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ABSTRACT

Analysis of fMRI time series is often performed by extracting one or more
parameters for the individual voxel. Methods based e.g. on various statistical
tests are then used to yield parameters corresponding to probability of activa-
tion or activation strength. However, these methods do not indicate whether
sets of voxels are activated in a similar way, or activated in different ways.
Typically, delays between two activated signals are not identified. In this ar-
ticle, we use clustering methods to detect similarities in activation between
voxels. We employ a novel metric which measures the similarity between the
activation stimulus and the fMRI signal. We present two different clustering
algorithms and use them to identify regions of similar activations in an fMRI

experiment involving a visual stimulus.



INTRODUCTION

In the recent years many contributions have addressed the analysis of fMRI time series.
A large number of models and techniques from signal processing and statistics have been
applied to fMRI analysis. Several flavours of statistical tests have been used (Xiong et al.,
1996). The t-test implemented in SPM (Worsley and Friston, 1995), derived from the
well-known general linear model (McCullagh and Nelder, 1989), and the non-parametric
Kolmogorov-Smirnov test (Baker et al., 1994) are the most widespread examples. The
correlation between the fMRI signal and the activation paradigm has also been used in
different contexts (Bandettini et al., 1993; Golay et al., 1997), while linear filters, like the
finite input response (FIR) filter, are slowly emerging as a possible alternative (Lange and
Zeger, 1997; Nielsen et al., 1997). The above methods focus solely (at least in a first stage)
on estimating either the probability or the strength of activation on a voxel by voxel basis.

In this contribution we consider an alternative approach. We assume that the pattern
of activation actually has a structure, and can be divided into a few types of similar
activations. To each of these types corresponds a cluster of similarly activated voxel,
the centre of which represents the “typical” time series for these voxels. Subsequently,
cluster centres can be analysed with regard to descriptive parameters such as activation
strength and delay. Clustering techniques provide additional information, namely the
cluster assignments, ie labels for each of the voxels according to their similarity. It is
therefore possible to isolate zones with similar activation, as well as to see whether two
given voxels have similar behaviour.

Clustering methods have been previously used in neuroimaging for similar purposes
(Baumgartner et al., 1997, 1998; McIntyre et al., 1996; Moser et al., 1997; Scarth et al.,
1996). These contributions performed a clustering directly on the fMRI time series, using
the fuzzy K-means algorithm (see Davé and Krishnapuram, 1997, for a general review).
Due to the high noise level in fMRI experiments, the results of clustering on the raw
time series is often unsatisfactory and does not necessarily group data according to the
similarity of their pattern of response to the stimulus. This consideration has led Golay
et al. (1997) and Toft et al. (1997), in two independant abstracts for the Human Brain

Conference, to consider a metric based on the correlation between stimulus and time series.



Toft et al. (1997) illustrated the stability problems due to the high noise level in the raw
data, and suggested to cluster voxels on the basis of the cross-correlation function, yielding
improved performance and noise reduction.

The aim of this contribution is to focus on the application of clustering to fMRI time
series using two different algorithms. The well-known K-means algorithm is a simple
method with a fast convergence, but also a number of limitations based on its underly-
ing parametric assumptions. As an alternative, we present a hierarchical method which
addresses a number of these limitations by providing a different outlook on the clustering
problem. We provide the theoretical basis for both techniques, suggest a simple stochastic
procedure to choose the initial set of cluster centres in the K-means method, and discuss
the issue of the number of clusters. In this study, the emphasis is on exploratory, rather
than inferential, data analysis; however, inferences can be drawn from the clustering re-
sults and we provide some ways to do so. In order to illustrate these ideas, a number of
experiments are performed on a set of fMRI images obtained from a visual experiment.
This contribution extends our previous results and provides additional tools and methods
for clustering fMRI time series.

Let us finally note that clustering provides a general tool to perform post-processing
with a number of methods. It can be applied, among other possibilities, on low-dimensional
features extracted from the original data (Goutte et al., 1998b), statistical tests results or
FIR coefficients after a linear filtering.

In the following section, we present the dataset used in this study, introduce the neces-
sary concepts and methods and insist on the role of the metric. We then present the results
obtained with both clustering algorithms in different configurations. In particular we use
the hierarchical method to provide a heuristic to choose the number of clusters. Finally,
the discussion section addresses the neuroscientific aspects of this work and discusses some

statistical issues.



MATERIALS AND METHODS
Dataset

The experiments discussed below will be performed on a dataset acquired at Hvidovre
Hospital in Denmark on a 1.5 T Magnetom Vision MR scanner. The scanning sequence
was a 2D gradient echo EPI (T2* weighted) with 66 ms echo time. The RF flip angle
was set to 50 degrees, and a scan target was a matrix of 128x128 pixels, with FOV of 230
mm, and the slice thickness was 10 mm. Images were obtained in a para-axial orientation
parallel to the calcarine sulcus. The region of interest will be limited to a 71 x 91 pixels
map.

The visual paradigm consisted of a rest period of 20 seconds of darkness (using a light
fixation dot), followed by 10 seconds of full-field checker board reversing at 8 Hz, and
ending by 20 seconds of darkness. A total of 150 images was obtained in a run of 50
seconds, corresponding to approximately 330 ms between the images. 10 separate runs
containing 150 images each were completed. For computational reasons, the dataset used
in this article was built by using 3 of these runs. Furthermore, the first and last 25 scans in
each run where left out, so that the assembled data consists of a total of 300 time samples

(3 runs of 100 images) for each voxel.
Analytical tools

Let us first introduce a number of useful quantities. Let {z,} be a set of N vectors from
IRY | eg the fMRI time series in each of N voxel—in which case P is the number of images.
Let us consider K clusters, represented by their cluster centre ¢, € IR”, with 1 < k < K.
Each cluster Cy is a set of indexes from {1,... N}. The clusters are a partition of the data
so that each vector z; belongs to exactly one cluster. Clustering consists of assigning each
vector z; to a cluster Cj. The within-class (or intra-class) inertia of the resulting partition
is:

1 K
:Nz:: 2(; (25, cr) (1)
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and the between-class (or inter-class) inertia is:
1 K

Is =+ > [Ckld® (ex, ) (2)
k=1

where d?(a,b) is the squared distance between vectors a and b, |Cy| is the number of
elements in cluster 'y, and € = Z,ﬁ(zl %ck, is the weighted average of the cluster centres.
Intuitively, Zy is the average squared distance from a point to its cluster centre, while
Ip is the average squared distance from a cluster centre to the centre of gravity. A
commendable goal in clustering would thus be to minimise the within-class inertia in
order to have homogeneous clusters, while maximising the between-class inertia so that
these clusters are as different as possible.

For a large class of distance d(-, -), the inertia of each cluster (inner sum in equation 1) is

1
minimised when the cluster centre is the average of all cluster members: ¢, = m Z zj.
k

Under these conditions, the average cluster centre is also the average of the (faet(;, ie
the centre of gravity: € = Z. Zy and Zp thus become the intra-class and inter-class
variances. According to Huygens’ formula, the sum of within- and between-class variances
is constant and equal to the total data variance, regardless of the number of clusters or
their compositions. Thus minimising Zy, or maximising Zpg is equivalent. Accordingly, the
within-class inertia alone provides a possible way of assessing the quality of a partition
of K clusters, but it does in no way make it possible to compare two partitions with
different numbers of clusters. In particular, the within-class inertia of the optimal partition
with K clusters is always higher than that of the optimal partition with K + 1 clusters.

Furthermore, it can be noticed that Zy; is globally minimised by the trivial partition of N

clusters containing one point each.
K-means

The above considerations provide a natural introduction to one of the most widely used
clustering techniques: the K-means algorithm (MacQueen, 1967; Hartigan and Wong,
1979). For a given number K of clusters, the within-class inertia is iteratively minimised
by assigning data to the nearest center and recalculating each centre as the average of its

members (minimising eq. 1):
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Figure 1: Left: two-dimensional projection of the assignment of data (black circles) to the closest centre
(white circles). Right: its implication for the corresponding time series. The six data vectors (left hand

side) are assigned to two cluster centres (right hand side).

1. Initialise K clusters k = 1... K, with centres ¢;(®. Iteration i = 0.

2. Assign each data vector z; to the cluster Cj with the nearest centre ¢V, based on

a distance metric between the cluster centre and the data vector, d (zj, ck(i)).

3. Set new cluster centre ¢;("*") to the average of its members: ¢,(*") = ﬁ Yjec, Zj

4. Increment ¢ and go to step 2 until the partition is stable.

Both steps 2 and 3 decrease the within-class inertia, so that the algorithm converges in a
finite number of steps. The convergence is usually very fast (Bottou and Bengio, 1995) and
the algorithm requires to store and consider only K x N distances between the data and
the centres. For fMRI clustering, each data vector z; could be the time series measured in
voxel j. The cluster centre ¢; would then also be a time series, representing the “typical”
response for this group of voxels. Figure 1 shows a typical K-means clustering step, and
its implication for fMRI time series.

Note that the results are very dependent on a number of factors. The algorithm
relies on the parametric assumption that the data distribution is a mixture of K identical
components. The first implication is that the metric implemented by the distance d(-, ")
has a large influence on the result. More important, the number K of clusters must be
specified in advance. When the chosen number is not reflected in the data, the results might

end up being essentially meaningless. Lastly, K-means is a non-deterministic algorithm
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and the resulting partition depends on the initial clusters assignment (step 1 above). A
useful heuristic is to use several random assignment and select the best result according

to some criteria, eg the intra-class inertia.

Hierarchical clustering

The hierarchical algorithm addresses a number of limitations of the K-means method
by adopting a different outlook. Biologists, for example, cluster data using taxonomic
hierarchies. Plants or animals are grouped in species, which are in turn grouped in genera,
then families, orders, classes and finally phyla. Each level of the taxonomy gathers several
members of the previous level. Hierarchical methods (see Ripley (1996), section 9.3 for
a general introduction) proceed from this idea. They iteratively join clusters that are
the most similar into a larger structure. The result is usually presented in a tree-like
structure, the dendrogram, which shows which groups have been joined at which level of
similarity. This circumvents one of the main drawbacks of the K-means algorithm, as we
do not need to specify the number of clusters in advance: the hierarchical scheme provides
different partitions obtained by cutting the tree at different levels. These are only locally
optimal, in the sense that each K-cluster partition is the best possible starting from the
K +1 groups in the previous level, but not necessarily the best possible K-cluster partition
starting from the initial data. Furthermore the process is entirely deterministic.

In the following algorithm, known as the group-average agglomerative method and
attributed to Ward (1963), we start with one cluster per data vector. The two closest
points/clusters are joined into one cluster, resulting in N — 1 clusters: N — 2 containing
one vector, and one containing two data points. The same operation is carried out with

the N — 1 resulting centres, and so on:

1. Initialise by assigning one cluster of unit weight w; = 1 to each data vector z;.

Calculate the squared dissimilarities ¢, ; = %dQ (x;, ;) between clusters x; and ;.

2. Join the least dissimilar clusters A and B into a new cluster AU B of weight wup =

wWa + Wg.



3. For all clusters C' different from A or B, update the dissimilarities by the formula:

(U)A + w(j) (514’() + (U)B + w(j) 6B’(j + w(j(SA’B
wa+wg + we

(sC,AuB -

4. Iterate: go to step 2 until there is only one cluster left.

The computational burden lies in the calculation of the dissimilarities in step 1. The
algorithm requires to calculate, store and consider an order N x N dissimilarities. This is
much more demanding than the K-means algorithm for small values of K. Note however
that once the original N x N matrix of dissimilarities is obtained (step 1 above), the update
formula from step 3 makes each iteration very fast. Furthermore, we obtain all partitions,
for K varying from 1 to N in only one pass. Despite a lesser demand for each individual
clustering attempts, estimating several partitions from K =1 to K = K,,,,; clusters with
K-means using the random initialisation heuristics could turn out to be computationally

comparable to hierarchical clustering.

The Metric

Both clustering algorithms above rely on the use of a metric, ie a definition of distances
between two points in P-dimensional space. The resulting partition is potentially highly
dependent on the particular choice of metric. A fairly broad class of metrics can be
obtained by defining the generalised distance (Mahalanobis, 1936) between two vectors a
and b in IR” as:

d*(a,b) = (a — b)'D(a — b) (3)

where D is a P x P symmetric positive definite matrix that uniquely defines the metric. For
D = I, (the identity matrix), we have the standard Euclidean distance. If D is a diagonal
matrix with positive elements on the diagonal, we have a scaling metric. When the
diagonal contains the inverse variance of the data on each coordinate, this will be equivalent
to using Euclidean distance on the normalised data. For other choices of symmetric positive
definite distance matrix, there exists a matrix T such that D = T'T. This means
that the corresponding metric is equivalent to a Euclidean distance after a linear data

transformation given by T'. 3, the P x P covariance matrix of the data, leads to Euclidean



or scaling distance in the principal component axes. Indeed, let us write the eigenvalue

decomposition & = UTAU. The generalised metric using D = £~ ! becomes:
d*(a,b) = (Ua — Ub)" A '(Ua — Ub) (4)

By editing the diagonal elements of A, we obtain a number of interesting metrics like the
Euclidean or scaling distance in any principal subspace projection.

Alternatively, equation 3 allows us to perform an implicit linear filtering of the data.
Let us write the filtered data as X = FZ, where Z = [2zq,...2y] is a P X N matrix
containing the original data, F' is a matrix of filter coefficients, and X = [®y,...2xy] is
the matrix containing filtered data. It is equivalent to use a Euclidean distance on the
filtered data or to use a generalised metric (3) on the original data with D = F'F. The

pre-processing presented below is a typical example of such use.
Pre-processing

Some previous attempts at clustering fMRI time series (Baumgartner et al., 1997, 1998;
MeclIntyre et al., 1996; Moser et al., 1997; Scarth et al., 1996) use the raw time series
measurement as input. A limitations of this approach is the potentially high dimensional
space—especially for fast sampling rates. Using all 10 experiments from our dataset, the
resulting fMRI time series would belong to a 1500-dimensional space. A second problem is
the high noise level, which leads to stability problems and the risk of clustering on the noise
rather than on the activation. An associated concern is that we are actually interested in
the similarity in temporal activation, especially in connection with the stimulus (Golay
et al., 1997; Toft et al., 1997). This has led Toft et al. (1997) to propose clustering on
the cross-correlation function between the fMRI activation and the paradigm. For voxel
J, Y, denotes the measured fMRI time series, and p is the activation stimulus, common to
all j, usually, but not limited to, a square wave (“box-car model”). The cross-correlation

function is defined as:

7i(t) = 5 3 wi(wlp(u 1) (5)

u=1

where we force p(i) = 0 for i < 1 or i > P. Equation 5 is known as the biased estimator.

The cross-correlation function often has a periodic structure, so that it is possible to
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truncate x;, retaining a limited interval centred on 0. Note that the cross-correlation

function is a linear filter, and (5) can be expressed as:

W) ) 0 0
1 p(2)  p(3) p(N) 0
X=5| o) »2 »0) p(N-1)  p(N) | Y =FY (6)
0 p(1) p(2) p(N=2) p(N-1)
L 0 0 p(1) P(N-T) |

where we have retained only those coefficients for which £ lies between —T and T'. Accord-
ingly, clustering on the cross-correlation function can be viewed as the use of an alternative
metric. Furthermore, T is of the order of the stimulus period, so that the resulting vector
space has much lower dimension than the original time-series. Finally, note that the cross-
correlation function is different from the cross-correlation coefficient used eg by Bandettini

et al. (1993) and Golay et al. (1997).

A Two Stage Strateqgy

Most fMRI experiments provide a wealth of data. Though fMRI time series are mea-
sured in numerous voxels, only very few of them are activated. This poses a problem for
clustering because the underlying groups are ill-balanced. For example, K-means might
have difficulties isolating possibly activated clusters and spread the clusters over the non-
activated voxels instead. An additional concern is the computational cost, which grows
as the square of the number of data vectors for our hierarchical method. In order to re-
duce the amount of data, we propose a two-stage strategy in which we first use a loose
statistical test to discard voxels that are almost surely non-activated, then cluster the
remaining data. A possible strategy would be to use a simple F-test (Holmes and Friston,
1997, section 6.3) or other statistical tests along the same lines, and threshold at a given
level. It should be noted that the traditional use of statistical testing in neuroimaging puts
the emphasis on the type I error, or risk of false positives. In the context of our study,

this thresholding is used solely as a data reduction device. We will consequently be more
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Figure 2: Brain map and average activation for the thresholded and discarded voxels. Left: the 696 voxels
selected after thresholding the maximum of the cross-correlation function are indicated in black on top
of the anatomical reference (average value of the fMRI time series in each voxel). Right: the discarded
voxels, indicated in black, cover 84% of the slice. fMRI plots: average fMRI time series for the voxels
indicated in black on the corresponding brain map.

interested in lowering the type II error, so that we minimise the risk of discarding possibly
activated voxels.

As the cross-correlation function forms the basis of the clustering method, we will also
use it to reduce the data in this two-stage strategy. We consider the extreme value of the
cross-correlation function as the statistic of interest, and the null hypothesis that brain
activation is only Gaussian noise, uncorrelated with the stimulus and with variance o2.
According to (6), the cross-correlation coefficients z;(#) will have a multivariate Gaussian
distribution, with covariance FFT/(J'Q. To our knowledge, there is no simple expression
giving the distribution of the maximum coordinate of vectors sampled from a general
multivariate Gaussian. However, it is easy to sample from such a distribution! and obtain
a Monte-Carlo estimate of the p-value associated with the maximum cross-correlation
coefficient measured in a given voxel (Goutte et al., 1998a).

In the experiments presented below, we use a low cross-correlation threshold in order to
minimise the risk of discarding activated voxels. After thresholding, we retain 696 voxels
out of 4391, ie 16%. Figure 2 shows the selected voxels, marked in black. For anatomical
reference, the background represents the mean fMRI activation, averaged over time for
each voxel. The corresponding time series, averaged over all selected voxels, are plotted

on the right of each brain map.

!Note that o2 shall be estimated from the data, and the resulting statistic will have a multivariate
t-distribution. However, when the number of images is moderately high, the Gaussian approximation will

hold.
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Figure 3: Two of the three clusters obtained in our first K-means experiment (K = 3). Brain maps:
cluster members indicated in black on top of the anatomical reference. fMRI plots: average fMRI time
series in the corresponding voxels in thick black line, paradigm (stimulus) plotted as a reference in thin

black.

RESULTS

K-means

We first use K-means clustering on the thresholded data using 3 clusters. The motivation
is to try to isolate two clusters of activated voxels with different types of activation, while
leaving a cluster for non-activated or weakly activated voxels. Each data vector contains
elements x;(—24) to x;(25) with the corresponding 50 values of the cross-correlation func-
tion between the fMRI time series and the activation paradigm. We use the stochastic
initialisation procedure described above with 100 random initial configurations. The re-
sulting partitions turn out to be very similar, with within-cluster variances between 30.15
and 30.17 (standard deviation 0.007), and only 8 distinct configurations.

Figure 3 presents the results for the best partition, ie the lowest within-cluster variance.
One cluster (left) contains 69 voxels, located mostly in the visual cortex. The average time
series in these voxels shows that their response is highly correlated with the paradigm. The
delay, defined as the location of the largest absolute value of the cross-correlation function,
is around 15 images or 5 seconds. The second cluster (right) contains 144 members.
Though a number of voxels from this group are distributed across the slice, a majority of
them are located in two areas: the neighbourhood of the visual cortex, close to members
of the previous cluster, and the sinus sagittalis (bottom). Interestingly, the average fMRI
time series in this second cluster suggests a negative correlation with the paradigm (right

plot). However, the relatively modest level of the correlation suggests that this average
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Figure 4: Four of the seven clusters obtained in our second K-means experiment (K = 7). Brain maps:
cluster members indicated in black on top of the anatomical reference. fMRI plots: average fMRI time
series in the corresponding voxels in thick black line, paradigm (stimulus) plotted as a reference in thin
black.

effect might not be significant against the null hypothesis of no activation. The third and
final cluster contains the remaining, weakly-correlated voxels (not plotted).

A second experiment is performed involving 7 clusters. The stochastic initialisation
heuristic is used again with 100 random initial conditions. The resulting partitions are
more varied than in the 3-cluster case, with 60 distinct configurations. The minimum and
maximum within-cluster variances are 15.67 and 18.14 respectively, with a mean of 16.45
and a standard deviation of 0.42. Figure 4 presents four of the seven clusters in the best
partition. The first three (top row and bottom left) are positively correlated with the
paradigm and are displayed here in decreasing order of their maximum cross-correlation.
Notice that the average response strength in the first cluster (top left, 11 voxels) is almost
three times higher than that of the third cluster (bottom left, 112 voxels). It is also
sharper and with a slightly shorter delay compared to the second and third clusters.
This difference in delay is naturally accounted for by the cross-correlation metric. The
three positive clusters are located mainly the visual cortex. In addition, some of the less
activated voxels cover two lateral areas that could correspond to visual area V5.

The fourth cluster in figure 4 (bottom right) contains 19 voxels with two noticeable

features. They are anti-correlated with the stimulus, like the voxels gathered in the second
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cluster in figure 3, though with a larger cross-correlation (hence a more significant effect).
Secondly, the fMRI signal contains a high frequency component with a period of around
4 images. Due to the high sampling rate used to collect this dataset, this corresponds
to a frequency slightly lower than 1Hz which turns out to reflect the heart beat. This
is supported by the fact that this cluster contains voxels that cover the sinus sagittalis,
located at the back of the brain (bottom of the slice, see also figure 3). The rest of the
thresholded voxels are weakly correlated with the stimulus and are distributed in the three

remaining clusters (not shown).

Hierarchical Clustering

As noted above, the use of K-means poses a crucial problem: how many clusters should
we consider? The choice of three clusters could be justified by our attempt to identify
two zones with different activation patterns. But what if there are more such patterns
(eg short, medium and long term delays), or conversely only one? Furthermore, in our
second experiment, there is no real rationale behind the choice of K = 7. Hierarchical
clustering provides an answer to these questions and a principled way to decide on the
number of clusters that provide a good balance between the number of classes and their
homogeneity. Let us apply Ward’s hierarchical clustering method presented above to the
696 voxels obtained after thresholding. Each data vector contains 50 values, z;(—24) to
2(25), of the cross-correlation between the fMRI time series and the activation paradigm.

In one deterministic pass, the hierarchical algorithm provides a dendrogram (Ripley,
1996, p. 320), ie a binary tree representing the way each cluster is composed of clusters
obtained in previous steps. The tree can be cut at several levels in order to obtain an
arbitrary number of clusters. Figure 5 displays the resulting cluster centres when the tree
is cut at different levels, corresponding to from 7 down to 2 clusters. This figure gives an
interesting insight into the way hierarchical clustering operates. In each plot, each curve
is a cluster centre, representing the “typical” cross-correlation function of the voxels in the
associated cluster. The dotted line is the cross-correlation of the paradigm with itself or
auto-correlation. It allows us to assess the delay in the voxel responses. Notice that when

we go from one plot to the next, two curves (eg the two middle curves in the bottom left
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Figure 5: The cluster centres selected by hierarchical clustering, from 7 to 2 clusters. In each plot,
the solid lines are the cross-correlation functions of the cluster centre, which are also the average of the
cross-correlation functions of the cluster members. The dotted line is the auto-correlation function of
the paradigm, suitably scaled, which allows to assess the delay for each cluster. In most cases the cross-
correlation functions show that the associated voxels display one of three different effects: no activation,
positive activation and negative activation. The within-class inertia is indicated in the lower right corner
of each plot.

plot) are replaced by one (the middle curve in the bottom centre plot). This reflects the
fact that each step of the algorithm joins two previously obtained clusters (represented
by two cluster centres, ie two curves, on figure 5) into a new cluster, while the rest of the
groups remain unchanged.

As expected, the within-class inertia increases as the number of classes decreases. Note
that for 7 clusters, it is close to the average value of the K-means results (estimated at
16.45 from our 100 random initialisations). On the other hand, the 3 cluster partition
is sizeably worse than any equivalent partition obtained with K-means. This is due to
the increasing constraints on the partition introduced by the algorithm. While K-means
gathers points in clusters with virtually no constraints, the hierarchical method is forced
to join clusters that were obtained in the previous steps of the algorithm. Figure 6 plots

the within-class inertia calculated for 1 to 20 clusters. The curvature, ie second derivative
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Figure 6: Within-class inertia (or variance) for the partitions generated by the hierarchical clustering
algorithm, from 1 to 20 clusters (bars). The estimated curvature is displayed as a solid line, and shows
two clear peaks for K = 3 and K = 7 clusters.
of the curve represents the way the increase in inertia evolves. High curvatures mean
that joining two clusters at the corresponding level provoked a sharp change in inertia, or
that the homogeneity of the associated clusters have changed drastically. The curvature
is estimated using the central difference approximation, and plotted together with the
inertia in figure 6. Two peaks appear clearly for 3 and 7 clusters. This indicates that the
6 (resp. 2) clusters configuration is much less homogeneous than the 7 (resp. 3) clusters
partition. Accordingly, we will analyse the resulting groups for K = 3 and K = 7. Note
that while the choice of clusters in the previous section was motivated by an arbitrary, a
priori choice, inspection of the inertia gives us a convenient heuristic to estimate which
cluster numbers we should concentrate on.

The binary tree or dendrogram generated by the hierarchical clustering algorithm can
be cut at a level corresponding to Zyy = 32.4 in order to produce 3 clusters. Figure 7
displays 2 of these, which roughly correspond to positive and negative correlations with
the paradigm. Comparison with figure 3 shows that the groups formed by both clustering
methods are highly consistent. Note that the positively correlated voxels (left) are located
in the visual cortex as before. Compared to K-means, the hierarchical algorithm seems to

have gathered less voxels in both presented cluster, at the cost of a small increase (6%) in
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Figure 7: Two of the three clusters obtained by hierarchical clustering at level Zyy = 32.4. Brain maps:
cluster members indicated in black on top of the anatomical reference. fMRI plots: average fMRI time
series in the corresponding voxels in thick black line, paradigm (stimulus) plotted as a reference in thin

black.
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Figure 8: Four of the seven clusters obtained by hierarchical clustering at level 7y, = 16.9. Brain maps:
cluster members are indicated in black on top of the anatomical reference. fMRI plots: average fMRI
time series in the corresponding voxels in thick black line, paradigm (stimulus) plotted as a reference in
thin black.

within-class variance.

At a level corresponding to Zy, = 16.9, the hierarchical clustering algorithm yields 7
clusters. Four of these are displayed on figure 8, where we have kept the same indicative
ordering as for the corresponding K-means results (figure 4). Note that the first two
clusters in figure 8 (9 and 47 voxels, top row) overlap exactly with the first cluster in
figure 7 (56 voxels, left). As noted above, this is a consequence of the hierarchical nature
of the method. The two most activated out of 7 clusters have been joined into one at level

Tw = 23.1, as shown in figure 5. Similarly, the cluster showing a large negative correlation
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Figure 9: Members of the most activated cluster from figure 8. Left: cross-correlation functions of the
cluster members (dotted) and cluster centre (broad solid) compared to the paradigm (thin solid). Right:
corresponding raw time series.

with the stimulus in figure 8 (18 voxels, bottom right) was merged with another group
to form a larger cluster displayed in figure 7 (right). The composition of the 4 clusters
displayed in figures 4 and 8 differ little. The most activated voxels are located in the visual
cortex, while area V5 seems to be present again in the moderately activated cluster (bottom
left). The negatively activated clusters in figures 4 and 8 (bottom right) correspond for all
but one voxel, and cover in particular the sinus sagittalis. Though the general similarity
is quite good, the 7-cluster partition obtained by hierarchical clustering results in a 7%
higher within-class variance.

Let us finally investigate the composition of the cluster with the largest positive activa-
tion. Figure 9 displays the cross-correlation function of the 9 voxels in the top left cluster
from figure 8, together with the corresponding fMRI time series. The cross-correlation
functions of the cluster members appear quite homogeneous, with a strong positive acti-
vation, and delays between 10 and 18 images (ie 3.5 to 6 seconds). Taken individually,
the raw time series display a clear activation pattern. However, the rather high noise level
makes the time series difficult to compare. On the other hand, the cluster centre benefits

from the averaging and shows a large activation, with a rather low noise level.
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DISCUSSION

Neuroscientific aspects

The analyses presented above are mainly meant as an illustration of the proposed statistical
methods. However, they lead to a number of neuroscientific comments and perspectives
which we will now address. Figures 3 to 8 show that some clusters seem to differ only in
the activation strength of their members. This suggests that there is no clear separation
of activated and non-activated voxels, but rather a continuum of activations. Some areas
might of course be activated with different strength, eg the primary visual cortex and
area V5 in our experiments. However, a more likely cause of the graded response that
we observe would be the partial voluming in the visual cortex. The composition of the
voxels, in particular with regard to vascular components, potentially influences the local
concentration in deoxyhaemoglobin, and therefore the intensity of the signal. Another
possibility would be the presence of capillaries instead of veins in the voxel of interest,
modifying the blood-oxygenation level-dependent (BOLD) signal.

The resulting cluster partitions in our experiments display an interesting feature: the
presence of negative correlation with the stimulus. Let us first emphasise that this negative
correlation can not be due to a positive effect with a long delay. Indeed, the dataset was
formed from several distinct runs, such that there is no causality between a response and
the previous stimulus. As noted above, the voxels showing negative activation contain
a high-frequency component representing cardiac rhythm and some of them cover the
sitnus sagittalis. This suggests a link between negative correlation and presence of blood
vessels. However, though other voxels might also contain such vessels, there is no direct
explanation for the negative correlation, as a specific deactivation would correspond to an
increase in deoxyhaemoglobin. On the other hand, the hypothesis of a movement-related
artifact seems unlikely. A specific movement could indeed locally modify the proportion
of capillaries and veins, leading to an increased signal in one voxel, and a corresponding
decrease in the other. However, in order to be detected as a positive or negative correlation,
this movement would have to be somehow related to the stimulus, and such a stimulus-

related movement has not been isolated. Finally, let us mention the possibility of the
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presence of an inverse BOLD signal in response to an activation. To our knowledge, this

effect has so far only been observed in infants (Born et al., 1996).

Statistical aspects

Let us first insist again on the fact that these experiments are of an exploratory, rather
than inferential, nature. We have given guidelines as to how significance levels can be
estimated for each cross-correlation function, but we consider that the main objective of
this work is to explore the data in order to identify interesting differences in activation. A
challenging application of the clustering results is the formulation of hypotheses that are
more interesting than the standard null hypothesis. Indeed, a limitation of the standard
use of statistical testing is that it estimates the probability of lack of activation rather
than the extent and probability of actual activation.

We have insisted on the crucial choice of the number of clusters. Choosing the op-
timal number is a typical capacity control problem, and few principled approaches have
been proposed (Hansen and Larsen, 1996). Some alternatives address this problem, eg the
classical Isodata algorithm (Tou and Gonzalez, 1974, p. 97) is a popular method relying
on K-means and a set of clever heuristics. Unfortunately, many methods proposed in the
literature tend to be unreliable (as shown by Moore (1989) for Adaptive Resonance The-
ory). In that respect, the two methods presented here offer a complementary behaviour.
Though fast and powerful, K-means requires the number of clusters to be set a priori.
On the other hand, the hierarchical clustering algorithm makes it possible to choose this
number according to the evolution of the within-class variance. It automatically provides
partitions for each number of clusters, but these are not as homogeneous as K-means’.
This number of cluster/homogeneity dilemma suggests the combination of both methods
to exploit their attractive features.

Many other clustering algorithms exist. The most popular in the neuroimaging com-
munity is probably the fuzzy K-means method (Baumgartner et al., 1998, and references
therein). However, note that Davé and Krishnapuram (1997) have shown that a large
number of fuzzy clustering methods are essentially equivalent to traditional techniques in

robust statistics. Other robust methods can be derived directly from the K-means algo-
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rithm by simply using a different way of updating the cluster centres. Let us just mention
the K-medians or K-medoids described eg by Ripley (1996).

Finally, we have noticed above that the resulting clusters seem to spread over a contin-
uum of activations. This raises the question of whether the obtained groups are providing
any useful information, or merely partitioning a continuous distribution of activations.
The sharp changes in within-cluster inertia show that there is indeed some homogeneity in
the clusters we have presented. Furthermore, note that not only the activation, but also

the delay vary across clusters, as shown by Goutte et al. (1998b).

CONCLUSION

This contribution addresses the problem of clustering fMRI time series in groups of voxels
with similar activations. We present and analyse two clustering algorithms and demon-
strate their use on fMRI data acquired during a visual experiment. The main contributions
of this work are: the use of the cross-correlation function as a feature space, rather than
the raw fMRI time series; the introduction of a flexible metric definition linking both
spaces and allowing different preprocessing strategies (filtering, PCA, etc.); the use of the
hierarchical clustering algorithm in conjunction with the classical K-means method. We
present results underlining the complementarity between both techniques, and showing

that clustering can effectively identify regions of similar activations.
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