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Abstract

A (k; g)-cage is a graph of minimum order among k-regular graphs with girth g. We show
that for every cutset S of a (k;g¢)-cage GG, the induced subgraph G[S] has diameter at least
lg/2], with equality only when distance |g/2| occurs for at least two pairs of vertices in G[S].
This structural property is used to prove that every (k; g)-cage with k& > 3 is 3-connected. This
result supports the conjecture of Fu, Huang, and Rodger that every (k;g)-cage is k-connected.

A nonseparating g-cycle C'in a graph G is a cycle of length ¢ such that G—V(C') is connected.
We prove that every (k;g)-cage contains a nonseparating g-cycle. For even g, we prove that
every g-cycle in a (k; g)-cage is nonseparating.

1 Introduction

The girth of a graph G is the length of a shortest cycle in G'. A (k;¢)-graph is a k-regular graph
with girth g. A (k;g)-cage G is a (k;g)-graph of minimum order. Let f(k;g¢) be the order of a
(k; g)-cage. Cages were introduced by Tutte [2]; results are surveyed in [3]. Recently, Fu, Huang,
and Rodger [1] proved that all (k; g)-cages are 2-connected and that all (3; ¢)-cages are 3-connected.
They further conjectured that every (k;g)-cage is k-connected. In this paper, we strengthen their
results by showing for k& > 3 that every (k;g)-cage is 3-connected. In order to prove this result,
we develop a structural property of separating sets in cages. We show that every separating set
of a (k; g)-cage induces a subgraph with diameter at least |g/2|, with equality only when distance
|g/2| occurs for at least two pairs of vertices in the induced subgraph.

A nonseparating g-cycle in a graph G is a cycle C of length g such that G—V (C') is connected. We
use the structural property about separating sets in cages to prove that every (k;¢)-cage contains
at least one nonseparating g-cycle. For even g, we prove that every g-cycle in a (k;g)-cage is
nonseparating. We conjecture that the same is true for odd g.

Conjecture. Fvery g-cycle in a (k; g)-cage is nonseparating.

We consider only simple graphs. We denote the vertex set and edge set of ¢ by V(&) and
E(G), respectively. The neighborhood of a vertex v € V(G), written N(v), is the set of all vertices
adjacent to v. The degree of a vertex v € V(G')is d(v) = |N(v)|. A graph is k-regular if every vertex
has degree k. For u,v € V(G), let dg(u,v) denote the distance between u and v in G if v and v
are in different components of G , then let dg(u,v) = co. The diameter of G, written diam((G), is
the maximum distance over all pairs of vertices in G. If S C V(G), then N(S) = UyesN(v). If



H C G, then Ny(S5) = N(S)NV(H). The subgraph of GG induced by S is denoted by G[S]. If
S CV(G) and G — S is not connected, then S is a cutset or separating set.

Since the unique (k;g)-cages for k = 2, ¢ = 3, and g = 4 are Cy, Ki4q, and Ky, respectively,
we henceforth assume that £ > 3 and g > 5 unless otherwise specified.

2 Cages are 3-connected

The following theorem about the monotonicity of cages is proved in [1].
Theorem 1. If k>3 and 3 < g1 < g2, then f(k;g1) < f(k;g2).

Definition. Suppose that GG is a (k;g)-cage and H is an induced subgraph of (¢ with minimum
degree k — 1. Let B be the set of vertices of degree k — 1 in H. For each permutation o of B, let

Do(,y) = dr(x,y) + du(o(z), o(y)) + 2.

We say that H is a special subgraph of G if there exists a ¢ such that dy(z,y) > [¢/4] — 1 and
Dy(z,y) > ¢ for all distinct z,y € B.

Lemma 2. If G is a (k;g)-cage and H is a special subgraph of G, then |V(H)| > |[V(G)|/2.

Proof. Let H' be a copy of H. For every € V(H), let 2’ denote its image in H’, and let B’ be
the copy of B in H'. Let G’ be the graph that consists of the disjoint union of H and H' plus the
edge uo(u)’ for each w € B. Since the edges between H and H' form a perfect matching between
B and B', G is k-regular and |V(G")| = 2|V(H)|. It suffices to show that G’ has girth at least g.

Let C' be a cycle in G’. If C lies completely in H or H’, then it is a copy of a cycle in & and
hence has length at least g. Hence we may assume that C' uses some edges between H and H'. If
C uses at least four edges between H and H’, then it has length at least 4([¢g/4] — 1)+ 4 > g¢. If
C' uses exactly two edges uwo(u) and vo(v)’ between H and H’, where u,v € V(H ), then it has
length at least

di(u,v) + dg(o(u),o(v))+2 = Dy(u,v) > g. (See Fig. 1)
Hence G’ has girth at least g. By Theorem 1, |V(G’)| > |[V(G)|. Thus |V(H)| > |[V(G)]/2. O
The following corollary is a simple application of Lemma 2 and appears in [1].
Corollary 3. Every (k; g)-cage is 2-connected.

Proof. Suppose u is a cut-vertex in a (k;¢)-cage G and H is a component in G — u of minimum
order. Since G has girth ¢, the distance in H between two neighbors of u in H is at least g — 2.
Letting o be the identity permutation on Ng(u), we have D,(z,y) > ¢ for z,y € Ny(u). Thus H
is a special subgraph of G which contradicts |V (H)| < |[V(G)|/2. O

Lemma 4. If G is a graph with girth ¢ > 3, S is a subset of V(G) with diam(G[S]) = d < g — 2,
and H is subgraph of G with V(H)N S = 0, then every vertex of Ni(.5) has exactly one neighbor
i S, and the distance in H between distinct neighbors of S is at least g — d — 2, with equality only
if they are neighbors of a pair of vertices with distance d in G[S5].



Fig. 1: Construction of G’

Proof. Let uu',vv’ be distinct edges such that w,v» € S and u',v" € V(H). We may assume
that «’,v" are in the same component of H. These edges together with a shortest u,v-path in
G[S] and a shortest u’,v’-path in H form a cycle which must have length at least g. Hence
darsy(u,v) + dg(u',v") +2 > g. Since dgs)(u,v) < d, we conclude that dy(u',v") > g —2—d >0,
with equality only if dgg(u,v) = d. In particular, ' # v’ and no vertex in H can have two
neighbors in 5. O

Corollary 5. Suppose G is a (k; g)-cage and S is a cutset of G with diam(G[S])< g—2. If H isa
smallest component in G — S, then Ny (S) contains a pair of vertices u,v with dy(u,v) < [g/2] —1.

Proof. Since diam(G[S]) < ¢ — 2, by Lemma 4 every vertex of Ny(.9) has exactly one neighbor in
S and hence has degree k — 1 in H. All other vertices in 1 have degree k in H. Suppose that
di(u,v) > [g/2] — 1 for every pair of vertices u,v € Ny(5). Let ¢ be the identity permutation of
Ng(5). We have

Do(u,v) =2dg(u,v)+2>2([g/2] - 1)+2>¢

for every pair of vertices u,v € Ny(5). By Lemma 2, |V(H)| > |V(G)|/2. This contradicts H
being a smallest component of G — 5, so dy(u,v) < [g/2] — 1 for some pair u,v € Ng(5). O

Theorem 6. Suppose G is a (k;g)-cage and S is a cutset of G. Then diam(G[S]) > |g/2].
Furthermore, the inequality is strict if dgis)(u,v) is mazimized for exactly one pair of vertices.

Proof. Suppose diam(G[S]) < |g/2] — 1. Let H be a smallest component in G — S. Since g > 5,
we have |¢g/2] < g —2. If Ng(5) = {2}, then because G is 2-connected, z has at least 2 neighbors
in 5, which contradicts Lemma 4. We therefore suppose that [Ny (5)| > 1. Now Lemma 4 implies
that the distance in H between distinct neighbors of S is at least [¢g/2] — 1, contradicting Corollary
5.

Now suppose that diam(G[S]) = d = |g/2] and u, v is the only pair in .5 with dgs)(u,v) = [g/2].
By Lemma 4, every vertex of Ny(.9) has exactly one neighbor in S and dy(z,y) > ¢—2—d = [g/2] -



2 for all 2,y € Ny (5). Since distance d in G[S] occurs only for u, v, we have dy(z,y) = [g/2] — 2
only if x,y are neighbors of u,v in H, respectively. In particular, this implies that both « and v
have neighbors in H; otherwise we have dy(z,y) > [¢g/2] — 1 for all 2,y € Ng(95), contradicting
Corollary 5. Suppose that Ny(u) = {u1,...,u.} and Ny(v) = {v1,...,vs}, where r;s > 1.
Without loss of generality, assume that r > s.

If we can show there exists a permutation ¢ of Ny (5) such that D,(z,y) > g for every pair
z,y € Ng(5), then we can conclude from Lemma 2 that V(H) > [V(G)|/2 to get a contradiction.

Case 1 r > 2.

In this case, we define o(u;) = w41, for ¢ = 1,...,r, where indices are taken modulo r. Also,
define o(w) = wforall w € Ny (S)—Ng(u). Given a pair z,y € Ng(9),if both di(z,y) > [¢g/2]—1
and dy(o(z),o0(y)) > [g/2] — 1, then D,(x,y) > ¢g. By our previous discussion and our definition
of o, dy(x,y) = [g/2] — 2 or du(o(x),0(y)) = [¢g/2] — 2 only if z,y are neighbors of u,v in H
respectively. Hence we may assume that z = u; and y = v; for some 7, j. The union of a shortest
u;, vj-path and a shortest v;, u;11-path in H contains a u;, u;4q1-path in . Together with the edges
wu; and w41, this forms a cycle in G, which must have length at least g. Therefore, D,(z,y) > g.

Case 2 r=s=1and u; < ;.

We have shown that in this case, uy, v is the only pair in Ny(9) with distance [¢/2] —2in H;
all other pairs have larger distance.

Since 1 = dy(u1,v1) = [g/2] — 2, this case requires g € {5,6}. There is a vertex w € Ny(5) —
uy — vy; otherwise {uy, v} is a cutset of G inducing a subgraph with diameter 1. We wish to show
that dg(w,v1) or dg(w,uq) is at least [(g—1)/2]. Because u, v is the only pair with distance [¢/2]
in 5, both dy(w,vy) and di(w,uy) are at least |g/2| —1 > [(g —1)/2] — 1. If equality holds for
both then the union of a shortest uy,w-path and a shortest w,vi-path contains a wuq, vi-path of
length between 2 and 2(|g/2| — 1) < g — 1. Together with wqv; this forms a cycle in G of length
at most ¢ — 1, contradicting girth(G) = g. Thus we may assume without loss of generality that
dp(w,v1) > [(g —1)/2]. Let o(u1) = w, o(w) = uqg and o(z) = z for all z € Ny(5)— uy — w. If
neither {z,y} nor {o(2),0(y)}is {u1,v1}, then D,(z,y) > 2([g/2] — 1)+ 2 > g. Otherwise

Dy(a,y) = dir(ur o) + drg(w,v0) +2 > ([9/2] - 2) 4 [(g — 1)/2] +2 = g.

Case 3 r=s=1and uy ¢ vy.

Since dy(ui,v1) = [g/2] — 2, it follows that ¢ > 7 in this case. We show that H — uy is a
special subgraph of G to get a contradiction. The following discussion applies even if H — uy is not
connected.

The distance in H between distinct vertices of Ny (5) is at least [g/2] — 2, which is at least 2
for ¢ > 7. Thus uy has no neighbors in Ny (5), so H —uy has minimum degree k — 1. Suppose that
{#1,...,2k—1} = Npg(uy). We have dyy_y, (z;,w) > dg(ur, w)—1> [g/2] =3 for all w € Ny (5)—uy
and 1 < ¢ < k — 1. Since a shortest path in H — uy from z; to z; (if z; and z; lie in the same
component of H — uy) forms a cycle of length at least g with the edges u;z; and wqz;, we have
di—u, (2, 2;) > g—2. Trivially dg_, (2, y) > dp(z,y) > [¢g/2] —1for all pairs {z,y}in Ny(5)—uy.
Now in H — uy, vertices in B = (Ng(S)—u1)U{z1,..., 2} have degree k — 1 and all other vertices
have degree k. By the discussion above, the distance in H — uy between distinct vertices of B is at
least [¢g/2] — 3, which is at least [¢g/4] — 1 for g > 7.

It remains to construct a permutation o of B such that D,(z,y) > ¢ for all pairs z,y in B.
Let o(z) = 241 for i = 1,...,k — 1, where indices are taken modulo k, and let o(w) = w for



all w € Np(5)— w1 — Neug). If 2,y € {z1,...,25-1} then Dy(z,y) > 2(9 —2)+2 > g. If
z,y € Ng(S)—uy — N(uq) then Dy(z,y) > 2([g/2] — 1)+ 2 > ¢g. Hence we may assume that
r =z and y € Ng(9).

The union of a shortest z;, y-path and a shortest y, z;41-path in I — uq contains a z;, z;41-path
in I — uy. Together with the edges uqyz; and z;4quq, this forms a cycle in ¢, which must have
length at least g. Therefore, D,(z,y) > g. O

Remarks: A separating path of a graph G is an induced path P such that G — V(P) is
disconnected. By Theorem 6, a separating path of a (k;¢)-cage has length at least |g/2] + 1.

A star cutset is a cutset that contains a vertex adjacent to all the other vertices in the cutset.
Since a star cutset induces a subgraph of diameter at most two, a (k; ¢)-cage contains no star cutset
if g > 6. Thusif k >3, ¢ > 6 and G is a (k; g)-cage, then the removal of any vertex v € V(G') and
any subset of vertices adjacent to v leaves G connected.

Now we can strengthen the results in [1] and prove that for & > 3 and g > 5, every (k; g)-cage
is 3-connected.

Theorem 7. If k> 3 and G is a (k; g)-cage, then G is 3-connected.

Proof. Since the unique (k; ¢)-cages for ¢ = 3 and g = 4 are K11 and K}y i, respectively, and each
of these is 3-connected, we may assume that ¢ > 5. Suppose to the contrary that G has a cutset §
of size 2. Among all such sets, choose S = {u, v} to minimize the size of the smallest component of
G — 5. Let H be a smallest component of G — 5. Since G is 2-connected, both Ny (u) and Ny (v)
are nonempty. Furthermore, we have |[Ny(u)| > 2 and [Ny (v)| > 2, otherwise either Ng(v) U {u}
or Ni(u)U{v} would be a cutset of size 2 whose deletion leaves a component smaller than [. Let
Nyg(u) ={uq,...,u,} and Ng(v) ={v1,...,vs}, where r, s > 2. Since {u, v} is a cutset of G and
r, s > 2, a shortest w, v-path through H is a separating path of G. By the remark after Theorem 6,
it has length at least |¢g/2| 4+ 1 which is at least 3. This implies that Ny (u) N Ng(v) = 0 and that
dr(u;,v;) > |g/2] — 1 for all 4, j. Furthermore, the distance in # between two distinct neighbors
of u or two distinct neighbors of v is at least g — 2. The above discussions show that vertices of
Np(5) have degree k — 1 in H and all other vertices in H/ have degree k in H. Also, the distance
between distinct vertices of Ny (.9) is at least |g/2| — 1, which is at least [g/4] — 1.

We construct a permutation o of Ny (5) such that D,(z,y) > g. By Lemma 2 this contradicts
\V(H)| < |[V(G)|/2 and completes the proof. Let o(u;) = u;4q for ¢ = 1,...,r, where indices
are taken modulo r, and let o(v;) = v; for j = 1,...,s. Consider z,y € Ng(95). If both z
and y are neighbors of u or neighbors of v, then the same is true for o(z) and o(y) and we have
Dy(z,y) > 2(¢9—2)+2 > g. Hence we may assume that © = u; and y = v; for some 7, j. The union
of a shortest u;,v;-path and a shortest v;, u;4-path in H contains a u;, u;yi-path in H. Together

with the edges wu; and w;4qu, this forms a cycle in (¢, which must have length at least g. Therefore,
Do(z,y) 2 g. O

3 Nomnseparating cycles

Theorem 6 enables us to prove the following result about g-cycles in (k; ¢)-cages.

Theorem 8. For g > 5, every (k; g)-cage contains a nonseparating g-cycle.



Fig. 2: A nonseparating cycle

Proof. Among the set C of g-cycles in GG such that G — V(') is disconnected, choose C' € C to
minimize the order of the smallest component H of G — V(C).

Since C' has diameter |¢g/2|, Lemma 4 implies that every vertex u € Ny(C') has exactly one
neighbor in ', and the distance in H between distinct neighbors of V(') is at least [¢/2] — 2. By
Corollary 5, there are v/, v € Ny (C) with di(v',v") = [¢/2] — 2.

Suppose u,v are the neighbors of u’,v" in C respectively. The cycle €’ formed by the shorter
piece L of C' between u and v, a shortest ’, v’-path in H and the edges uu’, vv’ has length at most
lg/2] + 2+ ([g/2] —2) = ¢g. Since G has girth g, C’ has length exactly ¢, and this occurs only
when dc(u,v) = |g/2]. We claim that C’ is nonseparating. Suppose this is not the case and that
G — V(") is disconnected. Since L is a path of length at most |g/2], the remark after Theorem 6
implies that it is not separating. Hence every component in G — V(') has at least one neighbor in
C — L. Consequently, the disconnected graph G —V (C’) has a component containing V(C' — L) and
all the vertices in the components other than  in G — V(C'). All other components in G — V(C’)
are smaller than I, contradicting our choice of C. O

With more effort, we can strengthen this result for even g. We prove that for even g, every
g-cycle in a (k; g)-cage is nonseparating. To do so, we need another lemma.

Given a cycle €' of even length g and a vertex w on (', there is a unique vertex » on €' with
de(u,v) = g/2. We call v the antipodal vertex of uw on C', and we call {u,v} an antipodal pair on
(. Note that distinct antipodal pairs on C' are pairwise disjoint.

Lemma 9. Let C' be a cycle of even length g > 6, and let {uy,v1},...,{um,vn} be m antipodal
pairs on C, not necessarily all distinct. Then there exists a cyclic list of m vertices consisting
of one from {u;,v;} for each i, such that any two consecutive vertices in the list are identical or
nonadjacent on C.

Proof. First suppose that all the pairs are distinct. Assume without loss of generality that these
2m distinct vertices appear along C' in the order uy,... Uy, v1,...,05. If m = 1, choose either



vertex. If m = 2, then g > 6 implies that u, is not adjacent to both uy and vy on C. Select us
and one of {uy, v} not adjacent to it. For m > 3 the requirement is satisfied by the cyclic listing
Upy U3y e v v s Ui /2] =10 V2| m/2]> V2 m/2]—25 - -+ » V2-

If some pairs are repeated, make the choice indicated above for the list obtained by deleting
extra copies, and then expand the selection for each pair into successive copies of that selection for
all copies of the pair. O

Theorem 10. Ifk > 3 and g > 4 is even, then every g-cycle in a (k; g)-cage is nonseparating.

Proof. Since the unique (k;g)-cage for ¢ = 4 is K} for which the claim holds trivially, we may
assume that ¢ > 6. Let G be a (k;g)-cage, and let C' be a g-cycle in . Suppose that G — V(')
is disconnected. Let H be a smallest component in G — V(). Since diam(C') = ¢/2, by Lemma
4 every vertex w in Ng(C') has a unique neighbor, which we denote by w’, in C'. Hence H has
minimum degree k — 1, with Ng(C') being the set of vertices with degree k — 1. For z,y € Ny(C),
a shortest z,y-path in H, a shortest 2/, y'-path in C' and the edges z2’,yy’ form a cycle in G of
length at least g. Thus

dp(z,y) > g—2—dc(a'.y'), (*).

Since de(a',y') < g/2, we have di(x,y) > g/2 — 2, with equality only if de(2',y') = g/2. We shall
call a pair {z,y} in Ny(C) a bad pair if dy(z,y) = g/2 — 2. As we have seen, if {z,y} is a bad
pair, then {2’, ¢} is an antipodal pair on C'. A pair {z,y} in Ng(C) that is not a bad pair satisfies
dy(z,y) > ¢g/2— 1. Now suppose {z,y} and {z, z} are two distinct bad pairs. Then both y" and
2" are antipodal vertices of #’ on ', hence y' = 2’. A shortest x, y-path and a shortest x, z-path in
H together contain a y, z-path in H of length at most ¢ — 4. Adding the edges y'y and y'z yields
a cycle in G of length less than ¢g. This is impossible, so distinct bad pairs are pairwise disjoint.

If we can show that there exists a permutation o of Ny (C') such that D,(z,y) > ¢ for all pairs
{z,y}in Ny(C), we can conclude from Lemma 2 that |V (H )| > |V(G)|/2 to obtain a contradiction.
If neither {z,y} nor {o(2),0(y)} is a bad pair, then D,(z,y) > ¢. It suffices to construct ¢ such
that D,(z,y) > g and D,(c7Y(2),07(y)) > g whenever {z,y} is a bad pair.

If there is no bad pair, then any permutation of Ny(C') works. Hence we may assume that a
bad pair exists. Suppose {z1,¥1},...,{%m,ym} are all the distinct bad pairs in Ny(C). Corre-
spondingly, {z},41},...,{al,,y.,} are m antipodal pairs on C'.

Case 1 m > 2.

By Lemma 9, there is a cyclic listing of m vertices, one from each pair in {9, y1},..., {2}, ¥}
such that two consecutive vertices on the listing, if distinct, are nonadjacent on C'. By relabeling
if necessary, we may assume that zf,...,z/ is the desired cyclic listing. Define 6 on Ny(C') as
follows: For i =1,...,m, let o(z;) = 211, where indices are taken modulo m; for z € Ny(C') —
{#1,...,&m}, let a(2) = z. The permutation o maps the bad pair {z;,y;} to {z;11, % }. If2i = 2l .,
then a shortest z;, y;-path and a shortest a;41, y;-path in I together contain an «;, 2,41 path, which
forms a cycle in & with the edges z;2) and z;412) (see Fig. 3). Since G has girth g, we have
D, (z:,y;) > g.

If 2} # a! |, then these vertices are nonadjacent on C', which implies that do(zi,;,y!) <

g/2 — 2. By (*), we have dg(zit1,%:) > g/2, and thus D,(x;,y;) > g. Similar arguments apply to

{o7(@),07 (y)} = {ziz1, ui}-

Case2m=1



Fig. 3: Bad pairs and antipodal pairs of vertices

In this case, {1, y1} is the only bad pair. If no vertex in C other than z/ and y| has a neighbor
in H, then a shortest 2/, yj-path in C'is a separating path of length g/2, contradicting the remark
after Theorem 6. Hence there exists w € Ny (C') — 21 — y; such that its neighbor w’ in C' is distinct
from 7 and y;. Since g > 6, w’ is not adjacent to both 2} and y; on C'. We may assume that w’
is not adjacent to 2§ on C. Then de(w’,y1) < g/2 — 2. By (%), we have dg(w,y1) > g/2. Now let
o(x1) = w, o(w) = z1 and o(z) = z for z € Ny(C) — z1 — w. Both ¢ and o~! map the only bad
pair {z1,y1} to {w,y1}, s0 Dy(x,y) > g for all ,y € Ny(C). This completes the proof. O
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