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1 Introduction

Capturing three dimensional shapes from the real-world is of vital importance in the
field of computer graphics. Over the last decades an abundance of methods has been
developed to derive surface discretizations from real-world objects. These discretiza-
tions are a key component in simulation, visualization, animation and reverse engi-
neering of CAD models, mainly motivated by the computer games and film industry,
to digitize objects of cultural interest and to aid fabrication of goods, e.g. for the auto-
mobile industry.

While one approach is to directly model (or design) the subject with the help of
computers, e.g. in CAD applications, another approach is to scan the original object
using three dimensional scanner devices. The latter process requires a whole scanning
pipeline to acquire a final data record, but the potential to digitize the geometry of
an artifact in a semi-automatic or even completely automated process enables rapid
prototyping for modeling or even replace time-consuming modeling completely.

Figure 1: The original Stanford Bunny (left), the point set surface after scanning the object
(middle) and a triangulated, reconstructed surface (right).

These scanning techniques generate a discretization of the domain, typically a set
of points located on the surface area of the domain, and the resulting record is called
a point set surface. Depending on the quality and accuracy, the point set may contain
thousands or even millions of points. The next step in the scanning pipeline is to find
an appropriate continuous surface representation for the point set. There are several
ways of describing the surface, ranging from using triangles over quads to general bi-
variate polynomials as surface descriptors. Finding a proper partition of the domain
is one of the main challenges in the pipeline of creating a digital record for rendering,
animation or simulation.

One of the most common surface representations are triangle meshes, i.e. triangles
are used as primitives to approximately describe the surface. Triangles have many nice
properties: They are a special case of bivariate polynomials, namely linear bivariate
polynomials, all three points of a triangle are guaranteed to lie on a plane and the
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handling of triangles in algorithms is relatively simple. Most important, nowadays
graphics hardware is especially optimized for rendering huge numbers of triangles at
interactive frame rates.

Although triangular meshes are a quite simple representation of the original sur-
face, finding a “good” partition of the domain is a difficult task. There are several
suitable algorithms and methods to extract an initial triangle mesh from the point
data, but these raw meshes that emerge from the scanning pipeline have unsatisfac-
tory characteristics. For example, they may have an enormous amount of triangles,
triangles with bad shape or inappropriate sampling, which make these meshes bulky,
slow to render and it is almost impossible to get reliable simulation results.

This thesis deals with finding a new partition of an existing triangular surface rep-
resentation, i.e. the task is to repartition (or remesh) the triangle mesh in order to
enhance the discretization. The techniques in this theses do not only apply to large
meshes as a result of the scanning process, but also to more general meshes, for ex-
ample those that are typically generated by CAD applications, with relatively few but
lengthy, skinny triangles. Special care has to be taken to not destroy sharp edges
(called features) in these models to preserve the characteristic appearance and fidelity
to the original mesh.

The document at hand is structured in the following sections:

• Section 2 describes some fundamentals for this thesis: The terminology and
the mathematical armamentarium that is used herein. The scanning pipeline
is shortly reviewed to impart a feeling about the general procedure of capturing
real-word data. The section is concluded with a discussion about the meaning
of quality and what a high-quality mesh is.

• Section 3 surveys some triangulation techniques that can be used to create trian-
gle meshes from scanner data. Also some remeshing techniques are presented
that has been developed and proposed over time.

• Sections 4 forms the heart of this work. The method of isotropic surface remesh-
ing is explained in-depth and a detailed description of the techniques is pro-
vided. This includes bringing the mesh to an exact, user-defined vertex budget,
and polishing the resulting sampling afterwards. The algorithms are extended
using guidance information to create adaptive and feature-sensitive remeshes.

• Section 5 presents several remeshing results that demonstrates the flexibility of
the framework. The thesis is concluded with a discussion about open problems
and what can be improved in future work.
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2 Fundamentals

This sections opens with some definitions and surveys a few important mathematical
tools. The scanning pipeline is shortly reviewed and the section closes with a discus-
sion about quality criteria of meshes.

2.1 Definitions and Concepts

In computer graphics, three dimensional models are represented as surfaces. The
following definition emphasizes that surfaces are embedded in R3 and only the outer
boundary of the three dimensional object is represented, i.e. the object is “hollow”.

Definition 2.1 A surface S is a compact, connected and orientable, two-dimensional
manifold embedded in R3. A surface may have a boundary, a surface without boundary
is called a closed surface.

Figure 2: The Möbius Strip

A surface is compact if the area of the surface is finite.
For example, the area of a sphere is finite, but the area
of a plane embedded in R3 is infinite, thus a plane is not
a surface. An orientable, two-dimensional manifold (or
just 2-manifold) can be assigned an inside and an outside
and leaving one side for the other is only possible when
passing a boundary. The Möbius Strip and the Klein Bottle
are examples for non-orientable 2-manifolds.

Definition 2.2 A point set P of a surface S is a set of n
points P = {p1, . . . , pn} with pi = p̃i + ei ∈ R3 and p̃i ∈ S.
ei is called the error vector for pi with error ‖ei‖.

Point set surfaces are a common artifact from the scanning pipeline and consist of
points in the vicinity of the real surface S. While optimally ||ei|| = 0, scanning devices
introduce errors which are accommodated with the error vector.

Definition 2.3 The medial axis of a surface is the set of points with more than one near-
est point on the surface. A point set surface P is an ε-sampling of a surface S if no point
s ∈ S is farther away from the nearest point p ∈ P than ε-times the distance from s to
the medial axis.

Many algorithms use the notion of the ε-sampling to express reconstruction guar-
antees, i.e. algorithms guarantee that a point set surface P is correctly reconstructed
if P is at least an ε-sampling of S with a bounded ε.

Definition 2.4 ACk-continuous surface is a surface with particular constraints in con-
tinuity: A C0-continuous surface is positional continuous without further constraints.
A Ci-continuous surface is Ci−1-continuous and its derivative is also Ci−1-continuous.
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In particular, this means that aC0-continuous (positional continuous) surface may
have connections which are not seamless, i.e. may contain sharp edges (or features).
AC1-continuous surface has both continuous positions and tangents (tangential con-
tinuous) and the surface is seamless everywhere. Additionally, a C2-continuous sur-
face has continuous curvature everywhere.

Definition 2.5 A piecewise linear surface is called a simple surface.

This special case of a surface is better suited for discretization, and typical repre-
sentations are triangle and quad meshes. A simple surface is certainly C0-continuous
everywhere (except at boundaries). The remainder of this thesis will treat triangle
meshes only.

Definition 2.6 A triangulation T of a surface is a simple surface of connected triangles
forming an orientable, two-dimensional manifold.

It is obvious that connected triangles are powerful enough to build up more general
shapes, not only simple surfaces. For example the Möbius strip can also be build with
a set of suitable triangles or quads. The concepts and algorithms in this thesis are not
limited to simple surfaces, but to more general types of triangulations.

Definition 2.7 A triangle meshM is a set of triangles, possibly not connected, with or
without boundaries and not necessarily an orientable 2-manifold, i.e. in general not a
simple surface. The meshM = (V, F ) consists of a list of vertices V and a list of triangles
F , where each triangle T ∈ F connects three vertices (v1, v2, v3), vi ∈ V .

Figure 3: A triangle

In practice, triangle meshes are often invalid simple sur-
faces. Two triangles are connected if they share a common
edge, i.e. they share two common vertices. Even though tri-
angle meshes may not be orientable, each triangle has an im-
plicit orientation given by the order the vertices are issued. The
literature concludes on having counter-clockwise oriented tri-
angles, that is if v1, v2 and v3 are issued counter-clockwise, the
normal n of the triangle points upwards (to the direction of the
viewer), see Figure 3.

Barycentric Coordinates

Every point v = (x, y) ∈ R2 has a unique representation regarding a non-degenerate
triangle T = (v1, v2, v3) in the form

v = b1v1 + b2v2 + b3v3 with b1 + b2 + b3 = 1

Definition 2.8 The numbers b1, b2, b3 are called a barycentric coordinate of v with re-
spect to a triangle T . The numbers sum to unity, i.e.

∑
bi = 1.
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Barycentric coordinates are much more useful than the usual Cartesian coordi-
nates when working with triangles because they have many nice properties. If all bi’s
are positive, the point v =

∑
bivi is located inside the triangle. In matrix form, the

above equations become M · b = ṽ: 1 1 1
x1 x2 x3

y1 y2 y3

 b1
b2
b3

 =

 1
x
y


and the area AT of T is given by the expression

AT =
1

2
det(M)

This area is always positive as long as T is not degenerated and the vertices vi of
T are given in counter-clockwise order. Barycentric coordinates are also referred to
as areal coordinates because of their geometric interpretation. Given v ∈ T , let T1 :=
(v, v2, v3), T2 := (v, v3, v1) and T3 := (v, v1, v2), see Figure 4. The barycentric coordinates
of v relative to T are given by the ratio of the sub-areas ATi

and AT , i.e.

bi =
ATi

AT
i = 1, 2, 3

Another important observation is that subregions of R2 relative to T are defined by
the signs of the barycentric coordinates, see Figure 5. This is particularly useful for
searching the triangle that contains a point v in a planar triangulation: Given a seed
triangle T , the barycentric coordinates of v relative to T are calculated. If all bi’s are
positive, T contains the point. Otherwise the next triangle in the direction indicated
by the signs is picked, and the search continues until the triangle that contains v has
been found.

Figure 4: Areal coordinates Figure 5: Subregions of R2
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Delaunay triangulation and Voronoi tessellation

Both the concept of the Delaunay triangulation for a set of points P ∈ R2 and the
corresponding Voronoi tessellation of the region are of particular importance in the
field of geometric computing. The Delaunay triangulation maximizes the minimum
angle of all triangles in the triangulation, thus creates the “best” triangulation for a
fixed set of points and tend to avoid skinny triangles.

Definition 2.9 The circumcircle of a triangle is the circle that contains all three points
of the triangle. The radius of this circle is called circumradius and the circle is centered
at the circumcenter.

The circumcircle is uniquely defined for every triangle. In case of a degenerate
triangle where all points are near a straight line, the circumradius tends to infinity.

Definition 2.10 A triangulation is a Delaunay triangulation if the Delaunay condition
is met, that is if no point in P is inside the circumcircle of any triangle in the triangula-
tion.

Points directly on the circumcircle are explicitly allowed; this happens for example
if four vertices are in rectangular position. For a given triangulation the Delaunay cri-
terion can be restored by flipping edges of the triangulation (see Figure 6). An efficient
method is to flip an edge if the sum of the angles opposite to the edge are greater than
180◦. With this techniques it’s not even necessary to explicitly calculate the circumcir-
cles.

Figure 6: The sum of angles α and γ is greater than 180◦ and the circumcircle criterion is not
met. An edge-flip restores the Delaunay criterion and improves the minimum-angle property.

The original definition of the Delaunay criterion is for the two-dimensional space
only, but it is also possible to extend the definition to higher dimensions.

Triangulations are a special kind of decomposition of the two-dimensional space
into triangular regions and a boundary. Another very important decomposition is the
Voronoi diagram.
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Definition 2.11 A Voronoi diagram, also called a Voronoi tessellation, Voronoi decom-
position or Dirichlet tessellation, is a decomposition of a metric space determined by
distances to a discrete set of points in the space. Each point, called a Voronoi site, is
located inside its Voronoi cell, and all positions inside a cell are closer to its Voronoi site
than to any other site.

The Voronoi diagram and the Delaunay triangulation are closely related (the graph
of the Delaunay triangulation is dual to the graph of the Voronoi tessellation). The
Delaunay triangulation can be derived by connecting the sites with adjacent Voronoi
cells. In the other direction, each Voronoi cell can be constructed by connecting the
circumcenters of the triangles adjacent to the point. Voronoi cells are always convex
polygons; see [Aur91] for an extensive survey of Voronoi diagrams.

Figure 7: The Voronoi diagram for a set of points (left), a corresponding Delaunay triangula-
tion with the circumcenters of the triangles (middle), and a combination of both (right). Con-
necting the sites of adjacent cells reveals the Delaunay triangulation. The circumcenters of a
triangle fan are vertices of the Voronoi polygon.

2.2 Generation of Triangle Meshes

The generation of triangle meshes can be roughly divided into modelling the three di-
mensional surface with CAD-like applications and scanning a real-world object using
dedicated devices. While the former approach is able to create artificial and artis-
tic surfaces directly in the digital domain, production is time-consuming and subject
to professionals. However, generating a triangle mesh is typically simply a matter of
exporting the surface. The latter approach is commonly referred to as the 3D model
acquisition pipeline [BR02] and a lot of work has been published in this area. The
process of digitizing a real-world shape starts with the scanning device. Conventional
methods to record three dimensional data are laser scanning [LPC+00], projection of
structured light [SS03, ZCS02, JBS98] and stereoscopic techniques [SS02].

Laser scanning exploits the fact that light travels at constant speed; measuring the
time between irradiation and visibility of the reflection yields the distance to the object
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(time-of-flight technique). The triangulation method determines the angle between
the incoming laser beam and the reflection using a triangular setup of laser beam,
laser point and camera. Laser scanning produces highly accurate point set surfaces,
also with color and texture, but suffers from long scanning times.

Structured light makes use of light patterns that are projected on the subject to be
recorded. These projected patterns are photographed and analyzed, the distortions
of the light patterns give information about distances to the object. This approach is
particularly fast because the visible part of the object is recorded with a single photo-
graph. The individual scans are often referred to as 2.5D scans, because depth infor-
mation is acquired from a single, fixed viewport. Depending on the complexity of the
object, several recordings from different viewing directions have to be taken to com-
pletely cover the object, which involves registration of the resulting set of 2.5D depth
images.

The stereoscopic technique is passive, and no active scanning or light irradiation
is performed. Stereoscopic photographs of the object from several viewing directions
are taken, and depth information can be derived from the spatially varying images.
This technique is inspired and based on the apparatus of the human vision. Similar to
structured light, the technique is 2.5D and several sets of stereo data are required to
fully reconstruct the object. However, the time to process the images to produce 3D
data is quite long and might be a problem for some applications.

A conceptually similar approach is to use Multi-View Stereo (MVS) methods [ES04,
GCS06] to derive depth information from usual photographs of the object. These
techniques have recently been extended to produce reasonable results on Commu-
nity Photo Collections for popular public sites [GSC+07].

While laser scanning immediately results in a three dimensional point set, the use
of structured light, stereoscopic techniques or MVS produce depth images for each
scan as a premature artifact. These depth images need to be registered [CM91] (a
transformation between pairs of images to combine all views into a common space).
This is often a semi-automatic process, but can be omitted if position and direction
of the sensors is known. Although sufficiently dense point sets can directly be visual-
ized [ABCO+01, AK04, WK04], the goal of scan integration is to reconstruct the surface
geometry from the available data [BV91]. This thesis will focus on triangle meshes
for the geometry; they provide the connectivity information essential for many al-
gorithms that operate on the surface, and nowadays graphics hardware is especially
optimized for rendering triangles. Scan integration is a difficult problem because the
input data, i.e. the point set surface or the depth images, may be contaminated with
noise. In case of a point set, the available sampling may not even be sufficient for a
proper reconstruction (too high ε-sampling).

There are several approaches to extract a triangulation from a point set or directly
from depth images, some of them are reviewed in Section 3. The aim of these tech-
niques is to create a “good” piecewise linear approximation of the surface S. Depend-
ing on the context, there are diverse demands on the shape of the elements and the
sampling of the surface. These quality criteria are discussed next.
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2.3 Quality Criteria of Meshes

The goal of surface reconstruction and triangulation is to create a partitioning of the
domain, where the elements or the whole approximation is subordinate to some qual-
ity characteristics. The discipline of surface remeshing aims at improving the triangle
mesh quality in terms of vertex sampling, regularity and triangle quality. Unfortu-
nately, there is no general quantity to measure the quality of a specific approximation
and different applications have different demands. This section gives a brief overview
of some practical quality criteria for triangle meshes.

Amount of Triangles

Maybe one of the most obvious quality criteria is the amount of triangles in the mesh.
For example a triangle mesh with only several hundred triangles cannot, in general,
approximate a complex, three-dimensional shape accurately. A large amount of tri-
angles suggest a higher quality, at least in the sense of high fidelity to the original sur-
face. However, the amount of triangles alone can impossibly make reliable statements
about quality. The mesh may have inappropriate vertex distribution, i.e. wasting a lot
of triangles in nearly planar regions.

Vertex Distribution

The vertex distribution is a very important criterion for most applications. For simu-
lations, a uniform vertex distribution is often required, which results in overall similar-
sized triangles. On the other hand it might be desirable to represent the surface as
accurate as possible with as few as possible triangles. This is achieved by placing more
samples in areas of high curvature, i.e. the sampling is curvature adapted. For nearly
planar regions, only a few triangles are necessary to approximate the surface. Consid-
erably more triangles are needed to represent details on the surface, see Figure 8 for a
simple example in 2D.

Figure 8: A uniform sampling with too many vertices (left), a uniform sampling with few ver-
tices results in a bad approximation (middle), and a curvature-adapted sampling with both,
few vertices and a good approximation (right).

9



Error of the Approximation

A strong criterion for the quality of a mesh is its fidelity to the original surface. As
seen in Figure 8, the adaptive vertex sampling considerably reduces the error with a
fixed vertex budget. In general, the deviation between the approximation T and the
surface S cannot be determined, because the real surface is not known. It is, however,
possible to measure the distance between two triangular meshes (for example using
Metro [CRS98]), or the distance between a triangulation and the corresponding point
set surface P . Two common quantities are the mean error emean and the maximum
error emax.

emean =
1

n

∑
i

min
t∈T
‖t− pi‖ emax = max

{
min
t∈T
‖t− pi‖

}
i

The error emax is often referred to as Hausdorff distance. Obviously, if all the input
points of P are used to create the triangles, emean and emax are zero, and the quantities
are useless.

Shape of the Triangles

Important types of triangles include

• equilateral or equiangular triangles, all sides and angles are equal,

• right triangles, one angle is exactly 90◦,

• acute triangles, all angles are smaller than 90◦,

• obtuse triangles, one angle is larger than 90◦ and

• degenerated triangles, with at least one very small angle.

A degenerated triangle (or skinny triangle) can be classified into two different types,
needles and caps [BK01], see Figure 9. It is crucial to avoid all types of degenerated
triangles because they can cause numeric problems and instabilities in algorithms.
However, to create a visually pleasing and numerically stable triangulation, the goal is
to generate a mesh free from degenerated but nearly equilateral triangles. It is there-
fore important to formalize a measure for the quality of a triangle. A good quantity is
the ratio between the incircle radius ri and the circumcircle radius rc.

ri
rc

= 4 sin
α

2
sin

β

2
sin

γ

2

For an equilateral triangle, this ratio yields 0.5; this is a global maximum for this func-
tion. For increasing degeneracy of the triangle the function approaches zero. Similar
to the approximation error, a mean and minimum ratio rmean and rmin can be calcu-
lated.
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Figure 9: An equilateral triangle (left) has best ratio of inradius ri and circumradius rc (middle).
Both types of degenerated triangles, caps (bottom right) and needles (top right) have a smaller,
thus worse ratio.

Degree of the Vertices

The degree of a vertex, or sometimes valence of a vertex, is the amount of edges that
join that vertex. Deduced from the fact that an equiangular triangle has 60◦ angles, the
degree of a vertex should be 360◦

60◦
= 6. A vertex with a degree of 6 is called a regular

vertex. In fact, it is possible to triangulate some shapes solely with regular vertices.
However, for surfaces embedded in the three dimensional space, this is generally not
useful because of distortion caused by the constrains. But certainly, the amount of
irregular vertices should be minimized, this is especially important for the stability of
Finite Element Method (FEM) simulations.

Figure 10: A vertex with degree 5 (left), with degree 6 (middle) and degree 7 (right).

High-Quality Meshes

The fundamentals given in this sections are now concluded with a discussion about
what high quality meshes are. Surely, the meaning of high quality is related to the spe-
cific scope of application. For example if fidelity is a major issue, the meshes generated
by CAD applications with a lot of skinny and degenerated triangles are probably very
well suited to accurately approximate the surface. These meshes are also good for the
matter of rendering, but simulations or further processing of these meshes is almost
impossible without remeshing or CAD repair [SWC00, MW99]. Geometric processing
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or numerical computations on the mesh require a fairly regular structure, not only in
terms of connectivity but also geometry of the elements.

In this thesis, the notion of quality refers to a combination of the properties men-
tioned in this section; a mesh is of high quality if several of the above criteria are ful-
filled to some extend. It is desirable to have regular vertices, i.e. the connectivity of
the mesh should be almost regular, and near equilateral triangles to obtain a regular
geometry of the elements. A proper distribution of the vertices on the surface is nec-
essary in order to approximate the surface as good as possible with a fixed amount of
vertices, and this is closely related to the error of the approximation. A uniform vertex
distribution is often a worthwhile property for simulation and computations on the
mesh, while adaptive distributions (typically adapted to the surface curvature) are fa-
vorable when reducing the error to the original mesh. Thus the amount of triangles
and the vertex distribution indirectly influence the error of the approximation.

The downside of advocating this notion of quality, especially regularity in terms of
connectivity and element shape, is that resulting meshes are often not optimal in the
amount of elements: The same geometry may be approximated with fewer elements
and higher fidelity at the cost of adverse triangles. Quite honestly, another disadvan-
tage is the rendering quality in curved regions. The isotropic placement of the sam-
ples prevents the triangles from being aligned in any particular direction, for example
along the directions of the principal curvature, which may produce unpleasant shad-
ing artifacts as shown in Figure 11. Anisotropic surface discretizations are seriously
better suited for the purpose of visualization [ACSD+03].

Figure 11: The original triangulation and a shaded rendering with about 3k triangles (left), and
the isotropic remesh with about 5k triangles (right). The remesh suffers from shading artifacts
caused by the isotropic placement of the samples.
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3 Surface Reconstruction and Remeshing

This section deals with related work in the field of surface reconstruction from point
sets and depth images, as well as with remeshing of already existing triangular meshes.

Reconstruction of surfaces is also referred to as scan integration, i.e. the generation
of a piecewise linear surface representation from the scan data. Scan integration is dif-
ficult in general, because the data points are typically noisy and may contain outliers.
The reconstruction has to compensate for these errors. Literature in this field is vast
and this section gives a brief overview of important algorithms. The interested reader
is pointed to [BV91, MM97, BR02].

The problem of scan integration can be divided into methods that operate on point
set surfaces and directly on depth images for reconstruction. While the former repre-
sentation typically only provides point positions and sometimes point normals, depth
images implicate more information. Accurate surface normals, connectivity and a
point set can easily be deduced from the data.

3.1 Delaunay-Based Reconstruction Methods

A certain kind of reconstruction algorithms rely on the Delaunay triangulation or the
dual Voronoi tessellation to extract the elements of the triangulation. In the following,
a few classical algorithms that directly operate on the point set data are presented.
These algorithms typically come with reconstruction guarantees if certain prerequi-
sites are met. Although these guarantees are nice to have, the assumptions made on
the input are very tight, and practical examples rarely meet these requirements.

Alpha Shapes

In 1983 Edelsbrunner et al. introduced a mathematical definition of shape in two di-
mensions. Edelsbrunner and Mücke extended the idea to three dimensions in [EM94],
called Alpha Shapes (or α-shapes). They basically provide a mathematically formal
and concrete definition of shape for a finite set of points P in space. Their method is
a generalization of the convex hull of the point set P with respect to a parameter α,
where the convex hull is computed if α is set to∞.

Figure 12: Different α-shapes from zero (left) to infinity (right), taken from [TC98].
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Alpha Shapes is one of the oldest surface reconstruction methods based on the
Delaunay triangulation. At the intuitive level, [EM94] explains theα-Shapes as follows:

For α = ∞, the α-shape is identical to the convex hull of P (the point set).
However, as α decreases, the α-shape shrinks by gradually developing cav-
ities. Think of R3 Styrofoam and the points of P made of more solid mate-
rial, such as rock. Now imagine a spherical eraser with radius α. It is om-
nipresent in the sense that it carves out Styrofoam at all positions where
it does not enclose any of the sprinkled rocks, that is, points of P . The re-
sulting object will be called the α-hull. To make things more feasible we
straighten the surface of the object by substituting straight edges for the
circular ones and triangles for the spherical caps. The obtained object is
the α-shape of P .

Although α-shapes are an elegant mathematical concept, the algorithm lack prac-
tical applicability. Even simple shapes are often not properly reconstructed, triangles
may overlap and points that don’t belong to each other may be connected. To gain
more control of the situation, several additions and improvements have been pro-
posed, not least because α-shapes provide theoretical guarantees for provably correct
reconstruction, which other reconstruction methods often lack.

In [BB97] some practical aspects like elimination of dangling and isolated faces,
edges and points are discussed, and a regularized version of α-shapes is presented.
Other examples include calculation of an optimal α parameter, weighted α-shapes
and generalization to higher dimensions, see [Ede92] for details. Conformal Alpha
Shapes [CGPZ05] have been established which uses a locally parameterized scale pa-
rameter instead of the globally defined α in the original method. This is especially use-
ful for reconstruction of non-uniformly sampled surfaces. Similarly, [TC98] describes
a density-scaling technique to adjust α depending on the density of points in a region.
Additionally, they modulate the form of the α-ball based on point normals to further
improve the method, yielding anisotropic, density-scaled alpha shapes.

The Crust

The Crust algorithm [ABK98] is a reconstruction method based on Voronoi filtering
by Nina Amenta et al. Similarly to alpha shapes, the algorithm creates a piecewise
linear interpolation of the input point set. The authors claim that they developed the
first algorithm with provable guarantees, and they present their theoretical results and
proofs in a companion paper [AB98].

In particular, they prove that the reconstruction of a well-sampled set of points is
topologically valid and convergent to the original surface. For the purpose of defining
“well-sampled” they use the notion of the local feature size, which involves the me-
dial axis of the surface and makes the algorithm sensitive to the local geometry. This
means that, unlike other algorithms for this problem, the new technique allows highly
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non-uniform samplings, i.e. dense samplings in detailed areas and yet sparse sam-
plings in featureless areas. The sample spacing required to correctly reconstruct the
surface is proportional to the distance to the medial axis. As shown in [ABK98], the
algorithm performs good up to an ε-sampling of 0.5, however, correct reconstruction
is only guaranteed for ε = 0.06.

Figure 13: Example of the curst algorithm, taken from [ABK98].

In a first step, the crust algorithm creates a three dimensional Voronoi diagram for
all points in P . For each of the sites two poles are calculated, that is the two vertices
of the Voronoi cell with maximum distance. A Delaunay triangulation is created from
the union of P and the poles. The final triangulation is extracted by keeping the tri-
angles for which all three vertices are sample points. This triangulation, however, is
not necessarily a manifold and may contain overlapping triangles, see Figure 13. The
authors claim that this is visually acceptable.

Reconstruction using Co-Cones

In [ACDL00], Amenta et al. present a variation of the Crust algorithm for surface re-
construction. They simplified both, the algorithm and the proofs for the crust, addi-
tionally they provide a new proof and show that the modified crust algorithm is home-
omorphic to the input surface. In contrast to [ABK98], which involves two passes for
calculating the Delaunay triangulation and two passes for post processing, the new
algorithm requires only a single Delaunay algorithm for reconstruction.

Similar to the crust, a normal for each sample point is estimated. For an angle
θ, which is a user parameter, a complemented cone (co-cone) is defined, and a set of
Voronoi edges that intersect the co-cone is determined for each sample. The dual tri-
angulation of the calculated Voronoi edges constitute the candidate triangles (which
are Delaunay). The final triangulation is extracted with a technique similar to the last
step of the Crust algorithm. See [ACDL00] for a more detailed explanation.
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The co-cone algorithm as presented in [ACDL00] does not properly reconstruct
sharp features and boundaries, and invalid triangulations may be produced in these
areas. Several contributions regarding the co-cone algorithm have been proposed,
mainly by the co-author of [ACDL00], Tamal K. Dey. He investigated in detecting un-
dersampled areas to approximate the boundaries of the point set in [DG01]. The well-
sampled surface is then reconstructed using the co-cone algorithm. A major drawback
of Delaunay based methods is the reconstruction time and memory demands. Addi-
tionally they cannot properly handle large amounts of data. In [DGH01], Dey et al.
presented an extension to co-cone that is able to handle large data sets with millions
of points by taking a divide-and-conquer approach that partitions the sample points
into smaller clusters. Another typical artifact in reconstructed surfaces is the presence
of holes in areas where the sampling condition is not met. In [DG03], the Tight Co-cone
algorithm is presented that takes an initial mesh, fills up holes and resolves anomalies
near sharp edges and corners to produce a water-tight surface. To accommodate for
noise in the input point set, Dey proposed a technique for surface reconstruction from
noisy samples [DG04]. The technique requires a dense point set of a surface without
boundaries. Reasonable samples are interpolated while outliers are deleted.

Conclusion

The presented methods directly operate on the point data and the goal is to create a
Delaunay triangulation that contains all points of P . Although these techniques are
able to process sparse point data, the algorithms are sensitive to noise, and outliers
are directly visible in the resulting surface if no special care is taken (cf. [DG04]). Fur-
thermore, the amount of triangles cannot be controlled and is related to the amount of
points in the input data. The shape of the triangles directly depends on the location of
the points in space, and unfavorable point distributions cause badly shaped triangles
and highly irregular vertices.
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3.2 Implicit Reconstruction Methods

As concluded in the previous section, there are several constraints when using the in-
put points directly for surface reconstruction. A solution is to switch to a different
surface representation for further processing. Implicit functions have been success-
fully applied in the past. In an implicit function, the dependent variable is not given
explicitly in terms of some independent variable like in y = f(x), where x is indepen-
dent and y depends on x, but rather given as the solution of some equation f(x, y) = 0.
In this example, all values (x, y) for which f(x, y) = 0 are called the zero-set Z(f) of f .

Signed Distance Function for Reconstruction

In [HDD+92], Hoppe et al. advocates the use of the Signed Distance Function (SDF) for
creating surface approximations from unorganized points. This is fundamentally dif-
ferent from the Delaunay based methods because the surface is not interpolated but
approximated, i.e. the output vertices are not part of the input point set. The SDF is a
natural choice for an implicit function: The zero-set of the function consists of points
directly on the surface, the SDF is negative for all points in the interior of the surface,
and positive everywhere else. In contrast, the Unsigned Distance Function does not
distinguish between the interior and the exterior. Distance functions are typically rep-
resented in regular, three dimensional grids, where each grid point (also called voxel)
contains the shortest distance to the surface. This is of course a discretized represen-
tation and the dimension of the grid is crucial. A small grid may miss details of the
surface whereas a large grid takes a considerable amount of memory.

Given such a SDF, the resulting surface can easily be extracted, for example using
the Marching Cubes algorithm [LC87]. The basic principle of the algorithm is as fol-
lows: The algorithm iterates over all cells in the grid and classifies each into one of 256
possible configurations. The cells that contain a subset of the zero-set of the SDF, i.e.
the cells where at least one voxel has a different sign than the other voxels, are trian-
gulated, see Figure 14. Several extensions to the Marching Cubes algorithm exist, for
example feature-sensitive iso-surface extraction [KBSS01].

Figure 14: The 15 unique cube configurations for the marching cubes algorithm. All 256 con-
figurations can be obtained by reflections and symmetrical rotations.
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One of the main challenges is to create the SDF from the given set of points. Hoppe
associates oriented planes for each data point which serve as local linear approxima-
tions for the surface. While the tangent planes can easily be constructed, maintaining
a consistent orientation of the planes is more difficult. The alignment of the plane is
estimated by using a least squares fitting technique (see Appendix A), using the k near-
est neighbors, i.e. the k-neighborhood of the data point. The orientation of the plane
is chosen in a way such that the planes of nearby points have similar orientation, i.e.
the scalar product of the plane normals is positive.

In the next step, the SDF is calculated by finding, for each voxel, the tangent plane
which is closest to the voxel and determining the distance to that plane. Depending
on the plane normal, the distance is multiplied by±1 to flag the voxel as either interior
or exterior.

Bernstein-Bézier-Patches for Reconstruction

A conceptually different and more complex approach is used by Bajaj et al. in [BBX95],
but they also use the signed distance function to create an implicit representation. In
the first step, an approximate, initial surface is calculated using α-solids [EM94], and
the distance to that surface is used to initialize the SDF. The second step decomposes
space into tetrahedra using an incremental approach, starting with a single tetrahe-
dron that contains the whole data set. For tetrahedra traversed by the initial surface,
a new surface approximation is calculated using trivariate Bernstein-Bézier polyno-
mials. The approximation error to the data points is calculated and a bad approxi-
mation is resolved by refining the affected tetrahedron until an acceptable accuracy is
achieved. For this purpose, a Delaunay tetrahedralization is used, which is a general-
ization of the Delaunay triangulation to three dimensions.

Figure 15: CT scan of a human femur. Point set surface (left), tetrahedral decomposition (mid-
dle) and resulting surface with colored patches (right), taken from [BBX95].
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After this iteration, a C0-smooth surface composed of trivariate Bernstein-Bézier
patches is obtained. To compute a C1-smooth surface, a Clough-Tocher subdivision
scheme is applied. The method is especially well suited for reconstruction of smooth
and curved surfaces. Although the surface is C1 continuous, seams and bumps may
be visible in the resulting surface, see Figure 15.

In a later work Bernardini et al. proposed an extended method [BBCS99] which
uses a simplification step on the α-solid reconstruction. Polynomial BB-patches are
constructed directly on the triangles of the simplified model. Even reconstruction of
sharp features can be realized with this method.

Direct extraction from Range Images

Another volumetric approach is presented by Curless and Levoy in [CL96], which is
specific in a way that it directly operates on several registered range images. The
method is robust in the presence of outliers, able to fill gaps in the resulting recon-
struction and works incremental, i.e. the method can be used in an interactive scan-
ning session to incrementally build the reconstruction.

For each range image i, a signed distance function di(x) and a weighting func-
tion wi(x) is computed, and a cumulative SDF D(x) and weighting function W (x) is
composed from the functions on the range images. One important point is that D(x)
and W (x) are incrementally calculated, i.e. updated for each new range image that
is added. Similar to the method of Hoppe, the function is represented in a discrete
voxel grid. The weighting function is used to express confidence or certainty of the
range data, e.g. the boundaries in the range images typically need down-weighting
because of increasing uncertainty. The cumulated SDF is combined with respect to
the weighting function in a straightforward way using a simple weighted combination
of the range values.

To calculate the SDF for a single range image, the domain is tessellated first by
constructing triangles from the image lattice. Triangles with edge lengths that exceed
a certain threshold are discarded. These triangles arise from step discontinuities, i.e.
cliffs in the range images. These cliffs are indicators for hidden, uncaptured surface
parts. Once the range image has been converted to a triangle mesh, the voxel grid
is populated using a simple ray casting technique: A ray is emitted from the sensor
through the voxels near the surface that intersects the mesh. The intersection point is
used to compute the distances and to estimate the weight for the voxels.

In the next step, holes in the voxel grid are identified and filled by using a classifi-
cation on the voxels into empty, near surface and unseen. This classification is referred
to as space carving, by following the lines of sight back from the observed surface and
marking the voxels as empty. Finally, the iso-surface is extracted at the zero-crossing
of the SDF. The implementation is fast, robust and capable of handling large data sets.
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Poisson-based Reconstruction

Recently in 2006, Kazhdan et al. presented a novel approach for reconstruction in
[KBH06] by formulating the problem as a spatial Poisson equation, which reduces
to solving a well-conditioned, sparse linear system of equations. Unlike other ap-
proaches, the method requires a set of oriented points, i.e. a surface normal has to
be provided for each sample. If normals are not provided in the input data, they
can be estimated from the positions of neighboring samples, similar to the method
Hoppe uses in [HDD+92]. Poisson reconstruction is a global approach and consid-
ers all points at once. Poisson systems are robust even in the presence of noise, thus
the method is able to produce very smooth surfaces even for imperfect data. Conse-
quently, the method is less suited for reconstruction of sharp features or incomplete
data sets with holes.

Figure 16: Poisson surface reconstruction of the Stanford Dragon model with an octree depth
of 6, 8 and 10 respectively, images taken from [KBH06].

The method works by defining a vector field as linear sums of hierarchical func-
tions, a set of high-resolution functions near the surface and coarser resolutions away
from it. The Poisson equation is solved and the iso-surface of the resulting indicator
function is extracted. Since an accurate representation of the implicit function is only
necessary near the surface, an adaptive octree is used to represent the discretized ver-
sion of the function and to solve the Poisson system. Finer nodes of the octree are
associated with higher-frequency functions, thus reconstruction becomes more pre-
cise for higher tree depth, see Figure 16. In contrast to a previous method based on
the Fast Fourier Transform (FFT) in [Kaz05], which does not use an adaptive grid and
has very high memory and runtime demands, the Poisson based method has linear
complexity in both, time and space.

The Poisson surface reconstruction has recently been extended with multilevel
streaming for Out-of-Core (OOC) surface reconstruction [BKBH07] for large models
that don’t fit into memory. In this work a streaming framework has been employed for
efficient traversal of the octree. The solution of the involved linear system is obtained
in a single iteration of a cascadic multigrid solver. Thus evaluation is possible within a
single pass over the data.
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3.3 Greedy Sample Placement Methods

The methods that are discussed in this sections are well suited for both, reconstruction
and remeshing of surfaces. The intention is to place new samples on the surface, i.e. to
resample the domain. The placement of the new samples is done in a greedy way, that
means that one sample is placed after the other and yet placed samples are neither
removed nor relocated, they are fixed after insertion. For reconstruction of point set
surfaces, samples may be placed on local approximations of the surface, for example
using the Moving Least Squares (MLS) method [Lev98]. Remeshing is done by placing
new samples on the elements of the original mesh.

Farthest Point Sampling

One paradigm for the greedy placement of samples is farthest point sampling (FPS).
The central idea is to insert one point at a time as far as possible away from already
placed samples. This paradigm is used by Eldar et al. [ELPZ97] for progressive im-
age sampling in two dimensions. The main advantages are the possibility to sample
a domain to an exact vertex budget, always retaining uniformity and isotropy while
increasing the density of the samples. To find the center of the biggest void, Eldar et
al. rely on the Voronoi tessellation of the domain.

The technique of maintaining a Delaunay triangulation while inserting points is
called incremental Delaunay refinement [Rup95], which is an essential element of FPS.
Chew used this technique to create high quality, curvature adapted surface meshes on
curved domains with boundaries [Che93]. Miller developed a time-efficient Delaunay
refinement algorithm in [Mil04] that runs in sub-quadratic time.

Figure 17: Geodesic farthest point remeshing with 100, 300, 800 and 1500 samples, taken from
[PC06].

FPS has been developed for three dimensional surfaces using geodesic distances.
The Fast Marching Method [Set99] developed by Sethian offers an efficient way to cal-
culate geodesic distances on surfaces, and it has been extended for the purpose of
adaptive, farthest point sampling on triangular meshes, called FastFPS [MD03a]. In
a subsequent paper [MD03b] the idea is extended to directly operate on implicit sur-
faces and point sets for surface reconstruction. Similarly to FastFPS, Peyré and Cohen
present an isotropic remeshing algorithm using FPS and geodesic Voronoi diagrams
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based on the Fast Marching Method, yet not able preserve features in the mesh [PC06],
see Figure 17.

Yet another algorithm for provably good sampling of implicit surfaces is given in
[BO03]. Points are progressively added while restoring the Delaunay criterion, to pro-
duce good uniform or curvature adapted triangulations, even with boundaries. The
authors make use of restricted, or constrained Delaunay triangulations to prove that
the algorithm creates triangulations with the same topology, a “good” sampling and
bounded aspect ratios of the triangles.

Advancing Front Algorithms

The Advancing Front approach, or sometimes called Marching Front, is a relatively
young class of algorithms, and it first appeared somewhat around 1997. Develop-
ment of the new technique was driven to acquire high quality triangle meshes directly
from implicit surfaces. Typically, these implicit surfaces are triangulated using the
Marching Cubes algorithm, which is known to produce bad, ill-shaped triangles, ar-
bitrary samplings that don’t belong to a sensible measure, e.g. the surface curvature,
and approximate the surface in a way that needs improvement. The Advancing Front
technique, however, is not limited to implicit surfaces. As mentioned by Hartmann in
[Har98], the method is rather suited for all kind of representations. Advancing Front
algorithms have been extended to operate directly on point set surfaces for recon-
struction, or on already existing triangle meshes for remeshing.

The basic principle of the Advancing Front method is as follows: A seed edge is
placed on the surface. A new vertex is predicted to forge a perfectly shaped triangle
together with the two existing vertices. The predicted vertex is projected on the sur-
face, completing the first triangle. All three edges of the triangle are the active front,
partitioning the surface into a triangulated region and a yet undeveloped region. The
algorithm proceeds with triangle growing, that is, new points are predicted, projected
on the surface and new triangles are created, thus expanding the front until the whole
surface is triangulated. During triangle growing, two topological events may occur:
If a front encounters itself, the front is split into two fronts by building a bridge edge
between two vertices on the front. If a front encounters another front, both fronts are
merged, again by creating a bridge, see Figure 18.

The first generation of Advancing Front algorithms was developed to triangulate
implicit surfaces as an alternative to the Marching Cubes algorithm. Hartmann cre-
ated the foundation for the Advancing Front family in [Har98]. The algorithm creates
nearly equilateral triangles and produces a good, uniform sampling. The size of the
triangles is constant in that algorithm, and details in the surface may be lost if the
triangle size is chosen too large.

The next generation of Advancing Front algorithms address the problem of con-
stant triangle sizes. Karkanis and Stewart proposed an algorithm [KS01] to triangulate
implicit surfaces using a curvature sensitive approach. With this approach the size
of the triangles is changed according to the local curvature, creating smaller triangles
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Figure 18: Topological events in Advancing Front: A front encounters itself and is split (left)
and a front encounters another front, which are merged (right), taken from [Har98].

in more curved regions. The amount of adaptation is a user parameter that controls
the ratio of triangle edge length and the local radius of curvature. The algorithm does
not use front splits and merges. Instead, it operates in two phases. In the growing
phase, the algorithm creates new triangles as long as fronts don’t encroach each other.
If fronts encroach the triangulation is stopped and gaps emerge. In the filling phase,
the gaps are bridged using several heuristics. This is the flawed part in the algorithm
because filling may introduce bad triangles.

(a) After growing phase (b) After filling phase (c) After growing (d) After filling

Figure 19: Growing and filling phase of the advancing front algorithm in [KS01].

Scheidegger et al. [SFS05] use a guidance field to gradually change the size of the
triangles instead of just evaluating the local curvature. The algorithm directly operates
on point data using Moving Least-Squares (MLS) [Lev98, Kol05] for the underlying sur-
face representation. One of the strengths of MLS is the ability to handle fair amounts
of noise in the input data, which makes the technique particularly suited for surface
reconstruction from possibly noisy point set data. In a successive work, Schreiner,
Scheidegger et al. present an improved algorithm [SSFS06]. In particular, they delay
triangle output by keeping a small band of triangles before finalizing them, to improve
the triangles with edge flips. The algorithm was also extended to operate on triangle
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meshes for direct remeshing. They provide their results in a software package called
Afront.

Figure 20: Triangulation results with various parameter settings from [SSFS06].

Although the use of MLS has shown success in triangulating point set surfaces,
MLS is computationally expensive and complex, because it involves a non-linear op-
timization problem that can only be handled numerically. Solving that optimization
problem is particularly hard. Even though Scheidegger et al. suggest an initial value
for the optimization solver [SFS05], the method does not guarantee the global opti-
mum. The polynomial approximation of the surface may fail due to missing connec-
tivity information, and points beyond the vicinity of the surface are not guaranteed
to be correctly projected. This makes advancing front algorithms particularly fragile,
because a sole, failed projection likely messes the whole triangulation.

A new projection method for point set surfaces has been proposed in [KFU+09,
Uhr07], which does not involve a non-linear or similar optimization problem. Unlike
MLS, the technique uses bivariate polynomials of variable degree depending on the
points to be approximated. The use of connectivity information prevents the tech-
nique from collecting nearby points in space with large Riemannian distance on the
surface, and improves the approximation of the surface and the robustness of projec-
tions.

Although the new projection improves stability, Advancing Front algorithms have
several serious drawbacks in practice. The guarantees of the methods only apply to the
“growing phase” where new triangles have bounded ratio depending on the configura-
tion of the guidance field. The worst triangles, however, are created when topological
events occur, i.e. while bridging fronts. As already mentioned, the projection can fail,
which typically destroys the reconstruction. Several experiments show that Advanc-
ing Front algorithms are particularly unstable for complex data sets or simply if the
triangle size is chosen too large. Even in spite of failures, the computational complex-
ity of sophisticated Advancing Front algorithms is often not acceptable. Although the
amount of triangles can be roughly controlled, neither an exact nor an approximate
vertex budget can be specified.
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3.4 Relaxation-based Techniques

The relaxation-based methods significantly differ from the previously described tech-
niques. Instead of directly operating on point set surfaces, relaxation-based methods
operate on existing triangular meshes, and point sets need to be reconstructed in a
pre-processing step. Thus, the techniques address remeshing of surfaces only.

Unlike Advancing Front or Farthest Point Sampling, the method does not create
a new triangulation from scratch. Instead, a series of local mesh adaptation steps is
performed to improve the sampling and the quality of the mesh elements. In a first
step, the mesh complexity is adjusted using simplification or oversampling to achieve
an exact vertex budget. In the second step, the vertices are relocated on the surface
using a relaxation procedure to obtain a good sampling with high-quality triangles,
which is the most delicate part of the algorithm.

Attraction-Repulsion

In an older work, Turk proposed an relaxation-based algorithm for re-tiling polygonal
surfaces to automatically create several Level of Detail (LoD) representations of a mesh
[Tur92]. Turk places a user-defined number of vertices on the input mesh. Since the
initial placement of the vertices is more or less random, the vertices are re-arranged
using a attraction-repulsion particle relaxation procedure to move a vertex as far as
possible away from neighboring vertices. In the next step, a mutual tessellation that
contains both, the original and newly placed vertices, is created. The input vertices are
carefully replaced with the new vertices. Although this technique produces aesthetic
results with a good vertex distribution, the method is poorly suited for models with
well-defined corners and sharp edges.

Figure 21: Attraction-Repulsion: Original molecular model (left) and several LoD re-tilings of
the same object, taken from [Tur92].

Umbrella Operator

Vorsatz et al. use the umbrella operator [VRS03] as relaxation operator to locally repo-
sition a vertex with respect to its direct neighbors (the 1-ring of the vertex to be repo-
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sitioned). In particular they use a weighted 3D Umbrella operator U :

U(pi) = pi +
1∑
j ωij

n∑
j=0

ωij(pij − pi), ωij ≥ 0

This operator basically moves a vertex pi in the barycenter of the neighboring ver-
tices. If the weights ωij are chosen to be uniform, i.e. ωij = 1, a globally uniform
distribution of triangles is generated in the simple case, and a locally uniform distri-
bution (i.e. isotropic distribution) is achieved if weights ωij are chosen proportional to
the area of the triangles in the 1-ring. The umbrella operator is flexible in a way that
the weights can be adapted to a specific application, e.g. with respect to the principal
curvature of the mesh for anisotropic vertex distribution.

Area Equalization

In [SG02], Surazhsky and Gotsman discovered that a (possibly bad) 2D triangulation
having triangles with close to equal areas has, surprisingly, a globally uniform, spatial
vertex distribution. In their remeshing scheme they alternate between area equaliza-
tion and Delaunay edge-flips to obtain a close to regular mesh. This iterative process
usually does not converge and begins to oscillate, producing different but similar tri-
angulations. The involved optimization problem reduces to solving a system of two
linear equations in x and y, and the computational cost is almost negligible.

Figure 22: The original triangulation (left). Areas of the triangles are equalized (center-left).
Discarding the connectivity reveals the uniform sampling (center-right). The Delaunay trian-
gulation results in a close to regular mesh (right). Images taken from [SAG03].

In [SG03], Surazhsky and Gotsman extend the idea of area based remeshing to work
with a density function to create an adaptive vertex sampling. This is done by specify-
ing ratios between the triangle areas depending on the density function.

One of the benefits of using area equalization is the speed of the convergence.
Thus, the technique is well suited for distributing the mesh vertices according to the
prescribed density function in less time than other relaxation techniques, for example
the Lloyd relaxation, which is explained next.

26



Lloyd Relaxation

The Lloyd relaxation method [Llo82] can be used to construct a centroidal Voronoi
tessellation [DFG99] of the domain, i.e. a Voronoi diagram where all sites are located
at the centroid of their cells. The Lloyd relaxation is of special interest for this thesis,
and is explained in more detail in Section 4. For now, the method is considered to
create a good, precise isotropic placement of the samples in a slow, iterative relaxation
process.

Figure 23: A Voronoi tessellation of random points (left) and a centroidal Voronoi tessellation
(right). Dots are the sites of the tessellation, circles are the centroids of the cells. In a centroidal
Voronoi tessellation, the sites coincide with the centroids.

Alliez et al. presented a remeshing algorithm that exploits the Lloyd relaxation for
isotropic remeshing of surfaces [AdVDI03]. In this work they first distribute the re-
quired number of vertices on the mesh using error diffusion, a technique commonly
used in image half-toning. The resulting sampling already approximates the density
field very well due to a preprocessing step that calibrates the error diffusion. In a sec-
ond step, the initial sampling is meshed using the Delaunay triangulation and im-
proved by building the weighted centroidal Voronoi tessellation of the points, i.e. by
applying Lloyd relaxation on the points.

Figure 24: From left to right: Initial mesh, initial sampling, and Lloyd relaxation with 1, 10 and
100 iterations. Bottom row: The corresponding parameterizations, from [AdVDI03].
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Since the techniques are only applicable in two dimensions, Alliez et al. param-
eterize the mesh onto a planar domain, which involves cutting the mesh for closed
surfaces with genus > 0. After Lloyd relaxation has been applied, the embeddings are
stitched and projected back to the original surface. Although the technique produces
great results, the need for global parameterization involves several critical operations:

• Closed or genus> 0 surfaces have to be cut along a cut graph, which is known to
be an intricate problem [EHP02].

• Surface cutting introduces a set of artificial boundaries, which generates visually
displeasing seams after stitching. The need for techniques to hide the seams
[KLS03] complicate the setting further.

• Parameterization of a large domain causes huge distortions. Alliez et al. use
stretching factors for all edges to accommodate the distortion. However, numer-
ical issues may arise for large meshes.

Surazhsky et al. present an isotropic remeshing scheme that uses local parameteri-
zations and avoid the complications of global parameterization [SAG03]. The method
makes use of local operations only, performed on a copy of the mesh while referring to
the original mesh as geometric reference. In the first stage, the algorithm generates the
required amount of vertices by simplification or refinement. In the second stage, an
initial vertex distribution is produced using an area-based relaxation method [SG03].
The third stage polishes the sampling by constructing a weighted centroidal Voronoi
tessellation using Lloyd relaxation.

These techniques are of great significance for this thesis. The centroidal Voronoi
tessellation promises precise sampling of the vertices and produces excellent, high-
quality triangulations. The next section deals with the details of remeshing using this
technique.

Figure 25: An uniform remesh (left) and a curvature adapted remesh (right), from [SAG03].
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4 Isotropic Surface Remeshing

Isotropic remeshing of surfaces aims at sampling the domain to obtain a tiling, tes-
sellation or partitioning of the surface, where the shape of each tile is not biased in a
particular direction (isotropy), i.e. each tile should be as compact, or round, as possi-
ble. Each tile is associated with exactly one sample, and in the uniform case each tile
should occupy the same amount of area on the surface. Ideally, each tile of the tes-
sellation should be a disc. However, a disc cannot produce a gapless partition of the
domain. Like equilateral triangles and squares, regular hexagons fit together without
any gaps and additionally provide optimal compactness in a lattice, see Figure 26.

Figure 26: Isotropic, hexagonal tiling of the domain with uniformly distributed samples.

To obtain an adaptive distribution of the vertices in the non-uniform case, e.g. for
curvature adapted remeshing, sampling of the domain should be controlled according
to a prescribed density function defined on the surface. Partitioning of the density
function should be done in a way that the area associated with each sample inherits
the equal-mass enclosing property [SAG03], that is each tile should contain the same
amount of density, or mass, see Figure 27.

Figure 27: Adapted, non-uniform tiling of the domain with density function e−x
2−y2 .

To produce a precise placement of the samples and to obtain the equal-mass en-
closing property, it is advisable to switch to a notation where each sample can be as-
sociated with an area. Working on the basis of triangles can hardly comply with this
requirement, because each tile of a triangulation is associated with three samples in-
stead of one. The method of choice for this thesis is to exploit the nature of the cen-
troidal Voronoi tessellation (CVT) of the domain. In a CVT, the position of each sample
coincides with the centroid of its Voronoi cell, see figures 23 and 26. With respect to a
prescribed density function, the aim is to construct the weighted, centroidal Voronoi
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tessellation (WCVT), see Figure 27, where the simple CVT is just the uniform case of
the WCVT. The WCVT has several nice properties that are directly related to isotropic
remeshing:

• Each polygonal tile of the Voronoi tessellation is associated with exactly one sam-
ple. Thus area and mass can be associated with each sample.

• In the uniform case, the CVT produces a hexagonal lattice with optimal com-
pactness of the cells, i.e. the tessellation has optimal isotropy.

• In the non-uniform case, the WCVT leads to a tradeoff between compactness
and partition of the density function, which allows for adapted tessellations.

• Since a Voronoi diagram is the dual to some Delaunay triangulation, the WCVT
implicitly gives a triangulation of the domain. Similar to the Voronoi cells itself,
the triangulation comes with optimal compactness, i.e. equilateral triangles, in
the uniform case.

The centroidal Voronoi tessellation can be computed in an iterative process using
the Lloyd algorithm. The Lloyd relaxation method [Llo82] is a simple, deterministic,
fixed-point iteration [DFG99]. Given n sites, the centroidal Voronoi tessellation is ob-
tained by the following three steps:

1. Create the Voronoi tessellation of the n sites,

2. Move the n sites to the centroids of their cells,

3. Repeat the iteration until convergence is achieved.

The Lloyd relaxation repeatedly moves the sites into the centroids of their cells, see
Figure 28. To make the Lloyd relaxation consistent with a prescribed density function
defined over the domain, each site is relocated to the center of mass instead of the
geometric centroid of the Voronoi cell. For a uniform density function, the center of
mass and the geometric centroid coincide.

Figure 28: A set of random points and the Voronoi diagram (left), the diagram after 1, 5 and 100
Lloyd iterations, and the dual triangulation after relaxation (right). The centroid of each cell is
drawn as red circle. After convergence, sites and centroids of the cells coincide.
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4.1 Overview

This section gives an overview of the complete remeshing process. The whole process
is build on several algorithms each being an individual step in the creation of the final
mesh. The stages of the algorithm are arranged in a pipeline: Starting from an initial
model, the pipeline is traversed progressively building the final mesh.

Clean up 
reference mesh

Vertex and face
reordering

Discrete
curvature

Feature
extraction

Oversampling

Vertex and face
reordering

Lloyd relaxation

Vertex relocation

Mesh element
improvement

Preparation for
relaxation

Complexity
adjustment

Load reference mesh

Kept during remeshing
as geometric reference

Create barycentric
correspondence

to reference mesh

Simplification

Guidance retrieval
for remeshing

Figure 29: The remeshing pipeline used in this work.

Reference mesh: The first stage in the pipeline is responsible for providing the input
mesh. The mesh is cleaned, and the vertices and faces are reordered to improve vertex
cache efficiency. The details are presented in Section 4.2.

Guidance retrieval: In the next stage, guidance information is retrieved from the in-
put mesh. The discrete curvature is estimated and a density field is employed to create
adaptive remeshes with a denser sampling in curved regions of the surface. Feature
edges are extracted to preserve the characteristic appearance of models with sharp
edges. The techniques are introduced in Section 4.3.

Complexity adjustment: For the following stages the reference mesh is copied, and
all operations are performed on this copy, which is called the evolving mesh. The refer-
ence mesh is untouched and serves as geometric reference for the rest of the process.
To sample the mesh to an exact, user-defined vertex budget, the complexity of the
evolving mesh is adapted, which is explained in Section 4.4. Note that throughout this
thesis the reference mesh is shown in blue whereas the evolving mesh is shown in red.
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Preparation: Since the complexity adjustment changes the mesh, vertex cache effi-
ciency may be lost and an efficient ordering is restored. A barycentric reference for
each vertex of the evolving mesh is prepared, pointing to a unique location on the
reference mesh. See Section 4.5.1.

Relaxation: The last step of the pipeline polishes the sampling using Lloyd relax-
ation. During that iterative process, the positions of the vertices are slightly changed
in each iteration, always referring to the geometric reference, see Section 4.5.3. Relo-
cation of a vertex is probably the most difficult operation which involves flattening, or
parameterizing, the surface to two dimensions. Several parameterization techniques
exist, and a brief overview is given in Section 4.6.

4.2 Processing the Input Mesh

Processing of the input mesh is the very first stage of the remeshing pipeline. As al-
ready mentioned, practical meshes are rarely valid simple surfaces, i.e. they are typi-
cally no connected, orientable, two-dimensional manifolds. Instead, a triangle mesh
may consist of several unconnected surface parts, may not be closed and have bound-
aries. Even worse, a triangle mesh can even have invalid, zero area triangles (that is, all
three vertices of a triangles lie on a straight line), duplicated and unreferenced vertices.
To ensure stability of the subsequent processing steps, the mesh has to be repaired.

4.2.1 Cleaning the Input Mesh

In this step, unreferenced and duplicated vertices are removed from the mesh. The
elimination of zero-area faces is essential for calculations that rely on the triangle ar-
eas. In particular, flattening the mesh into two dimensions requires solving a linear
system of equations: To create a well-conditioned linear system, zero-area faces and
duplicated vertices must not be present, otherwise the involved linear system solver
will not converge. Ideally, even very close vertices near floating point precision should
be eliminated for a well-conditioned system.

An efficient way to detect invalid triangles is to exploit connectivity information.
If a triangle references a single vertex two or three times, the triangle is invalid and
removed. If a vertex and a connected, neighboring vertex are very close to each other
(with respect to some ε bound), the short edge is collapsed, effectively removing two
triangles from the mesh (one triangle if the short edge is a boundary edge).

A special kind of degenerated triangle, namely a cap, is not easily removed by col-
lapsing a short edge. Although these triangles can also cause zero-area faces in the
extreme case, stability of the linear system solver is not directly affected, because the
vertices have a reasonable distance to each other. These triangles are not removed
during mesh repair, because they are particularly hard to eliminate. This problem is
addressed in Section 4.4.2.
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4.2.2 Face and Vertex Reordering

For a given triangle mesh, the faces and vertices are typically in no particular order.
This order may depend on the software that created the model but it was most likely
not created with any specific optimization in mind. At the intuitive level, the order
in which faces and vertices are issued does not matter. However, as each triangle is
processed for rendering, referenced vertices are processed by a vertex shader in an
operation that can be computationally expensive.

Applications whose rendering cost are dominated by per-vertex operations said
to be vertex-bound. Modern GPUs attempt to avoid unnecessary computations and
costly memory accesses with a vertex cache that holds a small number of vertices.
To optimize rendering, the aim is to access vertices in an order that reduces the av-
erage cache miss ratio (ACMR). To do that, the order in which triangles are issued is
important. For example, if two adjacent triangles are rendered one after another, two
vertices of the second triangle are already cached by the GPU and can be used without
memory access.

The first practical approach was to use triangle strips and a 2-entry cache. How-
ever, the problem of finding a single strip representation is hard and not always pos-
sible. Hoppe noticed in [Hop99] that a transparent FIFO cache is very well suited
to achieve nearly optimal ACMR ratios if the vertex locality is maximized. Recently
Sander et al. proposed a new method [SNB07] for reordering the triangles of a mesh
that reduces ACMR by maximizing vertex locality, which results in a more efficient
rendering, see Figure 30. Their method produces similar results compared to those
algorithms in previous work [Hop99, BG01, YL06, LY06], but is orders of magnitude
faster to compute and can even be executed interactively, which justifies the rigorous
use of the method for both, the input mesh and the evolving mesh.

Figure 30: The original face ordering using traditional strips where possible (left), and the op-
timized, cache-aware face ordering using the method from [SNB07] (right).

Since the original version of the algorithm in [SNB07] only reorders the triangles
for vertex locality, a modification of the work has been employed for this thesis to rear-
range the vertices of the mesh. To do this, the cache efficient face ordering is traversed
and vertices are issued in order of their first appearance. The benefit of this modifi-
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cation lies in the fact that relocation of vertices makes heavy use of caching. For each
vertex relocation, a small region of the mesh needs to be flattened to determine the
new position of the vertex. This patch-wise parameterization acts on a per-vertex ba-
sis, i.e. during Lloyd relaxation, each iteration walks over all vertices of the evolving
mesh and creates a patch for the region of the vertex. If this patch is cached, it can be
reused for nearby relocations, which results in a significant performance boost.

4.3 Guided Isotropic Remeshing

The default behavior of the Lloyd relaxation does not cope with features or regions of
increased sampling in the mesh: vertex clusters gradually drift apart and the algorithm
converges to a completely uniform sampling of the domain. This is often not desired.

Since every vertex of the sampling is moved in each iteration of the relaxation pro-
cess, the position of vertices along feature creases is changed and the characteristic
appearance of the model is quickly destroyed if no special care is taken. For this rea-
son, a subset of the edges in the mesh are tagged as feature edges. All vertices along the
feature crease are constrained during relocation and feature edges may not be flipped.
The extraction of features is described in Section 4.3.1.

In order to better approximate the reference surface with a given vertex budget, a
denser sampling in more curved areas should be employed. This is achieved with a
density field defined over the reference mesh, which describes the relative amount
of vertices to be used over the surface. The construction of such a density field is
explained in Section 4.3.2.

4.3.1 Recognizing Features

The extraction of feature creases on the mesh is of crucial importance if the surface is
not C1 continuous everywhere and contains tangential discontinuities. These discon-
tinuities are significant for the visual fidelity of the model and must not be destroyed.
Since most algorithms assume a smooth surface for their operation, these algorithms
need to be adapted in order to account for the features.

This thesis uses a very simple scheme to detect creases on the mesh: Intuitively,
the dihedral angle between two adjacent faces of the mesh can be used to measure
flatness of the surface. Practically, the angle between the normals of the faces is used
for feature detection. This works for both, ridges and valleys, at the same time. If
the angle exceeds a certain threshold, the edge between the faces is tagged as feature
edge. For a given threshold α, a feature between faces f1 and f2 with normals n1 and
n2 is detected if

n1 · n2 ≤ ‖n1‖ · ‖n2‖ · cosα

Since n1 and n2 are normals with unit length, the normalization step is typically not
necessary. Of course, this simple scheme has serious drawbacks in the general case. In
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large meshes, feature edges may be detected even if the surface does not have salient
features, and sharp angles may be the result of noise. Although the method extracts a
reasonable set of features for most CAD-meshes, more robust detection methods may
be used for special requirements. For example, [WB01] exploits an area degenerating
effect near singularities of the focal surface for feature detection, [YBS05] estimates
curvature tensors and derivatives via local polynomial fitting, and recently [ZGM09]
uses contextual information of neighboring points for robust detection of perceptually
salient features.

During the reconstruction process of models, e.g. using the marching cubes algo-
rithm for volumetric data, the interpolating triangle mesh may chamfer sharp features
and introduces aliasing effects. In these cases the detection of features produces un-
satisfactory results, and enhancing the situation is referred to as feature restoration. In
[AFRS03] an edge sharpening algorithm is presented which significantly reduces the
aliasing effect by identifying the chamfered triangles and subdividing them to create
proper sharp edges.

4.3.2 Density Field Calculation

To generate a non-uniform sampling of the domain with an increased amount of ver-
tices in areas of higher curvature, a density field is employed. Related applications, for
example Advancing Front algorithms, construct a similarly defined sizing field, which
provides the optimal triangle edge length for any point on the mesh. However, since
the remeshing scheme herein works on a given vertex budget, it is better to speak of a
density field, which is only implicitly related to the sizing of the triangles.

To construct the density field, the curvature of the mesh has to be estimated. Note
that the concept of the density field is not necessarily related to the mesh curvature.
In the more general setting, the density can be adapted with respect to arbitrary prop-
erties of the mesh. From a theoretical point of view, meshes do not have curvature
at all, because they are piecewise linear, but having the (unknown) surface in mind
that the mesh tries to approximate, curvature can be derived with various techniques.
Several sophisticated approaches exist to extract geometric properties from a mesh
[MSR07, Rus04], but for the purpose of estimating the discrete curvature for each ver-
tex only, more simplistic approaches provide yet good results.

In particular, a fast and easy method to calculate a per-vertex discretization of the
curvature is given in [DHKL01]. The measures they use are based on the approach of
replacing every edge with a small cylinder that joints the adjacent faces tangentially.
The cylinders are then smoothly blended at the mesh vertices, thus the resulting sur-
face is an approximation of the unknown smooth surface. Well-known theorems from
differential geometry can now be applied to derive formulas for the Gaussian curva-
ture K and the absolute mean curvature |H| at the mesh vertices. These formulas are
discussed now.
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Curvature estimation: Let vi be the neighboring vertices of a vertex v for which the
Gaussian curvature K and the absolute mean curvature |H| are to be computed. Let ei
be the edge vectors ei = vi− v that point away from the center vertex and αi the angles
between edges ei and ei+1 of triangle Ti. The dihedral angle βi at edge ei is the angle
between adjacent triangle normals ni−1 and ni, see Figure 31.

Figure 31: Notation used for calculation of the discrete curvature (left). The Barycentric area
SB of vertex v is one third of adjacent areas (right).

The integral Gaussian curvature K̄ and the integral absolute mean curvature |H̄|
with respect to area S attributed to v is defined as:

K̄ =

∫
S

K = 2π −
n∑
i=1

αi and |H̄| =

∫
S

|H| =
1

4

n∑
i=1

‖ei‖ |βi|

The area S associated with v can be calculated in various ways, most important are
those definitions which sum up the the total area of the triangle mesh. The Barycentric
area S = SB is very common in literature and easy to compute, which is one third of
the area of adjacent triangles. Normalizing by S yields the per-vertex curvature values:

K =
K̄

S
and |H| = |H̄|

S
with S = SB =

1

3

n∑
i=1

Ti

The resulting curvature value Cv for vertex v is calculated using a weighting factor λ:

C̄v = λ · |Kv|+ (1− λ) · |Hv| with 0 ≤ λ ≤ 1

Clamping: Since the area Sv associated with v can be arbitrary small, the curvature
values are typically not bounded; depending on the size of the input triangles and the
amount of noise in the mesh, C̄v is typically between zero and a few thousands. In
order to remove outliers and to eliminate very high density values in some regions,
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it is useful to clamp the values into a user-defined range of valid values [Cmin, Cmax],
where typically Cmin = 0.

Cv = max
(
Cmin,min(Cmax, C̄v)

)
For smooth and low-noise models, small ranges like [0, 100] yield good results, while

ranges like [0, 1000] are better suited for medium-sized scanned objects (e.g. the Stan-
ford Bunny). Large models contaminated with noise may require larger ranges to ex-
tract reasonable curvature values. Since the simple method is local and does not take
contextual information into consideration, a large amount of noise can lead to ar-
bitrary density values more or less unrelated to the perceived mesh curvature. The
method fails in these rare cases and more sophisticated approaches are required.

Scaling and contrast: In order to control the relative amount of samples for low-
and high-curvature areas, the range [Cmin, Cmax] is scaled to [0.5, 1.5] and a contrast
function is applied to the values. This finally yields the density value Dv for the mesh
vertices.

Dv =

(
Cv − Cmin
Cmax − Cmin

+ 0.5

)γ
This contrast function is defined by a user-specified exponent γ that controls the

degree of adaptiveness. A γ-value of 0 means that all density values become 1 and the
distribution of the vertices is uniform. A γ-value of 1 has no effect, leaving the range at
[0.5, 1.5]. An exponent of γ = 10 for example leads to a range approximately [0.001, 60],
which allows for huge varieties in sampling density.

Smoothing: To acquire a density function with smooth transitions between high and
low density regions, and to eliminate noise in the curvature values, Laplacian smooth-
ing (which is closely related to the Umbrella operator) is applied by iteratively averag-
ing neighboring density values. A single smoothing iteration for a density value Dv is
described by the following formula:

Dnew
v = Dold

v + λ

n∑
i=1

(
Dold
vi
−Dold

v

n

)
with 0 < λ ≤ 1

The smoothing can be controlled by the amount of iterations and the choice of λ.
λ relates to the influence of neighboring density values, thus controls the intensity of
smoothing, whereas the amount of iterations regulates the area of influence. A high
amount of iterations create smoother transitions between high and low density re-
gions. In each iteration, the information from a vertex is propagated to the neighbors
only, and a lot of iterations are required for a smooth transition of the density values
on dense meshes.
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Figure 32: The horse model. Top row: absolute Gaussian curvature |K| (middle) and absolute
mean curvature |H| (right). Bottom row: 30 iterations of smoothing with contrast exponent
γ = 0.5 (left), γ = 1.0 (middle) and γ = 5.0 (right).

4.4 Adjusting Mesh Complexity

The process of adapting the complexity of the mesh aims at bringing the sampling to
an exact, user-defined vertex budget.

Several techniques to achieve an exact vertex amount have been proposed in lit-
erature. Alliez et al. use a global error diffusion over the faces and feature edges of
the input mesh [AdVDI03]. This technique achieves a great initial sampling, how-
ever, meshing of the new samples is difficult and requires flattening the whole domain.
This parameterization process is difficult in itself, and it requires cutting and stitching
meshes with genus > 0. Farthest point sampling is also capable of providing an initial
sampling, but requires to project the samples on the original surface. This is prone to
errors and unstable for complex models, and handling of boundaries requires special
treatment.

This thesis follows the approach of Surazhsky et al. [SAG03]. Depending on the
amount of vertices in the reference mesh, the adaptation performs mesh simplifi-
cation or refinement to obtain an initial sampling. In case the given vertex budget
matches the amount of vertices in the reference mesh, the evolving mesh is simply
initialized with a copy of the reference mesh, and the adaptation process is skipped.

A mesh simplification scheme is applied if the vertex amount is to be decreased.
The simplification operates on the evolving mesh, which is initialized with a copy of

38



the reference mesh. As of now, the reference mesh will not be changed and stays un-
touched during the remaining process. If the vertex amount is to be increased, a mesh
oversampling is performed instead. However, the oversampling cannot be applied to
the evolving mesh but is performed directly on the reference mesh for various reasons.
This is kind of an exception to the remeshing pipeline, and the following sections ex-
plain the issue in more detail.

4.4.1 Mesh Simplification

The topic of mesh simplification has been extensively studied, and a wide range of
techniques are available in literature, see [CMS98] for a survey. Many polygon simpli-
fication methods reduce the number of triangles in a mesh by performing a sequence
of edge collapses. Given a suitable edge and the corresponding two vertices of the edge,
the contraction removes the edge and collapses the two vertices into a single, new ver-
tex. In the general case, each contraction reduces the amount of vertices in the mesh
by one, and the amount of faces by two. As a special case, the contraction of a bound-
ary edge removes only one face. For example Hoppe uses edge contractions to create
meshes suited for progressive transmission and display [Hop96].

Edge collapse

Figure 33: Edge collapse: The edge between two vertices is collapsed. Each collapse deletes
one vertex and two faces at a time, placing the remaining vertex at a new position.

Another algorithm based on contractions has been proposed by Garland and Heck-
bert in [GH97]. They allow contraction of arbitrary vertex pairs, not just physical edges
in the model and use quadric error metrics to facilitate better approximations. They
extended their surface simplification to preserve a wide range of per-vertex attributes,
such as color and texture information [GH98].

The algorithms mainly differ in the way new vertices are placed. A very simple
scheme is placing the new vertex in the barycenter of the old vertices. However, there
are better methods to find a new position that potentially minimize the error and re-
sult in better simplifications, e.g. [GH97] determine the best position based on the
assumption of a quadric error metric.

The actual error between the simplified surface and the input surface, namely the
Hausdorff distance, is often measured using the Metro tool [CRS98]. For most algo-
rithms the goal is to minimize that global error. For this thesis, however, the global
error of the simplification and the placement of the samples is not important, because
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the sampling is going to be improved by Lloyd relaxation later on. It is suggestive to
stick to a much simpler and more robust kind of mesh simplification, namely vertex
decimation algorithms (e.g. [SZL92, SL96, AD01]). These algorithms iteratively deter-
mine a vertex for removal, typically based on some error metric. The vertex and all
adjacent triangles are removed, and the resulting hole is then re-triangulated. For this
thesis, the excellent decimation algorithm from Schroeder et al. [SZL92] has been em-
ployed and extended to deal with global features and the density field defined over the
reference mesh.

Figure 34: Vertex decimation: A vertex is deleted and the resulting hole is re-triangulated.

The first step of the decimation algorithm classifies all vertices of the mesh into
one of the following types: A simple vertex is surrounded by a complete cycle of tri-
angles. A boundary vertex is surrounded by a semi-complete cycle of triangles and
lies on a boundary of the triangle mesh. All other vertices are classified as complex
vertices, these are non-manifold cases. A simple vertex can further be classified into
an interior edge vertex, that is, a vertex with exactly two adjacent feature edges, and
a corner vertex, with one, three or more adjacent features edges. These feature edges
are either defined by local geometry, if the dihedral angle between two adjacent trian-
gles is greater than a user-defined threshold, or by global feature edges which may be
extracted in a pre-process using more sophisticated algorithms.

Simple Complex Boundary Interior edge Corner

Figure 35: Vertex classification: The five different vertex types.

Complex vertices and corner vertices are never removed from the mesh. Only sim-
ple, boundary and inner edge vertices become candidates for removal. To decide if a
vertex is actually to be removed, a decimation criterion is evaluated. Depending on
the vertex type, different criteria are used. Simple vertices always use the distance-to-
plane criterion: An average plane for the vertex and all adjacent vertices is created us-
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ing a least squares fitting technique, see Appendix A. If the distance from the average
plane to the vertex is below a certain threshold, the vertex is removed. Boundary and
interior edge vertices use the distance-to-edge criterion: The algorithm determines the
distance to the line defined by the two vertices creating the new boundary or feature
edge after removal. If that distance is below the threshold, the vertex is removed.

Figure 36: Distance to plane criterion for simple vertices (left), and distance to edge criterion
for boundary vertices (middle) and inner edge vertices (right).

These criteria ensure the fidelity to the original mesh. When using solely these
criteria it is possible that in nearly planar regions only a few, very large triangles are
created. This is not desirable for the purpose of isotropic surface remeshing and a
new check is introduced: In addition to the fidelity checks, a vertex must also pass
a criterion that is based on some area associated with each vertex. This efficiently
prevents the creation of inappropriately large triangles. In particular, the use of the
barycentric area of a vertex seems to be a reasonable and easy-to-compute choice;
the barycentric area of a vertex is one third of the summed area of adjacent triangles,
this is the same area that is used to compute the discrete curvature of the mesh (see
Section 4.3 for details). In presence of a density function defined over the original
mesh, the area checks are extended to mass checks. The approx. barycentric mass at a
vertex is computed as one third of the summed masses of adjacent triangles. Although
this is just an approximation of the real barycentric mass at the vertex, the method
works well in practice, is very efficient and the approximated barycentric masses sum
up to the total mass of the mesh.

If a vertex passed the fidelity and area checks, it is allowed to be removed. Delet-
ing the vertex and all its adjacent triangles leaves a hole in the mesh, which must be
re-triangulated, effectively reducing the mesh by one vertex and two faces for each
removal. The triangulation needs to be carefully created to avoid intersecting and de-
generate triangles. In case the new triangulation cannot be created, the vertex is not
removed. To fill the resulting hole in the mesh, the loop of vertices forming the hole is
identified and a recursive loop-splitting procedure is employed. An initial static split
is performed if an inner-edge vertex is to be removed, to keep the features intact.

Starting with the initial loop(s), each loop is divided into two loops using a split line
defined by two non-neighboring vertices of the loop. If a loop has only three vertices
left, a triangle is created and the recursion stops. To avoid intersections, a loop split is
evaluated using a split plane. This split plane contains the split line and is orthogonal
to the average plane of the vertices (as used for the distance-to-plane fidelity checks).
To determine whether the split creates two proper non-overlapping sub-loops, the
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split plane is used for half-space comparison. If all vertices of a sub-loop are on the
same side of the split plane, the split is valid. Since there are typically more than one
valid splits for a given vertex loop, the best possible split line is determined. All possi-
ble split lines are evaluated and the split with maximum quality ratio is selected. The
quality ratio is calculated by taking the minimum distance of all vertices to the split
plane divided by the length of the split line. This ratio can be constrained to prevent
degenerated triangles from being created.

Figure 37: Recursive loop splitting: The best split line for each loop is found, the loop is split
and recursively re-triangulated.

Special topological operations can occur during the simplification process, for ex-
ample tunnels may be joined or duplicated triangles can be created. These cases are
treated using a classification on the vertex loop that is about to be re-triangulated. If
the vertex loop is complex, that is, if two non-neighboring vertices of the loop are con-
nected with an edge after the adjacent triangles are removed, deletion of the vertex is
not permitted.

4.4.2 Mesh Oversampling

The idea behind mesh oversampling is to successively refine the mesh until the re-
quired vertex budget has been achieved. One major obstacle is the degeneration of
triangle quality if refinement is done in a naive way, for example by placing a new ver-
tex at the barycenter of a triangle. This causes all angles in the triangle to be halved,
thus triangles quickly degenerate. Another issue is the choice of the new vertex posi-
tion: If the vertex is placed directly on the triangle to be refined, the original shape of
the model is always preserved, which might be good for actual piecewise linear sur-
faces, but the increased amount of vertices could approximate a smooth surface in a
much better way.

One way to improve the positions of new vertices is to place them onto a local
approximation of a smooth surface, for example a surface defined by PN triangles as
proposed by Vlachos et al. in [VPBM01]. However, the problem of degenerating tri-
angles is not acceptable. One observation is that there is no proper way of locally
injecting samples without harming the triangle quality. Instead, oversampling should
be better performed as a global process. Global insertion, as opposed to local inser-
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tion, also affects adjacent triangles, for example if new vertices are placed on the edges
of the mesh. Although it is not possible to directly sample the mesh to an exact vertex
budget, well-known subdivision techniques can be applied to create smooth surfaces
without harming the triangle quality, see [Uml05] for a survey.

In contrast to simplification, the operations are directly applied to the original
mesh for various reasons. Most important is that the original model may not be suited
to grow reasonably round surface patches, which are required for vertex relocation
later on, when applying the relaxation. This is especially true for CAD models that
contain many large or degenerated triangles. Another reason is that it is not possible
to achieve an exact vertex budget with the global techniques described in this section.
An adequate solution is to simplify the oversampled mesh to achieve a precise amount
of samples, and use the oversampled mesh as reference during remeshing.

Mesh subdivision: Subdivision of meshes, or subdivision surfaces, dates back to the
late 70s with the introduction of the Catmull-Clark [CC78] and the Doo-Sabin [Doo78,
DS78] subdivision schemes. In later work, Charles Loop introduced the Loop subdi-
vision [Loo87], an easy and efficient algorithm to create smooth surface approxima-
tions on triangular meshes. These early methods were mostly not able to deal with
sharp features, resulting in an overall smooth surface even at sharp feature edges.
Hoppe extended the Loop subdivision scheme to deal with piecewise smooth surfaces
in [HDD+94]. Due to the flexibility and simplicity, the Loop subdivision has been cho-
sen for this thesis.

Figure 38: Loop subdivision of an icosahedron (left), after one iteration (middle) and after two
iterations (right).

The early subdivision schemes were approximating, i.e. the original vertices, or
control points, are not part of the limit surface but original vertex positions are ad-
justed with respect to smoothness conditions. This typically causes shrinking of the
mesh within some bound. However, for denser meshes the shrinking is usually not
a problem. In interpolating schemes, like the Butterfly subdivision scheme [DLG90],
the original vertices are not allowed to move. This causes the mesh to enlarge and it
has been observed that the resulting limit surfaces tend to be not as smooth as with
approximating schemes.

43



Loop subdivision: The Loop subdivision scheme iteratively splits each triangle into
four smaller triangles, called the refinement, which increases the amount of triangles
by factor four, see Figure 39. For this reason, typically only few iterations are applied.
The refinement is applied in two phases. In the first phase, new vertices are inserted
on the edges of the mesh using the weighted average of neighboring vertices (control
points). In the second phase, the control points (original vertices) are moved to obtain
a smooth surface, i.e. to achieve continuity of the tangent planes.

Figure 39: Loop subdivision refines a triangle
into four sub-triangles.

Figure 40: Position masks for edges and
original vertices.

The positioning scheme of the vertices can be visualized in diagrams called subdi-
vision masks, stencils or templates, see Figure 40. The mask is centered over a vertex
and the new position is calculated with an affine combination of neighboring vertices
and the vertex itself. First, all edges are refined using the position mask for edge ver-
tices: The position of the new vertex xnew with neighboring vertices x1, . . . , x4, where
x2 and x3 are the vertices adjacent to the edge, is calculated as:

xnew =
1

8
(x1 + 3x2 + 3x3 + x4)

Then, all remaining control vertices are moved using the position mask for original
vertices. The new position xnew0 of the vertex xold0 with neighboring control vertices xi,
1 ≤ i ≤ n is calculated as:

xnew0 = (1− αn) · xold0 +
αn
n

∑
xi

αn =
5

8
−
(

3

8
+

1

4
cos

2π

n

)2

Piecewise smooth subdivision: The fitting of a smooth surfaces often produces un-
pleasant results if the original surface has sharp edges. In [HDD+94] complemen-
tary rules and masks have been developed to deal with piecewise smooth models and
commonly occurring features the authors call creases, corners and darts. The method
requires a subset of all edges to be tagged as sharp; this subset should also include
boundary edges. The extraction of those features has been discussed in Section 4.3.1.
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Vertices are classified according to the amount of incident feature edges e. Smooth
vertices have no incident features, i.e. e = 0. A dart vertex has e = 1, a crease vertex has
e = 2 and a corner vertex has e > 2. A crease vertex is either regular if the vertex has
valence 6 and exactly two smooth edges at each side of the crease, or non-regular in
all other cases. A crease vertex on the mesh boundary is regular if it has valence 4.

The new positions for smooth and dart vertices are calculated using the smooth
vertex mask from Figure 40. Crease vertices are only moved along the crease, and
corner vertices are never moved, see Figure 41. Finding the right mask for edge refine-
ment is more complicated and depends on the type of incident vertices. If at least one
of the vertices is smooth or a dart, the smooth edge subdivision mask is applied. If a
regular crease vertex meets a non-regular crease vertex or a corner, non-regular crease
edge subdivision is performed, where the regular crease vertex gets more weight. In
all other cases, regular crease edge subdivision is performed.

Crease vertex Corner vertex
Regular

crease edge
Non-regular
crease edge

Figure 41: Loop masks for non-smooth vertices (left) and feature edges (right).

Given a mesh and a set of tagged feature edges, the modified Loop subdivision
algorithm together with the new subdivision masks is able to create piecewise linear
smooth surfaces, see Figure 42 for an example.

Figure 42: Feature-sensitive Loop subdivision of a star with tagged feature edges.

Although regular subdivision of surfaces is a powerful tool to create smooth and
almost regular meshes, subdivision produces best results only if the triangles have ac-
ceptable quality. The worst angle in each triangle is also present in all the sub-triangles
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after subdivision. For this reason, subdivision is rarely suited for meshes with degen-
erated faces and numerical stability becomes a serious issue.

CAD meshes: Oversampling of meshes that are typically generated by tessellation
units of CAD applications is more difficult because a simple mesh subdivision scheme
is not applicable due to the large amount of heavily degenerated triangles. The tes-
sellation goal of a CAD application is to create a mesh with as few as possible trian-
gles for a given error bound, which is fundamentally different from the generation of
high-quality meshes. Consequently, the intuitive intention is to insert new samples,
especially in regions where only few samples are present, to create a properly sam-
pled domain and to apply the relaxation procedure afterwards. This is achieved by
removing the degenerated triangles while inserting new samples.

Figure 43: A cylinder exported from a
CAD application: Degenerated triangles
are a very common artifact.

Figure 44: Types of degenerated trian-
gles: A cap (top), a needle (middle) and
a cap-like needle (bottom).

A closer analysis of these meshes reveals two different types of degenerated trian-
gles, caps and needles, see Figure 44. While needles can be removed by collapsing the
short edge, caps are much harder eliminate, because none of the relatively long edges
can be collapsed without creating new degeneracies on adjacent triangles. One solu-
tion for this problem is to subdivide the long edge in a global operation to obtain two
needles. This global operation needs to ensure that no new caps are created.

Botch and Kobbelt propose a scheme [BK01] to eliminate degenerated faces based
on a mesh slicing approach. For each cap, an appropriate split plane is constructed
to eliminate the cap, and the whole mesh is sliced with that plane. In the first pass,
the plane is used to partition the space in two half-spaces, each vertex is classified as
being above, below or directly on the plane with respect to some ε. In the second pass,
all triangles that intersect with the plane are subdivided into two or three triangles,
depending on whether one or two edges intersect with the plane. After all caps have
been removed, the mesh is simplified by collapsing the short edges of the remaining
needles, thus eliminating the degenerated triangles.

Mesh slicing is a robust technique because it operates on vertices only and not on
the faces. To ensure that no additional caps are created, the slicing operation snaps
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vertices to the plane if the distance is smaller than some ε. Additionally, if the cutting
plane and the intersected edge are nearly parallel, the edge is snapped to the plane.

Although the mesh slicing approach is capable of inserting new samples directly on
the long edges of caps, the results are not fully satisfactory. For example, CAD meshes
or parts of them may only contain needles, and there is no need to eliminate any prob-
lematic cap. New samples may still be inserted by slicing the mesh with a set of axis
aligned planes, but this produces even worse needles, especially if a needle is sliced
several times with a dense set of cutting planes, see Figure 45.

The scheme of Botch and Kobbelt has been improved for this thesis. Instead of im-
mediately creating the new triangles as a triangle is intersected, a lazy triangulation
scheme is used to prevent the staggering creation of new needles. In the first pass the
mesh is sliced with all planes and intersection points are remembered. Subsequent
slicing operations are also snapped to these new points. After slicing is complete, each
triangle is re-triangulated using the points on the edges. Re-triangulation is performed
with the recursive loop-splitting procedure as explained in Section 4.4.1. The down-
side of this approach is the quadratic complexity of the re-triangulation scheme, and
triangles with a lot of intersection points consume a considerable amount of process-
ing time.

Figure 45: Mesh slicing procedure of an initial mesh using five slicing planes (left) with imme-
diate triangulation (middle) and with lazy triangulation (right).

Figure 46: Slicing of a cylinder model using 20 slicing planes along the x-axis with immediate
triangulation (left) and lazy triangulation (right).
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4.5 Polishing the Sampling

After the mesh complexity has been adapted, the positions of the vertices are pol-
ished to obtain a precise, isotropic sample placement. Polishing the sampling is done
by iteratively relocating every vertex in the triangulation, this process is called vertex
relaxation. Several relaxation schemes has been proposed in literature, for example
several smoothing operators [BHP06], angle-based smoothing and area-equalization
[SG03]. Lloyd relaxation is used as central concept for isotropic surface remeshing in
this thesis. However, other relaxation methods can easily be implemented within the
provided relaxation framework.

4.5.1 Providing Vertex References

At this point in the remeshing pipeline, the reference mesh and the evolving mesh are
both loaded. The task is to perform the relaxation procedure on the evolving mesh,
iteratively relocating every vertex on the surface of the reference mesh. The evolving
mesh vertices carry information that uniquely defines their position on the reference
surface. Such a vertex position v can be specified with a pair (f, b) consisting of a face f
of the reference mesh and a barycentric coordinate b = (b1, b2, b3) of v with respect to f .
With that notation every point on the reference surface can be expressed. Given such
a reference (f, b) for v, the coordinates of v can be evaluated by taking the vertices
f = (v1, v2, v3) from the reference mesh and calculating the affine combination v =
b1v1 + b2v2 + b3v3 with respect to the barycentric coordinate b.

During the relaxation process, the task of relocating a vertex v boils down to finding
a new barycentric coordinate with respect to the face on the reference mesh that con-
tains v. The resulting position of v is then easily calculated using the above method.
Before the relaxation process can be started for the first time, the vertex references
need to be initialized. This should be done as soon as the evolving mesh is created,
either caused by copying the reference mesh or as the result of the simplification pro-
cess. Thanks to the fact that the simplification only deletes and never moves a vertex,
every vertex of the evolving mesh coincides with a vertex of the reference mesh, and
the vertex references are easily calculated by picking any adjacent face on the refer-
ence mesh for f and the barycentric coordinate that corresponds to the vertex, i.e.
b = (1, 0, 0), b = (0, 1, 0) or b = (0, 0, 1).

4.5.2 Initial Sample Distribution

One tough challenge in remeshing algorithms that use local operations only is to pro-
duce an initial distribution of the samples with respect to the density function. For
example, if the input mesh has an overall uniform vertex distribution but should be
adaptively remeshed with the same vertex budget, vertices must be redistributed to
match the density function. Although the Lloyd relaxation is theoretically able to per-
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form this task, convergence is particularly slow in these cases: A vast number of itera-
tions are required on the supposition that numerical accuracy is sufficient.

The most important tool to deal with this problem is to make heavy use of sim-
plification. Since the simplification algorithm makes decimation decisions based on
triangle areas or masses, it can be utilized to create meshes that already appropriately
sample the surface according to the density function. Even if the vertex budget should
not be changed, this fact can still be exploited by regular subdivision of the input mesh
and subsequent simplification. However, subdivision is often not an acceptable solu-
tion for huge input meshes.

Another possibility to create an initial sampling is to make use of area equalization
[SG02]. The authors discovered that equalizing the areas of triangles in an iterative
process results in a fair, globally uniform vertex distribution while requiring very few
iterations. Equalization is done by moving a vertex to a new position within the ver-
tex’ umbrella in a way that the area of adjacent triangles are as close as possible to
each other. Thus area equalization is just a different relaxation procedure that is easily
implemented in this remeshing framework. In [SG03] the authors extended the tech-
nique to deal with a density field by equalizing the approximate masses of triangles. To
be more precise, they equalize the ratios of the areas with respect to an approximate
density value.

For the given umbrella polygon P = (p1, . . . , pn), pi = (xi, yi), where A is the area of
P , the aim is to find a new position v = (x, y) for the center vertex such that:

(x, y) = arg min
(x,y)

n∑
i=1

(Ai(x, y)− µiA)2 with Ai(x, y) =

∣∣∣∣∣∣
xi yi 1
xi+1 yi+1 1
x y 1

∣∣∣∣∣∣
In the uniform case, µi is set to 1/n, which equalizes the areas of the triangles. To

extend the method, µ̄i is set to the density value between vertices pi and pi+1. The µi’s
are then computed to be normalized ratios of the areas, i.e.

∑
µi = 1. The involved

optimization problem reduces to solving a linear system Mv = b with two equations
and two unknowns and has a unique solution. The linear system is given by

n∑
i=1

ȳ2
i

n∑
i=1

x̄iȳi

n∑
i=1

ȳix̄i

n∑
i=1

x̄2
i

 v =


−

n∑
i=1

ȳi(xiyi+1 − xi+1yi − µiA)

−
n∑
i=1

x̄i(xiyi+1 − xi+1yi − µiA)


where x̄i = xi+1 − xi and ȳi = yi − yi+1. The linear system can now be solved by
inverting the matrix. See Appendix D on how to derive this linear system.
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4.5.3 Lloyd Relaxation

The Lloyd relaxation method is a deterministic fixed-point iteration to create a cen-
troidal Voronoi tessellation for a set of points in 2D, that consists of three steps:

1. Create the Voronoi tessellation of the n sites,

2. Move the n sites to the centroids of their cells,

3. Repeat the iteration until convergence is achieved.

The aim is to extend the original method to create the weighted centroidal Voronoi
tessellation with respect to the prescribed density function directly on the evolving
mesh while referring to the reference mesh as geometric reference. It is not needed
to explicitly work with the Voronoi tessellation but rather with the dual Delaunay tri-
angulation. Therefore the Delaunay property is maintained by flipping edges in 3D
after each iteration of the relaxation procedure. The Voronoi cells of the vertices are
then calculated in a parametric domain and each vertex is moved to the centroid of its
Voronoi cell. The steps are now described in detail.

Restoring the Delaunay criterion: The Delaunay triangulation of the mesh is re-
stored with a few iterations over all triangle pairs that share a common edge. The pairs
are inspected in each iteration and if the sum of the angles opposite to the common
edge is greater than 180◦, the edge is flipped. Flipping edges may invalidate the Delau-
nay criterion of adjacent triangles, thus the process is iterated until no more edges can
be flipped. Usually very few iterations are required to completely restore the Delaunay
triangulation.

Computing the centroid: Every relaxation step relocates a single vertex to the cen-
troid of its Voronoi cell. Instead of constructing the Voronoi diagram for all points of
the evolving mesh, a single Voronoi cell is constructed for each vertex of the mesh. To
calculate the cell, the umbrella of the vertex is mapped to a planar domain first. The
Voronoi cell is then created in 2D.

For a vertex v, adjacent triangles T1, . . . , Tn and adjacent vertices v1, . . . , vn, where
n is the degree of v, the umbrella of v is flattened using the following procedure: The
vertex v is mapped to the origin. Vertices vi are mapped in a way that edge lengths
‖ei‖ = ‖v − vi‖ as well as the relative angles between the edges are preserved. Relative
angles means that each angle αi between ei and ei+1 is multiplied with ratio 2πP

αi
to

sum up to 2π in the mapping. The method is an approximation to the geodesic polar
map and is also used by Floater for the shape-preserving parameterization [Flo97].

After the umbrella has been mapped to 2D, the Voronoi cell is computed. Since
the triangulation inherits the Delaunay property, the vertices of the Voronoi polygon
coincide with the circumcenters of the triangles Ti, and the Voronoi cell is constructed
by connecting the circumcenters of Ti. The algorithm needs to be more complex for
samples in the vicinity of features.
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Figure 47: Center vertex and the umbrella in 3D (left) are mapped to the plane using a shape-
preserving technique (middle). The Voronoi cell is computed in the parametric domain by
connecting the triangle circumcenters (right).

Preserving features: To make the Lloyd relaxation consistent with features, the cells
are modified if they overlap with feature edges. Overlapping cells are clipped with
these edges, which effectively disconnects two smooth regions of the mesh separated
by a crease, see Figure 48. A clipped Voronoi cell leads to a different centroid farther
away from the features, thus the samples are repulsed by creases. This leads to a plau-
sible distribution of the samples in the vicinity of these edges and samples on either
side of the crease do not influence each other.

Figure 48: Clipping of Voronoi cells makes the Lloyd relaxation consistent with features.

Clipping appears only for cells of sites that are very close to feature edges. After the
first few iterations of the relaxation process, when the major improvement on the sam-
pling is already accomplished and close samples have been repulsed, clipping rarely
occurs.

To calculate the centroid of the possibly clipped Voronoi cell, one has to distinguish
between the uniform case, i.e. where no density function is given, and the adaptive
case, where the centroid is calculated as the center of mass.

Centroid with uniform density: The calculation of the centroid with unit density is
just a special case of the more general setting with a given density function, where
all density values are equal. However, a separate handing is useful for performance
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reasons. For a polygon P with vertices pi = (xi, yi), the area A of P is given by:

A =
1

2

n∑
i=1

(xiyi+1 − xi+1yi)

Finally, the centroid c = (cx, cy) of p is calculated as:

cx =
1

6A

n∑
i=1

(xi + xi+1)(xiyi+1 − xi+1yi)

cy =
1

6A

n∑
i=1

(yi + yi+1)(xiyi+1 − xi+1yi)

As one can see, the second factor in the sum is equal to the summands of the area
formula, which allows for very efficient calculation of A and c in a single pass over the
polygon vertices.

Center of mass: Calculation of the Voronoi cell’s centroid, or better called center of
mass, with respect to a prescribed density function is computationally a bit more ex-
pensive. In the first step, the density values of the umbrella vertices vi and center ver-
tex v are acquired. Since the density function is only defined at the reference mesh
vertices, the density values for vi and v are each evaluated with a linear interpolation
over the face of the reference mesh that contains the sample. This is easily done by
using the three density values of the reference mesh together with the barycentric co-
ordinate stored in the vertex reference.

In the second step, the density values di at the Voronoi polygon vertices pi are calcu-
lated by finding the triangle that contains pi in the parametric domain. If the triangle is
found, di is again evaluated with a linear interpolation of the density over the triangles
in the mapping. If pi lies outside the umbrella, pi is located between two consecutive
edges ek and ek+1. In that case, the density is linearly interpolated between vertices vk
and vk+1 with respect to the distance from pi to ek and ek+1.

At this point, the Voronoi polygon P , density values di at the polygon vertices pi
and the density at the center vertex v are known. To proceed, the polygon P is parti-
tioned into individual triangles Pi = (v, pi, pi+1). The massmi and the center of mass ci
for each triangle Pi is calculated using using a Bernstein-Bézier method for bivariate
polynomials [LS07], see Appendix C. The center of mass c for P is then computed by
weighting the individual ci with the mass of Pi.

c =
1∑n

i=1mi

n∑
i=1

mici

Back to the surface: After the centroid c has been calculated, the triangle T that con-
tains c in the parametric domain is determined and the barycentric coordinate b of c
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with respect to T is computed. Having triangle T and the barycentric coordinate b of
the centroid, a new vertex position located on the evolving mesh could be calculated.
It is, however, required to relocate the vertex on the surface of the reference mesh, oth-
erwise fidelity to the original surface is quickly lost due to error accumulation. Several
authors propose to project the new vertex position back to the original surface, but
this involves a computationally expensive and complex operation that may even lead
to wrong projections. Instead, vertex relocation is done with a recent parameteriza-
tion technique that has been proposed by Surazhsky et al. [SG03]. This technique is
now explained.

4.5.4 Vertex Relocation

The new position of the vertex to be relocated is given in terms of a barycentric coordi-
nate be within a specific face fe of the evolving mesh. The aim is to acquire a barycen-
tric coordinate br within a face fr of the reference mesh, i.e. bring the position back to
the original surface. Recall that for each vertex of fe a reference to the original mesh is
maintained during the algorithm.

The idea is now to parameterize only a small part of the original mesh to a planar
domain that is required to relocate the vertex. After a suitable region has been flat-
tened, three positions in 2D are calculated using the references to the original surface
from the vertices fe = (v1, v2, v3). These positions together with the barycentric coor-
dinate be yield the position of the new vertex in the planar domain. The triangle fr that
contains the new vertex is looked up and the barycentric coordinate br with respect to
that face is computed. The pair (fr, br) is stored as new vertex reference, and finally
the new vertex position is obtained in 3D. This procedure is now explained in detail.

(a) (b) (c) (d)

(h)(g)(f)(e)

Figure 49: Vertex relocation: (a) The vertex to be relocated. (b) Umbrella mapped to a planar
domain. (c) Voronoi cell and centroid. (d) The new umbrella. (e) Face containing the centroid
on the evolving mesh. (f) Faces and centroid on the reference mesh. (g) The region to be
parameterized. (h) The patch with the face containing the centroid on the reference mesh.
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Patch construction: A technique to construct a small patch required to relocate a
vertex is now discussed. The patch is created on the basis of the pair (fe, be) that
gives a unique position on the evolving mesh. Let v1, v2, v3 be the vertices of fe and
(f1, b1), (f2, b2), (f3, b3) the corresponding vertex references of v1, v2 and v3. The goal is
to create a patch on the reference mesh that contains the faces f1, f2 and f3. For every
face fi, a circular neighborhood Ni of faces is collected using a breadth-first growing
approach until the other two faces fi+1 and fi+2 has been visited (all face indices are
modulo 3). The union ofN1,N2 andN3 is then taken as surface patch P3D.

The constructed patch is small enough to have negligible distortion for vertex re-
location, but is larger than necessary: That allows reusing the patch for nearby reloca-
tions. This caching approach is explained in Section 4.5.5.

Several problematic situations can arise during the creation of a patch. For exam-
ple, if a patch is growing on a cylinder-like region with small diameter, the patch can
twine around the cylinder and connect to itself, creating a domain that is not isomor-
phic to a disc and thus cannot be flattened to 2D. Another issue is that large triangles
on the evolving mesh can generate very large patches on the reference mesh with a
larger distortion. If cached, these patches may harm placement precision.

Construction of the patches generally relies on well-shaped triangles. The triangles
are collected in a breadth-first search over the faces; if the faces are degenerated or
considerably vary in size, the resulting patch P3D may not be as round as intended. In
the best case, this causes more distortion in the resulting planar domain. In the worst
case, the patch can possibly contain holes after merging the individual neighborhoods
Ni due to the deformed circular regions. The patch cannot be flattened then because it
contains several boundaries. One improvement of this problem is to cut ear triangles
in each circular neighborhood Ni. Ear triangles are on the boundary and have only
one adjacent triangle.

In all erroneous cases, the embedding cannot be created and relocation of the ver-
tex is aborted. It is, however, most likely that these vertices are relocated in a sub-
sequent iteration because nearby patches that have successfully been created and
cached may contain the region required to relocate the vertex.

Patch flattening: The constructed patch P3D is now flattened to a planar domain
by parameterizing the 3D patch, yielding a planar patch P2D. To start, the boundary
vertices of the patch are mapped onto the unit circle in the plane, where the straight
distances between the vertices on the circle are proportional to the distances in the 3D
patch. The flattened patch boundary vertices are then used as seed for parameteriza-
tion of the remaining vertices. To do this, each interior vertex is expressed as a com-
bination of neighboring vertices using Mean Value Coordinates developed by Floater
in [Flo03]. Mean Value Coordinates are very efficient to compute, create weights that
smoothly depend on the neighbors and always produce a valid embedding that is free
from fold-overs. The issue of surface parameterization is elaborated in Section 4.6.
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Finding the new reference: Given a new vertex position (fe, be) on the evolving mesh,
the three vertex references (f1, b1), (f2, b2), (f3, b3) of fe and a planar patch that con-
tains the faces f1, f2 and f3, the algorithm proceeds as follows: Three vertex positions
v̄1, v̄2, v̄3 in 2D are calculated using the barycentric coordinates bi together with the
corresponding faces fi in the planar domain. These positions correlate with the vertex
positions of fe on the evolving mesh. To get the new vertex position v̄ in the planar
domain that corresponds with the centroid, the positions v̄i are used together with the
barycentric coordinate be.

The new position v̄ is located within some yet unknown face of P2D, which needs
to be traced. A face search based on barycentric coordinates is performed: The search
starts at an arbitrary face fx and analyzes the barycentric coordinate bx of v̄ with re-
spect to fx. If at least one component of bx is negative, the search advances in the
direction that corresponds to the smallest negative component of bx, see Figure 5.
Otherwise, if all components are positive, fx contains v̄. This completes the vertex
relocation: The new vertex reference (fr, br) is given by (fx, bx) and the position in 3D
is computed.

4.5.5 Increasing Efficiency

Efficiency is seriously a matter since every vertex of the evolving mesh is relocated in
each iteration of the relaxation. Typically several Lloyd iterations are required in or-
der to obtain a precise, isotropic sampling of the domain. A naive approach is finally
compelled to compute a surface patch for each vertex relocation, which is an expen-
sive operation, but the actual algorithm performs with almost no memory.

The efficiency of the relaxation is drastically improved by employing a caching sys-
tem that keeps patches as long as memory consumption is acceptable. One possible
and simple caching system is to use a FIFO that keeps already created patches. New
patches are only created if the FIFO lacks an existing patch that contains the three
faces required for relocation. The performance gain is further improved by pushing
cache hits to the front of the FIFO. If combined with a cache-aware vertex ordering as
described in Section 4.2.2, this strategy performs very well even with a small amount
of available cache memory. To limit the amount of memory, the elements with earliest
access time are popped from the FIFO.

The relaxation procedure is also generally able to operate in parallel. In each it-
eration, the vertices are divided into disjoint sets which are separately processed in
threads. The situation is, however, demanding in combination with caching. Experi-
ments show that the FIFO approach is not suited because every cache hit also involves
a cache write to update the FIFO, and thread exclusions prevent proper parallelism.

A different caching scheme is to build a data structure that maintains a list of pat-
ches for each face of the reference mesh. A newly created patch extends the lists of
all faces contained in the patch. The lookup operation is very efficient with this tech-
nique: The lists corresponding to the three given faces are inspected and the first patch
that exists in all lists is taken. Since every face contains only a small number of patches
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in average, there is no need to push cache hits to the front of the lists; this obviates
a write access for each cache hit and allows for parallel operation. Removal of old
patches is, however, not as easy as with the FIFO approach. A timer for each patch is
maintained and every cache hit increases the global time and updates the patch timer.
If the memory limit is reached, a fixed percentage of the cached patches with earliest
access time are removed in a single pass over the data structure. Although the scheme
is CPU efficient, the data structure alone requires a considerable amount of memory,
especially for large reference meshes.

4.6 Parameterization Techniques

Surface parameterization is defined as mapping a mesh embedded in 3D onto a suit-
able target domain. The problem does not state any restriction regarding the mesh
topology or the target domain. Some authors propose to map meshes to their natural
domain, e.g. to use a spherical parameterization [CGS03] for closed, genus-0 meshes,
which are topologically equivalent to a sphere. However, in this thesis, planar param-
eterizations are of particular interest, and the problem of surface parameterization is
then formulated as follows: Given a mesh, a piecewise linear mapping between the
mesh and some planar domain needs to be computed. This planar domain typically
is a simple shape, like disk or a rectangle.

Surface parameterization has a lot of applications in the computer graphics such as
morphing, mesh completion, texture and normal mapping, mesh editing and remesh-
ing. Several excellent surveys and tutorials cover the different applications, aspects
and techniques of surface parameterization, for example [SPR06, FH05, FH02] to cite
a few.

Introduction: Planar parameterization techniques focus on minimizing a specific
distortion to reduce the error under a certain error metric. Maps that minimize the
angular distortion, or shear, are called conformal maps, and the goal is to keep the
angles in the parameterization as close as possible to the original angles. Of course,
since the angles around a vertex typically don’t sum up to 2π, a distortion is almost
unavoidable.

Maps that minimize areal distortion are called authalic. Though authalic parame-
terizations are achievable, they are not very useful because they allow for high angular
and isometric distortions, and should better be used in combination with other con-
ditions.

Another commonly used parameterization goal is the minimization of distance
stretching across the mesh using a stretch metric, which results in an isometric map. A
popular technique has been developed by Sander et al. in [SSGH01] for the purpose of
texture-mapping progressive meshes. Similar to angle preservation, stretch preserv-
ing parameterizations are generally not possible but exist for developable surfaces, i.e.
surfaces with zero Gaussian curvature.
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Besides distortion, there are other factors that should be considered when choos-
ing a parameterization method for a specific application. For example, a free bound-
ary may considerably reduce the distortion compared to the fixed boundary that is
used in many applications. However, computing the free boundary as part of the
problem is often much slower to solve and more complicated to implement. Another
serious issue is the robustness of the method: Most applications require a bijective
mapping, i.e. no flipped triangles and self-intersecting boundaries in the parameter
domain, and some techniques don’t guarantee bijection. One might also pay attention
to the computational complexity; most fixed-boundary parameterizations merely re-
quire solving a linear system of equations where the free-boundary setting often in-
volves a non-linear optimization problem.

For the purpose of surface remeshing, any simple, fast and robust technique that
minimizes shear is of particular interest for this thesis.

Mathematical formulation: The early papers which address parameterization for
computer graphics applications were mostly interested in planar mappings with disk-
like topologies. Research dates back to a method presented by W. T. Tutte for the em-
bedding of planar graphs with the title “How to draw a graph” [Tut63]. With his formu-
lations he presented a general framework which is also used by recent methods and
directly applies to meshes. Tutte uses a two-stage procedure: First, the vertices of the
mesh boundary are mapped to a convex region in 2D, for example a disk or a rectan-
gular region. In the second step, the rest of the vertices are mapped to 2D by solving a
linear system of equations.

Let v1, . . . , vn be the unknown interior vertices and vn+1, . . . , vn+m the boundary ver-
tices in 2D. The 2D positions of the m boundary vertices are calculated in the first
stage, for example by placing the vertices on the unit circle where the straight dis-
tances between neighboring vertices on the circle are proportional to the distances
on the mesh. In the second stage, the following equations for all interior vertices
i ∈ {1, . . . , n} with umbrella neighborhood Ni solve for the new positions v1, . . . , vn by
using the fixed vertices vn+1, . . . , vn+m as boundary conditions v̄i for the linear system:

vi −
∑

j∈Ni,j≤n

λijvj = v̄i with v̄i =
∑

j∈Ni,j>n

λijvj

The coefficients λij are normalized weights that depend on the weights wij :

λij =
wij∑
k∈Ni

wik
thus

n∑
j=1

λij =
∑
j∈Ni

λij = 1

The weights wij are defined by the particular parameterization method that is used,
for example, Tutte employs unit weightswij = 1 if j ∈ Ni, or in words, if (i, j) is an edge
in the mesh. If (i, j) is not an edge in the mesh,wij = 0. The linear system of equations
Av = v̄ can now be obtained by separation of the variables for vi = (xi, yi) and the fixed
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right-hand side v̄i = (x̄i, ȳi) and solving the linear system individually for the x and y
component, i.e. by solving Ax = x̄ and Ay = ȳ. The system has the following form: 1 · · · −λ1n

...
. . .

...
−λn1 · · · 1


 x1

...
xn

 =

 x̄1
...
x̄n


It has been proven that if the weightswij are positive and the resulting matrixA is sym-
metric, the mapping is bijective [Tut63]. The weights used by Tutte therefore clearly
result in a bijective mapping, but they don’t preserve any properties of the mesh.

Conformal parameterization: The choice of the weights is critical to achieve a pre-
cise vertex placement. Since most remeshing techniques are very sensitive to shear
but can tolerate a fair amount of areal distortion and stretch, a conformal mapping
is the technique of choice. A noteworthy publication is the harmonic or cotangent
mapping from Eck et al. [EDD+95], who define the weights as follows:

wij =
cotαij + cot βij

2

However, if the mesh contains obtuse triangles, the weights can be negative and the
parameterization contains flipped triangles: The mapping is not bijective. To accom-
modate this drawback, Floater introduced the shape-preserving coordinates [Flo97],
which always produce positive, symmetric weights and guarantee a bijective map-
ping, but they have derivate discontinuities. Later, Floater proposed the mean-value
coordinates [Flo03], which don’t have discontinuities and additionally, they are much
easier to compute:

wij =
tan γij/2 + tan δij/2

‖vi − vj‖

The resulting matrix A for the mean-value weights is not symmetric (wij 6= wji), nev-
ertheless, Floater proved that the coordinates always create a valid embedding.

Solving the linear system: To parameterize the 3D patch to the planar domain, the
linear systems Ax = x̄ and Ay = ȳ need to be solved. The naive approach of storing
and solving the linear system results in a gigantic amount of required memory and
processing time. For example, if a patch with 1000 inner vertices is to be parameter-
ized, the involved linear system has dimension 1000 and requires about 10002 · 4 bytes
storage for the matrix with single floating point precision. Note that practical remesh-
ing examples of large meshes easily generate patches with several thousand vertices.

A closer look at matrix A reveals the sparsity: The diagonal element Aii of row i is
1, and the other elements Aij, i 6= j correspond to the normalized weights λij . Only
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Figure 50: A remesh using different weights to parameter-
ize the mesh. The method from Tutte [Tut63] (left), shape-
preserving coordinates [Flo97] (middle), and mean-value
coordinates [Flo03] (right), taken from [Flo03].

Figure 51: Terminology used
for the harmonic coordina-
tes and the mean-value co-
ordinates.

few of these elements Aij with j ∈ Ni are non-zero, namely those elements in the
neighborhood of vi. For a typical mesh, the average valence of each vertex is 6, and
that results in an average of 7 non-zero entries per row. A matrix where the majority
of elements are zero is called a sparse matrix. Sparse matrices can efficiently be stored
and the involved linear system can be handled with solvers that exploit the sparse
structure.

Literature distinguishes between different types of linear system solvers. Dense
direct solvers are the most generic type of solvers: They operate on all kind of ma-
trices and provide accurate results. However, for large linear systems these kind of
solvers are inappropriate because they don’t utilize special properties of the matrix,
e.g. sparsely populated matrices. Iterative solvers are able to exploit the sparsity of the
matrix; they are simple to implement, fast and therefore de facto standard for solving
sparse systems. At some point, however, the speed of convergence towards the so-
lution decreases. Multigrid solvers are an extension to iterative solvers to accelerate
the convergence by employing a hierarchical solving scheme. But these solvers are ex-
pensive to implement and require a fair amount of pre-computation time. Sparse di-
rect solvers provide direct accurate results but have high complexity. Nevertheless, as
shown in [BBK05], sparse direct solvers can even outperform iterative solvers if proper
pre-processing is applied.

Sparse iterative solvers [BBC+94] are of special interest for this thesis because they
are widely available in mature linear algebra packages. They compute a sequence
x(0), x(1), . . . of approximations towards to solution x∗ of the linear system. Simple ex-
amples of such solvers are the Jacobi and Gauss-Seidel methods. A much faster con-
vergence is achieved with the method of Conjugate Gradients (CG), which is suited
for symmetric positive-definite (spd) matrices. Unfortunately, mean-value coordi-
nates produce a non-symmetric matrix (wij 6= wji). Instead, an extension named Bi-
Conjugate Gradients (BiCG), the stabilized version with improved guarantees (BiCG-
STAB) or the generalized minimal residual method (GMRES, [SS86]) can be used.
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Another important point is that the linear system needs to be solved twice for dif-
ferent right-hand sides, but the matrix is constant. This additional information can
be exploited by investigating pre-computation time in pre-conditioning [Ben02] the
matrix as a way of improving the convergence of iterative methods. Simple but pow-
erful pre-conditioners can be obtained by incomplete factorization methods of form
M = L̄Ū , where L̄ and Ū are the incomplete (or approximate) triangular LU factors.
These incomplete factors are obtained by Gaussian elimination and suitable fill-in dis-
carding strategies, which are surveyed in [Ben02]. These strategies typically differ in
the way fill-in positions S are found, where S ⊆ n × n is a subset of all positions in
the matrix, usually including the diagonal elements (i, i). Given that subset, a fill-in
is only allowed for those positions that are contained in S. For example, the simple
no-fill ILU factorization is obtained by choosing S to coincide with the non-zero po-
sitions of the sparse matrix A. Similarly, the same concept applies to the incomplete
Cholesky factorization (IC) for spd matrices.

The use of a pre-conditioner significantly reduces the processing time to solve the
linear system even for a single right hand side due to increased convergence. For mul-
tiple right hand sides, the gain is substantial.
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5 Results, Contributions and Issues

A pipeline for relaxation based surface remeshing has been established, in particu-
lar by making use of Lloyd relaxation as key concept, to equalize the areas or masses
of Voronoi cells. The involved algorithms can be controlled using several parame-
ters: The sampling of the resulting meshes may either be uniform or adaptive with re-
spect to a density function. The flexible design of the density function allows to create
smooth transitions between uniform and curvature-adapted samplings. Preservation
of feature edges on the mesh makes the algorithms suited for a broad range of models
from different application domains.

The remeshing results are demonstrated with several popular meshes. All timings
are taken from interactive remeshing sessions performed on an AMD Athlon 64 X2
Dual Core processor with 2600 MHz and 2 GB RAM. A comprehensive table with a
statistical breakdown is given at the end of this section.

The Stanford Bunny

The Bunny from the Stanford Scanning Repository is one of the most popular mod-
els in computer graphics, and it is obligatory to present results with this model. The
Bunny is particularly well-behaved as the mesh is a closed, valid 2-manifold of genus
0 without self-intersections and the like.

Figure 52: The original Stanford Bunny with about 35k vertices and 70k faces (left) and the
discrete curvature estimation on the mesh (right).
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Figure 53: Uniform remesh of the Bunny with 20k vertices (left) and 10k vertices (right).

Figure 54: A curvature-adapted remesh using 10k vertices with different parameters for the
density field. A greater contrast exponent results in a denser sampling of curved regions.
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Marching-Cubes Camel

Surfaces extracted from volume data using the Marching Cubes algorithm are quite
common and possess a characteristic sampling in the vicinity of the volumetric grid
that leads to badly shaped triangles.

Figure 55: A Marching Cubes extraction of a camel surface with about 35k vertices (left) and
curvature-adapted remeshes with 10k vertices and different density functions.

Figure 56: The Voronoi cells on the mesh (left) and indicators for irregular vertices (right).
Black dot denotes a vertex valence < 6 and a white dots a valence > 6.
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The Stanford Dragon

The method is also able to handle large models in a reasonable amount of time due to
optimizations like patch caching and parallelization. Although the original Dragon re-
construction (with about 435k vertices) is in a bad state, the algorithm performs with-
out problems.

Figure 57: The Stanford Dragon model with the density field.

Figure 58: The remeshed Stanford Dragon with 30k vertices.
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The Stanford Lucy Statue

The down-sampled version of the Lucy statue with approx. 525k input triangles has
been used as reference mesh. The remesh consists of 30k adaptively sampled vertices.

Figure 59: The remeshed Stanford Lucy with the Voronoi diagram on the mesh.
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The Egea Model

The initial sparse model with about 8k vertices is first refined by regular subdivision
to 132k vertices. The exact vertex budget is then produced by simplification of the
refined domain.

Figure 60: The Egea model and the density field over the mesh.

Figure 61: The remeshed Egea model acquired by subdivision, subsequent simplification and
Lloyd relaxation. The resulting meshes have 10k and 25k vertices.
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Simple Box Model

The initial mesh is oversampled using the mesh slicing procedure with lazy triangula-
tion. To get a nice sampling on the features, the grid is first sliced with 10 planes for
each axis, then with 21 planes. As an implementation detail, using the sequence n,
2n+ 1, 4n+ 3, and so on, guarantees a uniform edge division.

Figure 62: A simple box mesh is refined using mesh slicing with lazy triangulation. The right
image shows the result of the same slicing procedure without lazy triangulation.

Figure 63: From left to right: The mesh after polishing the sampling, the Voronoi cells on the
mesh, and the cache-efficient triangle ordering after remeshing.
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The Fandisk Model

The Fandisk is a popular CAD mesh often used for benchmarking purposes. Unlike
typical CAD meshes, the sampling of the model is already in very good state. In the first
example the vertex positions are simply optimized while feature lines are preserved.
The second example demonstrates the piecewise linear surface subdivision technique
to create an oversampled version of the original mesh.

Figure 64: The vertices of the original Fandisk model (left) are polished without changing the
vertex budget to obtain a better sampling (right).

Figure 65: A piecewise smooth subdivision iteration of the original mesh (left) and the resulting
isotropic sample placement after Lloyd relaxation (right).
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The Joint CAD Model

To show the applicability of the remeshing framework to CAD models, a typical mesh
with degenerated faces has been processed. The mesh is sliced with several planes,
yielding an oversampled version with 26k vertices, ready for further processing. Sub-
sequent simplification removes the worst triangles and results in a fair mesh.

Figure 66: The original Joint CAD mesh (left) and the oversampled version (right).

Figure 67: The remesh after applying Lloyd relaxation towards a uniform distribution of sam-
ples on the simplified domain with 10k vertices (left) and 20k vertices (right).
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Laurent Saboret’s Hand

This example shows the improvement of area based remeshing in comparison with
Lloyd relaxation alone. An overall uniform simplification is to be remeshed with re-
spect to a density function. Lloyd relaxation alone does not manage to re-distribute
the vertices according to the density function in a moderate amount of iterations. A
combination of area based remeshing and Lloyd relaxation results in a much better
sampling of the surface.

Figure 68: The density field over Laurent’s Hand (left) and the uniform simplification to 20k
vertices (right).

Figure 69: Lloyd relaxation with 50 iterations does not re-distribute the vertices properly (left).
Area based remeshing with 20 iterations and subsequent Lloyd relaxation with 20 iterations
results in a much better sampling (right).
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Statistical Analysis

The following table shows some statistics of the remeshing results. The model and the
number of vertices is stated in the first two columns. The time to achieve an exact ver-
tex budget is given under “Simpl.”, which is the execution time of the simplification
algorithm in seconds. The “Lloyd Relax.” column lists the performed iterations and
the required time in seconds. The percentage of irregular vertices in the mesh is given
in the “Irreg.” column. The “Avg. ∠” is the average of the minimum angle in each tri-
angle. The error was measured using Metro [CRS98], and it is the maximum Hausdorff
distance between the reference mesh and the remesh.

Model Vertices Simpl. Lloyd Relax. Irreg. Avg. ∠ Error
(sec) (iter) (sec) (%) (deg) (10−3)

Bunny (original) 35,286 – – – 25.1 37.0 –
Bunny (uniform) 20,000 2.6 50 9.3 19.1 53.2 4.0
Bunny (uniform) 10,000 3.3 50 6.0 24.6 52.7 4.5
Bunny (adapted) 10,000 3.4 50 7.2 28.3 51.1 4.3
Bunny (adapted) 10,000 3.2 50 7.3 29.0 51.1 4.2

Camel (original) 34,546 – – – 52.9 32.2 –
Camel (adapted) 10,000 2.7 50 7.5 26.2 52.0 6.9
Camel (adapted) 10,000 1.6 50 8.3 25.6 52.1 7.5

Dragon (original) 435,545 – – – 67.5 31.8 –
Dragon (adapted) 30,000 30 50 110 29.2 50.2 7.4

Lucy (original) 262,909 – – – 63.7 36.7 –
Lucy (adapted) 30,000 20 50 43 29.4 51.7 2.9

Egea (original) 8,268 – – – 74.9 34.7 –
Egea (adapted) 10,000 6.2 100 22 22.0 52.6 3.9
Egea (adapted) 25,000 5.1 100 33 20.8 53.0 2.6

Fandisk (original) 6,475 – – – 19.8 43.5 –
Fandisk (uniform) 6,475 – 100 6.4 15.0 52.7 1.4
Fandisk (refined) 25,894 – – – 5.0 45.0 –
Fandisk (uniform) 25,894 – 100 21 13.2 53.2 0.7

Joint (original) 221 – – – 72.9 9.35 –
Joint (sliced) 25,808 – – – 71.2 18.0 –
Joint (uniform) 10,000 2.3 200 19 21.2 52.6 1.2
Joint (uniform) 20,000 1.6 200 30 19.1 53.3 1.2

Table 1: Statistical analysis and comparison of the remeshing results.
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Contributions

In this work a remeshing pipeline has been employed that qualifies as generic frame-
work for relaxation based remeshing methods. The technique performs all relocations
directly on the surface of the reference mesh, without relying on potentially unstable
and computationally expensive projections back to the original surface. The method
operates on surfaces of arbitrary genus due to the use of small, overlapping patches,
and does not suffer from the drawbacks of global parameterization like cutting and
stiching. All operations refer to local geometry only, which makes the treatment par-
ticularly fast and stable even for imperfect models.

To make the framework applicable to a wide range of meshes, the involved algo-
rithms are sensitive to piecewise smooth surfaces by taking account of a set of tagged
feature edges, which are preserved during the process. Using a flexible design of the
density function defined over the original mesh allows for continuous transitions be-
tween uniform and heavily adaptive samplings with respect to the surface curvature.
The involved algorithms accept a variety of parameters for different remeshing scenar-
ios to make the framework suitable for versatile applications with different demands,
especially for those applications that benefit from high regularity in terms of connec-
tivity and shape of the elements.

The practice of transitioning mesh oversampling directly to the surface of the ref-
erence mesh enables to treat not only large meshes as the result of a scanning process,
but also most CAD models which are particularly hard to remesh. The key ingredient
is an improved mesh slicing algorithm with lazy triangulation, to apply oversampling
directly to meshes with degenerated triangles and to obtain pleasant intermediate re-
sults.

Custom-tailored algorithms facilitate the collaboration between individual stages
of the pipeline. For example, the density guided simplification algorithm strives for
optimal vertex distribution to support the convergence speed of the Lloyd relaxation.

The algorithms are fast, exploiting multi-threaded execution and a cache aware
vertex ordering to stay abreast of recent changes in computer hardware. The timings
of the experimental software package outperform most remeshing algorithms while
producing quality results on par with the latest developments in the area of surface
remeshing.

The algorithms for this thesis have been implemented in a C++ framework and
packaged in a geometric library to provide an inter-operable toolset across operating
systems. To give the scientific community a tool for isotropic remeshing at hand, a
GUI has been created, tying the algorithms together, to provide an exemplary interface
to the library. The GUI and the library are both licensed under the GPL and freely
available from the Internet.

Although the algorithms perform well for the majority of meshes, there are still
several issues open for improvement.
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Issues and Open Problems

In this implementation, the relaxation procedure is not performed on vertices that are
part of feature creases, thus an initial bad sampling along the crease is not relaxed and
remains during the algorithm. To deal with that problem, one has to include the fea-
ture creases at the patch level and constrain the relocation. Due to the fact that feature
vertices and edges are inherently fixed during the relaxation, the sampling cannot be
controlled beyond these lines. The Lloyd relaxation as well as the area-based relax-
ation are therefore not able to move vertices across these boundaries.

Another serious drawback is the relocation of vertices on top of very thin but per-
ceptually salient crest lines or pinnacles, for example at the Bunny ear or the Camel
tail. Initially, these vertices define the characteristic appearance of the crest. If these
vertices are relocated orthogonal to the crest line, the ridges are quickly destroyed if
no special care is taken. This behavior is often a problem for uniform remeshes if the
triangle size is too large for heavily curved regions. Note that defining these regions
as special features would effectively prevent these problems but this is generally not
a good idea: In principle the surface is smooth in these regions and tagging the edges
would inhibit the development of a proper sampling. In the current state of the algo-
rithm, no concept for constraining these relocations has been developed. Although it
would be possible to forbid certain relocations if the error is rapidly growing, slow and
subliminal error accumulation is still possible.

A similar problem may occur during the algorithm when restoring the Delaunay
property. Flipping of edges initially oriented along a ridge may notably harm fidelity
since edge flips are performed without considering the approximation error of the
edge to the reference mesh before and after the flip. Constraining these edge flips is
also problematic because the algorithm essentially relies on a valid Delaunay triangu-
lation to construct the Voronoi cells for relocation. Applying fidelity improving edge
flips as post-process after remeshing did not turn out to be a success. In fact these
edge flips harmed the pleasant appearance of the triangulation and introduced some
degenerated triangles.

In case of problematic situations the user needs to experiment with the remeshing
parameters to obtain the best results for the specific need. However, during the most
remeshing sessions the described issues were not critical and the algorithm performed
well for the majority of the meshes.
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A Orthogonal distance regression plane

The intention is to calculate a plane that best fits a set of points in three dimensions.
There are different kinds of best-fit planes in three dimensions; one strategy mini-
mizes the maximum distance from the points to the plane, another minimizes the
sum of squared distances to the plane. The latter plane is called least squares plane
and there are also different kinds of. The distances can be measured along one axis
only, this is called a regression plane and is basically a generalization of the regression
plane for two dimension. However, the most general solution without any specific
application in mind is to use yet another regression plane witch uses the orthogo-
nal distances and minimizes the perpendicular distance to the plane. The following
calculations are based on the problem of creating an orthogonal distance regression
plane.

Derivation

Starting with the distance from a point to a plane, we wish to find a, b, c and d such that
we minimize

f(a, b, c, d) =
∑
i

(
|a · xi + b · yi + c · zi + d|2

a2 + b2 + c2

)

If we set the partial derivative with respect to d equal to zero, we can solve for d to get

d = −(a · x0 + b · y0 + c · z0)

where (x0, y0, z0) is the centroid of the data. This means that the least squares plane
contains the centroid. If we substitute it back into the equation for the plane we get

a · (x− x0) + b · (y − y0) + c · (z − z0) = 0

We can rewrite f(a, b, c, d) like this

f(a, b, c) =
∑
i

(
|a · (xi − x0) + b · (yi − y0) + c · (zi − z0)|2

a2 + b2 + c2

)

Now we are going to switch over to a matrix representation. Let’s define v and M such
that f(a, b, c) = f(v) = vT ·(MTM)·v

vT ·v .

v =

 a
b
c

 M =


x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0
...

...
...

xn − x0 yn − y0 zn − z0


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Solution using the Rayleigh Quotient

Define A = MTM . The function f(v) is called the Rayleigh Quotient. It is minimized
by the eigenvector ofA that corresponds to its smallest eigenvalue. We could compute
the eigenvectors of A, but this is not needed. The SVD (singular value decomposition)
of M is

M = USV T

where S is a diagonal matrix containing the singular values ofM , the columns of V are
its singular vectors, and U is an orthogonal matrix. This also gives us a decomposition
of A as

A = MT ·M
= (USV T )T · (USV T )

= (V STUT ) · (USV T )

= V S2V T

This decomposition ofA diagonalizes the matrix and provides an eigenvector decom-
position. It means that the eigenvalues of A are the squares of the singular values of
M , and the eigenvectors of A are the singular vectors of M .

The orthogonal least squares 3D plane contains the centroid of the data, and its nor-
mal vector is the singular vector of M corresponding to its smallest singular value.
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B Calculation of a triangle’s circumcircle

The circumcircle of a triangle is the unique circle that contains all the points of the
triangle. Thus, the circumcirle’s center, the circumcenter, has the same distance to
all vertices of the triangle. The circumcircle of a triangle has various interesting and
important properties for this thesis. For example, the circumcenter can be used to
construct the Voronoi cell of a vertex: The vertices of the Voronoi polygon are the cir-
cumcenters of the adjacent faces of the vertex, and connecting these circumcenters
result in the Voronoi cell.

In the following an efficient approach for calculating the circumcenter and the cir-
cumradius for a given triangle is presented. The vertices of the triangle are gives as

v1 = (x1, y1)
T , v2 = (x2, y2)

T , v3 = (x3, y3)
T

The circumcircle is the locus of points v = (xv, yv)
T with the circumcenter u and cir-

cumradius r, and we write:

|v − u|2 − r2 = 0

|vi − u|2 − r2 = 0 for i ∈ {1, 2, 3}

These equations can also be described as the locus of zeros of the determinant of M ,

detM = 0 ⇔ det


|v|2 vx vy 1
|v1|2 x1 y1 1
|v2|2 x2 y2 1
|v3|2 x3 y3 1

 = 0

Using cofactor expansion along the first row yields:

Sx =
1

2
det

 |v1|2 y1 1
|v2|2 y2 1
|v3|2 y3 1

 , Sy =
1

2
det

 x1 |v1|2 1
x2 |v2|2 1
x3 |v3|2 1


a = det

 x1 y1 1
x2 y2 1
x3 y3 1

 , b = det

 x1 y1 |v1|2
x2 y2 |v2|2
x3 y3 |v3|2


For a non-degenerate triangle (with a non-zero area), we get

a|v|2 − 2Sv − b = 0

|v − S

a
|2 =

b

a
+
|S|2

a2

with S =

(
Sx
Sy

)
. This gives the circumcenter S

a
and the circumradius

√
b
a

+ |S|2
a2 .
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C Area and Centroid of non-uniform Triangles

Having a non-uniform triangle, it is better to speak of the mass and the center of mass
(or center of gravity, physical barycenter) instead of area and centroid (which are rather
geometrical than physical properties). The non-uniformity is specified with three
density values at the vertices of the triangle, linearly interpolated over the area. The
geometric interpretation of this is a polyhedron with triangular base and a perpendic-
ular at each vertex with the density value as height. This geometric solid has five flat
faces and nine straight edges.

For the triangle T := (v1, v2, v3) with vertices vi := (xi, yi) and density values di at the
vertices vi, the density value of a point v =

∑3
i=1 bivi inside the triangle (expressed

with its barycentric coordinates bi) is given by dv =
∑3

i=1 bidi and we define the den-
sity function for the triangle as d(v) :=

∑3
i=1 bi(v)di. This clearly is a linear, bivariate

function.

To solve the resulting integrals for the triangle’s mass and center of mass, the Bern-
stein-Bézier-Method [LS07] is the perfect mathematical tool for this task. Given non-
negative integers i, j, k summing to the polynomial degree d, the Bernstein-Bézier-
Form (BB-Form) of the polynomial p with basis polynomials Bd

ijk and coefficients cijk
is:

p =
∑

i+j+k=d

cijkB
d
ijk with Bd

ijk :=
d!

i!j!k!
bi1b

j
2b
k
3

This allows to solve the integral expressions using the explicit formula∫
T

p(x, y) dx dy =
AT(
d+2
2

) ∑
i+j+k=d

cijk

Calculation of the Triangle’s Mass

The mass mT of the triangle T is the solution of the integral

mT =

∫
v∈T

d(v) dx dy.

SinceB1
100 = b1 (analog for b2 and b3), we obtain the BB-Form for d(v) =

∑
i+j+k=1

dijkB
1
ijk.

This enables to efficiently solve the integral

mT =

∫
v∈T

d(v) dx dy =
AT
3

∑
i+j+k=1

dijk =
AT
3
· (d1 + d2 + d3)

where AT is the area of the triangle.
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Calculation of the Triangle’s Center of Mass

The center of mass c = (cx, cy) is the solution of the integrals

cx =
1

mT

∫
v∈T

d(v) · x dx dy cy =
1

mT

∫
v∈T

d(v) · y dx dy

Again, we want to switch to the BB-Form for d(v) · x and d(v) · y to solve the integrals.
To do this, the BB-Form for each of the factors d(v), x and y are determined and ac-
cordingly multiplied. Since each of the factors is a linear bivariate polynomial, d(v) · x
and d(v) · y are quadratic, bivariate polynomials. The BB-Form for each factor is

d(v) =
∑

i+j+k=1

dijkB
1
ijk = d1b1 + d2b2 + d3b3

x =
∑

i+j+k=1

xijkB
1
ijk = x1b1 + x2b2 + x3b3

y =
∑

i+j+k=1

yijkB
1
ijk = y1b1 + y2b2 + y3b3

Multiplying d(v) and x yields the following equation (analog for d(v) · y):

d(v) · x = (d1b1 + d2b2 + d3b3) · (x1b1 + x2b2 + x3b3)

= d1x1b
2
1 + d2x2b

2
2 + d3x3b

2
3

+ (d1x2 + d2x1)b1b2 + (d1x3 + d3x1)b1b3 + (d2x3 + d3x2)b2b3

Since B2
200 = b21 (analog for B2

020 and B2
002) and B2

110 = 2b1b2 (analog for B2
101 and B2

011),
substitution of the barycentric coordinates with the basis polynomials yields

d(v) · x = d1x1B
2
200 + d2x2B

2
020 + d3x3B

2
002

+
1

2
(d1x2 + d2x1)B

2
110 +

1

2
(d1x3 + d3x1)B

2
101 +

1

2
(d2x3 + d3x2)B

2
011

and we can take the coefficients of B2
ijk to solve the integrals cx and cy:

cx =
1

mT

∫
v∈T

d(v) · x dx dy =
1

mT

· AT(
2+2
2

) ∑
i+j+k=2

cijk

=
AT

6mT

(
d1x1 + d2x2 + d3x3 +

1

2
(d1x2 + d2x1) +

1

2
(d1x3 + d3x1) +

1

2
(d2x3 + d3x2)

)

=
AT

6mT

〈 d1 + 1
2
d2 + 1

2
d3

1
2
d1 + d2 + 1

2
d3

1
2
d1 + 1

2
d2 + d3

∣∣ x1

x2

x3

〉
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D Deriving Area Equalization

Area equalization works by moving the center vertex v to a new position inside the
umbrella polygon P = (v1, . . . , vn) such that the triangles T1, . . . , Tn have areas as equal
as possible to each other. Thus, the task is to find a new position v = (x, y):

(x, y) = arg min
(x,y)

n∑
i=1

(Ai(x, y)− µiA)2 with Ai(x, y) =

∣∣∣∣∣∣
xi yi 1
xi+1 yi+1 1
x y 1

∣∣∣∣∣∣
The area A of the umbrella polygon P may be computed as A =

∑
Ai(0, 0). The task

is now posed as optimization problem and we seek for the global minimum of f(x, y).
Since the function is quadratic, the only local minimum is also the global minimum.

f(x, y) =
n∑
i=1

(Ai(x, y)− µiA)2 =
n∑
i=1

gi(x, y)

gi(x, y) = (Ai(x, y)− µiA)2 = (xiyi+1 + yix+ xi+1y − xyi+1 − yxi − xi+1yi − µiA)2

To continue, gi(x, y) is differentiated using the chain rule.

gi(x, y) = ui(x, y) ◦ vi(x, y) = vi(x, y)2

vi(x, y) = xiyi+1 + yix+ xi+1y − xyi+1 − yxi − xi+1yi − µiA

The resulting derivatives are really simple:

∂vi
∂x

= yi − yi+1 and
∂vi
∂y

= xi+1 − xi

After applying the chain rule, we get:

∂gi
∂x

= 2
(
(yi − yi+1)(xiyi+1 − xi+1yi − µiA) + x(yi − yi+1)

2 + y(yi − yi+1)(xi+1 − xi)
)

∂gi
∂y

= 2
(
(xi+1 − xi)(xiyi+1 − xi+1yi − µiA) + x(yi − yi+1)(xi+1 − xi) + y(xi+1 − xi)2

)
Finally, the linear system is obtained by separating the constants from the variables
x, y and summing over the terms, i.e.

n∑
i=1

ȳ2
i

n∑
i=1

x̄iȳi

n∑
i=1

ȳix̄i

n∑
i=1

x̄2
i


(
x
y

)
︸ ︷︷ ︸

variable

=


−

n∑
i=1

ȳi(xiyi+1 − xi+1yi − µiA)

−
n∑
i=1

x̄i(xiyi+1 − xi+1yi − µiA)


︸ ︷︷ ︸

const.

with x̄i = ∂v
∂y

= xi+1 − xi and ȳi = ∂v
∂x

= yi − yi+1.
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point-set surfaces with bounded error. In Proc. of the 3rd Eurographics/ACM Sym-
posium on Geometry Processing, pages 63–72, 2005.

87



[SG02] Vitaly Surazhsky and Craig Gotsman. High quality compatible triangulations. In
Proceedings of 11th International Meshing Roundtable, pages 183–192, Sept. 2002.

[SG03] Vitaly Surazhsky and Craig Gotsman. Explicit surface remeshing. In Proceedings
of Eurographics Symposium on Geometry Processing, pages 17–28, Aachen, Ger-
many, June 2003.

[SL96] Marc Soucy and Denis Laurendeau. Multiresolution surface modeling based on
hierarchical triangulation. Computer Vision and Image Understanding, 63(1):1–
14, 1996.

[SNB07] Pedro V. Sander, Diego Nehab, and Joshua Barczak. Fast triangle reordering for
vertex locality and reduced overdraw. ACM Trans. Graph., 26(3):89, 2007.

[SPR06] Alla Sheffer, Emil Praun, and Kenneth Rose. Mesh parameterization methods and
their applications. Foundations and Trends in Computer Graphics and Vision,
2(2):105–171, 2006.

[SS86] Youcef Saad and Martin H. Schultz. Gmres: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and
Statistical Computing, 7(3):856–869, 1986.

[SS02] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms. International Journal of Computer Vi-
sion, 47(1):7–42, April 2002.

[SS03] Daniel Scharstein and Richard Szeliski. High-accuracy stereo depth maps using
structured light. IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, 1:195–202, June 2003.

[SSFS06] John Schreiner, Carlos E. Scheidegger, Shachar Fleishman, and Cláudio T. Silva.
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