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ABSTRACTAnalysis of fMRI time series is often performed by extracting one or moreparameters for the individual voxel. Methods based e.g. on various statisticaltests are then used to yield parameters corresponding to probability of activa-tion or activation strength. However, these methods do not indicate whethersets of voxels are activated in a similar way, or activated in di�erent ways.Typically, delays between two activated signals are not identi�ed. In this ar-ticle, we use clustering methods to detect similarities in activation betweenvoxels. We employ a novel metric which measures the similarity between theactivation stimulus and the fMRI signal. We present two di�erent clusteringalgorithms and use them to identify regions of similar activations in an fMRIexperiment involving a visual stimulus.
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INTRODUCTIONIn the recent years many contributions have addressed the analysis of fMRI time series.A large number of models and techniques from signal processing and statistics have beenapplied to fMRI analysis. Several 
avours of statistical tests have been used (Xiong et al.,1996). The t-test implemented in SPM (Worsley and Friston, 1995), derived from thewell-known general linear model (McCullagh and Nelder, 1989), and the non-parametricKolmogorov-Smirnov test (Baker et al., 1994) are the most widespread examples. Thecorrelation between the fMRI signal and the activation paradigm has also been used indi�erent contexts (Bandettini et al., 1993; Golay et al., 1997), while linear �lters, like the�nite input response (FIR) �lter, are slowly emerging as a possible alternative (Lange andZeger, 1997; Nielsen et al., 1997). The above methods focus solely (at least in a �rst stage)on estimating either the probability or the strength of activation on a voxel by voxel basis.In this contribution we consider an alternative approach. We assume that the patternof activation actually has a structure, and can be divided into a few types of similaractivations. To each of these types corresponds a cluster of similarly activated voxel,the centre of which represents the \typical" time series for these voxels. Subsequently,cluster centres can be analysed with regard to descriptive parameters such as activationstrength and delay. Clustering techniques provide additional information, namely thecluster assignments, ie labels for each of the voxels according to their similarity. It istherefore possible to isolate zones with similar activation, as well as to see whether twogiven voxels have similar behaviour.Clustering methods have been previously used in neuroimaging for similar purposes(Baumgartner et al., 1997, 1998; McIntyre et al., 1996; Moser et al., 1997; Scarth et al.,1996). These contributions performed a clustering directly on the fMRI time series, usingthe fuzzy K-means algorithm (see Dav�e and Krishnapuram, 1997, for a general review).Due to the high noise level in fMRI experiments, the results of clustering on the rawtime series is often unsatisfactory and does not necessarily group data according to thesimilarity of their pattern of response to the stimulus. This consideration has led Golayet al. (1997) and Toft et al. (1997), in two independant abstracts for the Human BrainConference, to consider a metric based on the correlation between stimulus and time series.3



Toft et al. (1997) illustrated the stability problems due to the high noise level in the rawdata, and suggested to cluster voxels on the basis of the cross-correlation function, yieldingimproved performance and noise reduction.The aim of this contribution is to focus on the application of clustering to fMRI timeseries using two di�erent algorithms. The well-known K-means algorithm is a simplemethod with a fast convergence, but also a number of limitations based on its underly-ing parametric assumptions. As an alternative, we present a hierarchical method whichaddresses a number of these limitations by providing a di�erent outlook on the clusteringproblem. We provide the theoretical basis for both techniques, suggest a simple stochasticprocedure to choose the initial set of cluster centres in the K-means method, and discussthe issue of the number of clusters. In this study, the emphasis is on exploratory, ratherthan inferential, data analysis; however, inferences can be drawn from the clustering re-sults and we provide some ways to do so. In order to illustrate these ideas, a number ofexperiments are performed on a set of fMRI images obtained from a visual experiment.This contribution extends our previous results and provides additional tools and methodsfor clustering fMRI time series.Let us �nally note that clustering provides a general tool to perform post-processingwith a number of methods. It can be applied, among other possibilities, on low-dimensionalfeatures extracted from the original data (Goutte et al., 1998b), statistical tests results orFIR coe�cients after a linear �ltering.In the following section, we present the dataset used in this study, introduce the neces-sary concepts and methods and insist on the role of the metric. We then present the resultsobtained with both clustering algorithms in di�erent con�gurations. In particular we usethe hierarchical method to provide a heuristic to choose the number of clusters. Finally,the discussion section addresses the neuroscienti�c aspects of this work and discusses somestatistical issues.
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MATERIALS AND METHODSDatasetThe experiments discussed below will be performed on a dataset acquired at HvidovreHospital in Denmark on a 1.5 T Magnetom Vision MR scanner. The scanning sequencewas a 2D gradient echo EPI (T2� weighted) with 66 ms echo time. The RF 
ip anglewas set to 50 degrees, and a scan target was a matrix of 128x128 pixels, with FOV of 230mm, and the slice thickness was 10 mm. Images were obtained in a para-axial orientationparallel to the calcarine sulcus. The region of interest will be limited to a 71� 91 pixelsmap.The visual paradigm consisted of a rest period of 20 seconds of darkness (using a light�xation dot), followed by 10 seconds of full-�eld checker board reversing at 8 Hz, andending by 20 seconds of darkness. A total of 150 images was obtained in a run of 50seconds, corresponding to approximately 330 ms between the images. 10 separate runscontaining 150 images each were completed. For computational reasons, the dataset usedin this article was built by using 3 of these runs. Furthermore, the �rst and last 25 scans ineach run where left out, so that the assembled data consists of a total of 300 time samples(3 runs of 100 images) for each voxel.Analytical toolsLet us �rst introduce a number of useful quantities. Let fzjg be a set of N vectors fromIRP , eg the fMRI time series in each of N voxel|in which case P is the number of images.Let us consider K clusters, represented by their cluster centre ck 2 IRP , with 1 � k � K.Each cluster Ck is a set of indexes from f1; : : :Ng. The clusters are a partition of the dataso that each vector zj belongs to exactly one cluster. Clustering consists of assigning eachvector zj to a cluster Ck. The within-class (or intra-class) inertia of the resulting partitionis: IW = 1N KXk=1 Xj2Ck d2 (zj; ck) (1)5



and the between-class (or inter-class) inertia is:IB = 1N KXk=1 jCkjd2 (ck; c) (2)where d2(a; b) is the squared distance between vectors a and b, jCkj is the number ofelements in cluster Ck, and c = PKk=1 jCkjN ck, is the weighted average of the cluster centres.Intuitively, IW is the average squared distance from a point to its cluster centre, whileIB is the average squared distance from a cluster centre to the centre of gravity. Acommendable goal in clustering would thus be to minimise the within-class inertia inorder to have homogeneous clusters, while maximising the between-class inertia so thatthese clusters are as di�erent as possible.For a large class of distance d(�; �), the inertia of each cluster (inner sum in equation 1) isminimised when the cluster centre is the average of all cluster members: ck = 1jCkj Xj2Ck zj.Under these conditions, the average cluster centre is also the average of the data, iethe centre of gravity: c = z. IW and IB thus become the intra-class and inter-classvariances. According to Huygens' formula, the sum of within- and between-class variancesis constant and equal to the total data variance, regardless of the number of clusters ortheir compositions. Thus minimising IW or maximising IB is equivalent. Accordingly, thewithin-class inertia alone provides a possible way of assessing the quality of a partitionof K clusters, but it does in no way make it possible to compare two partitions withdi�erent numbers of clusters. In particular, the within-class inertia of the optimal partitionwith K clusters is always higher than that of the optimal partition with K + 1 clusters.Furthermore, it can be noticed that IW is globally minimised by the trivial partition of Nclusters containing one point each.K-meansThe above considerations provide a natural introduction to one of the most widely usedclustering techniques: the K-means algorithm (MacQueen, 1967; Hartigan and Wong,1979). For a given number K of clusters, the within-class inertia is iteratively minimisedby assigning data to the nearest center and recalculating each centre as the average of itsmembers (minimising eq. 1): 6



Figure 1: Left: two-dimensional projection of the assignment of data (black circles) to the closest centre(white circles). Right: its implication for the corresponding time series. The six data vectors (left handside) are assigned to two cluster centres (right hand side).1. Initialise K clusters k = 1 : : :K, with centres ck(0). Iteration i = 0.2. Assign each data vector zj to the cluster Ck with the nearest centre ck(i), based ona distance metric between the cluster centre and the data vector, d �zj; ck(i)�.3. Set new cluster centre ck(i+1) to the average of its members: ck(i+1) = 1jCkjPj2Ck zj4. Increment i and go to step 2 until the partition is stable.Both steps 2 and 3 decrease the within-class inertia, so that the algorithm converges in a�nite number of steps. The convergence is usually very fast (Bottou and Bengio, 1995) andthe algorithm requires to store and consider only K �N distances between the data andthe centres. For fMRI clustering, each data vector zj could be the time series measured invoxel j. The cluster centre ck would then also be a time series, representing the \typical"response for this group of voxels. Figure 1 shows a typical K-means clustering step, andits implication for fMRI time series.Note that the results are very dependent on a number of factors. The algorithmrelies on the parametric assumption that the data distribution is a mixture of K identicalcomponents. The �rst implication is that the metric implemented by the distance d(�; �)has a large in
uence on the result. More important, the number K of clusters must bespeci�ed in advance. When the chosen number is not re
ected in the data, the results mightend up being essentially meaningless. Lastly, K-means is a non-deterministic algorithm7



and the resulting partition depends on the initial clusters assignment (step 1 above). Auseful heuristic is to use several random assignment and select the best result accordingto some criteria, eg the intra-class inertia.Hierarchical clusteringThe hierarchical algorithm addresses a number of limitations of the K-means methodby adopting a di�erent outlook. Biologists, for example, cluster data using taxonomichierarchies. Plants or animals are grouped in species, which are in turn grouped in genera,then families, orders, classes and �nally phyla. Each level of the taxonomy gathers severalmembers of the previous level. Hierarchical methods (see Ripley (1996), section 9.3 fora general introduction) proceed from this idea. They iteratively join clusters that arethe most similar into a larger structure. The result is usually presented in a tree-likestructure, the dendrogram, which shows which groups have been joined at which level ofsimilarity. This circumvents one of the main drawbacks of the K-means algorithm, as wedo not need to specify the number of clusters in advance: the hierarchical scheme providesdi�erent partitions obtained by cutting the tree at di�erent levels. These are only locallyoptimal, in the sense that each K-cluster partition is the best possible starting from theK+1 groups in the previous level, but not necessarily the best possible K-cluster partitionstarting from the initial data. Furthermore the process is entirely deterministic.In the following algorithm, known as the group-average agglomerative method andattributed to Ward (1963), we start with one cluster per data vector. The two closestpoints/clusters are joined into one cluster, resulting in N � 1 clusters: N � 2 containingone vector, and one containing two data points. The same operation is carried out withthe N � 1 resulting centres, and so on:1. Initialise by assigning one cluster of unit weight wj = 1 to each data vector zj.Calculate the squared dissimilarities �i;j = 1N d2 (xi;xj) between clusters xi and xj.2. Join the least dissimilar clusters A and B into a new cluster A[B of weight wA[B =wA + wB. 8



3. For all clusters C di�erent from A or B, update the dissimilarities by the formula:�C;A[B = (wA + wC) �A;C + (wB + wC) �B;C + wC�A;BwA + wB + wC4. Iterate: go to step 2 until there is only one cluster left.The computational burden lies in the calculation of the dissimilarities in step 1. Thealgorithm requires to calculate, store and consider an order N �N dissimilarities. This ismuch more demanding than the K-means algorithm for small values of K. Note howeverthat once the originalN�N matrix of dissimilarities is obtained (step 1 above), the updateformula from step 3 makes each iteration very fast. Furthermore, we obtain all partitions,for K varying from 1 to N in only one pass. Despite a lesser demand for each individualclustering attempts, estimating several partitions from K = 1 to K = Kmax clusters withK-means using the random initialisation heuristics could turn out to be computationallycomparable to hierarchical clustering.The MetricBoth clustering algorithms above rely on the use of a metric, ie a de�nition of distancesbetween two points in P-dimensional space. The resulting partition is potentially highlydependent on the particular choice of metric. A fairly broad class of metrics can beobtained by de�ning the generalised distance (Mahalanobis, 1936) between two vectors aand b in IRP as: d2 (a; b) = (a� b)>D(a� b) (3)whereD is a P�P symmetric positive de�nite matrix that uniquely de�nes the metric. ForD = IP (the identity matrix), we have the standard Euclidean distance. If D is a diagonalmatrix with positive elements on the diagonal, we have a scaling metric. When thediagonal contains the inverse variance of the data on each coordinate, this will be equivalentto using Euclidean distance on the normalised data. For other choices of symmetric positivede�nite distance matrix, there exists a matrix T such that D = T>T . This meansthat the corresponding metric is equivalent to a Euclidean distance after a linear datatransformation given by T . �, the P�P covariance matrix of the data, leads to Euclidean9



or scaling distance in the principal component axes. Indeed, let us write the eigenvaluedecomposition � = U>�U. The generalised metric using D = ��1 becomes:d2(a; b) = (Ua�Ub)>��1(Ua�Ub) (4)By editing the diagonal elements of �, we obtain a number of interesting metrics like theEuclidean or scaling distance in any principal subspace projection.Alternatively, equation 3 allows us to perform an implicit linear �ltering of the data.Let us write the �ltered data as X = FZ, where Z = [z1; : : :zN ] is a P � N matrixcontaining the original data, F is a matrix of �lter coe�cients, and X = [x1; : : :xN ] isthe matrix containing �ltered data. It is equivalent to use a Euclidean distance on the�ltered data or to use a generalised metric (3) on the original data with D = F>F . Thepre-processing presented below is a typical example of such use.Pre-processingSome previous attempts at clustering fMRI time series (Baumgartner et al., 1997, 1998;McIntyre et al., 1996; Moser et al., 1997; Scarth et al., 1996) use the raw time seriesmeasurement as input. A limitations of this approach is the potentially high dimensionalspace|especially for fast sampling rates. Using all 10 experiments from our dataset, theresulting fMRI time series would belong to a 1500-dimensional space. A second problem isthe high noise level, which leads to stability problems and the risk of clustering on the noiserather than on the activation. An associated concern is that we are actually interested inthe similarity in temporal activation, especially in connection with the stimulus (Golayet al., 1997; Toft et al., 1997). This has led Toft et al. (1997) to propose clustering onthe cross-correlation function between the fMRI activation and the paradigm. For voxelj, yj denotes the measured fMRI time series, and p is the activation stimulus, common toall j, usually, but not limited to, a square wave (\box-car model"). The cross-correlationfunction is de�ned as: xj(t) = 1P PXu=1 yj(u)p(u� t) (5)where we force p(i) = 0 for i < 1 or i > P . Equation 5 is known as the biased estimator.The cross-correlation function often has a periodic structure, so that it is possible to10



truncate xj, retaining a limited interval centred on 0. Note that the cross-correlationfunction is a linear �lter, and (5) can be expressed as:
X = 1P
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37777777777777777777775
Y = FY (6)

where we have retained only those coe�cients for which t lies between �T and T . Accord-ingly, clustering on the cross-correlation function can be viewed as the use of an alternativemetric. Furthermore, T is of the order of the stimulus period, so that the resulting vectorspace has much lower dimension than the original time-series. Finally, note that the cross-correlation function is di�erent from the cross-correlation coe�cient used eg by Bandettiniet al. (1993) and Golay et al. (1997).A Two Stage StrategyMost fMRI experiments provide a wealth of data. Though fMRI time series are mea-sured in numerous voxels, only very few of them are activated. This poses a problem forclustering because the underlying groups are ill-balanced. For example, K-means mighthave di�culties isolating possibly activated clusters and spread the clusters over the non-activated voxels instead. An additional concern is the computational cost, which growsas the square of the number of data vectors for our hierarchical method. In order to re-duce the amount of data, we propose a two-stage strategy in which we �rst use a loosestatistical test to discard voxels that are almost surely non-activated, then cluster theremaining data. A possible strategy would be to use a simple F-test (Holmes and Friston,1997, section 6.3) or other statistical tests along the same lines, and threshold at a givenlevel. It should be noted that the traditional use of statistical testing in neuroimaging putsthe emphasis on the type I error, or risk of false positives. In the context of our study,this thresholding is used solely as a data reduction device. We will consequently be more11
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Figure 2: Brain map and average activation for the thresholded and discarded voxels. Left: the 696 voxelsselected after thresholding the maximum of the cross-correlation function are indicated in black on topof the anatomical reference (average value of the fMRI time series in each voxel). Right: the discardedvoxels, indicated in black, cover 84% of the slice. fMRI plots: average fMRI time series for the voxelsindicated in black on the corresponding brain map.interested in lowering the type II error, so that we minimise the risk of discarding possiblyactivated voxels.As the cross-correlation function forms the basis of the clustering method, we will alsouse it to reduce the data in this two-stage strategy. We consider the extreme value of thecross-correlation function as the statistic of interest, and the null hypothesis that brainactivation is only Gaussian noise, uncorrelated with the stimulus and with variance �2.According to (6), the cross-correlation coe�cients xj(t) will have a multivariate Gaussiandistribution, with covariance FF>=�2. To our knowledge, there is no simple expressiongiving the distribution of the maximum coordinate of vectors sampled from a generalmultivariate Gaussian. However, it is easy to sample from such a distribution1 and obtaina Monte-Carlo estimate of the p-value associated with the maximum cross-correlationcoe�cient measured in a given voxel (Goutte et al., 1998a).In the experiments presented below, we use a low cross-correlation threshold in order tominimise the risk of discarding activated voxels. After thresholding, we retain 696 voxelsout of 4391, ie 16%. Figure 2 shows the selected voxels, marked in black. For anatomicalreference, the background represents the mean fMRI activation, averaged over time foreach voxel. The corresponding time series, averaged over all selected voxels, are plottedon the right of each brain map.1Note that �2 shall be estimated from the data, and the resulting statistic will have a multivariatet-distribution. However, when the number of images is moderately high, the Gaussian approximation willhold. 12
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Figure 3: Two of the three clusters obtained in our �rst K-means experiment (K = 3). Brain maps:cluster members indicated in black on top of the anatomical reference. fMRI plots: average fMRI timeseries in the corresponding voxels in thick black line, paradigm (stimulus) plotted as a reference in thinblack. RESULTSK-meansWe �rst use K-means clustering on the thresholded data using 3 clusters. The motivationis to try to isolate two clusters of activated voxels with di�erent types of activation, whileleaving a cluster for non-activated or weakly activated voxels. Each data vector containselements xj(�24) to xj(25) with the corresponding 50 values of the cross-correlation func-tion between the fMRI time series and the activation paradigm. We use the stochasticinitialisation procedure described above with 100 random initial con�gurations. The re-sulting partitions turn out to be very similar, with within-cluster variances between 30:15and 30:17 (standard deviation 0:007), and only 8 distinct con�gurations.Figure 3 presents the results for the best partition, ie the lowest within-cluster variance.One cluster (left) contains 69 voxels, located mostly in the visual cortex. The average timeseries in these voxels shows that their response is highly correlated with the paradigm. Thedelay, de�ned as the location of the largest absolute value of the cross-correlation function,is around 15 images or 5 seconds. The second cluster (right) contains 144 members.Though a number of voxels from this group are distributed across the slice, a majority ofthem are located in two areas: the neighbourhood of the visual cortex, close to membersof the previous cluster, and the sinus sagittalis (bottom). Interestingly, the average fMRItime series in this second cluster suggests a negative correlation with the paradigm (rightplot). However, the relatively modest level of the correlation suggests that this average13
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Figure 4: Four of the seven clusters obtained in our second K-means experiment (K = 7). Brain maps:cluster members indicated in black on top of the anatomical reference. fMRI plots: average fMRI timeseries in the corresponding voxels in thick black line, paradigm (stimulus) plotted as a reference in thinblack.e�ect might not be signi�cant against the null hypothesis of no activation. The third and�nal cluster contains the remaining, weakly-correlated voxels (not plotted).A second experiment is performed involving 7 clusters. The stochastic initialisationheuristic is used again with 100 random initial conditions. The resulting partitions aremore varied than in the 3-cluster case, with 60 distinct con�gurations. The minimum andmaximum within-cluster variances are 15:67 and 18:14 respectively, with a mean of 16:45and a standard deviation of 0:42. Figure 4 presents four of the seven clusters in the bestpartition. The �rst three (top row and bottom left) are positively correlated with theparadigm and are displayed here in decreasing order of their maximum cross-correlation.Notice that the average response strength in the �rst cluster (top left, 11 voxels) is almostthree times higher than that of the third cluster (bottom left, 112 voxels). It is alsosharper and with a slightly shorter delay compared to the second and third clusters.This di�erence in delay is naturally accounted for by the cross-correlation metric. Thethree positive clusters are located mainly the visual cortex. In addition, some of the lessactivated voxels cover two lateral areas that could correspond to visual area V5.The fourth cluster in �gure 4 (bottom right) contains 19 voxels with two noticeablefeatures. They are anti-correlated with the stimulus, like the voxels gathered in the second14



cluster in �gure 3, though with a larger cross-correlation (hence a more signi�cant e�ect).Secondly, the fMRI signal contains a high frequency component with a period of around4 images. Due to the high sampling rate used to collect this dataset, this correspondsto a frequency slightly lower than 1Hz which turns out to re
ect the heart beat. Thisis supported by the fact that this cluster contains voxels that cover the sinus sagittalis,located at the back of the brain (bottom of the slice, see also �gure 3). The rest of thethresholded voxels are weakly correlated with the stimulus and are distributed in the threeremaining clusters (not shown).Hierarchical ClusteringAs noted above, the use of K-means poses a crucial problem: how many clusters shouldwe consider? The choice of three clusters could be justi�ed by our attempt to identifytwo zones with di�erent activation patterns. But what if there are more such patterns(eg short, medium and long term delays), or conversely only one? Furthermore, in oursecond experiment, there is no real rationale behind the choice of K = 7. Hierarchicalclustering provides an answer to these questions and a principled way to decide on thenumber of clusters that provide a good balance between the number of classes and theirhomogeneity. Let us apply Ward's hierarchical clustering method presented above to the696 voxels obtained after thresholding. Each data vector contains 50 values, xj(�24) toxj(25), of the cross-correlation between the fMRI time series and the activation paradigm.In one deterministic pass, the hierarchical algorithm provides a dendrogram (Ripley,1996, p. 320), ie a binary tree representing the way each cluster is composed of clustersobtained in previous steps. The tree can be cut at several levels in order to obtain anarbitrary number of clusters. Figure 5 displays the resulting cluster centres when the treeis cut at di�erent levels, corresponding to from 7 down to 2 clusters. This �gure gives aninteresting insight into the way hierarchical clustering operates. In each plot, each curveis a cluster centre, representing the \typical" cross-correlation function of the voxels in theassociated cluster. The dotted line is the cross-correlation of the paradigm with itself orauto-correlation. It allows us to assess the delay in the voxel responses. Notice that whenwe go from one plot to the next, two curves (eg the two middle curves in the bottom left15
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Figure 5: The cluster centres selected by hierarchical clustering, from 7 to 2 clusters. In each plot,the solid lines are the cross-correlation functions of the cluster centre, which are also the average of thecross-correlation functions of the cluster members. The dotted line is the auto-correlation function ofthe paradigm, suitably scaled, which allows to assess the delay for each cluster. In most cases the cross-correlation functions show that the associated voxels display one of three di�erent e�ects: no activation,positive activation and negative activation. The within-class inertia is indicated in the lower right cornerof each plot.plot) are replaced by one (the middle curve in the bottom centre plot). This re
ects thefact that each step of the algorithm joins two previously obtained clusters (representedby two cluster centres, ie two curves, on �gure 5) into a new cluster, while the rest of thegroups remain unchanged.As expected, the within-class inertia increases as the number of classes decreases. Notethat for 7 clusters, it is close to the average value of the K-means results (estimated at16:45 from our 100 random initialisations). On the other hand, the 3 cluster partitionis sizeably worse than any equivalent partition obtained with K-means. This is due tothe increasing constraints on the partition introduced by the algorithm. While K-meansgathers points in clusters with virtually no constraints, the hierarchical method is forcedto join clusters that were obtained in the previous steps of the algorithm. Figure 6 plotsthe within-class inertia calculated for 1 to 20 clusters. The curvature, ie second derivative16
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Figure 6: Within-class inertia (or variance) for the partitions generated by the hierarchical clusteringalgorithm, from 1 to 20 clusters (bars). The estimated curvature is displayed as a solid line, and showstwo clear peaks for K = 3 and K = 7 clusters.of the curve represents the way the increase in inertia evolves. High curvatures meanthat joining two clusters at the corresponding level provoked a sharp change in inertia, orthat the homogeneity of the associated clusters have changed drastically. The curvatureis estimated using the central di�erence approximation, and plotted together with theinertia in �gure 6. Two peaks appear clearly for 3 and 7 clusters. This indicates that the6 (resp. 2) clusters con�guration is much less homogeneous than the 7 (resp. 3) clusterspartition. Accordingly, we will analyse the resulting groups for K = 3 and K = 7. Notethat while the choice of clusters in the previous section was motivated by an arbitrary, apriori choice, inspection of the inertia gives us a convenient heuristic to estimate whichcluster numbers we should concentrate on.The binary tree or dendrogram generated by the hierarchical clustering algorithm canbe cut at a level corresponding to IW = 32:4 in order to produce 3 clusters. Figure 7displays 2 of these, which roughly correspond to positive and negative correlations withthe paradigm. Comparison with �gure 3 shows that the groups formed by both clusteringmethods are highly consistent. Note that the positively correlated voxels (left) are locatedin the visual cortex as before. Compared to K-means, the hierarchical algorithm seems tohave gathered less voxels in both presented cluster, at the cost of a small increase (6%) in17
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Figure 7: Two of the three clusters obtained by hierarchical clustering at level IW = 32:4. Brain maps:cluster members indicated in black on top of the anatomical reference. fMRI plots: average fMRI timeseries in the corresponding voxels in thick black line, paradigm (stimulus) plotted as a reference in thinblack.
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Figure 8: Four of the seven clusters obtained by hierarchical clustering at level IW = 16:9. Brain maps:cluster members are indicated in black on top of the anatomical reference. fMRI plots: average fMRItime series in the corresponding voxels in thick black line, paradigm (stimulus) plotted as a reference inthin black.within-class variance.At a level corresponding to IW = 16:9, the hierarchical clustering algorithm yields 7clusters. Four of these are displayed on �gure 8, where we have kept the same indicativeordering as for the corresponding K-means results (�gure 4). Note that the �rst twoclusters in �gure 8 (9 and 47 voxels, top row) overlap exactly with the �rst cluster in�gure 7 (56 voxels, left). As noted above, this is a consequence of the hierarchical natureof the method. The two most activated out of 7 clusters have been joined into one at levelIW = 23:1, as shown in �gure 5. Similarly, the cluster showing a large negative correlation18
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Figure 9: Members of the most activated cluster from �gure 8. Left: cross-correlation functions of thecluster members (dotted) and cluster centre (broad solid) compared to the paradigm (thin solid). Right:corresponding raw time series.with the stimulus in �gure 8 (18 voxels, bottom right) was merged with another groupto form a larger cluster displayed in �gure 7 (right). The composition of the 4 clustersdisplayed in �gures 4 and 8 di�er little. The most activated voxels are located in the visualcortex, while area V5 seems to be present again in the moderately activated cluster (bottomleft). The negatively activated clusters in �gures 4 and 8 (bottom right) correspond for allbut one voxel, and cover in particular the sinus sagittalis. Though the general similarityis quite good, the 7-cluster partition obtained by hierarchical clustering results in a 7%higher within-class variance.Let us �nally investigate the composition of the cluster with the largest positive activa-tion. Figure 9 displays the cross-correlation function of the 9 voxels in the top left clusterfrom �gure 8, together with the corresponding fMRI time series. The cross-correlationfunctions of the cluster members appear quite homogeneous, with a strong positive acti-vation, and delays between 10 and 18 images (ie 3.5 to 6 seconds). Taken individually,the raw time series display a clear activation pattern. However, the rather high noise levelmakes the time series di�cult to compare. On the other hand, the cluster centre bene�tsfrom the averaging and shows a large activation, with a rather low noise level.
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DISCUSSIONNeuroscienti�c aspectsThe analyses presented above are mainly meant as an illustration of the proposed statisticalmethods. However, they lead to a number of neuroscienti�c comments and perspectiveswhich we will now address. Figures 3 to 8 show that some clusters seem to di�er only inthe activation strength of their members. This suggests that there is no clear separationof activated and non-activated voxels, but rather a continuum of activations. Some areasmight of course be activated with di�erent strength, eg the primary visual cortex andarea V5 in our experiments. However, a more likely cause of the graded response thatwe observe would be the partial voluming in the visual cortex. The composition of thevoxels, in particular with regard to vascular components, potentially in
uences the localconcentration in deoxyhaemoglobin, and therefore the intensity of the signal. Anotherpossibility would be the presence of capillaries instead of veins in the voxel of interest,modifying the blood-oxygenation level-dependent (BOLD) signal.The resulting cluster partitions in our experiments display an interesting feature: thepresence of negative correlation with the stimulus. Let us �rst emphasise that this negativecorrelation can not be due to a positive e�ect with a long delay. Indeed, the dataset wasformed from several distinct runs, such that there is no causality between a response andthe previous stimulus. As noted above, the voxels showing negative activation containa high-frequency component representing cardiac rhythm and some of them cover thesinus sagittalis. This suggests a link between negative correlation and presence of bloodvessels. However, though other voxels might also contain such vessels, there is no directexplanation for the negative correlation, as a speci�c deactivation would correspond to anincrease in deoxyhaemoglobin. On the other hand, the hypothesis of a movement-relatedartifact seems unlikely. A speci�c movement could indeed locally modify the proportionof capillaries and veins, leading to an increased signal in one voxel, and a correspondingdecrease in the other. However, in order to be detected as a positive or negative correlation,this movement would have to be somehow related to the stimulus, and such a stimulus-related movement has not been isolated. Finally, let us mention the possibility of the20



presence of an inverse BOLD signal in response to an activation. To our knowledge, thise�ect has so far only been observed in infants (Born et al., 1996).Statistical aspectsLet us �rst insist again on the fact that these experiments are of an exploratory, ratherthan inferential, nature. We have given guidelines as to how signi�cance levels can beestimated for each cross-correlation function, but we consider that the main objective ofthis work is to explore the data in order to identify interesting di�erences in activation. Achallenging application of the clustering results is the formulation of hypotheses that aremore interesting than the standard null hypothesis. Indeed, a limitation of the standarduse of statistical testing is that it estimates the probability of lack of activation ratherthan the extent and probability of actual activation.We have insisted on the crucial choice of the number of clusters. Choosing the op-timal number is a typical capacity control problem, and few principled approaches havebeen proposed (Hansen and Larsen, 1996). Some alternatives address this problem, eg theclassical Isodata algorithm (Tou and Gonzalez, 1974, p. 97) is a popular method relyingon K-means and a set of clever heuristics. Unfortunately, many methods proposed in theliterature tend to be unreliable (as shown by Moore (1989) for Adaptive Resonance The-ory). In that respect, the two methods presented here o�er a complementary behaviour.Though fast and powerful, K-means requires the number of clusters to be set a priori.On the other hand, the hierarchical clustering algorithm makes it possible to choose thisnumber according to the evolution of the within-class variance. It automatically providespartitions for each number of clusters, but these are not as homogeneous as K-means'.This number of cluster/homogeneity dilemma suggests the combination of both methodsto exploit their attractive features.Many other clustering algorithms exist. The most popular in the neuroimaging com-munity is probably the fuzzy K-means method (Baumgartner et al., 1998, and referencestherein). However, note that Dav�e and Krishnapuram (1997) have shown that a largenumber of fuzzy clustering methods are essentially equivalent to traditional techniques inrobust statistics. Other robust methods can be derived directly from the K-means algo-21



rithm by simply using a di�erent way of updating the cluster centres. Let us just mentionthe K-medians or K-medoids described eg by Ripley (1996).Finally, we have noticed above that the resulting clusters seem to spread over a contin-uum of activations. This raises the question of whether the obtained groups are providingany useful information, or merely partitioning a continuous distribution of activations.The sharp changes in within-cluster inertia show that there is indeed some homogeneity inthe clusters we have presented. Furthermore, note that not only the activation, but alsothe delay vary across clusters, as shown by Goutte et al. (1998b).
CONCLUSIONThis contribution addresses the problem of clustering fMRI time series in groups of voxelswith similar activations. We present and analyse two clustering algorithms and demon-strate their use on fMRI data acquired during a visual experiment. The main contributionsof this work are: the use of the cross-correlation function as a feature space, rather thanthe raw fMRI time series; the introduction of a 
exible metric de�nition linking bothspaces and allowing di�erent preprocessing strategies (�ltering, PCA, etc.); the use of thehierarchical clustering algorithm in conjunction with the classical K-means method. Wepresent results underlining the complementarity between both techniques, and showingthat clustering can e�ectively identify regions of similar activations.
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