
Connectivity and Separating sets of CagesTao Jiang and Dhruv MubayiDepartment of MathematicsUniversity of Illinois, Urbana, IL, 61801August 14, 1997AbstractA (k; g)-cage is a graph of minimum order among k-regular graphs with girth g. We showthat for every cutset S of a (k; g)-cage G, the induced subgraph G[S] has diameter at leastbg=2c, with equality only when distance bg=2c occurs for at least two pairs of vertices in G[S].This structural property is used to prove that every (k; g)-cage with k � 3 is 3-connected. Thisresult supports the conjecture of Fu, Huang, and Rodger that every (k; g)-cage is k-connected.A nonseparating g-cycle C in a graph G is a cycle of length g such that G�V (C) is connected.We prove that every (k; g)-cage contains a nonseparating g-cycle. For even g, we prove thatevery g-cycle in a (k; g)-cage is nonseparating.1 IntroductionThe girth of a graph G is the length of a shortest cycle in G. A (k; g)-graph is a k-regular graphwith girth g. A (k; g)-cage G is a (k; g)-graph of minimum order. Let f(k; g) be the order of a(k; g)-cage. Cages were introduced by Tutte [2]; results are surveyed in [3]. Recently, Fu, Huang,and Rodger [1] proved that all (k; g)-cages are 2-connected and that all (3; g)-cages are 3-connected.They further conjectured that every (k; g)-cage is k-connected. In this paper, we strengthen theirresults by showing for k � 3 that every (k; g)-cage is 3-connected. In order to prove this result,we develop a structural property of separating sets in cages. We show that every separating setof a (k; g)-cage induces a subgraph with diameter at least bg=2c, with equality only when distancebg=2c occurs for at least two pairs of vertices in the induced subgraph.A nonseparating g-cycle in a graphG is a cycle C of length g such thatG�V (C) is connected. Weuse the structural property about separating sets in cages to prove that every (k; g)-cage containsat least one nonseparating g-cycle. For even g, we prove that every g-cycle in a (k; g)-cage isnonseparating. We conjecture that the same is true for odd g.Conjecture. Every g-cycle in a (k; g)-cage is nonseparating.We consider only simple graphs. We denote the vertex set and edge set of G by V (G) andE(G), respectively. The neighborhood of a vertex v 2 V (G), written N(v), is the set of all verticesadjacent to v. The degree of a vertex v 2 V (G) is d(v) = jN(v)j:A graph is k-regular if every vertexhas degree k. For u; v 2 V (G), let dG(u; v) denote the distance between u and v in G; if u and vare in di�erent components of G , then let dG(u; v) =1. The diameter of G, written diam(G), isthe maximum distance over all pairs of vertices in G. If S � V (G), then N(S) = [v2SN(v). If1



H � G, then NH(S) = N(S) \ V (H). The subgraph of G induced by S is denoted by G[S]. IfS � V (G) and G� S is not connected, then S is a cutset or separating set.Since the unique (k; g)-cages for k = 2, g = 3, and g = 4 are Cg, Kk+1, and Kk;k, respectively,we henceforth assume that k � 3 and g � 5 unless otherwise speci�ed.2 Cages are 3-connectedThe following theorem about the monotonicity of cages is proved in [1].Theorem 1. If k � 3 and 3 � g1 � g2, then f(k; g1) � f(k; g2).De�nition. Suppose that G is a (k; g)-cage and H is an induced subgraph of G with minimumdegree k � 1. Let B be the set of vertices of degree k � 1 in H . For each permutation � of B, letD�(x; y) = dH(x; y) + dH(�(x); �(y))+ 2:We say that H is a special subgraph of G if there exists a � such that dH(x; y) � dg=4e � 1 andD�(x; y) � g for all distinct x; y 2 B.Lemma 2. If G is a (k; g)-cage and H is a special subgraph of G, then jV (H)j � jV (G)j=2.Proof. Let H 0 be a copy of H . For every x 2 V (H), let x0 denote its image in H 0, and let B0 bethe copy of B in H 0. Let G0 be the graph that consists of the disjoint union of H and H 0 plus theedge u�(u)0 for each u 2 B. Since the edges between H and H 0 form a perfect matching betweenB and B0, G0 is k-regular and jV (G0)j = 2jV (H)j. It su�ces to show that G0 has girth at least g.Let C be a cycle in G0. If C lies completely in H or H 0, then it is a copy of a cycle in G andhence has length at least g. Hence we may assume that C uses some edges between H and H 0. IfC uses at least four edges between H and H 0, then it has length at least 4(dg=4e � 1) + 4 � g. IfC uses exactly two edges u�(u)0 and v�(v)0 between H and H 0, where u; v 2 V (H), then it haslength at least dH(u; v) + dH 0(�(u)0; �(v)0) + 2 = D�(u; v) � g: (See Fig. 1)Hence G0 has girth at least g. By Theorem 1, jV (G0)j � jV (G)j. Thus jV (H)j � jV (G)j=2.The following corollary is a simple application of Lemma 2 and appears in [1].Corollary 3. Every (k; g)-cage is 2-connected.Proof. Suppose u is a cut-vertex in a (k; g)-cage G and H is a component in G � u of minimumorder. Since G has girth g, the distance in H between two neighbors of u in H is at least g � 2.Letting � be the identity permutation on NH(u), we have D�(x; y) � g for x; y 2 NH(u). Thus His a special subgraph of G which contradicts jV (H)j < jV (G)j=2.Lemma 4. If G is a graph with girth g � 3, S is a subset of V (G) with diam(G[S]) = d < g � 2,and H is subgraph of G with V (H)\ S = ;, then every vertex of NH(S) has exactly one neighborin S, and the distance in H between distinct neighbors of S is at least g� d� 2, with equality onlyif they are neighbors of a pair of vertices with distance d in G[S].2
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H H 0
B B0Fig. 1: Construction of G0Proof. Let uu0; vv0 be distinct edges such that u; v 2 S and u0; v0 2 V (H). We may assumethat u0; v0 are in the same component of H . These edges together with a shortest u; v-path inG[S] and a shortest u0; v0-path in H form a cycle which must have length at least g. HencedG[S](u; v) + dH(u0; v0) + 2 � g. Since dG[S](u; v) � d, we conclude that dH(u0; v0) � g � 2� d > 0,with equality only if dG[S](u; v) = d. In particular, u0 6= v0 and no vertex in H can have twoneighbors in S.Corollary 5. Suppose G is a (k; g)-cage and S is a cutset of G with diam(G[S])< g�2. If H is asmallest component in G�S, then NH(S) contains a pair of vertices u; v with dH(u; v)< dg=2e�1.Proof. Since diam(G[S]) < g � 2, by Lemma 4 every vertex of NH(S) has exactly one neighbor inS and hence has degree k � 1 in H . All other vertices in H have degree k in H . Suppose thatdH(u; v) � dg=2e � 1 for every pair of vertices u; v 2 NH(S). Let � be the identity permutation ofNH(S). We have D�(u; v) = 2dH(u; v) + 2 � 2(dg=2e� 1) + 2 � gfor every pair of vertices u; v 2 NH(S). By Lemma 2, jV (H)j � jV (G)j=2. This contradicts Hbeing a smallest component of G� S, so dH(u; v) < dg=2e � 1 for some pair u; v 2 NH(S).Theorem 6. Suppose G is a (k; g)-cage and S is a cutset of G. Then diam(G[S]) � bg=2c.Furthermore, the inequality is strict if dG[S](u; v) is maximized for exactly one pair of vertices.Proof. Suppose diam(G[S]) � bg=2c � 1. Let H be a smallest component in G � S. Since g � 5,we have bg=2c < g � 2. If NH(S) = fxg, then because G is 2-connected, x has at least 2 neighborsin S, which contradicts Lemma 4. We therefore suppose that jNH(S)j > 1. Now Lemma 4 impliesthat the distance in H between distinct neighbors of S is at least dg=2e�1, contradicting Corollary5. Now suppose that diam(G[S]) = d = bg=2c and u; v is the only pair in S with dG[S](u; v) = bg=2c.By Lemma 4, every vertex ofNH(S) has exactly one neighbor in S and dH(x; y) � g�2�d = dg=2e�3



2 for all x; y 2 NH(S). Since distance d in G[S] occurs only for u; v, we have dH(x; y) = dg=2e � 2only if x; y are neighbors of u; v in H , respectively. In particular, this implies that both u and vhave neighbors in H ; otherwise we have dH(x; y) � dg=2e � 1 for all x; y 2 NH(S), contradictingCorollary 5. Suppose that NH(u) = fu1; : : : ; urg and NH(v) = fv1; : : : ; vsg, where r; s � 1.Without loss of generality, assume that r � s.If we can show there exists a permutation � of NH(S) such that D�(x; y) � g for every pairx; y 2 NH(S), then we can conclude from Lemma 2 that V (H) � jV (G)j=2 to get a contradiction.Case 1 r � 2.In this case, we de�ne �(ui) = ui+1, for i = 1; : : : ; r, where indices are taken modulo r. Also,de�ne �(w) = w for all w 2 NH(S)�NH(u). Given a pair x; y 2 NH(S), if both dH(x; y) � dg=2e�1and dH(�(x); �(y))� dg=2e � 1, then D�(x; y) � g. By our previous discussion and our de�nitionof �, dH(x; y) = dg=2e � 2 or dH(�(x); �(y)) = dg=2e � 2 only if x; y are neighbors of u; v in Hrespectively. Hence we may assume that x = ui and y = vj for some i; j. The union of a shortestui; vj-path and a shortest vj ; ui+1-path in H contains a ui; ui+1-path in H . Together with the edgesuui and uui+1, this forms a cycle in G, which must have length at least g. Therefore, D�(x; y) � g.Case 2 r = s = 1 and u1 $ v1.We have shown that in this case, u1; v1 is the only pair in NH(S) with distance dg=2e� 2 in H ;all other pairs have larger distance.Since 1 = dH(u1; v1) = dg=2e � 2, this case requires g 2 f5; 6g. There is a vertex w 2 NH(S)�u1� v1; otherwise fu1; v1g is a cutset of G inducing a subgraph with diameter 1. We wish to showthat dH(w; v1) or dH(w; u1) is at least d(g�1)=2e. Because u; v is the only pair with distance bg=2cin S, both dH(w; v1) and dH(w; u1) are at least bg=2c � 1 � d(g � 1)=2e � 1. If equality holds forboth then the union of a shortest u1; w-path and a shortest w; v1-path contains a u1; v1-path oflength between 2 and 2(bg=2c � 1) < g � 1. Together with u1v1 this forms a cycle in G of lengthat most g � 1, contradicting girth(G) = g. Thus we may assume without loss of generality thatdH(w; v1) � d(g � 1)=2e. Let �(u1) = w, �(w) = u1 and �(z) = z for all z 2 NH(S)� u1 � w. Ifneither fx; yg nor f�(x); �(y)g is fu1; v1g, then D�(x; y) � 2(dg=2e� 1) + 2 � g. OtherwiseD�(x; y) = dH(u1; v1) + dH(w; v1) + 2 � (dg=2e � 2) + d(g � 1)=2e+ 2 = g:Case 3 r = s = 1 and u1 6$ v1.Since dH(u1; v1) = dg=2e � 2, it follows that g � 7 in this case. We show that H � u1 is aspecial subgraph of G to get a contradiction. The following discussion applies even if H �u1 is notconnected.The distance in H between distinct vertices of NH(S) is at least dg=2e � 2, which is at least 2for g � 7. Thus u1 has no neighbors in NH(S), so H�u1 has minimum degree k� 1. Suppose thatfz1; : : : ; zk�1g = NH(u1). We have dH�u1(zi; w) � dH(u1; w)�1 � dg=2e�3 for all w 2 NH(S)�u1and 1 � i � k � 1. Since a shortest path in H � u1 from zi to zj (if zi and zj lie in the samecomponent of H � u1) forms a cycle of length at least g with the edges u1zi and u1zj , we havedH�u1(zi; zj) � g�2. Trivially dH�u1(x; y) � dH(x; y) � dg=2e�1 for all pairs fx; yg in NH(S)�u1.Now in H �u1, vertices in B = (NH(S)�u1)[fz1; : : : ; zkg have degree k� 1 and all other verticeshave degree k. By the discussion above, the distance in H � u1 between distinct vertices of B is atleast dg=2e � 3, which is at least dg=4e � 1 for g � 7.It remains to construct a permutation � of B such that D�(x; y) � g for all pairs x; y in B.Let �(zi) = zi+1 for i = 1; : : : ; k � 1, where indices are taken modulo k, and let �(w) = w for4



all w 2 NH(S) � u1 � N(u1). If x; y 2 fz1; : : : ; zk�1g then D�(x; y) � 2(g � 2) + 2 > g. Ifx; y 2 NH(S) � u1 � N(u1) then D�(x; y) � 2(dg=2e � 1) + 2 � g. Hence we may assume thatx = zi and y 2 NH(S).The union of a shortest zi; y-path and a shortest y; zi+1-path in H � u1 contains a zi; zi+1-pathin H � u1. Together with the edges u1zi and zi+1u1, this forms a cycle in G, which must havelength at least g. Therefore, D�(x; y) � g.Remarks: A separating path of a graph G is an induced path P such that G � V (P ) isdisconnected. By Theorem 6, a separating path of a (k; g)-cage has length at least bg=2c+ 1.A star cutset is a cutset that contains a vertex adjacent to all the other vertices in the cutset.Since a star cutset induces a subgraph of diameter at most two, a (k; g)-cage contains no star cutsetif g � 6. Thus if k � 3, g � 6 and G is a (k; g)-cage, then the removal of any vertex v 2 V (G) andany subset of vertices adjacent to v leaves G connected.Now we can strengthen the results in [1] and prove that for k � 3 and g � 5, every (k; g)-cageis 3-connected.Theorem 7. If k � 3 and G is a (k; g)-cage, then G is 3-connected.Proof. Since the unique (k; g)-cages for g = 3 and g = 4 are Kk+1 and Kk;k, respectively, and eachof these is 3-connected, we may assume that g � 5. Suppose to the contrary that G has a cutset Sof size 2. Among all such sets, choose S = fu; vg to minimize the size of the smallest component ofG� S. Let H be a smallest component of G� S. Since G is 2-connected, both NH(u) and NH(v)are nonempty. Furthermore, we have jNH(u)j � 2 and jNH(v)j � 2, otherwise either NH(v) [ fugor NH(u)[ fvg would be a cutset of size 2 whose deletion leaves a component smaller than H . LetNH(u) = fu1; : : : ; urg and NH(v) = fv1; : : : ; vsg, where r; s � 2. Since fu; vg is a cutset of G andr; s � 2, a shortest u; v-path through H is a separating path of G. By the remark after Theorem 6,it has length at least bg=2c+ 1 which is at least 3. This implies that NH(u)\NH(v) = ; and thatdH(ui; vj) � bg=2c � 1 for all i; j. Furthermore, the distance in H between two distinct neighborsof u or two distinct neighbors of v is at least g � 2. The above discussions show that vertices ofNH(S) have degree k � 1 in H and all other vertices in H have degree k in H . Also, the distancebetween distinct vertices of NH(S) is at least bg=2c � 1, which is at least dg=4e � 1.We construct a permutation � of NH(S) such that D�(x; y) � g. By Lemma 2 this contradictsjV (H)j < jV (G)j=2 and completes the proof. Let �(ui) = ui+1 for i = 1; : : : ; r, where indicesare taken modulo r, and let �(vj) = vj for j = 1; : : : ; s. Consider x; y 2 NH(S). If both xand y are neighbors of u or neighbors of v, then the same is true for �(x) and �(y) and we haveD�(x; y) � 2(g�2)+2 > g. Hence we may assume that x = ui and y = vj for some i; j. The unionof a shortest ui; vj-path and a shortest vj ; ui+1-path in H contains a ui; ui+1-path in H . Togetherwith the edges uui and ui+1u, this forms a cycle in G, which must have length at least g. Therefore,D�(x; y) � g.3 Nonseparating cyclesTheorem 6 enables us to prove the following result about g-cycles in (k; g)-cages.Theorem 8. For g � 5, every (k; g)-cage contains a nonseparating g-cycle.5
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��� C0Fig. 2: A nonseparating cycleProof. Among the set C of g-cycles in G such that G � V (C) is disconnected, choose C 2 C tominimize the order of the smallest component H of G� V (C).Since C has diameter bg=2c, Lemma 4 implies that every vertex u 2 NH(C) has exactly oneneighbor in C, and the distance in H between distinct neighbors of V (C) is at least dg=2e� 2. ByCorollary 5, there are u0; v0 2 NH(C) with dH(u0; v0) = dg=2e � 2.Suppose u; v are the neighbors of u0; v0 in C respectively. The cycle C 0 formed by the shorterpiece L of C between u and v, a shortest u0; v0-path in H and the edges uu0; vv0 has length at mostbg=2c + 2 + (dg=2e � 2) = g. Since G has girth g, C 0 has length exactly g, and this occurs onlywhen dC(u; v) = bg=2c. We claim that C 0 is nonseparating. Suppose this is not the case and thatG� V (C 0) is disconnected. Since L is a path of length at most bg=2c, the remark after Theorem 6implies that it is not separating. Hence every component in G� V (C) has at least one neighbor inC�L. Consequently, the disconnected graph G�V (C 0) has a component containing V (C�L) andall the vertices in the components other than H in G� V (C). All other components in G� V (C 0)are smaller than H , contradicting our choice of C.With more e�ort, we can strengthen this result for even g. We prove that for even g, everyg-cycle in a (k; g)-cage is nonseparating. To do so, we need another lemma.Given a cycle C of even length g and a vertex u on C, there is a unique vertex v on C withdC(u; v) = g=2. We call v the antipodal vertex of u on C, and we call fu; vg an antipodal pair onC. Note that distinct antipodal pairs on C are pairwise disjoint.Lemma 9. Let C be a cycle of even length g � 6, and let fu1; v1g; : : : ; fum; vmg be m antipodalpairs on C, not necessarily all distinct. Then there exists a cyclic list of m vertices consistingof one from fui; vig for each i, such that any two consecutive vertices in the list are identical ornonadjacent on C.Proof. First suppose that all the pairs are distinct. Assume without loss of generality that these2m distinct vertices appear along C in the order u1; : : : ; um; v1; : : : ; vm. If m = 1, choose either6



vertex. If m = 2, then g � 6 implies that u2 is not adjacent to both u1 and v1 on C. Select u2and one of fu1; v1g not adjacent to it. For m � 3 the requirement is satis�ed by the cyclic listingu1; u3; : : : ; u2dm=2e�1; v2bm=2c; v2bm=2c�2; : : : ; v2.If some pairs are repeated, make the choice indicated above for the list obtained by deletingextra copies, and then expand the selection for each pair into successive copies of that selection forall copies of the pair.Theorem 10. If k � 3 and g � 4 is even, then every g-cycle in a (k; g)-cage is nonseparating.Proof. Since the unique (k; g)-cage for g = 4 is Kk;k for which the claim holds trivially, we mayassume that g � 6. Let G be a (k; g)-cage, and let C be a g-cycle in G. Suppose that G � V (C)is disconnected. Let H be a smallest component in G � V (C). Since diam(C) = g=2, by Lemma4 every vertex w in NH(C) has a unique neighbor, which we denote by w0, in C. Hence H hasminimum degree k� 1, with NH(C) being the set of vertices with degree k� 1. For x; y 2 NH(C),a shortest x; y-path in H , a shortest x0; y0-path in C and the edges xx0; yy0 form a cycle in G oflength at least g. Thus dH(x; y) � g � 2� dC(x0; y0); (�):Since dC(x0; y0) � g=2, we have dH(x; y) � g=2� 2, with equality only if dC(x0; y0) = g=2. We shallcall a pair fx; yg in NH(C) a bad pair if dH(x; y) = g=2� 2. As we have seen, if fx; yg is a badpair, then fx0; y0g is an antipodal pair on C. A pair fx; yg in NH(C) that is not a bad pair satis�esdH(x; y) � g=2� 1. Now suppose fx; yg and fx; zg are two distinct bad pairs. Then both y0 andz0 are antipodal vertices of x0 on C, hence y0 = z0. A shortest x; y-path and a shortest x; z-path inH together contain a y; z-path in H of length at most g � 4. Adding the edges y0y and y0z yieldsa cycle in G of length less than g. This is impossible, so distinct bad pairs are pairwise disjoint.If we can show that there exists a permutation � of NH(C) such that D�(x; y) � g for all pairsfx; yg in NH(C), we can conclude from Lemma 2 that jV (H)j � jV (G)j=2 to obtain a contradiction.If neither fx; yg nor f�(x); �(y)g is a bad pair, then D�(x; y) � g. It su�ces to construct � suchthat D�(x; y) � g and D�(��1(x); ��1(y)) � g whenever fx; yg is a bad pair.If there is no bad pair, then any permutation of NH(C) works. Hence we may assume that abad pair exists. Suppose fx1; y1g; : : : ; fxm; ymg are all the distinct bad pairs in NH(C). Corre-spondingly, fx01; y01g; : : : ; fx0m; y0mg are m antipodal pairs on C.Case 1 m � 2.By Lemma 9, there is a cyclic listing ofm vertices, one from each pair in fx01; y01g; : : : ; fx0m; y0mg,such that two consecutive vertices on the listing, if distinct, are nonadjacent on C. By relabelingif necessary, we may assume that x01; : : : ; x0m is the desired cyclic listing. De�ne � on NH(C) asfollows: For i = 1; : : : ; m, let �(xi) = xi+1, where indices are taken modulo m; for z 2 NH(C) �fx1; : : : ; xmg, let �(z) = z. The permutation � maps the bad pair fxi; yig to fxi+1; yig. If x0i = x0i+1,then a shortest xi; yi-path and a shortest xi+1; yi-path in H together contain an xi; xi+1 path, whichforms a cycle in G with the edges xix0i and xi+1x0i (see Fig. 3). Since G has girth g, we haveD�(xi; yi) � g.If x0i 6= x0i+1, then these vertices are nonadjacent on C, which implies that dC(x0i+1; y0i) �g=2� 2. By (�), we have dH(xi+1; yi) � g=2, and thus D�(xi; yi) � g. Similar arguments apply tof��1(x); ��1(y)g = fxi�1; yig.Case 2 m = 1 7
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Fig. 3: Bad pairs and antipodal pairs of verticesIn this case, fx1; y1g is the only bad pair. If no vertex in C other than x01 and y01 has a neighborin H , then a shortest x01; y01-path in C is a separating path of length g=2, contradicting the remarkafter Theorem 6. Hence there exists w 2 NH(C)�x1� y1 such that its neighbor w0 in C is distinctfrom x1 and y1. Since g � 6, w0 is not adjacent to both x01 and y01 on C. We may assume that w0is not adjacent to x01 on C. Then dC(w0; y01) � g=2� 2. By (�), we have dH(w; y1) � g=2. Now let�(x1) = w, �(w) = x1 and �(z) = z for z 2 NH(C)� x1 � w. Both � and ��1 map the only badpair fx1; y1g to fw; y1g, so D�(x; y) � g for all x; y 2 NH(C). This completes the proof.References[1] H. Fu, K. Huang and C. Rodger, Connectivity of Cages, J. Graph Theory, 24(1997), 187-191.[2] W.T.Tutte, A Family of Cubical Graphs, Proc. Cambridge Phil. Soc.,(1947), 459-474.[3] P-K. Wong, Cages-A Survey, J.Graph Theory, 6(1982), 1-22.
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