb PGI for effective drug designing.  We have 
successfully expressed enzymatically active rPGI from Mtb and the 
crystallization studies are in progress as a step towards the same. 
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1. Abstract 
 
Stringent response is one of the global regulatory systems or regulon in bacteria. 
Nutritional deprivation or other conditions that arrest the growth of cells 
activated this regulon. This leads to an increase in the level of (p)ppGpp. 
(p)ppGpp is the modulator of RNA polymerase activity. Certain stringent RNA 
polymerase mutation, rpo*35, that mimics the elevated level of (p)ppGpp 
enhances survival of UV irradiated E. coli cells devoid of RuvABC protein, a key 
protein in recombination repair pathway. In this work by transposon mutagenesis 
and transductional analysis I demonstrate that repair pathway in relA1 spoT207 
rpo*35 ruvAC strain relies on PriA protein and does not require RecBCD. 
However, it does require UvrABC excision repair pathway. Survival promoted 
by rpo* also depends on LexA regulated SOS response and RecF proteins. 
 
 
2. Introduction 
 
Activation of stringent response following nutritional deprivation or other 
stressful conditions leads to an increase in the synthesis of (p)ppGpp (an 
activator of stringent response, derived from GTP) which is mediated by RelA 
and SpoT proteins. Deletion of RelA and SpoT proteins considerably reduce 
survival of UV-irradiated ruv strain, whereas elevation of (p)ppGpp synthesis 
promotes survival of ruv mutant (McGlynn and Lloyd, 2000). They found 
stringent RNA polymerase mutants like rpo*35 in a relA spot ruv background 
which mimics the elevated level of (p)ppGpp suppress UV sensitivity of ruv 
strains. The rpo*35 mutation and its effect on DNA repair is the subject of this 
paper. 
 
 
3. Experimental Procedures 
 
3.1. Media and general methods 
LB broth and agar and 56/2 minimal salts media were used for bacterial culture. 
Media recipes and procedures for strain construction by P1vir mediated 
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transduction, testing sensitivity to mitomycin C and measuring survival of UV-
irradiated cells cited in Jaktaji and Lloyd (2003). 
 
3.2. Transposon mutagenesis  
Tn10kan insertions were generated by infection of strain N4538 with λNK1327 
and selected for kanamycin resistant clones at 42º C as described previously 
(Kleckner et al., 1991). 
 
3.3. PCR amplification and DNA sequencing 
Chromosomal DNA was extracted as described by Sambrook et al. (1989). 
Mutations in uvrA, uvrC, recB and priA genes were identified by sequencing 
PCR products amplified from chromosomal DNA using uvrA (5΄-
CACACACGGCACGCTTCC-3΄), uvrC (5΄-GATCTTCTGGTCGTTG-3΄), recB 
(5΄-CCGGCAAACATCTCATCC-3΄) and priA (5΄-
CTCCAGCCCACTGGCAGACG-3΄) specific primers and IS10 specific primer 
5΄-CACCTATGTGTAGAACAGTATA-3΄. 
 
 
4. Results 
 
McGlynn and Lloyd (2000) suggested that RNA polymerase enzymes stalled at 
lesions in DNA are major obstacles to replication forks progression in UV-
irradiated cells. They also proposed that by modulation of RNA polymerase 
activity, (p)ppGpp and rpo*35 mutation reduce the incidence of stalled 
complexes thus reducing the need for RuvABC resolvase to promote survival. To 
investigate the genetic factors enabling rpo*35 to promote survival of ruv strains, 
Tn10kan was inserted at random into chromosome of the relA1 spoT ruv rpo*35 
strain, N4538. Kmr clones were selected and screened for sensitivity to UV light 
and mitomycin C (MC). Among fourth clones obtained three were extremely UV 
sensitive (Table 1) and transcriptional and PCR analysis showed that they had 
insertions in uvrA, uvrC and priA genes (Fig. 1). 
 
 
Table 1 Effect of insertion and known mutations on UV survival 
Strain Relevant Genotypea Fraction survivingb

MG1655 Wild type 0.9 
relA1 spoT rpo* ruvAC65 N4538 0.4 
relA1 spoT rpo* ruvAC65 uvrA RJ1004 0.00003 
relA1 spoT rpo* ruvAC65 uvrC RJ1025 0.000035 
relA1 spoT rpo* ruvAC65 priA RJ1050 0.001 
relA1 spoT rpo* ruvAC65 recB RJ1003 0.4 
relA1 spoT rpo* ruvAC65 recF143 RJ1262 0.09 
relA1 spoT rpo* ruvAC65train lexA3 RJ1270 0.07 

a All clones and mutant strains are MG1655 derivatives. 
bStrains were irradiated with 45 J/m2 and survival measured relative to 
unirradiated controls. 
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Figure 1. The location of Tn10kan insertion in A:RJ1004, B:RJ1025, C:RJ1003 
and D:RJ1050. 

 
 
The last one was hardly more sensitive to UV light than N4538 parent (Table 1), 
But was sensitive to MC (data not shown). By transcriptional and PCR analysis it 
was shown that it had insertion in recB gene (Fig. 1). These data showed that 
excision repair complexes and PriA protein are critical for survival of N4538. 
Insertion of mutations in genes known to affect DNA repair such as recF and 
lexA3 in N4538 made this strain UV sensitive (Table 1). Therefore RecF and 
lexA proteins are also required for survival of N4538. 
 
 
5. Discussion 
 
We found that survival of N4538 depends critically on the removal of pyrimidine 
dimmers by UvrABCD excision repair complexes and SOS regulon. Further 
study on SOS activity in rpo* ruv strain supported the idea that rpo* reduce the 
stability of RNA polymerase complexes from DNA therefore they are no longer 
as obstacles to replication fork progression (Jaktaji et al., 2005). It was found that 
PriA is essential for survival implies that replication forks stalls at UV induced 
lesions and have to be rescued. Further study on interaction of PriA and RecG 
proteins, together with finding that showed RecBCD is not required, suggested 
that PriA helicase in conjunction with RecG can promote direct rescue of stalled 
forks independently of the recombinational pathway promoted by the combined 
activities of the RuvABC, RecBCD and RecA proteins (Jaktaji and Lloyd, 2003). 
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1. Abstract 

 
We present a strategy for construction of synthetic promoter libraries which 

has been successfully applied to a broad range of model systems. The approach is 
based on randomization of DNA sequences in the vicinity of fixed consensus 
boxes in standard prokaryotic promoters, which results in generation of 
promoters with essentially any strength. Synthetic promoter libraries can be 
easily placed upstream of a gene or an operon by incorporating a sequence for 
the randomized promoter region in a primer used for PCR amplification of the 
gene. Depending on the genetic engineering strategy this allows for either 
introduction of an extra copy of the gene with modulated expression or for 
replacement of the native chromosomal promoter with a set of synthetic 
promoters. Importantly, the synthetic promoter library approach can be used for 
simultaneous modulation of numerous individual genes in a single cell. The 
application of synthetic promoter libraries in the studies of biological systems is 
illustrated by reviewing experimental control analysis studies with the cheese 
bacterium Lactococcus lactis. The importance of phosphoglycerate enolase and 
the three enzymes encoded by the las operon in L. lactis, phosphofructokinase, 
pyruvate kinase and lactate dehydrogenase are quantified in terms of the control 
exerted by these enzymes on growth rate, glycolytic flux and product 
distribution. 

 
 

2. Introduction 
 
Predictive computer models are important goals of systems biology, but 

since the output from in silico models depend entirely on the information 
provided to them these data must be relevant in vivo. The models should 
therefore be verified by comparing with quantitative experiments and adjusted if 
necessary. Metabolic Control Analysis (MCA), which was originally developed 
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in the early 1970’es (Kacser and Burns, 1973; Heinrich and Rapoport, 1974), 
allows for answering questions about system properties such as the control of a 
flux or a metabolite concentration in terms of flux- and concentration control 
coefficients which describe the quantitative effect of perturbation of enzyme 
activities on fluxes and metabolite concentrations. Accurate estimation of these 
system properties requires modulation of enzyme activities in discrete steps over 
a suitable range of enzyme activities. 

In microorganisms, modulation of enzyme activities can conveniently be 
obtained by tuning the level of transcription of the corresponding gene(s) of the 
enzyme(s). Traditionally, modulations of transcription levels were performed by 
the use of inducible promoter systems, and  metabolic control analysis have been 
performed successfully, such as in the study of the H+-ATPase in Escherichia 
coli (Jensen et al., 1993a, 1993b) and DNA supercoiling in E. coli (Jensen et al. 
1999; Snoep et al., 2002). However, inducible promoters have severe 
shortcomings with respect to the use in systems biology and metabolic 
engineering. Firstly, it may be difficult to obtain subtle tuning of gene expression 
with inducible promoters due to hypersensitivity to the inducer. Secondly, 
inducible promoters only allow for the tuning of gene expression within a given 
range. Thirdly, it is often very difficult to obtain a steady state with fixed gene 
expression throughout an experiment. Fourthly, inducible promoter systems only 
allow for tuning of a single gene or a set of genes in parallel, whereas the 
application of knowledge obtained through systems biology to direct or increase 
a flux are likely to require simultaneous optimization of expression of several 
genes due to the homeostatic control mechanisms of the biological system. 
Finally, from an industrial perspective the use of inducible promoters for 
industrial fermentation processes may be both costly and difficult to handle. 

A major breakthrough for systems biology and metabolic engineering has 
therefore been the development of synthetic promoter libraries that facilitate a 
delicate tuning of gene expression in the desired range of expression levels. Such 
promoters allow for concomitant expression of several genes, which enables 
metabolic optimization of industrial fermentation processes. This chapter focuses 
on the construction and use of synthetic promoter libraries in prokaryotes. The 
application of a synthetic promoter library approach for systems biology is 
exemplified by recent studies of the phosphoglycerate enolase (PGE) and the las 
operon in Lactococcus lactis. 
 
 
3. Theoretical 
 
Transcription process in prokaryotes. The major player in transcription 
processes involved in the direction, initiation and elongation of transcription is 
the RNA polymerase. In prokaryotes RNA polymerase is composed of a so-
called core enzyme containing the basic transcription machinery and a sigma 
factor with the function to direct the core enzyme to sites from which 
transcription should be initiated. Association of the sigma factor with the core 
enzyme is referred to as the RNA polymerase holoenzyme. The transcription 



 

process initially depends on the binding of sigma factors to specific DNA 
sequences in the promoter regions. Traditionally, the consensus boxes -10 
(Pribnow box) and -35 have been considered to be highly important for the 
binding of sigma factors, representing probabilities for which the sigma factors 
bind to promoters. After binding of the RNA polymerase the sigma factor 
dissociates and leaves the core enzyme of the RNA polymerase to carry out 
elongation. The binding of the RNA polymerase holoenzyme to promoters 
involves local melting of the DNA to form a so-called open promoter complex 
from which transcription is initiated. 
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Modulation of gene expression by randomizing the bases in the vicinity of 
the consensus sequences. Though the consensus boxes -10 and -35 play a 
dominant role for transcription processes in prokaryotes, the sequences 
surrounding the consensus sequences may also contribute to the strength of 
bacterial promoters, for instance in the binding of RNA polymerase or the degree 
of melting of DNA to form the open complex from which transcription to mRNA 
can be initiated. The length of the spacer region between the consensus 
sequences in prokaryotes is usually 17+/-1 bp. An approach to study the 
relevance of the spacer sequence of prokaryotic promoters and the sequences in 
the vicinity upstream and downstream to the consensus boxes was published in 
1998 (Jensen and Hammer,1998). In this study, the consensus boxes were fixed, 
while the DNA bases of the surrounding area were randomized (Fig.1A). By 
randomizing these bases simultaneously it was possible to change the DNA 
structure, which resulted in promoter libraries with promoters of virtually any 
activity. Interestingly, though the consensus sequences appear to be almost 
identical among different prokaryotes, the promoters were found to vary in 
relative strengths in different microorganisms (Jensen and Hammer, 1998). 
 
Tuning of gene expression by the synthetic promoter libraries. The finding 
that the bases in the surrounding area of the consensus sequences in prokaryotic 
promoters affected promoter strengths gave rise to the so-called Jensen-Hammer 
approach for modulation of gene expression, where the expression of genes were 
tuned by inserting them after a set of synthetic promoters with varying activities. 
Modulation of enzyme activity by tuning transcription of the corresponding 
gene(s) by the Jensen-Hammer approach has been performed on several 
enzymes. An example is a study of lactate dehydrogenase (LDH) in L. lactis 
from which it was possible to quantify the control of LDH exerted on the product 
formation (Andersen et al., 2001b). The Jensen-Hammer approach was also used 
for tuning the level of enzyme complexes of the F1-ATPase in E. coli and L. 
lactis with the purpose to gradually introduce an uncoupled ATPase activity in 
the cell (Koebmann et al., 2002a, 2002b). From these studies it was possible to 
quantify the control of the ATP demanding processes on the glycolytic flux. 
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Figure 1. Modulation of gene expression. 
(A) Oligosequence for randomized promoters according to the Jensen-Hammer 
approach. The fixed consensus boxes vary in sequence and length depending on 
the microorganism (B) Incorporation of randomized promoters through PCR 
amplification by the Solem-Jensen approach for modulating enzyme activities. 
(C) Replacement of a native promoter by homogenous recombination with a 
truncated version of the gene. (D) Introduction of an extra copy of the gene by 
site-specific recombination. MCS=multiple cloning site, N=random nucleotide, 
R=restriction site, SP=synthetic promoter. 
 
 

The Jensen-Hammer method initially required extensive cloning work to 
modulate the expression of a gene because multiple cloning experiments had to 
be performed in parallel. In addition, the strengths of the promoters were found 
to be context dependent which may further increase the number of cloning 
experiments required. The general concept from the Jensen-Hammer approach to 
modulate gene expression was therefore used in a new approach to facilitate 
modulation of gene expression (Solem and Jensen, 2002). The new approach is 
based on direct incorporation of synthetic promoters with randomized spacers in 
a PCR amplification of a desired gene, by designing a primer that contains a 
restriction site, a promoter with randomized spacers, and a sequence with 
homology to the 5´-end of the mRNA of the target gene (Fig. 1B). The reverse 
primer also contains a restriction site and a sequence with homology within the 
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gene or downstream to the gene. The primer set allows for amplification of either 
a truncated or a full version of the gene, in both cases with incorporated 
randomized promoters upstream to the gene. The truncated version can be used 
to replace the native chromosomal promoter with a range of synthetic promoters 
by homologous recombination, which facilitates a tuning of gene expression 
below the wildtype level (Fig. 1C; Solem and Jensen, 2002). The full version can 
then be cloned in a suitable plasmid vector used for introducing an extra copy of 
the gene in the cell, for instance by site-specific integration on the chromosome 
(Fig. 1D; Brøndsted and Hammer, 1999; Solem and Jensen, 2002). By using the 
synthetic promoter library approach to tune transcription of the target gene(s) 
only clones with appropriate transcription levels will survive providing a library 
of clones within the window of interest. Another improvement in the new 
approach, especially when used for operons, is the preservation of the leader 
sequence of the mRNA, which can be important for the stability of the mRNA. In 
recent years, the synthetic promoter library approach has been routinely used for 
tuning of gene expression and is now an important tool for experimental systems 
biology, metabolic control analysis and metabolic optimization (Solem et al., 
2003; Koebmann et al., 2005; Koebmann et al., 2006). 
 
Curve fitting and calculation of control coefficients. In metabolic control 
analysis the extent to which an enzyme controls a flux or concentration of a 
metabolite is described by control coefficients. The flux control coefficient is 
defined as , where J represents the flux and E represents 
the enzyme activity. A way to estimate flux control coefficients is to fit 
experimental data points with respect to flux and enzyme activity to appropriate 
equations by the use of software such as CURVEEXPERT 1.3’ (Hyams 
Development, Hixson, TN, USA). The slope (dJ/dE) can subsequently be 
estimated by differentiation of the optimal curve fit for the entire range of 
enzyme activities, which then allows for calculation of flux control coefficients. 

J
EC

)/(*)/( dEdJJEC J
E =

 
 
4. Experimental 
 
Strains and plasmids. The lactic acid bacteria L. lactis subsp. cremoris MG1363 
(Gasson, 1983) and L. lactis subsp. lactis IL1403, a plasmid free derivative of 
strain IL594 (Chopin et al., 1984), were used as model strains for the quantitative 
analysis of glycolysis. E. coli ABLE-C (Stratagene) was used as cloning vector 
for amplification of plasmid libraries. Plasmid pRC1 (Le Bourgois et al., 1992), 
which is unable to replicate in L. lactis, was used for replacement of native 
chromosomal promoters with synthetic promoters. Plasmid pCS574 (Solem et 
al., 2003), a derivative of plasmid pLB85 (Brøndsted and Hammer, 1999), was 
used for site-specific integration in a phage attachment site as described in 
(Brøndsted and Hammer, 1999), providing the cell with an extra copy of the 
gene. 
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Growth media and growth conditions. The medium for growth experiments 
with L. lactis was based on defined SA medium (Jensen and Hammer, 1993c) 
modified by inclusion of 2 μg/ml of lipoic acid (SAL) and 20 μg/ml of each of 
the nucleosides adenosine, guanosine, thymidine, cytidine, uridine, and inosine 
and exclusion of acetate (SALN) supplemented with glucose (GSALN) as 
described in (Koebmann et al., 2005, 2006). Glucose consumption and product 
formation were determined by HPLC taken during the experiments in order to 
estimate the fluxes. 
 
DNA techniques. Extractions of chromosomal L. lactis DNA, PCR 
amplification, restriction, ligation, transformation and plasmid purification from 
E. coli were performed as described in (Koebmann et al., 2005) and according to 
the prescription from the manufacturer of the applied enzymes. 
 
Construction of a strain library with modulated phosphoglycerate enolase 
activity. The pge gene coding for phosphoglycerate enolsase (PGE) was 
amplified from L. lactis IL1403 by PCR as described in (Koebmann et al., 2006). 
The resulting PCR fragment consisting of truncated version of the pge gene with 
randomized promoter regions positioned upstream to the leader sequence was 
inserted in plasmid vector pRC1 (Le Bourgois et al., 1992) as described in 
(Solem and Jensen, 2002; Koebmann et al., 2006) and subsequently amplified in 
E. coli. The resulting plasmid library was introduced to L. lactis IL1403 and a 
selection of strains was analyzed with respect to PGE activities as described in 
(Koebmann et al., 2006). 
 
Construction of strain libraries with tuned expression of the las operon. 
Construction of L. lactis MG1363 libraries with modulated activities of the 
individual las enzymes phosphofructokinase (PFK), pyruvate kinase (PYK) and 
lactate dehydrogenase (LDH) and concomitant modulation of the las enzymes 
were performed as described in (Andersen et al., 2001a, 2001b; Solem et al., 
2003; Koebmann et al., 2005). 
 
Measurement of enzyme activities. Measurements of enzyme activities of PGE, 
PFK, PYK, and LDH were based on assays modified from (Even et al., 2001) 
and performed as described in (Koebmann et al., 2005; Koebmann et al., 2006). 
All enzymes used in the enzymatic assays were purchased from Roche A/S 
(Hvidovre, Denmark). 
 
Curve fitting and control coefficients. Estimation of flux control coefficients 
were performed by fitting the experimental data points by the least square 
method using the software program CurveExpert 1.3’ (Hyams Development, 
Hixson, Tn, USA) as described in (Koebmann et al., 2005; Koebmann et al., 
2006). The control coefficients were calculated for the entire range of enzyme 
activities. 
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Pulse labelling and 2D-gel electrophoresis of proteins. The strains were 
inoculated at 30°C overnight in SALN medium (Jensen and Hammer, 1993) 
supplemented with 10 g/L of glucose (GSALN) and 20 μg/ml of methionine. 
Next day, 0.5 ml culture was diluted in 50ml GSALN medium supplemented 
with 5 μg/ml of methionine. At an optical density of OD450=0.4 150 μl culture 
was transferred to 1.5 ml eppendorph tube containing 3 μl 35S-methionin (15 
μCi/μl). After 10 min 10 μl methionine (10 mg/ml) was added, and after 12 min 
10 μl chloramphenicol (20 mg/ml) was added in order to stop translation. Cell 
pellets were obtained at 4°C by centrifugation at 10000 g for 5 min, subsequently 
washed in 200 μl ice-cold 0.9% NaCl+30% ethanol, centrifuged and freeze-dried 
overnight in a speed-vac. Preparation and electrophoresis of protein samples 
were performed as described in (Guillot et al., 2003). Gel images were developed 
on X-ray films. 
 
 
5. Results and Discussion 

 
In the following we present recent studies in which the synthetic promoter 

libraries were applied for modulation of single genes and for a bacterial operon. 
 

Tuning the expression of the gene encoding phosphoglycerate enolase in L. 
lactis. The most recent example of the use of the synthetic promoter library 
approach for modulating gene expression is in the study of the glycolytic enzyme 
phosphoglycerate enolase (PGE) in L. lactis IL1403. PGE is positioned late in 
glycolysis where it converts 2-phosphoglycerate to phosphoenolpyruvate (PEP) 
(Fig. 2). The product of the enzyme, PEP, has dual functions: PEP is either 
metabolized to pyruvate by pyruvate kinase (PYK) with the concomitant 
generation of 1 ATP, or used as a phosphate donor for PTS sugar transport. In 
order to perform control analysis on PGE, the expression of the corresponding 
gene (pge) was tuned by replacing the native promoter with a library of synthetic 
promoters: a truncated version of pge with incorporated synthetic promoters was 
inserted in the plasmid vector pRC1 as described previously (Koebmann et al., 
2006) and subsequently cloned in E. coli. Since the plasmid vector pRC1 is 
unable to replicate in L. lactis, transformation of L. lactis with the resulting 
plasmid library and selection for the plasmid coded resistance marker forced the 
plasmids to integrate on the chromosome by homologous recombination in the 
pge gene. This resulted in strains in which the native promoter was replaced by 
synthetic promoters. 
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Figure 2. Glycolysis in Lactococcus lactis. 
Phosphoglycerate enolase (PGE) is positioned late in glycolysis. The las operon 
in L. lactis consist of the three genes pfk, pyk and ldh, coding for 
phosphofructokinase (PFK), pyruvate kinase (PYK) and lactate dehydrogenase 
(LDH), respectively, positioned early and late in glycolysis (Modified from 
Koebmann et al., 2005). 
 
 

From the resulting library of strains it was possible to isolate strains with 
PGE activities from 36% to 232% of wildtype level and these strains were 
subsequently studied in growth experiments with measurements of growth rate 
and metabolic fluxes (Koebmann et al., 2006). The resulting data were used for 
determining the control by PGE on growth rate and metabolic fluxes (Fig. 3). 
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Figure 3. Metabolic 
control analysis of PGE. 
Effect of PGE activity on 
(A) Glycolytic flux, (B) 
Lactate production,  and 
(C) Formate production. 
Flux control coefficients 
(FCC) for PGE were 
determined from fitted 
equations (Data obtained 
from Koebmann et al., 
2006). 

 
 
 
 
 
 
 
Curves were fitted to the data points as described in the experimental section and 
flux control coefficients calculated from these curve fits. At the wildtype enzyme 
level no control was observed on either growth rate or metabolic fluxes. 
However, at 36% PGE activity significant high control was observed on growth 
rate ( ), glycolytic flux (C ), lactate production (C ), 
while the flux of mixed acid products were lower with formate production 
(C ) and acetate production (C ). The magnitude of these flux 
control coefficients showed that L. lactis becomes slightly more mixed acid at 
reduced PGE activities. According to the literature, fructose-di-phosphate (FDP) 
is an activator of LDH (Crow and Pritchard, 1977), while 
dihydroxyacetonephosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) are 
inhibitors of PFL (Garrigues et al., 1997; Takahashi et al., 1982). If we therefore 
assume that a reduction in PGE activity results in an increased pool of upper 
metabolites of glycolysis then our data indicates that the regulatory mechanisms 
involved are more complex. 
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Experimental control analysis of the enzymes encoded in the las operon in L. 
lactis. The synthetic promoter library approach has also been used to study the 
las operon in L. lactis MG1363 in which the genes encoding the three enzymes 
phosphofructokinase (PFK), pyruvate kinase (PYK), and lactate dehydrogenase 
(LDH) are organized (Fig. 2) (Koebmann et al., 2005). The organization of the 
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las enzymes indicates a possible role in control and regulation of glycolysis. The 
three individual enzymes were first studied individually and then together by 
tuning the entire las operon. In a previous study it was found that LDH had no 
control on the glycolytic flux, but appeared to have a significant negative control 
on formate production ( ) (Andersen et al., 2001b). The study of PFK 
and PYK was performed by modulation of individual enzymes by site-specific 
chromosomal integration of a full version of the corresponding genes. Since PYK 
is positioned in between PFK and LDH in the las operon a modulation of PYK 
activity below wildtype activity was obtained by site-specific chromosomal 
integration of the pyk gene followed by deletion of the pyk gene in the las operon 
by a double cross over. Metabolic control analysis of the individual PFK and 
PYK showed that neither of the enzymes had control on the glycolytic flux (Fig. 
4). For PFK no control was found on the formate production, but for PYK a high 
positive control on formate production was found ( ). 
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Tuning of the entire las operon was achieved by replacing the native 
promoter with synthetic promoters, keeping the leader sequence of the resulting 
mRNA intact, which turned out to be important for keeping the proportional 
expression of all three las enzymes (Solem and Jensen, 2002). A good correlation 
among relative enzyme activities was found and ranged between 0.5 – 3.5 times 
the wildtype level and a selection of strains was chosen for studying the control 
exerted by the three las enzymes simultaneously. It was found that the control of 
the las enzymes together at the wildtype level was close to 0. Interestingly, only a 
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slight reduction in las activity resulted in  a significant decrease in growth rate 
and glycolytic flux, and at 53% las activity the flux control were found to be 

and , respectively. With respect to the fermentation pattern, flux 
control coefficient of and were observed for the 
formate and acetate flux. At reduced las activity was observed a strong negative 
flux control coefficient on the formate and acetate production. 
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The obtained data from the control studies of the individual las enzymes and 
for the simultaneous tuning of the las operon were used for comparison to 
investigate if . With respect to growth rate, glycolytic 
flux and lactate production all control coefficients were close to 0. More 
interesting was the comparison of the formate flux, where LDH exerted negative 
control, PFK no control and PYK positive control. Interestingly, the sum of flux 
control by the individual las enzymes added up closely to what was found for 
simultaneous tuning of the entire las operon. 

x
LDH

x
PYK

x
PFK

x
las CCCC ++=

 
Simultaneous tuning of transcription of several individual genes. An 
important feature of the synthetic promoter library approach is the ability to 
replace a native promoter with a synthetic promoter with desired strength without 
leaving residual fragments of the used plasmid vector. This can be accomplished 
by construction of a plasmid which contains the upstream chromosomal DNA 
region of the native promoter followed by the gene placed after a synthetic 
promoter. If the plasmid is unable to replicate in the organism of interest a 
homologous recombination with double cross-over can be obtained as described 
by Solem and Jensen (Solem and Jensen, 2002). Since the resulting strain will 
only be genetically modified in the approximately 60 bp of the promoter region 
of the gene or operon it is possible to repeat the process for other genes, thereby 
enabling a simultaneously modulation of several individual genes in a single 
strain. An attempt to double the activity of an entire pathway in a single cell by 
the use of the synthetic promoter library approach is currently under way for 
glycolysis in L. lactis. It is the goal to approximately double the activities of all 
glycolytic enzymes, thereby doubling the capacity of ATP supplying processes. 
In combination with an additional ATP consuming process and transport 
processes of substrates and products the cell will have enhanced the entire system 
to produce and consume ATP which appears necessary for increasing the 
glycolytic flux in L. lactis. 

Since perturbation of enzyme activities in microorganisms often result in 
activation of mechanisms that seeks to counteract the changes (homeostatic 
control), i.e. by up- or down regulation of the amount or activity of an enzyme, it 
is desirable to get an overview of the response of the cell to genetic changes. An 
obvious way to achieve this is by applying global techniques such as 
transcriptomics, proteomics and metabolomics. A simple way to study the 
proteome is to make a 2D-protein gel in which the proteins in the cell are 
separated in two dimensions. The consequences of simultaneous modulation of 
five glycolytic genes with respect to protein content was investigated based on 
2D protein gels from which it appeared that the amounts of the modulated 
glycolytic enzymes were increased, while only limited changes on other proteins 
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were observed (Fig. 5). Identification of the glycolytic enzymes was based on a 
study by Guillot and co-workers (Guillot et al., 2003). 
 
 

(A) (B) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Comparison of 2D protein gels of L. lactis IL1403 and CS1876.  
Wildtype L. lactis IL1403, (B) L. lactis CS1876 in which activities of the five 
glycolytic enzymes (PFK, PYK, LDH, ALD, PGK) are increased approximately 
2-fold relative to IL1403. The protein contents were isolated as described in the 
experimental section. Spots for the relevant glycolytic enzymes are indicated 
based on identification described by (Guillot et al., 2003). 
 
 
Comparison of the synthetic promoter library approach to other approaches 
for construction of tunable promoters. The primary focus on the tuning of 
gene expression presented until now has been on modulation of the bases 
surrounding the consensus boxes -10 and -35. According to literature several 
approaches to construct tunable promoters have been applied. In a recent study, 
an E. coli PL-λ promoter sequence was mutated by mutagenic PCR (Alper et al., 
2005). This approach also resulted in a pool of promoters with slight sequence 
variations. A major difference, however, between this approach and the synthetic 
promoter library approach is in the creation of sequence variability. In the 
synthetic promoter library approach the consensus boxes are fixed, while in the 
other approaches many of the resulting promoters will have mutations in the 
consensus boxes, which may reduce the promoter strength and the frequency of 
usable promoters. 
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6. Conclusion 
 
We expect that the ability to tune gene expression will be an important task 

in the field of systems biology in the future. Due to several disadvantages with 
the use of inducible promoters both from fundamental and industrial viewpoints 
there is a need for alternative ways to modulate gene expression. One of the 
promising approaches is the so-called synthetic promoter library approach, where 
consensus sequences of promoters are fixed while the bases in the vicinity of the 
consensus boxes are randomized, a strategy which enables the generation of 
essentially all values of promoter strengths. By incorporation of the randomized 
synthetic promoter library sequence in the design of a primer used for PCR 
amplification of a gene or operon it is possible in a single PCR amplification to 
generate a library of fragments with promoters of essentially any strengths placed 
upstream to the gene or operon. Depending on the cloning strategy such 
fragments can be used for incorporation of an additional copy of the gene in the 
cell or for substitution of the native promoter with a library of synthetic 
promoters with varying strengths. Moreover, the approach allows for 
simultaneous tuning of several genes in a single cell, which is often important for 
metabolic optimization of a pathway due to distribution of flux control over 
many enzymes, and to keep metabolite pools at acceptable levels (Kacser and 
Acerenza, 1993). 

Recent examples on the application of the synthetic promoter library 
approach are in control analysis studies of glycolysis in L. lactis. In one study the 
gene coding for PGE was modulated around wildtype level and the enzyme’s 
control on growth, glycolytic flux and product formation were determined. In 
another study, the control by the enzymes of the las operon in L. lactis, PFK, 
PYK, and LDH, were determined and showed that, whereas none of the enzymes 
controlled the main glycolytic flux, with respect to formate production LDH 
exerted negative control, PFK no control and PYK positive control. Interestingly, 
the sum of flux control by the individual las enzymes added up closely to what 
was found for simultaneous tuning of the entire las operon. These examples 
illustrate that randomizing promoters for tuning gene expression is a valuable 
tool which is likely to be applied frequently in future quantitative studies of 
biological systems. It also has the potential to optimize the expression of entire 
metabolic pathways. 
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Symbols 
 

Flux control coefficient of enzyme E on flux J  J
EC

Glycolytic enzymes  
ALD  Fructose-1,6-bisphosphate aldolase 
GAPB Glyceraldehyde-3-phosphate dehydrogenase (gapB) 
LDH Lactate dehydrogenase 
PFK Phosphofructokinase 
PGE Phoshoglycerate enolase 
PGI Phosphoglucose isomerase 
PGK Phosphoglycerate kinase 
PGM Phosphoglycerate mutase 
PYK Pyruvate kinase 
TPI Triosephosphate isomerase 
  

Glycolytic metabolites  
FDP Fructose-di-phosphate 
G3P Glyceraldehyde-3-phosphate 
DHAP Dihydroxyacetonephosphate 
PEP Phosphoenolpyruvate 
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