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Abstract

Jackson Pollock introduced a revolutionary artistic style of dripping paint on
a horizontal canvas. Here we study Pollock’s unique artistic style by using com-
putational methods for characterizing the low-level numerical differences between
original Pollock drip paintings and drip paintings of other painters who attempted
to mimic his signature drip painting style. Four thousands and twenty four numer-
ical image content descriptors were extracted from each painting, and compared
using Weighted Nearest Neighbor classification such that the Fisher discriminant
scores of the content descriptors were used as weights. In 93% of the cases the
computer analysis was able to differentiate between an original and a non-original
Pollock drip painting. The most discriminative image content descriptors that were
unique to the work of Pollock were the fractal features, but other numerical image
content descriptors such as Zernike polynomials, Haralick textures, and Cheby-
shev statistics show substantial differences between original and non-original Pol-
lock drip paintings. These experiments show that the uniqueness of Pollock’s drip
painting style is not reflected merely by fractals, but also by other numerical image
content descriptors that reflect the visual content. The code and software used for
the experiment is publicly available, and can be used to study the work of other
artists.
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1 Introduction

Abstract expressionist Jackson Pollock developed a novel artistic style of dripping paint
on a large canvas laid on the floor (Herczyrisky et al., 2011; Cernuschi, 1992). This
revolutionary method of painting became an important technique recognized with the
abstract expressionism movement. Analysis of Pollock drip paintings has focused on
the materials (Lake, Ordonez & Schilling, 2004), dripping techniques (Landau, 1989;
Friedman, 1995), fluid dynamics (Herczyrisky et al., 2011), and significant work has
also been done using low-level computer analysis of the visual content (Taylor, Micol-
ich & Jonas, 1999; Stork, 2009).

While early work in computer-based analysis of Art was based on retrieval and anal-
ysis of captions and metadata (Mattison, 2004; Tsai, 2007), other studies attempted to
perform automatic analysis of the visual content of the art (Postma, Herik & Lubbe,
2007; Stork, 2009; Hurtut, 2010). Automatic analysis of visual art has mainly fo-
cused on classification of paintings by their creating artists (van den Herik & Postma,
2000; Keren, 2002; Widjaja et al., 2003; Johnson et al., 2008; Shen, 2009; Zujociv et
al., 2009) or automatic association of paintings with captions and key words (Barnard
& Forsyth, 2001; Lewis et al., 2004; Vrochidis et al., 2008). More recent work also
showed that computers can assess the similarities between the artistic styles of painters,
and thus automatically associate painters that share similar artistic styles or associ-
ated with the same schools of art (Shamir et al., 2010). Other studies also applied
computer-based analysis to determine the drawing methods (Kammerer et al., 2007;
Roussopoulos et al., 2010). While the vast majority of the work on computer-aided
analysis of visual art is based on two-dimensions, three dimensional methods were
also used to demonstrate that computer-aided analysis can be applied to aesthetic and
scientific analysis of sculptures (Bernardini et al., 2000) and artistic visualization of
tree-dimensional objects (Gooch et al., 2001).

Naturally, computer-aided analysis of visual art found an immediate application in art
authentication. Perhaps the most visible discussion of computer-aided art authenti-
cation focused on Jackson Pollock’s drip paintings (Taylor, Micolich & Jonas, 1999;
Mureika, Cupchik & Dyer, 2004; Jones-Smith & Mathur, 2006; Taylor et al., 2007;
Stork, 2009) due to their high monetary value and the controversial authenticity of
some of the paintings, but other applications of computer vision to art authentication
include paintings of Eugene Delacroix (Kroner & Lattner, 1998), Pieter Bruegel (Lyu,
Rockmore & Farid, 2004), and Vincent Van Gogh (Li et al., 2012).

The human perception of visual art is a complex cognitive task that involves different
processing centers in the brain (Zeki, 1999; Ramachandran & Herstein, 1999; Solso,
2000, 1994). A study more specific to the work of Jackson Pollock showed unique
physiological and neurological human responses to Pollocks drip paintings (Taylor et
al., 2011). While the human eye and brain are limited by what they can sense and
perceive (Canosa, 2009), it is possible that computer analysis can provide tools that
analyze the visual content in a fashion that allows the detection and quantification of
features that cannot be easily noticed or quantified by the unaided human eye. An
example is the fractal analysis applied to Pollock’s drip paintings, which showed that
Pollock’s work has a certain degree of fractality that changed during his career (Taylor,



2002). Further work also proposed the possibility that Jackson Pollock’s work share
mathematical descriptors that are significantly more similar to the work of Van Gogh
compared to other painters (Shamir, 2012).

Here we use computer vision algorithms that extract thousands of numerical image
content descriptors from Jackson Pollock’s paintings, and compare these features to
visually similar drip paintings that were not painted by Jackson Pollock in order to
identify numerical image content descriptors that are unique to Pollock’s signature
artistic style. In Section 2 we describe the dataset of paintings used in the experiment,
in Section 3 we briefly describe the computer analysis methods, and in Section 4 the
experimental results are discused.

2 Image dataset

The dataset includes 26 paintings of Jackson Pollock that were downloaded from vari-
ous sources via the internet, and used in previous studies (Shamir et al., 2010; Shamir,
2012). The drip paintings that were not painted by Pollock were also downloaded from
different on-line sources, but it should be noted that these paintings are not fakes of au-
thentic Pollock’s work, but the work of painters that were heavily inspired by Pollock
and attempted to produce similar paintings, in most cases for the purpose of selling
them as a Pollock-inspired work, but not as original Pollock. A third dataset included
26 drip paintings of Pollock that were painted between 1950 and 1955.

Frames and other visual features that are not the painting itself were removed, and all
images were converted to the lossless TIFF image file format. Since the images were
downloaded from various sources, their sizes varied significantly. Therefore, all images
were normalized proportionally to the size of 640,000 pixels such that the aspect ratio
of all images was preserved, and no image content was sacrificed.

3 Image analysis method

The image analysis method used in this study is based on the wnd-charm method
(Shamir et al., 2008; Shamir, 2008; Shamir et al., 2009a), which was originally de-
veloped for computer-aided biomedical image analysis, but its comprehensiveness has
been shown to be effective also for quantitative analysis of visual art (Shamir et al.,
2010; Shamir, 2012).

Wnd-charm uses a large and comprehensive set of numerical image content descrip-
tors reflecting very many aspects of the visual content such as textures, colors, edges,
shapes, fractals, polynomial decomposition of the image, and statistical distribution
of the pixel intensities. The set of image features is thoroughly described in (Shamir
et al., 2008; Shamir, 2008; Orlov et al., 2008; Shamir et al., 2009a, 2010). The set
includes Radon transform features, edge statistics, objects statistics, fractal features,



Chebyshev statistics, Gabor filters, Tamura and Haralick textures, Zernike polynomi-
als, Multi-scale histograms, and first four moments. The source code implementing
these features is publicly available for free download (Shamir et al., 2008).

To increase the comprehensiveness of the set of image content descriptors, the fea-
tures are extracted not just from the raw pixels, but also from the image transforms
and second-order image transforms, which allow extracting more information from the
visual content as demonstrated by previous experiments with general images datasets
(Orlov et al., 2008; Shamir et al., 2009b) and specifically with image datasets of visual
art (Shamir et al., 2010). The image transforms that are used are Fourier transform,
Chebyshev transform, Wavelet (symlet 5, level 1) transform, color transform (Shamir,
2006), hue transform (which is simply the hue component of the HSV triplets), and
edge magnitude transform. A detailed description of the image features and image
transforms can be found in (Shamir et al., 2008; Shamir, 2008; Shamir et al., 2010).

As done in (Shamir et al., 2010), each image was divided into 16 equal-sized tiles such
that the image content descriptors are computed on each of the 16 tiles, providing 16
feature vectors for each painting in the dataset. Since the size of all images used in the
experiment is 640,000 pixels, each of the 16 tiles was 40,000 pixels in size.

Once the numerical image content descriptors are computed, each descriptor is as-
signed with a Fisher discriminant score (Bishop, 2006) that reflects its strength in dis-
criminating between original Jackson Pollock paintings and drip paintings of other
painters. The Fisher discriminant score is defined by Equation 1
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where W is the Fisher discriminant score, N is the number of classes (set to 2 in the
experiment described in this paper), T is the mean of the values of feature f in the
entire training set, and T . and UJ% . are the mean and variance of the values of feature
famong all training images of class c.
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The purpose of the Fisher discriminant scores is to rank the different numerical image
content descriptors by their ability to differentiate between Pollock and non-Pollock
drip paintings. That is, a numerical image content descriptor that has unique values
when computed from Pollock original work will be assigned with a high weight com-
pared to image content descriptors that do not have different values for Pollock and
non-Pollock paintings, and therefore do not reflect the differences between original
drip paintings of Jackson Pollock and the work of other painters who attempted to
replicate his signature artistic style.

After the Fisher discriminant scores are computed for all content descriptors, 75% of
the least informative image content descriptors are rejected. The purpose of rejecting
75% of the features is to ignore non-informative image content descriptors that were
assigned with a low weight, but their combined impact on the score can be significant
due to the high number of non-informative features.

When a feature vector of a test image is classified, a simple Weighted Nearest Neigh-
bor rule is used such that the Fisher scores are used as the weights of the 25% of the



remaining numerical image content descriptors. That is, the Fisher discriminant scores
are used not only to filter non-informative features, but also to assign weights to the
other image features that determine the impact of the feature on the classification de-
cision. The classification decision for a given test image is then made by a majority
rule of the individual classification decisions of the 16 tiles of that image, as discussed
in (Shamir et al., 2010). This classification method is described more thoroughly in
(Shamir et al., 2008, 2010). The source code of wnd-charm is publicly available, and
can be downloaded at

http://vfacstaff.ltu.edu/Ishamir/downloads/ImageClassifier.

4 Results

To test if the computer can automatically differentiate between genuine Pollock drip
paintings and Pollock-inspired paintings we used 20 paintings from each class for train-
ing, and the remaining six for testing. The experiment was repeated 40 times such that
in each run different paintings were randomly allocated for training and test sets. Since
each image in the dataset was separated into 16 equal-sized tiles as explained in Sec-
tion 3, if a certain image was allocated to the training or the test sets all its tiles were
allocated to that set to prevent bias caused by automatic matching of tiles allocated for
testing to tiles taken from the same image but allocated to the training set.

The classification accuracy was determined by the number of genuine Pollock paint-
ings that were classified automatically by the algorithm as Pollock paintings added to
the number of the Pollock-inspired drip paintings classified automatically as Pollock-
inspired, divided by the total number of test samples. The final classification accuracy
was the average accuracy of all 40 runs, and the Fisher discriminant scores were also
averaged across all runs.

Experimental results show that the computer algorithm has 93% of accuracy in auto-
matically identifying a genuine Pollock over a Pollock-inspired drip paintings, sug-
gesting that Pollock’s style is unique, and is different from the work of other artists
despite their attempts to mimic his work and produce paintings that are visually as
similar as possible to Pollock’s drip painting signature style. The numerical image
content descriptors that have the strongest discriminative power between Pollock and
non-Pollock drip paintings are specified in Figure 1. For the sake of the simplicity of
the visualization, the figure includes only descriptors with Fisher score greater than
1.0.

As the figure shows, a broad range of numerical image content descriptors differentiate
between original Pollock and non-original Pollock drip paintings. Clearly, the fractal
features that were used in the experiment (Chen, Daponte & Fox, 1989) provided the
strongest discriminative signal between genuine Pollock paintings and Pollock-inspired
drip paintings, which is in agreement with previous studies (Taylor, Micolich & Jonas,
1999; Taylor, 2002). In addition to the fractal features, the graph also shows that Har-
alick textures and Zernike polynomials extracted from the different image transforms
also provide strong discriminative signal between Pollock and non-Pollock drip paint-



ings. Chebyshev statistics and the first four moments of the statistical distribution
of the pixels computed on the Fourier transform of the paintings also provide strong
discriminative signal, demonstrating that the difference between original Pollock drip
paintings and Pollock-inspired drip paintings is not reflected by merely the fractality
of the work. The fact that fractals are not the only features that distingiush between
an original and non-original Pollock drip paintings is in agreement with the results of
Stork (2009), who showed that te use of non-fractal features elevated the classification
accuracy from near randomness to 81%.

The imperfect accuracy can be explained by the fact that the dataset of Pollock paint-
ings included drip paintings painted during a relatively long period of time, from the
early 1940’s to the mid 1950’s. Since Pollock’s style changed significantly through-
out his life (Taylor, 2002), the dataset of Pollock and Pollock-inspired drip paintings
introduces a certain variance.

To reduce the variance in the artistic style of Pollock’s drip paintings we performed a
similar experiment, with the difference that the dataset of original Pollock drip paint-
ings was replaced with the set that contained just Pollock’s paintings painted in the first
half of the 1950’s. In that experiment, the classification accuracy between the original
Pollock paintings and the Pollock-inspired art was 100%, and the numerical content
descriptors with the strongest discriminative signal are specified in Figure 2. Like with
Figure 1, the graph does not include all content descriptors, but just the content de-
scriptors with Fisher discriminant scores greater than 3.

As the graph shows, the discriminative power of the image content descriptors is sub-
stantially higher than in Figure 1. Also, the fractal features extracted from the Fourier
transform of the Chebyshev transform provided a very strong classification signal com-
pared to the other image content descriptors. Additionally, Zernike polynomilsl, Har-
alick textures, and Chebyshev statistics also provide strong classification signal. Like
the results of Figure 1, the experiment shows that Pollock’s drip paintings painted dur-
ing te 1950’s are not unique merely in the sense of fractals, but also by several other
numerical image content descriptors that reflect the visual content of the art.

5 Conclusion

The human perception of visual art is a complex cognitive process, and is highly dif-
ficult to quantify or analyze manually in a systematic and objective fashion. Here we
used a comprehensive machine vision analysis to compare numerical image content de-
scriptors computed from genuine Jackson Pollock work and the work of other painters
that attempted to follow his drip painting signature style. The analysis shows that the
numerical image content descriptors in Pollock’s work are different from the Pollock-
inspired drip paintings. This analysis demonstrates that Pollock’s work is unique, and
attempts to mimic his work failed to follow his unique signature style.

The analysis also shows that the uniqueness of Pollock’s artistic style is reflected by a
broad range of numerical image content descriptors. These descriptors include fractals,



which provide the strongest discriminating signal, but also polynomial decomposition
of the image such as Zernike and Chebysheyv statistics, as well as Haralick textures and
the first four moments of the pixel intensity distribution in different image transforms
and multi-order image transforms.

The comprehensiveness of the method allows it to be used for similar experiments with
other painters for identifying unique features in the artistic style of other painters. The
source code and software used for the experiment described in this paper is available
for free download at

http://vfacstaff.ltu.edu/Ishamir/downloads/ImageClassifier.
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Figure 1: Fisher discriminant scores reflecting the power of the different numerical
image content descriptors in discriminating between original Pollock drip paintings
and Pollock-inspired drip paintings
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Figure 2: Fisher discriminant scores reflecting the power of the different numerical
image content descriptors in discriminating between original Pollock drip paintings
painted in the early 50’s and Pollock-inspired drip paintings



