
M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 245Appeared in: IEEE Conference on Computer Vision & Pattern Recognition, 1994View-Based and Modular Eigenspacesfor Face RecognitionAlex Pentland, Baback Moghaddam, Thad StarnerVision and Modeling Group, The Media LaboratoryMassachusetts Institute of Technology20 Ames St., Cambridge, MA 02139AbstractIn this work we describe experiments with eigen-faces for recognition and interactive search ina large-scale face database. Accurate visualrecognition is demonstrated using a database ofO(103) faces. The problem of recognition un-der general viewing orientation is also exam-ined. A view-based multiple-observer eigenspacetechnique is proposed for use in face recogni-tion under variable pose. In addition, a modu-lar eigenspace description technique is used whichincorporates salient features such as the eyes,nose and mouth, in an eigenfeature layer. Thismodular representation yields higher recognitionrates as well as a more robust framework forface recognition. An automatic feature extrac-tion technique using feature eigentemplates isalso demonstrated.1 IntroductionIn recent years considerable progress has been made on theproblems of face detection and recognition, especially in theprocessing of \mug shots," i.e., head-on face pictures withcontrolled illumination and scale. The best results havebeen obtained for 2-D, view-based techniques based on ei-ther template matching (e.g., [1], [2]), or matching using\eigenfaces," i.e. template matching using the Karhunen-Loeve transformation of a set of face pictures (e.g., [10, 11,5]).However to date tests of these methods have been con-�ned to datasets of only a few hundred images. For real-world applications, we must be able to reliably discriminateamong thousands of individuals. Moreover, the problemof recognizing a human face from a general view remainslargely unsolved, because transformations such as position,orientation, scale, and illumination cause the face's appear-ance to vary substantially. It is therefore important to askif we can extend these successful 2-D, view-based recogni-tion approaches to large databases with more general view-ing conditions.In this paper we �rst explore how the eigenface tech-nique of Turk and Pentland [11] scales when applied tomuch larger recognition problems. We then generalize theapproach to view-based and modular eigenspaces for detec-tion and recognition. The view-based formulation allowsfor recognition under varying head orientations and themodular description allows for the incorporation of impor-tant facial features such as eyes, nose and mouth. These

extensions account for variations in object pose and leadto a more robust recognition system.Although the application reported in this paper is thatof face recognition, the same techniques can be appliedto recognition and detection of most rigid, roughly convexobjects. The general applicability of eigenvector decompo-sition methods for appearance-based 3D object recognitionhas recently been convincingly demonstrated by Muraseand Nayar [7].2 A large face databaseTo date, most face recognition experiments have had atmost a few hundred faces. Thus how face recognition per-formance scales with the number of faces is almost com-pletely unknown. In order to have an estimate of therecognition performance on much larger databases, we haveconducted tests on a database of 7; 562 images of approxi-mately 3; 000 people.The eigenfaces for this database were approximated us-ing a principal components analysis on a representativesample of 128 faces. Recognition and matching was subse-quently performed using the �rst 20 eigenvectors. In addi-tion, each image was then annotated (by hand) as to sex,race, approximate age, facial expression, and other salientfeatures. Almost every person has at least two images inthe database; several people have many images with vary-ing expressions, headwear, facial hair, etc.2.1 Photobook: an image database toolThis database can be interactively searched using an X-windows browsing tool we have created called Photobook[8]. The user begins by selecting the types of faces theywish to examine; e.g., senior Caucasian males with mus-taches, or adult Hispanic females with hats. This subsetselection is accomplished using an object-oriented databaseto search through the face image annotations. Photobookthen presents the user with the �rst 21 of these images (asshown in Figure 1); the rest of the images can be viewed by\paging" through the set of image in groups of 21 images.At any time the user can select a face from among thosepresented, and Photobook will then use the eigenvectordescription of that face to sort the entire set of faces interms of their similarity to the selected face. Photobookthen re-presents the user with the face images, now sortedby similarity to the selected face.Figure 1 shows the typical results of such a similaritysearch using the eigenvector descriptors. The face at theupper left of each set of images was selected by the user; theremainder of the faces are the 20 most-similar faces fromamong the entire 7; 562 images. Similarity decreases left1



Figure 1: The face at the upper left was selected by the user; the remainder of the faces are the 20 most-similar facesfound from among the entire 7; 562 individuals in the database. Similarity decreases left to right, top to bottom. Notethe ability to match an individual despite wide variations in expression.to right, top to bottom. The entire searching and sortingoperation takes less than one second on a standard SunSparcstation, because each face is described using only avery small number of eigenvector coe�cients. Of particularimportance is the ability to �nd the same person despitewide variations in expression and variations such as pres-ence of eye glasses, etc.To assess the average recognition rate, 200 faces wereselected at random, and a nearest-neighbor rule was usedto �nd the most-similar face from the entire database. Ifthe most-similar face was of the same person then a correctrecognition was scored. In this experiment the eigenvector-based recognition system produced a recognition accuracyof 95%. This performance is somewhat surprising becausethe database contains wide variations in expression, andhas relatively weak control of head position and illumina-tion. This accuracy was maintained across race and sexcategories, although we have observed a possible (not sta-tistically signi�cant) trend toward lower performance onOriental faces.3 General viewing geometriesThere are two ways of approaching the problem of facerecognition under general viewing conditions. Given Nindividuals underM di�erent views, one can do recognitionand pose estimation in a universal eigenspace computedfrom the combination of NM images. In this way a single\parametric eigenspace" will encode both identity as wellas viewing conditions. Such an approach, for example, hasrecently been used by Murase and Nayar [7] for general 3D
object recognition.An alternative formulation is to build a \view-based"set ofM separate eigenspaces, each capturing the variationof the N individuals in a common view. The view-basedeigenspace is essentially an extension of the eigenface tech-nique to multiple sets of eigenvectors, one for each com-bination of scale and orientation. One can view this ar-chitecture as a set of parallel \observers" each trying toexplain the image data with their set of eigenvectors (seealso Darrell and Pentland [3].)In this view-based, multiple-observer approach, the �rststep is to determine the location and orientation of the tar-get object by selecting the eigenspace which best describesthe input image. This is accomplished by calculating theresidual description error (the \distance-from-face-space"metric [11]) using each viewspace's eigenvectors. Once theproper viewspace is determined, the image is encoded usingthe eigenvectors of that viewspace, and then recognized.3.1 View-based vs. parametric methodsThe main advantage of the parametric eigenspace methodis its simplicity. The encoding of an input image usingn eigenvectors requires only n projections. In the view-based method, M di�erent sets of n projections are re-quired, one for each view. However, this does not implythat a factor of M times more computation is necessarilyrequired. By progressively calculating the eigenvector co-e�cients while pruning alternative viewspaces, the cost ofusing M eigenspaces can be greatly reduced.The key di�erence between the view-based and para-2



Figure 2: Some of the images used to test accuracy atface recognition despite wide variations in head orientation.Average recognition accuracy was 92%, the orientation er-ror had a standard deviation of 15�.metric representations can be understood by consideringthe geometry of facespace. In the high-dimensional vectorspace of an input image, multiple-orientation training im-ages are represented by a set of M distinct regions, eachde�ned by the scatter of N individuals. Multiple viewsof a face form non-convex (yet connected) regions in im-age space [1]. Therefore the resulting ensemble is a highlycomplex and non-separable manifold.The parametric eigenspace attempts to describe this en-semble with a projection onto a single low-dimensional lin-ear subspace (corresponding to the �rst n eigenvectors ofthe NM training images). In contrast, the view-based ap-proach corresponds to M independent subspaces, each de-scribing a particular region of the facespace (correspondingto a particular view of a face). The relevant analogy here isthat of modeling a complex distribution by a single clustermodel or by the union of several component clusters. Nat-urally, the latter (view-based) representation can yield amore accurate representation of the underlying geometry.3.2 Recognition performanceWe have evaluated both the view-based and parametrictechniques with data similar to that shown in Figure 2.This data consists of 189 images consisting of nine viewsof 21 people. The nine views of each person were evenlyspaced from�90� to +90� along the horizontal plane. Datawere provided by Westinghouse Electronic Systems. Ourexperimental results show a slightly superior performanceobtained with the view-based method. Two di�erent test-ing methodologies were used to judge the relative perfor-mance of the parametric and view-based eigenspace meth-ods.

In the �rst series of experiments the interpolation per-formance was tested by training on a subset of the avail-able views f�90�;�45�; 0�g and testing on the interme-diate views f�68�;�23�g. The average recognition ratesobtained were 90% for the view-based and 88% for theparametric eigenspace methods.A second series of experiments tested the extrapolationperformance by training on a range of views (e.g., �90�to +45�) and testing on novel views outside the trainingrange (e.g., +68� and +90�). For testing views separatedby �23� from the training range, the average recognitionrates were 83% for the view-based and 78% for the para-metric eigenspace method. For �45� testing views, theaverage recognition rates were 50% (view-based) and 43%(parametric).4 EigenfeaturesThe eigenface technique is easily extended to the descrip-tion and coding of facial features, yielding eigeneyes, eigen-noses and eigenmouths. Eye-movement studies indicatethat these particular facial features represent importantlandmarks for �xation, especially in an attentive discrimi-nation task [14]. Therefore we should expect an improve-ment in recognition performance by incorporating an addi-tional layer of description in terms of facial features. Thiscan be viewed as either a modular or layered representationof a face, where a coarse (low-resolution) description of thewhole head is augmented by additional (higher-resolution)details in terms of salient facial features.This modularity in face description also has distinct ad-vantages for face coding in teleconferencing. For exam-ple, a layered representation consisting of the face andeigenmouths has recently been implemented for low bit-rate transmission of visual telephony by Welsh and Shah[13]. In section 5, we will demonstrate the potential utilityof eigenfeatures for face recognition.4.1 Detection of facial featuresAn important pre-processing step in an eigenvector recog-nition system is that of registration. A face in an input im-age must �rst be located and registered in a standard-sizeframe before being processed. In addition to head detectionand tracking, automatic detection of facial features is alsoan important component for face recognition. Over theyears, various strategies for facial feature detection havebeen proposed, ranging from the early work of Kanadewith edge-map projections [4], to more recent techniquesusing generalized symmetry operators [9] and multilayerperceptrons [12].By far, the standard detection paradigm in computervision is that of simple correlation or template matching.The eigenspace formulation, however, leads to a powerfulalternative to simple template matching. The reconstruc-tion error (or residual) of the principal component repre-sentation (referred to as the \distance-from-face-space" inthe context of our earlier work [11]) is a an e�ective in-dicator of a match. The residual error is easily computedusing the projection coe�cients and signal energy. Thisdetection strategy is equivalent to matching with eigen-templates and allows for a greater range of distortions inthe input signal (including lighting, rotation and scale). Ina statistical signal detection framework, the use of eigen-3



(a)
(b)Figure 3: (a) Examples of multiple-view eye training tem-plates and (b) typical detections on novel views.templates has been shown to yield superior performance incomparison with standard matched �ltering [6].In the eigenfeature representation the equivalent\distance-from-feature-space" (DFFS) can be e�ectivelyused for the detection of facial features. Given an inputimage, a feature distance-map is built by computing theDFFS at each pixel. When using n eigenvectors, this re-quires n convolutions (which can be e�ciently computedusing an FFT) plus an additional local energy computa-tion. The global minimum of this distance map is thenselected as the best feature match.4.2 View-invariant detectionThe DFFS feature detection method can be extended tothe detection of features under di�erent viewing geome-tries. Here, once again, one faces the choice of using eithera view-based eigenspace or a parametric eigenspace. Us-ing our multiple-orientation database we tested the relativeperformance of these two methods for detection in the fol-

lowing manner.First, a subset of the available views were selectedf�90�;�45�; 0�g and the appropriate eye templates wereextracted for training. These training templates are shownin Figure 3(a). Then the DFFS metric was used todetect the corresponding eye in the intermediate viewsf�68�;�23�g. Typical (correct) detections are shown inFigure 3(b). The detections over the four novel views wereaveraged to yield an overall percentage of correct detection(a correct detection was de�ned as one within 5 pixels ofthe true feature location). The percent correct detectionswere 90% for the view-based detector and 70% for the para-metric detector.The relative performance of the view-based and para-metric methods was similar for other facial features (nosesand mouths). However, the detection rates for these fea-tures were lower due to the greater variations in appearanceas a function of viewing geometry (due, for example, to thelarge depth range of the nose).A complicating factor in facial feature detection acrosshead orientation is the issue of feature occlusion and fea-ture/background interaction. The former results in onlysome features being visible in some views (e.g., right eyeonly in extreme right views) and the latter in the interac-tion of some features with the background (e.g., the nosein pro�le views). However, an estimate of head orientationobtained with the view-based eigenspace method can beused to determine interior features that will be visible inthe input image and consequently which features are to berelied upon for recognition.4.3 Detection on a large databaseThe DFFS feature detector was also used for the auto-matic detection and coding of the facial features in ourlarge database of 7,562 faces. The same representativesample of 128 individuals used in computing the eigenfaceswas used to compute a set of corresponding eigenfeatures.Figure 4(a) shows examples of the training templates usedfor the facial features (left eye, right eye, nose and mouth).The entire database was processed by using independentdetectors for each feature (with the DFFS computed basedon projection on the �rst 10 eigenvectors). The matcheswere obtained by independently selecting the global mini-mum in each of the four distance maps. Typical detectionsare shown in Figure 4(b).To illustrate the e�ectiveness of the DFFS detectoron this large database, the 7,562 feature detections werepooled into a feature accumulator array as follows: for eachdetection, the corresponding pixel location in the arraywas incremented by an amount inversely proportional tothe DFFS score at the selected global minimum. Figure 5shows the combined accumulator array for the four facialfeatures as superimposed on the mean face. The peaks inthe accumulator array are quite sharp since false detectionsare randomly distributed in the image and tend to havelarge DFFS values. Since the eyes were accurately alignedin the picture taking process, the corresponding eye peaksare quite sharp.The detection peaks for the nose and the mouth are moredi�use (yet still accurate in location) due to the greatervariation in appearance and position. The spatial spreadis due to the variations in head shape and the relative po-sitions of the nose and mouth with respect to the eyes. In4



(a)
(b)Figure 4: (a) Examples of facial feature training templatesused and (b) the resulting typical detections.addition, these features tend to have a lower detection rateand higher DFFS values. Although no ground truth datafor feature locations is available, eye locations are quiteconsistent in this database. Using the mean eye location,peak detection rates for the eyes can be conservatively es-timated as 94%.The DFFS metric associated with each detection canbe used in conjunction with a threshold | i.e., only theglobal minima with a DFFS value less than the thresholdare declared to be a possible match. Consequently we cancharacterize the detection vs. false-alarm tradeo� by vary-ing this threshold and generating a receiver operating char-acteristics (ROC) curve. Figure 6 shows the ROC curvesfor the left eye using the �rst and �rst 10 eigenvectorsin the DFFS detector. A correct detection was de�nedas a below-threshold global minimum within 5 pixels ofthe mean left eye position. Similarly, a false alarm wasde�ned as a below-threshold detection located outside the5-pixel radius. Global minima above the threshold were

Figure 5: Detection accumulator arrayundeclared. The peak performance of the DFFS detectorusing the �rst 10 eigenvectors corresponds to a 94% detec-tion rate at a false alarm rate of 6%. Conversely, at a zerofalse-alarm rate, 52% of the eyes were correctly detected.To calibrate the performance of the DFFS detector, wehave also shown the ROC curve corresponding to a stan-dard sum-of-square-di�erences (SSD) template matchingtechnique. The templates used in this case were the meanfeatures in each case. We observe that for the same prob-ability of detection, the DFFS detector shows an order ofmagnitude improvement in false-alarm rate over the SSD.Note that the SSD can be considered a degenerate caseof a DFFS detector, corresponding to a zero-th order en-coding | i.e., using only the mean vector for description.The addition of the principal components results in incre-mental improvements in detection performance, resultingin a gradation of ROC curves similar to those shown inFigure 6. Naturally, the incorporation of each additionaleigenvector means an extra correlation. However, the in-crease in computational cost is linear with the number ofeigenvectors and is typically o�set by the subsequent gainin performance. In fact, as the ROC curves indicate, by us-ing only the �rst eigenvector (at the cost of one additionalconvolution over SSD) we have substantially increased de-tection performance.Finally, we note that the detection of facial featurescan be made more robust by incorporating constraints onthe geometry of a face in terms of relative feature loca-tions. These constraints can be used to guide the searchfor matches and thus restrict the regions over which theDFFS is computed. Preliminary experiments with suchconstraints indicate that the detection rate of mouths andnoses can be greatly improved by \anchoring" the searchwith respect to more easily detected features, such as eyes.5 Modular eigenspacesWith the ability to reliably detect facial features across awide range of faces, we can automatically generate a mod-ular representation of a face. The utility of this layeredrepresentation (eigenface plus eigenfeatures) was tested ona small subset of our face database. We selected a rep-resentative sample of 45 individuals with two views perperson, corresponding to di�erent facial expressions (neu-tral vs. smiling). These set of images was partitionedinto a training set (neutral) and a testing set (smiling).5
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Figure 6: ROC curve for left eye using DFFS detectorswith 1 and 10 eigenvectors. An SSD detector is shown forcomparison.Since the di�erence between these particular facial expres-sions is primarily articulated in the mouth, this featurewas discarded for recognition purposes. Figure 7 showsthe recognition rates as a function of the number of eigen-vectors for eigenface-only, eigenfeature-only and the com-bined representation. What is surprising is that (for thissmall dataset at least) the eigenfeatures alone were suf-�cient in achieving an (asymptotic) recognition rate of95% (equal to that of the eigenfaces). More surprising,perhaps, is the observation that in the lower dimensionsof eigenspace, eigenfeatures outperformed the eigenfacerecognition. Finally, by using the combined representation,we gain a slight improvement in the asymptotic recognitionrate (98%). A similar e�ect has recently been reported byBrunelli and Poggio [2] where the cumulative normalizedcorrelation scores of templates for the face, eyes, nose andmouth showed improved performance over the face-onlytemplates.A potential advantage of the eigenfeature layer is theability to overcome the shortcomings of the standard eigen-face method. A pure eigenface recognition system can befooled by gross variations in the input image (hats, beards,etc.). Figure 8(a) shows additional testing views of 3 indi-viduals in the above dataset of 45. These test images areindicative of the type of variations which can lead to falsematches: a hand near the face, a painted face, and a beard.Figure 8(b) shows the nearest matches found based on astandard eigenface classi�cation. Neither of the 3 matchescorrespond to the correct individual. On the other hand,Figure 8(c) shows the nearest matches based on the eyesand nose, and results in correct identi�cation in each case.This simple example illustrates the potential advantage ofa modular representation in disambiguating false eigenfacematches.We are currently exploring strategies for the optimalfusion of the available information in the modular repre-sentation. One simple approach is to form a cumulativescore in terms of equal contributions by each of the com-
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+  -  combinedFigure 7: Recognition rates for eigenfaces, eigenfeaturesand the combined modular representation.ponents (head, eyes, nose and mouth). Alternatively, psy-chophysical data can be used in formulating a more elabo-rate weighting scheme for classi�cation (e.g., eyes tend tobe the most salient features). A more ambitious schemewould be to modulate the contribution of each componentin a task or state-dependent manner.An attractive recognition strategy is to combine a se-quential classi�er with a coarse-to-�ne matching procedure,whereby a pyramid sequence of (low-resolution) eigenfaceprojections is used to limit the database search to a localregion of facespace, and �nally a (high-resolution) facialfeature description is used to perform the �nal classi�ca-tion. By embedding this mechanism in the framework ofour view-based eigenspace method, the overall system canperform robust face recognition under varying head orien-tations.6 ConclusionsOur experimental results have demonstrated the success ofeigenspace techniques for object search and recognition in alarge image database. We believe this is the �rst time accu-rate visual recognition has been reported using a databaseof 3,000 individuals.We have generalized our technique to handle a variableviewing geometry, using a view-based approach by describ-ing faces with a set of 2-D \aspects". The key to the successof such a view-based approach is the ability to localize theobject (or features on an object) and identify the correctaspect. In this regard, we have shown that the distance-from-feature-space in a view-based eigenspace formulationis an e�ective tool for robust detection and pose estimation.Finally, we have extended the approach to a modularrepresentation by incorporating information from di�erentlevels of description. Once again, the ability of the DFFS�lter to accurately and reliably detect features was crit-ical for successfully incorporating a parts-based descrip-tion. By using this modular approach we have been ableto demonstrate robustness to localized variations in objectappearance.6
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