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Abstract—The optimal signature sequences that maximize the
sum capacity of a direct sequence code-division multiple-access
(CDMA) system are characterized in the general case of symbol
delay profile and user power constraints. It is shown that the op-
timal sum capacity of the symbol asynchronous system equals that
of the symbol synchronous system with the same user power con-
straints. With the optimal signature sequence set, the maximum
sum capacity is achieved with white Gaussian input signals. The ex-
istence of the optimal signature sequence set is proved by the pro-
posal of an explicit construction method for arbitrary user delay
profiles and power constraints.

Index Terms—Asynchronous code-division multiple access
(CDMA), CDMA, optimal signature sequences, sum capacity.

1. INTRODUCTION

N direct-sequence code-division multiple-access (DS-

CDMA) communications, users share the entire bandwidth
with each other. The symbol waveform of a user signal is
generated by spreading the chip waveform with its signature
sequence or code. Due to the capability of offering high ca-
pacity, flexibility, and security, DS-CDMA systems became
popular in the early 1980s and have been studied extensively
since then [1]. Among the research works on CDMA, there has
been special interest in understanding the impact of signature
sequences on the sum capacity of the system. Suppose that
K and N are the number of users and the spreading gain of
the system, respectively. For the symbol synchronous CDMA
system, when the user powers are equal, [2] showed that the
sum capacity is maximized by assigning an orthogonal signa-
ture sequence set to the users when K < N, and by assigning
a Welch-bound-equality (WBE) signature sequence set to the
users when K > N. The general case of asymmetric user
powers was solved in [3], where it was shown that the sum
capacity is maximized by assigning orthogonal signatures to
the oversized users (see (21) for a definition), and assigning a
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generalized WBE (GWBE) sequence set to the nonoversized
users. A recursive construction [3] and an iterative method [4]
were proposed to obtain the optimal sequence sets. The results
have also been extended to the colored Gaussian noise in [5].

The signature sequence design problem for symbol asyn-
chronous (but chip synchronous) systems was studied recently
in [6] under the assumptions of fixed signal delay profile and
frame synchronism. For a special case when the users are equal
powered and when the matched filter receivers are used, the
optimal sequence set that maximizes the user capacity has
been found by minimizing the total squared asynchronous
correlation (TSAC). An extension to the asymmetric user
powers case was presented in [7], [8]. It has been shown that
the constraints on the optimal signature sequences in a symbol
asynchronous system are stricter compared to those in a symbol
synchronous system. We refer to the optimal signature sequence
set obtained in [6] (that achieves the TSAC lower bound) as
the asynchronous WBE (AWBE) sequence set in this paper.
Although simulations show that the AWBE sequences can be
obtained by minimizing the TSAC, the existence of the AWBE
sequence set under an arbitrary user delay profile was left as
an open problem in [6], [8]. The combined power control and
signature design problem when users have random delay profile
(as opposed to a fixed delay profile as in [6], [8]) was studied
in [9]. The common feature of the works presented in [6]-[9] is
that the signature sequence design problem is studied with the
criterion of maximum user capacity, and under the assumption
of linear receivers.

In this paper, we study the signature sequence design problem
from the sum information capacity point of view for asym-
metric (i.e., unequal) user powers in a symbol asynchronous
(but chip synchronous) CDMA system. We assume that the
users are frame synchronous, and have a fixed deterministic
delay profile. Under the assumption that the signature se-
quences are real-valued, we show that the sum capacity of the
symbol asynchronous system is upper-bounded by that of the
symbol synchronous system with the same power constraints.
We derive the optimal signature sequences for the asynchronous
system that achieve the sum capacity upper bound. Similar to
the result in [3], we show that the optimal signature sequences
for the symbol asynchronous system is obtained by assigning
orthogonal signatures to the oversized users and assigning a
generalized AWBE (GAWBE) signature sequence set to the
nonoversized users. In the asynchronous case, the symbol
delays limit our freedom in designing the optimal signature
sequence set. For a general delay profile, the orthogonal sig-
nature sequences assigned to the oversized users are usually
restricted to have only one nonzero chip in each signature.
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We show that, when the users are equal powered, the AWBE
signature sequences that achieve the TSAC lower bound given
in [6, Theorem 3] are indeed optimal. In addition, we present
an explicit method to construct the optimal signature sequence
set, given an arbitrary signal delay profile and general user
power constraints. This solves the existence problem left open
in [6]; in fact, it solves the existence problem in a more general
setting of arbitrary powers.

The rest of the paper is organized as follows. The system
model is presented in Section II. The sum capacity of the
symbol asynchronous system is analyzed in Section III, where
an upper bound on the sum capacity is given. We derive the
necessary condition on the optimal signature sequence set that
helps the system to achieve the sum capacity upper bound in
Section IV-A. The conditions are also shown to be sufficient if
the input signals have white power spectra. In Section IV-B, we
present an explicit method to construct the optimal signature
sequence set for an arbitrary given user delay profile and power
constraints. The paper concludes in Section V.

II. SYSTEM MODEL

We consider a DS-CDMA system where all K users transmit
to a single receiver. We assume that the user signals are chip
synchronous; the chip waveform is identical for all users and
is designed such that it can pass the bandwidth-limited channel
with negligible distortion.! The processing gain, the dimension-
ality of the signal space, is N.

Define

senv ¥

8 = [Skl Sk2
as the signature sequence of user k. We assume that the elements
of 8, are real-valued? and the energy of the signature sequence
is normalized to 1, i.e., 8 8; = 1,V k. Suppose that the symbol
delay of user k is cj chips, where ¢, = 0,1,..., N — 1. We
divide the signature sequence of user & into two parts. The sub-
vector 55 that contains the first N — ¢;, chips is termed the left
signature sequence, and the subvector éf that contains the last

ct. chips is termed the right signature sequence, i.e.,

8y = [5k1, 5k2, - - L SkN—e)] T
81 =[Sk(N—cp41)s Sk(N—ce42)s - -+ SN] - (D
In addition, define an N x 1 vector s/ by padding 0’s to .§£

from the top and define an N x 1 vector s by padding 0’s to
55 from the bottom

¢ 0s T N —c0s T
—_—— T T ——
L __ ~L R _ | xR
s, =10,...,0,8; 8, =18, ,0,....,01 . (@

'Here chip synchrony is assumed in order to preserve the tractability of the
problem. In a practical system, where the user signals are chip asynchronous, a
combined optimization problem involving the design of the signature sequences
and the chip waveform subject to a bandwidth constraint should be considered.

2As opposed to binary signature sequences [10] or sequences whose entries
take values from a general finite-alphabet set. This real signature sequence as-
sumption, combined with the chip synchrony assumption, imply that our results
give insights into the performance limits of practical systems.
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Consider the first M symbol durations. The chip matched filter
output of the receiver can be denoted by an M N X 1 real-valued
column vector y, which satisfies the following system model:

K
y=) Sizi+n. 3)

k=1

Here y = [y(1)T,y(2)7,... ,y(M)T]T, where y(m) is the
chip-matched filter output vector of the mth symbol duration;
T = [21(1) 2x(2) 7, (M)]7T is the source symbol
vector of user k; n is the Gaussian noise with zero mean and
covariance matrix E[nn?] = 021y, I being the MN x
M N identity matrix; and S, is the signature matrix of user &,
which is given by

sk o 0
R oL
S, = |% S 0 )
0o . .0
0 sft sk

We assume that both the symbols and the signature sequences
are real valued. The average power of the normalized source
signal of the kth user is restricted to

tr (E [zpz)]) < M Py ®)

where Py is the average power per symbol of user k. Given
J as an arbitrary group of users, the mutual information

I(zrey; YlTrgs) is given by [11]

S.E T 8T
log, IMN-I-Z—k [xk::k] k

keJ

I(@rer;ylorgs) < % .

(6)

with equality if the signals of users & € J are Gaussian. Here
| - | denotes the determinant of a square matrix.

Assume that the user delay profile is known to both the trans-

mitters and the receiver.? The capacity region of the system is

given by the convex closure, over independent random vectors

xy, satisfying (5), of the union of the following heptagons:

lim ﬂ
M —oo

Jc{1,2,... K}

(Rl,...,RK)Z

1
OS;Rk < Ml(xkeﬁﬂxkgﬂ . (7)

Suppose that the signature sequences are given. In the situation
when user signals are symbol synchronous, it is shown in [12]
that the rate constraints are maximized if the source signals have
white power spectra, i.e., E[zzi] = PiIy, V k. However, in
the symbol asynchronous case, in general, there is no unique
power spectrum that can maximize the rate upper bounds in (7)
simultaneously [12].

3Note that the optimal signature design problem that maximizes the sum ca-

pacity when the transmitters do not have the information about the delay profile
remains open.
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In the literature, the sum capacity of the rate region, defined
as max(ZkI;l Ry), has been of particular interest since it is a
single number that represents the overall capacity limit of the
system. Combining (6) and (7), the sum capacity per symbol of
the system satisfies

Csum <

lim max
M—o0 tr(E[zkIAT.])SZV[Pk

10%2 [ ] ®)

where equality holds when the input signals are stationary
Gaussian.

SkE [.’L‘kﬂ?k] ST

Iyn + Z s

k=1

III. UPPER BOUND ON THE SUM CAPACITY

Let {Aps} and { By} be two sequences of matrices with real-
valued entries, where both A, and B, are of size M X M.
Define the operator norm, or the strong norm of A, as [13]

(€))

1
.’ETA%TIA]W{B 2
zTx

||[Ar|| = max {
x

A)s and B are asymptotically equivalent [13]if i) || Aas|| and
|| Bas]| are uniformly bounded, i.e., there exists a U, such that

sl 1Bl < U < 0 (10
and ii)
li ! tr [(Ay — By)T(Ay — B : =0. (11
Mim 9 o 1“[( M — Bar) (A — M)] =0. (1D

Suppose that the average powers per symbol of the user sig-
nals are upper-bounded. The following theorem shows that the
signature matrices and their corresponding block circulant ver-
sions are asymptotically equivalent.

Theorem 1: Suppose that the average power per symbol of
the signal of user k is upper-bounded, for all k. Define the block
circulant signature matrix of user k by

sk o 0 sf
A st sk 0 . 0
S = 0 - (12)
. o
L0 . 0 st sf]
Then for any set of users .J, the two matrices
R AT
> SvE[zmyxf] S, and > SyE[mxf] ST (13)

keJ keJ
are asymptotically equivalent.

The proof of Theorem 1 is provided in Appendix A.
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Consequently, according to Theorem 1 and [13, The-
orem 2.3], we can replace the signature matrices by their
circulant versions and rewrite (8) as

Coum < lim max
M=o tr( E[zpa] | ) <MP;

SLE |zrxi | S
L o, me%
k=1

(14)

Note that all circulant matrices of the same dimension have iden-
tical eigenvector set. Define the M X 1 vector g,,, and the M x M
Fourier transform matrix Qs as

Qm = [1 ejw j27r(7n.7§4)(1\471) ]H
1
QMZ\/—M[lh a2 anm ) (15)

where the superscript H denotes the conjugate transpose. De-
note the mth component of vector g,, by ¢y,,,,. According to [13]
and [14], we can decompose the block circulant matrix Sy, as

quln gl

Sy,

Q% (16)

qvdn qumIn
where the superscript * denotes the conjugate operation; ®;, is
a block diagonal matrix, defined as

i O .0

o, = 0 o (17)

0 . 0 ¢ru

and @y, in (17) is an N x 1 column vector given by

21r(1n 1)

brm

Substituting (16) into (14), we get

_Sk +3ke J (18)

K 8, F [z,27] &,
IJ\IN+Z k [xk:;k] k

k=1

g

K * ANH T ) T
= Iy~ + Z 2l [z;fk] Qe

k=1
IMN+Z

where Py, is an M x M diagonal matrix whose diagonal entries
are equal to those of Q1 E [z;2] ] Q. The last inequality in
(19) is due to the generalized Hadamard inequality [12], [15],
which indicates that the determinant of a positive-definite ma-
trix is upper-bounded by the product of the determinants of its
diagonal blocks.

o P <I>T
. (19)
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Denote the mth diagonal entry of P} by pg,,. Since (19)
holds with equality when Q¥ F [z,2]| Q) is diagonal, sub-
stituting (19) into (14), we obtain

Coum < lim max
M—oco Zi\f Prm <MP;,
M Z 10g2 IN Z —¢kmpkm¢km ] . (20)
k=1

When the signature sequences of the users are given, the sum
capacity can be found by solving (20) with an iterative water-
filling algorithm [12], whose convergence is studied in [16]. It is
easily seen that, given an arbitrary signature set and user delay
profile, the sum capacity is usually not achieved by input signals
with white spectra (i.e., Py = PiIyy).

In the following theorem, we give an upper bound on the sum
capacity. The upper bound has the feature that it is not a function
of the signature sequences of the users.

Theorem 2: Similar to [3], define user k as oversized if

K
Zj:l PjIPAr>Pj
e .
N =1 1p<p,

P, > 2n

Denote the set of the oversized users as K. The sum capacity is
upper-bounded by

N — |’C| Zk@g Pk
Ceum < 71 1 AT 111N o
ST °g2< TV - K
1 P,
+5 > " log, <1+ J—’;> (22)
ke

This upper bound equals the optimal sum capacity of the symbol
synchronous system given in [3].

The proof of Theorem 2 is given in Appendix B.

Note that when the number of users K is less than or equal to
the spreading gain IV, all the users are oversized. In the situation
when K > N, it is possible that some or none of the users are
oversized, depending on the signal powers.

IV. OPTIMAL SIGNATURE SEQUENCES

Although the upper bound given in (22) may not be achieved
with an arbitrary signature sequence set, we show in this section
that, it is indeed achievable when the signature sequences are
optimally designed, given any arbitrary user delay profile and
average power constraints.

A. The Necessary and Sufficient Condition

The following lemma shows the connection between the
Frobenius norm, denoted by ||.|r, and the eigenvalues of a
symmetric matrix A.

Lemma 1: Suppose A is an N X N positive-definite matrix
that satisfies A¥ = A. Suppose N < N and \y,..., Ay are
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all the nonzero eigenvalues of A. If A is constrained such that

tr(A) = P, then
P2
|All% > ~ (23)
with equality if and only if \y = Ay = --- = Mg = £.
Proof:
< 2
zii A
A2 = tr(A7 A) = ZA? (=54)
2 2
= 7(“(]3)) = % (24)
O

With the help of Lemma 1, we are now ready to present
the necessary condition on the optimal signature sequence set,
which guarantees that the sum capacity achieves the upper
bound given in (22). Somewhat surprisingly, the condition
becomes sufficient if the input signals are Gaussian with white
spectra.

Theorem 3: 1f K is the set of oversized users, suppose that
the user delay profile and the power constraints are given, as-
sume that the signature sequences are normalized to 87 8;, = 1,
V k. The necessary conditions to achieve the sum capacity upper
bound in (22) are that the input signals should be Gaussian and
the following three conditions should hold.

e Condition 1: Forall k € K and j # k

sﬁTsL + sﬁTsf =0

RT L

LT —
and s; 87 =0.

8y 3 =0 (25)

The input signal of user £ € K has white power spectrum.

¢ Condition 2:
Z Pyt ng
kgK

=0. (26)

¢ Condition 3:

L LT R R”
E Py (sksk + 83,8, ) =
F

kgK

2
(Zkgic P k) 7
Furthermore, under the assumption that user signals are white
Gaussian, i.e., E [2,2]| = Pida, V k, the above three condi-
tions become sufficient in the sense that if (25)—(27) hold, then

the sum capacity of the system achieves the upper bound given
in (22).

The proof of Theorem 3 is presented in Appendix C.

To be consistent with [3], we term the signature sequence set
of the nonoversized users that satisfy conditions (25)—(27) the
generalized asynchronous WBE (GAWBE) sequences.

Note that in the equal user pOV\Q/er case, with condition (26),
HPk ohgK (sisf + sfsf is proportional to the TSAC
of the system, defined in [6], which is also the TSC when the
user signals are symbol synchronous. Under the constraint of
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(26), Lemma 1 implies that minimizing the TSC or the TSAC
results in the optimal signature sequences.*

It is worth pointing out that, although the capacity upper
bound can be reached with white Gaussian inputs, white
spectra of the input signals of the nonoversized users are not
required for the sum capacity to reach its upper bound, even
for the symbol synchronous case. Consider the conventional
symbol synchronous two-user multiple-access channel with
the observation of the symbol matched filter output given by
y = x1 + x3 + n, where E [22] < Py, E[23] < P, are
the average power constraints, and 7 is a zero mean Gaussian
noise with variance E[n?] o?. Suppose that the power
spectra of the two user signals are S;(w), S2(w), respectively.
Although it is shown that S;(w) = P; and Sy(w) = Ps
maximizes the capacity region [12], the sum capacity of
C= % log,(1+ & 1;'2P 2) can be achieved by any spectra pair as
long as Sy (w) + So(w) = Py + P, is satisfied for all w.

B. Construction of the Optimal Signature Sequences

Assume that the input signals have white spectra. Although
Theorem 3 gives the necessary and sufficient condition for
the sum capacity to reach its upper bound, it can be seen that
the conditions for the symbol asynchronous system are much
stricter than the symbol synchronous case in general. Hence,
given an arbitrary power constraint set and a user delay profile,
it is natural to ask whether such optimal signature sequence set
always exists. In this section, we provide an explicit algorithm
to construct the optimal signature sequence set that satisfies
all three conditions in Theorem 3. The construction algorithm
guarantees that the upper bound in (22) is always achieved with
independent and identically distributed (i.i.d.) Gaussian inputs.

First, we consider the situation when there is no oversized
user, i.e., V k, the powers of all the users satisfy

K K
P, < Zj:le1Pk>Pj <Ej:1Pj1Plc>P]
k

K
< Zj:l Pj
< = < ~ < ,
N =3 imilp<p,

N

(28)
Note that inequality (28) implies K > N. The situation when
we have oversized users, which includes the situation of K <
N, is considered later in this section.

Our purpose is to construct a signature sequence set such that
skR = 0 for all k. Although this guarantees that the requirement
in (26) is met, unfortunately, meeting the requirement in (27)
with such a strict constraint is not always possible for a general
user delay profile. We use the time labeling idea presented in
[17], that enables us to work with other N — 1 equivalent delay
profiles, even when the user delay profile is given. This signif-
icantly increases our freedom in the signature design. We will
show that, among all the N equivalent user delay profiles, there
always exists one that allows us to construct an optimal signa-
ture sequence set that simultaneously satisfies skR =0,V k and
the condition in (27).

Arrange the users in increasing order of their delays, i.e., c; <
cg < -+ < cg. Since all ¢, take values in [0, N — 1], we can
divide the users into N groups, denoted by G1,Ga, ..., Gy,

4As shown in [6, Theorem 3], when the TSAC lower bound is achieved, both
(26) and (27) are satisfied, and hence the signature sequences are optimal ac-
cording to Theorem 3 in this paper.
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such that the users in the same group are symbol synchronous.
Specifically, the delay of the users satisfy

c=1—1, itk € G;. 29)
The aggregate signal power in group G is denoted by
= Z Py. (30)

keG,;

It is possible that some of the groups are empty, depending on
the user delay profile.

Note that (29) is based on the assumption that the users in
group (G; have zero delays. Different choices of GG; determine
the symbol delay value ¢y, for all k. Here we refer to the choice
of 1 as the definition of the time labeling of the system. In
the literature of symbol asynchronous CDMA, usually, such a
definition is either chosen according to the physical arrival of the
user signals [1], or it is chosen arbitrarily [6]. For example, in
[6], an arbitrary N chip duration is chosen. For any user k, there
is one and only one symbol starting time located within this [V
chip duration, taking values in [0, NV — 1]. The time label of user
k is defined such that the symbol before the symbol starting time
contributes to the nth symbol and the symbol after the symbol
starting time contributes to the (n 4+ 1)th symbol [6, Fig. 2].
Although time labeling does not affect the capacity region of the
system for any given signature sequence set, different choices of
the IV chip duration result in different signature design problems
[6]. In fact, the choice of the time labeling is also the key factor
in many other research problems in asynchronous CDMA, such
as the design of the decision feedback multiuser detector, as
shown in [17].

Suppose that we pick an arbitrary time labeling and de-
fine it as Ty = [G1,G>,...,GxN]. Now, without changing
the physical signals, if we change the time labels and de-
fine the users in group G as the zero-delayed users, we
can reorder the groups chronologically according to the new
time labels and get another equivalent group ordering, 75
[Gn,G1,Ga,...,GN_1]. Overall, there are N different time
labelings, and each time labeling is uniquely determined by
the corresponding chronological order of the groups. We say
that time labeling 75 is obtained from 7} through a backward
rotation.

The following theorem shows that, among the NV different
time labelings, there is one time labeling that possesses a special
property, which is the key feature that ensures the existence of
the optimal signature sequence set.

Theorem 4: Assume that there are no oversized users.
Among all the time labelings, there exists one time labeling
T = [Gl,ég,...,é]\r], such that V1 < g < N, the signal
powers satisfy

qzk‘ 1 (31)

The proof of Theorem 4 is presented in Appendix D.

Now, consider the time labeling T, and arrange the users
and the groups in the chronological order of their sym-
bol delays. For notational simplicity, we still term these
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groups (G1,Ga,...,Gy. Consider the signature matrix S =
[81 ... 8k ] where

. r ;11T
sk—[s,f 35}

is constructed by stacking the right signature sequence and the
left signature sequence of user k together. Here, the left signa-
ture sequence 55 and the right signature sequence ékR are de-
fined as in (1) according to the symbol delay cj of user k in
time labeling T'. Note that in the special case when user powers
are equal, Theorem 4 indicates that, in time labeling T, all the
right signature sequences of the users are located within the
upper-right triangular part of the matrix S. Next, we show that
one can always construct a GAWBE sequence set, such that all
the components of the right signature sequences are 0’s.

Construction of the GAWBE sequence set:
e Step 1: Initialize hg as a K x 1 column vector whose
K

first NV components have identical values of % and
other components are 0, i.e.,

N items

P
=1k 0,...,0

(32)

Initialize matrix Hy = diag(hg). Let = 1.

* Step 2: Construct a K x 1 column vector h; such that the
following properties are satisfied.
— Property 1: All the components of h; are nonnega-
tive.
— Property 2: The first N — 4 components of h; have
ZK Py
value &=4—.

— Property 3: The last E —~N—it1|Gj| compo-
nents of h; are the powers of users in groups
GN—it1,--.,GnN, respectively, in the same order.

— Property 4: The components located between the

(N —4)th and the (Z;\:ll |G|+ 1) th components

satisfy
N—1
[hil; < [hical;, YN —i<j< ) |G-
j=1
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If we denote the ?owers of the users in group G;
as P1<G ), P(G h; can be described as in (34)
at the bottom of the page, where the components
marked with “?” can be arbitrary so long as they
satisfy the inequality in (33).

Note that such an h; vector always exists since
from (31) we have,

N—1 (
Z Pg, >
=1

N - Z) ZkK=1 Pk
N

N K
> Pe, =) P (35)
j=1 k=1
which yields
Z PG]- < LZk 1 (36)

Since h; 1 and h; satisfy the inequality (33), by
following the method in Section IV of [3], we can
construct a unitary matrix U y_; 41, such that the
diagonal components of U%_i_;,_lHi—lUN—i+1 are
exactly the components of h;, in the same order. We
define Hz = U’IJ;;_,L-+1H1'_1UN_¢+1.

e Step3:Ife < N,let: = 741 and goto Step 2. Otherwise,
go to Step 4.

e Step4:DefineU = UnUpn_1 ...Uq, and define the ma-
trix that contains the first IV rows of U as V. We can then
construct the signature sequence matrix as

§o | D B

N (37)

1
Vdiag < — _)
O
Theorem 5: The GAWBE signature sequences constructed

via the above procedure satisfy the conditions (26) and (27) in
Theorem 3, for any time labeling.

The proof of Theorem 5 is presented in Appendix E.

Compared with the optimal signature sequence construction
1n the symbol synchronous case [3], the key steps that result in
sl = 0, forall k in time labehngT are that, first, we operate on
the diagonal components of the H; matrices in a specific order,
and second, the time labeling T satisfies the property shown

(33) in (31).
B N—i items 1T
rA = ~
> P > P
k=1 k=1 GN_it1 GN_it1 GnN
= e ey N o
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In the general case, where there are |KC| oversized users, we
arrange the users such that users 1,..., K — |K| are nonover-
sized and users K — |K| + 1,..., K are oversized. Now, we
partition the signature sequence matrix S' as

5= [SK_.K. 0 } |
The signature sequence of user k& > K — |K| is designed as
8, = ey, where ey is the column vector whose kth component
is 1 and all other components are 0. The signature sequences
of the nonoversized users are designed such that 5;; = 0,
VE < K- |K|,and j > N — |K|. Consequently, (25) is
satisfied irrespective of the values of the components in the
upper-left block matrix Sz _ x|

Now consider the subblock matrix S K —|x| With dimension
(N — |K]) x (K — |K][) in (38). The signature sequence de-
sign of Sk _|x| is equivalent to that of a K — [KC| user system
with spreading factor of N — |K|, where no oversized users are
present. Therefore, we can assign the GAWBE sequence set for
Sk —|x|> which completes the optimal sequence construction of
the K-user system.

Next we will give a simple example to clarify the construc-
tion scheme. Suppose we have four users, where the users have
powers of 1,1, 1, 2 units and delays 0, 0, 1, 2 chips, respectively.
In this case, user 4 is the only oversized user. Therefore, we first
design the signature sequence matrix as in (38)

a_[S: 0
§=|"3 .
i
Now, consider the subblock S 3. Divide the users into two groups
according to their delays, i.e., G = [1,2] and G2 = [3]. Since
P+ P, =2 > L(Py + P, + P;), inequality (31) is satisfied.
Hence, we just work with the current time labeling.

In the construction of the GAWBE sequence set, we initialize
hy = [%, %,0], and Hy = diag(hg). Choose h; = [% %, 1],
which satisfies [h1]3 =P;3, [hl]l = %, and [h1]2 < [ho]Q.
By following the method in [3], we construct

1 0 0

(38)

(39)

0 \/I \/E
U, = 3 3 (40)
e
Consequently
50 0
H =UTHU,= |0 35 /3 @1)
0 3 1

2
where the diagonal components of H; equal the components of
h; in the same order.

Next, we choose ho = [1, 1, 1], and construct

1 /1

Vios oo
1 /1
2

U= |5 /5 o (42)
0 0 1
and have
1 1 _1
T 1 2 12
H2:U1H1U1: 2 1 b (43)
bt
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Now define U = UyU 1, and define V' as the matrix that contains

the first two rows of U.
1 1
ViAo

V= (44)
—_. /i 1 2
6 6 3
Therefore, the subblock S 3 18 constructed as
z P+ P+ P 1 1 1
Sy =/t By (L L L
2 P /Py \/Ps
V3 V3 o
=17 % . (45)
2 2
Combined with (39), we get the signature sequence matrix S as
[ 200
— 1
§=|-1 I 19 (46)
0 0 0 1

Itis easy to verify that S satisfies the requirements in Theorem 3.

V. CONCLUSION

The optimal real-valued signature sequences that maxi-
mize the sum capacity of a symbol asynchronous (but chip
synchronous) CDMA system are characterized in this paper.
By assigning orthogonal signature sequences to the oversized
users, and assigning a GAWBE signature sequence set to the
nonoversized users, the asynchronous system achieves the
same sum capacity as the synchronous system with the same
user power constraints. An explicit method is provided for
the construction of the optimal signature sequence set. This
resolves the existence of the optimal signature sequences for
arbitrary user delay profiles and average power constraints.
Although the results presented in this paper give insights to
the signature design problem for practical systems, the optimal
signature design problem that considers chip asynchronous
systems and finite-valued signature sequences remains open.

APPENDIX A
PROOF OF THEOREM 1

Proof: Consider user k € J. Since E [z;2] | is positive
definite, we can find an upper triangular matrix F', such that

E [zwz]] = FiF},

AT ~
is the Cholesky decomposition of E [z} |. Since S, S} is
block circulant and ST S}, is asymptotically block circulant, it is

easy tosee thateigenvalues of both S : S x and ST’ S}, arebounded.
Due to the fact that the average power per symbol of the signal of
user k is bounded, as M — oo, the operator norm of F [z,z] |

is uniformly bounded. Consequently, the operator norms of both

. AT
SiE [zyz]]| S, and S} E [z2] | ST are uniformly bounded.
Since Sy F', and S F}, differ only on the N x 1 column vector
located on the upper-right corner, it is easy to see that

lim

— 00

1 - &\ T
{Mtr [(SkaF}fSkT, - SkaFkT,Sk)

Wl

(SwFiFist - SkaF{Sfﬂ } —0. @47)
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This shows that Sj.E [z | S;‘: and S, E [zl ] ST are
asymptotically equivalent. Theorem 1 then follows from the
property of asymptotically equivalent matrices presented in
[13, Theorem 2.1]. O

APPENDIX B
PROOF OF THEOREM 2

Proof: Without loss of generality, let us assume that the
user powers satisfy P; > P, > --- > Pg. According to The-
orem I, to obtain an upper bound on the sum capacity, we can
choose S}, and E[z,zl], V k, under the power constraints (5),
such that the following quantity is maximized:

T
[z127 | S

. (48)

K &
1 SLE
m 10g2 I]\/j]\r + kZl

g

Define p1,, = FE[rr(m)?]; define the vector p; =
[p11,-..,p1m]Y; and define the M K-length column vector
p such that p = [p, ... ,p%]T. Now, let AN'p be the set of
all p vectors satisfying the power constraint (5). Let A =
A1, ..., Aarn]T be the eigenvalues of Zle S’kE [:Ekka,] S’:
Define N, as the set of eigenvalue vectors, such that for any
A € N, there exists ap € Np, and [A1, ..., \arw,0,...,0]7
majorizes p (see the deﬁnjtion of majorization in [3], [18]).
Since S}, is replaced by Si, V k, we can view the K -user
M-symbol asynchronous system as an M K-user symbol
synchronous system. With a simple extension to [3, Lemma
3.1], we can see that for all A € N, A majorizes A*, where A*
is given by (49) at the bottom of the page. Since

MN

) = ; log, (1 + %)

is a strictly Schur-concave function, according to [18, The-
orem 3.C.1], we have

(50)

[za]] S,

K »
1 SyE
=7 logy [ [ TN + Z 3

T oM £
< fA)

N — |IC| Ekgl&“ Pk
=— "1 14—
2 °g2< S

ey

g
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APPENDIX C
PROOF OF THEOREM 3

Proof: We first consider the sufficiency part of the
theorem.
Assume that E [z} | = PpI .V k, we prove that the sum
capacity achieves the upper bound if (25)—(27) are satisfied.
Consider the sum capacity given in (14), if E [:Ekmﬂ =
PIy, YV k, we have

K K
. N o AT
Z SkE [.’L‘k.’l:{] Sk = Z PkSkSk .

k=1 k=1
Note that for any user k € K, condition (25) ensures that the
columns of 8}, are orthogonal to the columns of §;,V j # k.

o AT
Therefore, the matrix Y1, Px8%S, has M eigenvalues with
the values of Py, for any k € K.

& AT
Now consider the MN x MN matrix »Z; PrSiS) .
o AT
With condition (26), it is easy to verify that ), K PSS,
is block diagonal, and each of the M diagonal blocks equals

L LT R RT
> wgx e (3k 8y 88y

(52)

). Since with condition (25),

T
> kgx DreSKS) has atmost M (N — |K|) nonzero eigenvalues,
according to Lemma 1, condition (27) ensures that all the

nonzero eigenvalues of 3~ o« P.S), S’: are equal to —N‘frk—lpk
In other words, the columns of S'k, Vk ¢ K, forma GWBE
sequence set. The result that the sum capacity achieves the
upper bound given in (22) then follows.

Next, we consider the necessity part of the theorem.

Without loss of generality, suppose that we have |K| over-
sized users, with P, > P, > > P, and for the
nonoversized users, we assume that their symbol delays satisfy
k41 < 42 < -0 < ck. If the sum capacity of the
system achieves the upper bound in (22), from the proof
of Theorem 2, asymptotically, the M largest eigenvalues of
2521 S.E [z} | S’f are equal almost surely to P;. Con-
sequently, all of the M nonzero eigenvalues of the matrix
S.E [mlmﬂ ng are equal to P; almost surely. This gives that
E [z,z]]| = P11, asymptotically, and the columns of S, are
orthogonal to the columns of S j» as long as j # 1. Therefore,
condition (25) holds for £ = 1. By carrying out this analysis
iteratively, it is easy to see that (25) holds for all k£ € K.

Now, consider only the users & ¢ K. According to (19),
the sum capacity is achieved only when Q¥ E [z1z]] Qs is
asymptotically diagonal. Denote the mth diagonal component

1 P, of QI E [mkfrf] Q1 bY Prr. From the proof of Theorem 2
T3 Z log, | 1+ P} (5D and (20), as M — oo, the matrix Y-, x- B, Pkm®Br,, must
kex Py
have N — |K| eigenvalues of ﬁﬁqk and all other |K| eigen-
which gives the desired result. [0 values must be equal to 0. Due to the fact that the signature
M(N—|K]) items T

M items M items rZ I3 - Z P\

— — k - I
X=|Pi,....Pi,.... P, .., Py, 52K hEk (49)

N—[K[ 7 N =K
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sequences are real valued and satisfy condition (25), we can

find N — |K| real-valued eigenvectors w1, . . ., uy_ x| such that
V1<i<N-|K|
DT
* T L ZK
Z ¢kmpkm¢km u; = N — |IC| . (53)

kgK

In other words, matrix ), K &%, pem@L  has real-valued
eigenvectors and real-valued eigenvalues. Therefore, all the
components of » 7 ox- &, PkmdL  are real valued.

However, from (18), we know that

* T 27r('m.—1)
Z¢kmpkM¢km Zpkm sk‘gk e M

kg kgk

r 2m(m=1)
+3k‘ Bk‘ € M )

T
+ Z Dkm (sﬁsﬁ + sftsf? ) . (54
kgK

Since the symbol delays of the nonoversized users sat-

isfy j41 < g2 < - < ek, it is easy to see that
L RT . . . .

ZkQIC DPkm 8y 85 1s a strict lower triangular matrix. There-

fore, except for a finite number of m’s, in order to have only

real-valued components on the right-hand side of (54), we must

have

T
> pemsisf =0. (55)
kgk
From the fact that matrix 2, .. &, pkmdL  has N — |K|
P
eigenvalues of #’kk and all other |K| eigenvalues equal to

0, according to Lemma 1 and (55), we have

(Bueh)

2

R R”

+ 8ltsf ) (56)

> Drm (8535

kgK

Conditions (26) and (27) can then be derived from (55) and (56)
using the fact that Zi\,’le Piem = M Py, for all k. O

APPENDIX D
PROOF OF THEOREM 4

Proof: Note that since we assume that there are no over-
sized users, according to (28), when g = N, inequality (31) is
always satisfied.

We start with time labeling 77 = [G1, G, ..., G N]. Suppose
that 77 does not satisfy (31). We can find the minimum index
Jmin(T1), such that (31) is satisfied for all g < gmin(71), but

% P < 9min Zi{zl Pk
G <N

J=1

(57)

Also, we can find the maximum index g, (71) < N, such that
(31) is satisfied for all g > gax(T1), but

Ymax

ZPG<

Ymax Zk 1 b

N (58)
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Since by assumption

gn‘f_m P gmax + m) ZkK:l P ? \v/ m S N - gmax
N
(59)
we can see from (58) and (59) that the groups Gy +1,...,GN
satisfy
Gmax+m K
S pe e M=l N g @)
J=gmax+1

Now, we apply backward rotation N —
labeling 77, and get a new time labeling

Gn,Gi1,...

Jmax times to time

i Ggm ax ] N

If we rename the groups as To = [él, R G’N], using (60) and
the fact that (31) is satisfied in time labeling 73 for all ¢ <
gmin(T1), itis easy to verify that (31) is satisfied in time labeling
T forall ¢ < gmin(T1) + N — gmax(T1), i-e

gmax(TI ) -

Z gEk 1
= (61)

In other words, we constructed a new time labeling 75, such that

gmin(T2) Z gmin(Tl) + N —

Consequently, T can be found by carrying out such construc-
tions iteratively. O

Tz =[Gty

Vg < gmin(TI) + N —

Jmax (Tl) > 9min (Tl ) -

APPENDIX E
PROOF OF THEOREM 5

Proof: 1Tt is easy to verify that if conditions (26) and (27)
are satisfied for one time labeling, they are satisfied for all other
equivalent time labelings as well. Hence, we focus only on time
labeling T.

Consider the component [U];,,, located on the ith row and the
mth column. Suppose user m belongs to group G5, and assume

that 5 > i.Deﬁneﬁl =U,;...U; al‘ldfjg = UN...U,L'+1.WC
can rewrite matrix U as
U=Uy.. U U;.. U =U,U,. (62)

By following the construction method in Section IV of [3], we
can see that U, can be partitioned into

U, = [Ii 0] (63)

0 #
where the upper-left block is an identity matrix of dimension
1 X 1, and the upper-right block is a zero matrix of dimension
i x (K —1). We are not interested in the entries of the lower-right
block, marked with #. Consequently, m € G; and j > 7 gives

[U)im = [UsU1]im = [Ui]im. (64)

Howeyver, gccording to the construction method, it can also be
seen that U; can be partitioned into

i ]

o, |Gl

#

(65)
0 IZ,,

o]
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where the bottom-right block is an identity matrix of dimension

Y 1Ga x Y 1G]

n>i n>i

and the upper-right block is a zero matrix of dimension

S (Gl x 321Gl

n<i n>i

Due to the fact that m € G and j > i, we get [fjl]im = 0.
Hence,

[Ulim = 0, ifmée Gjandj > i. (66)

From the definition of matrix S, it is easy to verify that
§kR = 0 is satisfied for all k. Therefore, (26) holds. Hence, (27)
follows straightforwardly from the fact that

(1]
(2]

(3]

(4]

K
an a7 —1 P
Sdlag(P17...7PK)S :ZIC_TIIN (67)
O
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