
Towards a theoretical model for software growth∗

Israel Herraiz, Jesus M. Gonzalez-Barahona, Gregorio Robles

Grupo de Sistemas y Comunicaciones

Universidad Rey Juan Carlos, Spain

{herraiz, jgb, grex}@gsyc.escet.urjc.es

Abstract

Software growth (and more broadly, software evolution)

is usually considered in terms of size or complexity of source

code. However in different studies, usually different metrics

are used, which make it difficult to compare approaches and

results. In addition, not all metrics are equally easy to cal-

culate for a given source code, which leads to the ques-

tion of which one is the easiest to calculate without losing

too much information. To address both issues, in this pa-

per present a comprehensive study, based on the analysis

of about 700,000 C source code files, calculating several

size and complexity metrics for all of them. For this sample,

we have found double Pareto statistical distributions for all

metrics considered, and a high correlation between any two

of them. This would imply that any model addressing soft-

ware growth should produce this Pareto distributions, and

that analysis based on any of the considered metrics should

show a similar pattern, provided the sample of files consid-

ered is large enough.

1 Introduction

One of the goals of software engineering is to measure

different aspects of software projects, with the aim of find-

ing a small set of attributes that may characterize them.

Among those attributes, metrics of the internal attributes of

the source code are usually considered, with special atten-

tion to size and complexity.

In fact, many different metrics for size and complexity

do exist, and have been successfully used in many empirical

studies. However, due to this diversity in metrics, compar-

ison of results is not always easy, and the basic question of

which metrics are enough to understand a certain aspect of

∗This work has been funded in part by the European Commission, un-

der the FLOSSMETRICS (FP6-IST-5-033547) and QUALOSS (FP6-IST-

5-033547) projects. Israel Herraiz has been funded in part by Consejerı́a

de Educación of Comunidad de Madrid and European Social Fund, under

grant number 01/FPI/0582/2005.

the source code of a project is still largely unsolved. For ob-

taining some insight in both issues, we have studied a large

quantity of source code (about 700,000 C files) correspond-

ing to mature, stable software in use in a Unix-like software

distribution, FreeBSD.

All the software included in the study is libre (free, open

source) software, which could lead to some bias in the re-

sults, but probably they can easily be extrapolated to at least

C code of any kind, since the license of the software is not

likely to influence distributions of size or complexity. Prob-

ably the results can also be extended to other languages dif-

ferent from C, but further research is needed for that con-

clusion.

FreeBSD is of course not the only large collection of li-

bre software: there are several other projects gathering soft-

ware from many different libre software projects, adapting

it, and producing an integrated system, ready to be used.

Among them, several Linux distributions (Debian, Fedora,

Ubuntu, Mandriva, etc.) are the most well known. In our

case, we have selected FreeBSD because it is a good com-

promise between quantity of code and simplicity in pack-

aging. In FreeBSD, source code packages (called ports) are

easy to retrieve and handle automatically.

With the quantity of source code in FreeBSD (more than

1.7 millions of files, and 400 MSLOC in total, more than

40% of them corresponding to C code), it is possible to ap-

ply statistical methods to find out correlations and patterns

in the set of analyzed data. In the case of this paper, our

first motivation was to find out which independent metrics

may be used to characterize size and complexity. To our

surprise, we have also found that all metrics considered fol-

low a statistical distribution (double Pareto) that has been

deeply studied in other fields.

In this respect, it is also worth mentioning that some au-

thors have proposed models to explain why these distribu-

tions appear in some of those fields. We have found that

those models could be easily applied to the case of soft-

ware growth, and could be used to simulate the growth of

a software product and to model events in a source control

management system.

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

The rest of the paper is as follows. Next section re-

views some previous work related to the study. Third and

fourth sections describe the data sources and the method-

ology used. Then, main results and findings are presented,

including a discussion on the suitability for modeling soft-

ware growth of some models based on the statistical dis-

tributions found in our study, which are used in other do-

mains. Finally, some conclusions and directions for further

research are offered.

2 Related work

In 2000, Godfrey [5] pointed out that the Linux kernel

was growing with a pattern which did not corresponded to

Lehman’s laws [10]. In a latter work, Lehman [9] quali-

fied the case of Linux as an anomaly. Furthermore, some

claimed that the studies were not comparable, because they

used different metrics (Godfrey used SLOC, Lehman num-

ber of modules, which are actually number of source code

files not counting header files).

This case shows how the issue of which metrics are suit-

able to empirically study a software project is important.

Traditionally, SLOC has been used in the empirical stud-

ies of libre software projects [13, 8], while LOC, number

of files, or some complexity modules are common in other

domains.

Some studies have specifically addressed the problem of

comparable metrics. For instance, a previous work of the

authors of this study [6] found that in the context of soft-

ware evolution the number of source code files and SLOCs

were highly correlated. However, that analysis was per-

formed measuring the total quantity of software in the SCM

repository of each project every six months, and then corre-

lating all the points obtained, which means that the studied

files were not internally independent (we studied different

versions of the same files). To avoid this bias, the study

presented here has performed measures on a collection of

software at a single point in time. The code included in

that collection is not composed of different versions of the

same files, but correspond to unrelated files, in many cases

written by different developers, and can be considered sta-

tistically independent. Therefore, if some dependencies are

found among the metrics in this case, we can conclude that

it is not because of any internal relationship among the files.

After collecting the metrics for the whole collection, we

found that all of them showed determined statistical distri-

bution. This finding is not new, and has been noted in other

fields. For instance, Mitzenmacher [11] describes some

phenomenons that develop different statistical distributions.

Among them, the distribution of the size of files in a tree

of a filesystem is a double Pareto distribution. This is the

same distribution that we found for the metrics of our set

of projects. It has been also found in similar domains, such

as in the files available in web and FTP servers [2]. Mitzen-

macher has proposed a theoretical model to explain why the

distribution of the size of files follows double Pareto [12],

which uses concepts quite close to those found in the regular

working of a source control system. Therefore, we suggest

that it could be easily adapted to simulate and forecast the

growth of software.

The problem of obtaining a model for software growth

has also been addressed before. For instance, Turski [15,

16] developed a model based on Lehman’s laws. Unfortu-

nately, it is not verified by the growth pattern of some libre

software projects. Some other models[14, 4, 1] have tried

to characterize the process of software development in the

libre software world, but they have not been yet checked

against the actual history of a meaningful quantity of soft-

ware projects.

3 Data sources

All files in the study were obtained from the source code

available in the ports of the FreeBSD operating system.

FreeBSD is a Unix-like operating system descended from

AT&T UNIX via the Berkeley Software Distribution (BSD)

branch, through the 386BSD and 4.4BSD operating sys-

tems.

FreeBSD1 is developed as a complete operating system.

The kernel, device drivers and all userland utilities (such

as the shell), are maintained in the same source code man-

agement system, and external applications and utilities are

packaged by the same set of developers. As a contrast, in the

case of GNU/Linux the kernel is developed by one group

of developers, userland utilities and applications by several

others (such as the GNU project) and everything is pack-

aged together still by others (to compose so-called Linux

distributions).

In FreeBSD, a port is a form of package, including

source code for an external application or library. It con-

tains, among other files, a makefile, which is able to down-

load the source code from the original web or FTP site,

to apply patches developed by the porters of FreeBSD (if

any), to compile, and to install it into a live system2. In

a typical FreeBSD system, ports are stored in /usr/ports/.

Among the available targets implemented by the makefile,

we find fetch, which obtains the original source code and

the patches, and stores the result in a directory (typically,

/usr/ports/distfiles).

We invoked this target for a collection of 16, 037 ports in

a FreeBSD 6.0-RELEASE system, on an AMD64 platform.

The retrieval of the source code happened during December

1More information about FreeBSD can be found at

http://en.wikipedia.org/wiki/FreeBSD
2More information can be found at

http://en.wikipedia.org/wiki/FreeBSD Ports

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

2006. From these ports, we measured just 13, 116, because

the rest did not contain source code (for instance, some ports

contain documentation). After uncompressing, we obtained

a set of 1, 700, 927 files.

4 Methodology

In order to identify the programming language of each

file, and its size in SLOC, we used the SLOCCount tool3.

For this study, we selected only files written in C. We used

the metrics set of tools4 to measure the rest of the consid-

ered metrics, in addition to the standard wc Unix tool (to

measure LOC), and exuberant-ctags to measure the number

of functions. The result of the measurement process was a

list of files, each one annotated with the set of metrics mea-

sured for it.

After all the metrics were extracted, we obtained some

descriptive statistics. We calculated the statistical distribu-

tion for each one of the metric, taking as sample all the files

written in C language. The distributions obtained for each

metric were also characterized to find out if they matched

any known pattern or distribution.

The correlations between all the metrics were later calcu-

lated, to find out if there are some of them which are not pro-

viding further information and could therefore be removed

from the set. For this, we considered the value of each met-

ric for each one of the files as a point, and linearly correlated

every pair of metrics using least squares regression. The re-

sults did not show strong correlations between the metrics.

We repeated the same procedure, but this time for the

logarithm of the metrics. The correlation coefficients

showed strong relationships among the logarithm of the

metrics. Moreover, the statistical distributions appeared to

be very close to a normal distribution.

4.1 Selected metrics

We have measured size and complexity for all the files

contained in FreeBSD that were written in C. For these two

variables we considered different metrics, shown in table 1.

To measure size we considered:

• Source Lines of Code (SLOC)

We used the definition given in [3], which is:

A line of code is any line of program

text that is not a comment or blank line,

regardless of the number of statements or

fragments of statements on the line. This

specifically includes all lines containing

program headers, declarations, and exe-

cutable and non-executable statements

3Available at http://www.dwheeler.com/sloccount
4Available at http://libresoft.urjc.es/Tools/metrics

We decided to obtain this metric because it has been

traditionally used in the study of the evolution of libre

(free / open source) software projects (as an example,

we cite [5, 13]).

• Lines of Code (LOC)

We measured the number of lines of program text, re-

gardless it is a comment, a blank line, etc.

• Number of blank lines

We measured the number of lines which do not contain

any character, besides spaces, tabulators, etc.

• Number of comment lines

We counted the number of lines that are only com-

ments, not containing any code.

• Number of comments

We measured the number of comment blocks. If a

comment occupied several lines, but it was only one

block, it was considered only one comment.

• Number of C functions

We counted the number of functions inside the file.

To count functions, we used the tool exuberant-ctags,

combined with wc. We decided to add also a semanti-

cal metric, in the hope of finding some difference be-

tween syntactical and semantical metrics.

To measure complexity we considered:

• McCabe’s cyclomatic complexity

We used the definition given in [7]. McCabe’s cyclo-

matic complexity is the classical graph theory cyclo-

matic number, indicating the number of regions in a

graph.

• Number of function returns

The tool used to measure McCabe’s cyclomatic com-

plexity was able to measure also this metric. Com-

pared again to graph theory, the number of function

returns gives us the number of exit points of the graph

formed by the number of paths that the execution can

follow inside the function.

• Halstead’s length, volume, level and mental discrimi-

nations

From the Halstead’s Software Science we selected

these two metrics. The exact definition is also avail-

able in [7].

A summary of the metrics selected, and the symbols used

in the rest of the tables of this paper, is shown in table 1.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007
Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

Size Source Lines of Code (SLOC), Lines of Code (LOC),

Number of C functions (FUNC), Number of blank lines (BLKL),

Number of comment lines (CMTL), Number of comments (CMTN)

Complexity McCabe’s cyclomatic complexity (CYCLO), Number of function returns (RETUR),

Halstead’s length (HLENG), Halstead’s volume (HVOLU)

Halstead’s level (HLEVE), Halstead’s mental discriminations (HMD)

Table 1. Selected metrics for the study

Figure 1. Distribution of programming lan
guages. Values are percentage of source
code files in the sample.

5 Results

We measured 1, 700, 927 files, distributed by program-

ming language as indicated by figure 1. The indicated per-

centages are of files written in that language compared to

the total number of source code files. C, C++ and Java ac-

count for more than the three quarters of the whole sample.

These 1, 700, 927 source code files contained

409, 542, 955 SLOC. The files were written in 30 dif-

ferent programming languages. Five of them (C, C++,

Shell, Java, Perl and Python) covered 88% of the files and

83% of the SLOCs.

The average size of the files was 241 SLOC, with a stan-

dard deviation of 1, 199. The largest file contained 761, 870

SLOC (761, 883 LOC), and the smallest file 0 SLOC (rang-

ing from files with 0 LOC to 5, 729 LOC).

From the whole sample of files, 698, 506 were written

in C language, from which 455, 366 files were non-header

files.

We could not measure 3, 304 files, because our tools did

not correctly parse the source code. We found also 162

empty files, that were removed from the sample. There-

fore the final sample for all the files written in C language

contained 695, 039 files.

In the sample we found some files with very high val-

ues for some metrics. After inspecting those files, we found

many that were not written by humans but automatically

generated. Those files are outliers (observations that devi-

ates so much from other observations as to arouse suspi-

cions that it was generated by a different mechanism). In

our case, this different mechanism is automatic generation

(compared to the usual mechanism of generation by a hu-

man developer). As we are interested in the process of soft-

ware development, we did not consider those files that are

not properly part of this process.

Therefore we had to find a method to remove files that

are automatically generated. We discarded to do this task

by means of heuristics, looking for patterns that are in-

cluded by some well known code generation tools, such as

YACC, a method that would be very time consuming given

the amount of files.

We preferred to use statistical methods to remove out-

liers. The simplest method is the three sigma rule. All

those files whose values separate more than three times the

standard deviation from the mean, are considered outliers.

However, this rule can only be applied if the distribution is

normal. In our case, the distribution of the metrics were

highly right skewed, with a long tail, probably suggesting a

power law or lognormal distribution, but not a normal dis-

tribution.

We tried firstly to calculate the distributions of the log-

arithm of the metrics, to find out whether or not the distri-

bution of the metrics was lognormal. To test the normal-

ity of the logarithm of our samples, we used the Quantile-

Quantile plot. This plot represents the values of the quan-

tiles of our sample against the quantiles of a given reference

distribution. If this distribution is the normal distribution,

the plot tests the normality of the sample.

After testing all the metrics, all the distributions resulted

to be very close to a normal distribution. As an example, we

show the test for the distribution of the logarithm of SLOC

in figure 2. All the points follow a straight line, although

values in the tails seem to deviate from a straight line. In

any case, we can consider this distribution to be normal (as

the low value of the kurtosis, table 2, evidences as well).

We only show 1000 randomly extracted points, because the

graph with all the 695039 points occupied to much memory

as to be included in the electronic version of this paper.

However, this normality test is not robust. It could hap-

pen that the distribution is not lognormal but a power law

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007
Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

−3 −2 −1 0 1 2 3

0
2

4
6

8
Normal Q−Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

Figure 2. QuantileQuantile plot for the distri
bution of the logarithm of SLOC.

10 50 100 500 5000

1
e
−

0
6

1
e
−

0
4

1
e
−

0
2

1
e
+

0
0

SLOC

P
[X

>
x
]

Figure 3. Complementary cumulative distri

bution function of SLOC. Logarithmic scale.

distributions. To find out if the distribution of the logarithm

is normal, or if the distribution is a power law, we obtained

the complementary cumulative distribution function (ccdf).

The ccdf of a power law distribution is a straight line, when

representing the logarithm of the ccdf against the logarithm

of the value (in this case, the considered metric). If it is

not a straight line but a curve line, it would be a lognormal

distribution.

Figure 3 shows the same conclusions that figure 2. The

body of the distribution presents a lognormal behavior (the

curved transition point between the two tails is typical of the

lognormal distribution), but the tails deviate from the nor-

mality, and are closer to a power law behavior (the straight

lines in the tails are typical of the power law distribution).

Therefore, in our case we have a mixed behavior. This

mixed distributions has been found before [12]. It is called

a double Pareto distribution. The tails for low and high val-

ues are straight, and there is a curved transition point (or set

of points) where the two straight tails connect. The power

law would appear in figure 3 as straight line, and the lognor-

mal distribution would not have straight tails on the extreme

values.

As the distribution of the logarithm of the metrics were

normal (or more properly, very close to normal), we were

able of applying the three sigma rule. In the case of LOC,

the standard deviation of our sample was 1.45, and the mean

was 4.95. Therefore we can consider those files falling be-

low 4.95− 3 · 1.45 = 0.60 and over 4.95 + 3 · 1.45 = 9.30

in the lognormal distribution to be outliers. These val-

ues, transformed back to LOC are e
0.6 = 1.82 LOC and

e
9.30 = 10, 938 LOC. We did not remove those files con-

taining only 1 LOC, because they were not too common in

our sample and probably not automatically generated. Cer-

tainly, we also found files over 10, 938 LOC non automat-

ically generated (this is, at a deep look apparently written

by a human developer). But most of files over that value

were automatically generated, and the non automatic files

were the exception. Therefore we decided to remove those

files. This supposed to remove 979 files. The final sample

contained then 694, 060 files.

We repeated the same plots that in figures 2 and 3, and

we did not find any difference between the original and the

final sample. So the removal of outliers did not affect the

shape of the statistical distribution of the sample. In any

case, for instance figure 3 shows clearly that the influence

of values was very low (the probability of having files over

10, 000 LOC was around 10−6). So we only removed a few

points in the right tail, with not very much influence in the

distribution.

The properties of the final samples for all the metrics are

shown in table 2. As the difference between the mean and

the median shows (and also the value of the skewness), the

distributions were right tailed. When transformed to loga-

rithm, all the distributions became normal. In that table, the

values for the kurtosis are shown both for the original sam-

ple and for the logarithm of the sample. An ideal normal

distribution has a kurtosis of 0. The closer the value is to 0,

the closer the distribution of the sample is to a normal dis-

tribution. Therefore, all the distributions of the logarithm of

the metrics are close to a normal distribution.

We also examined some composed metrics: number of

blank files per LOC and SLOC, number of comments per

LOC and SLOC, and number of comment lines per LOC

and SLOC. In the case of these composed distributions, we

obtained also double Pareto distributions. For instance, fig-

ure 4 shows the Quantile-Quantile plot for the distribution

of logarithm of the number of comment lines per SLOC.

The distribution is composed for a main body that is normal

(along the straight line in the plot), with low and high val-

ues tails deviating from normality. The same behavior may

be observed on the plot of the complementary cumulative

distribution function, in a logarithmic scale. Figure 5 shows

that plot; there two straight tails connected by a curved seg-

ment. Again, this is the typical profile of a double Pareto

distribution.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007
Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

Metric Mean Median Std. dev. Variance Kurtosis Kurtosis (log) Skewness Min. Max.

SLOC 264 76 556 309006 47.55 −0.47 5.67 0 10860

LOC 380 131 738 544920 42.43 −0.02 5.40 1 10900

FUNC 7 1 17 287 547.29 −0.75 11.85 0 2116

BLKL 48 16 98 9539 95.99 −0.38 6.70 0 6885

CMTL 65 29 137 18818 167.77 +0.69 8.75 0 9928

CMTN 31 8 97 9462 1068.46 −0.47 23.13 0 9473

CYCLO 41 6 103 10568 85.80 −1.05 6.97 1 4283

RETUR 10 1 28 809 236.49 −0.57 10.50 0 2105

HLENG 1519 392 3575 12785718 81.00 −0.44 7.21 2 77190

HVOLU 12770 2507 34903 1218214882 118.23 −0.27 8.59 2 1075000

HLEVE 0.0784 0.0318 0.1736 0.0302 71.64 −0.24 7.51 0.0000 2.0000

HMD 2770012 77711 25587476 6.55 · 1014 4081.83 −0.33 55.83 1 2147483647

Table 2. Descriptive statistics of the sample of files written in C (694060 files). Kurtosis shown both

for the original sample and for the logarithm of the sample.

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

Normal Q−Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

Figure 4. QuantileQuantile plot for the dis
tribution of the logarithm of the number of

comment lines per SLOC.

Therefore the composed metrics presented also a double

Pareto distribution. This could mean that there is a correla-

tion among all the metrics. To find out if such correlation

exists, we linearly correlated all the metrics. We did not

obtain significant correlation coefficients. But when we re-

peated the procedure with the logarithm of the metrics (ig-

noring all the files with any of the metrics being zero), we

obtained high correlation coefficients among all the metrics.

Table 3 include all the Pearson coefficients of the cor-

relations among the logarithm of all the metrics. Only the

decimal part is shown if the coefficient is not equal to 1. The

matrix is symmetrical, so only values under the diagonal are

shown. If we take for instance SLOC, we can see that all

the correlation coefficients are very high. There are some

exceptions, when correlating with blank lines, comments or

comment lines. This is a logical conclusion, because those

metrics are supposed to be independent (although there is

0.01 0.05 0.50 5.00

0
.0

0
5

0
.0

2
0

0
.1

0
0

0
.5

0
0

Comment lines / SLOC

P
[X

>
x
]

Figure 5. Complementary cumulative distri
bution function of the number of comment
lines per SLOC. Logarithmic scale.

some degree of correlation, for example a large file is likely

to contain more comments than a small file). As an ex-

ample, figure 6 shows the scatter plot of Halstead’s length

against SLOC, in logarithmic scale. The correlation be-

tween the two metrics is clearly shown. Only 10, 000 ran-

domly extracted points are shown, because the graph with

the nearly 700, 000 files occupied to much memory as to be

included in the electronic version of this paper.

Therefore, the size and complexity metrics that we col-

lected were correlated by means of power laws (linear cor-

relation of logarithms). With only one of the metrics we

obtain the same information that we the rest. For instance,

SLOC is providing the same information that the rest of size

and complexity metrics. We recommend to use only SLOC

to characterize the internal attributes of software products.

It is easy to collect because there are tools available to count

SLOC in many different programming languages.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007
Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

SLOC LOC FUNC BLKL CMTL CMTN CYCLO RETUR HLENG HVOLU HLEVE HMD

SLOC 1

LOC 9844 1

FUNC 8216 8187 1

BLKL 9186 9364 8203 1

CMTL 6742 7676 5477 6903 1

CMTN 7612 7991 6018 7479 7877 1

CYCLO 9325 9164 7856 8510 6300 7105 1

RETUR 7496 7469 7498 7057 5360 5813 7674 1

HLENG 9817 9655 7942 8999 6530 7450 9146 7219 1

HVOLU 9815 9652 7921 9002 6532 7431 9123 7192 9994 1

HLEVE 9033 8851 7005 8207 6157 7016 8823 6714 8256 9198 1

HMD 9715 8882 7737 8882 6519 7420 9187 7154 9914 9897 9666 1

Table 3. Pearson correlation coefficients between the logarithm of all the metrics. Only the decimal
part is shown for values different to 1.

1 10 100 1000 10000

1
e
+

0
1

1
e
+

0
3

1
e
+

0
5

SLOC

H
a
ls

te
a
d
’s

 l
e
n
g
th

Figure 6. Halstead’s length vs. SLOC scatter

plot. Logarithmic scale.

6 Towards a theoretical model for software

evolution

There exist some proposals of theoretical models to ex-

plain phenomena which exhibit double Pareto distributions.

Applied to software development, these models could ex-

plain how source code files change over time. They could

also be applied to other metrics, to explain how they evolve

over time, as long as they show a double Pareto distribution.

If this finding is verified with other metrics, these models

could be the theoretical background for a possible model of

software evolution. If not, they would be at least the theo-

retical background for a model of software writing.

Double Pareto distributions have been found in other

fields. For instance, the distribution of the size of the files

in a filesystem or tree, follows a double Pareto distribution.

For this case, Mitzenmacher [12] proposed the Recursive

Forest File Model, which is the generalization of others that

tried to explain why the size of files follows a double Pareto

distribution.

In that model, each tree in the forest begins with an ini-

tial node of size 1. Then, in each step, a node is randomly

selected. From that node, a new node is created as a child.

Each one of the edges is labeled with a value. The size of

a file is computed as the sum of the edges going from the

initial node to the considered node. This would be easily

adapted to the case of a version control system. The initial

node would be the initial revision of a file. Each step, would

be a new revision. If in a node more than one child appears,

then all the nodes but one corresponds to branches parallel

to the main trunk. The edges would be changes between re-

visions, and would be labeled with the size of that change.

If a file is deleted, that node disappears from the tree. It

would correspond to a revision where the file is deleted.

The model includes also the possibility of adding and re-

movals of new trees to the forest. These new trees would

correspond to new files created in some point during the

lifetime of the project and added to the version control sys-

tem.

To obtain the parameters of the model, it would be

enough to obtain the parameters of the statistical distribu-

tion of the considered metric.

We have not tried yet to make a formal proposal of a

model based on the Recursive Forest File Model, but con-

sidering the findings of this paper, and the apparent suit-

ability of this model, it seems it would be not difficult to

obtain such a model. A model of that kind should be ver-

ified against the actual history of the growth of a project.

From the verification, we should find out if the model can

forecast the evolution of the project.

7 Conclusions and further work

We have analyzed the source code of all the packages

in the FreeBSD operating system. We retrieved the source

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007
Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

code using the source packages of the system (ports). This

meant to obtain 1.7 millions of files, with a total size of 410

MSLOC. From this set of files, 700, 000 files were writ-

ten in C. We measured size and complexity, using different

metrics, for all these files.

We decided to focus on libre software in the study be-

cause of two main reasons: it is easily available in large

quantities, and the results of the analysis can easily be

checked by other research teams. The decission of consid-

ering only the C language has been also practical: most of

the tools available to measure code work well with C source

code.

All the metrics resulted to be highly correlated by means

of power laws. Based on this, and on the fact of the easiness

of calculation, we find it interesting to use SLOC to char-

acterize both size and complexity of software products, in

any kind of studies. For instance, to study the growth of a

software project, in the part regarding the internal attributes

of the software, it would be enough to measure only SLOC,

to obtain a landscape of the evolution of the size and com-

plexity of the project.

All the metrics were found to follow a double Pareto dis-

tribution. This distribution is formed by a lognormal dis-

tribution in the main body, and power laws distributions in

the tails for high and low values of the distribution. Some

composed metrics (such as number of comments per SLOC)

presented also double Pareto distributions.

This kind of distributions has been found also for the size

of files in a filesystem. Some theoretical models about the

growth of file systems have been proposed to explain these

cases, whcih have also been used to optimize the download

of files from web and FTP servers [2].

The most interesting model we have found is the Re-

cursive Forest File model, proposed by Michael Mitzen-

macher [12]. It can explain how files change over time, and

how they are inserted and removed from a tree of files. Be-

cause of its nature, it would be easily adaptable to the case

of a source control system, being therefore able of explain-

ing how and why software grows.

In further research, we will try to adapt this model to the

case of a control version system, and to verify it against the

actual history of a software project.

References

[1] I. Antoniades, I. Samoladas, I. Stamelos, L. Aggelis, and

G. L. Bleris. Dynamical simulation models of the open

source development process. In S. Koch, editor, Free/Open

Source Software Development, pages 174–202. Idea Group

Publishing, Hershey, PA, 2004.

[2] P. Badford, A. Bestavros, A. Bradley, and M. Crovella.

Changes in Web client access patterns: characteristics and

caching implications. World Wide Web, 2(1-2):15–28, June

1999.

[3] S. D. Conte. Software Engineering Metrics and Mod-

els (Benjamin/Cummings series in software engineering).

Benjamin-Cummings Pub Co, 1986.

[4] J.-M. Dalle and P. A. David. The allocation of software

development resources in Open Source production mode.

Technical report, SIEPR Policy paper No. 02-027, SIEPR,

Stanford, USA, 2003.

http://siepr.stanford.edu/papers/pdf/02-27.pdf.

[5] M. W. Godfrey and Q. Tu. Evolution in open source soft-

ware: A case study. In ICSM ’00: Proceedings of the Inter-

national Conference on Software Maintenance (ICSM’00),

pages 131–142, Washington, DC, USA, October 2000. IEEE

Computer Society.

[6] I. Herraiz, G. Robles, J. M. Gonzalez-Barahona,

A. Capiluppi, and J. F. Ramil. Comparison between

SLOCs and number of files as size metrics for software

evolution analysis. In Proceedings of the 10th European

Conference on Software Maintenance and Reengineering,

pages 203–210, Bari, Italy, 2006.

[7] S. H. Kan. Metrics and Models in Software Quality En-

gineering (2nd Edition). Addison-Wesley Professional,

September 2002.

[8] S. Koch. Evolution of Open Source Software systems - a

large-scale investigation. In Proceedings of the 1st Interna-

tional Conference on Open Source Systems, Genova, Italy,

July 2005.

[9] M. M. Lehman, J. F. Ramil, and U. Sandler. An approach

to modelling long-term growth trends in software systems.

In Internation Conference on Software Maintenance, pages

219–228, Florence, Italy, November 2001.

[10] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and

W. M. Turski. Metrics and laws of software evolution - the

nineties view. In METRICS ’97: Proceedings of the 4th In-

ternational Symposium on Software Metrics, page 20, nov

1997.

[11] M. Mitzenmacher. A brief history of generative models for

power law and lognormal distributions. Internet Mathemat-

ics, 1(2):226–251, 2004.

[12] M. Mitzenmacher. Dynamic models for file sizes and double

Pareto distributions. Internet Mathematics, 1(3):305–333,

2004.

[13] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and I. Her-

raiz. Evolution and growth in large libre software projects.

In Proceedings of the International Workshop on Principles

in Software Evolution, pages 165–174, Lisbon, Portugal,

September 2005.

[14] G. Robles, J. J. Merelo, and J. M. Gonzalez-Barahona. Self-

organized development in libre software: a model based on

the stigmergy concept. In Proceedings of the 6th Interna-

tional Workshop on Software Process Simulation and Mod-

eling (ProSim 2005), St.Louis, Missouri, USA, May 2005.

[15] W. M. Turski. Reference model for smooth growth of soft-

ware systems. IEEE Transactions on Software Engineering,

22(8):599–600, 1996.

[16] W. M. Turski. The reference model for smooth growth of

software systems revisited. IEEE Transactions on Software

Engineering, 28(8):814–815, 2002.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007
Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

