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We describe measurements of single-cycle terahertz pulse propagation in a random
medium. The unique capabilities of terahertz time-domain spectroscopy permit the
characterization of a multiply scattered field with unprecedented spatial and tem-
poral resolution. With these results, we can develop a framework for understanding
the statistics of broadband laser speckle. Also, the ability to extract information on
the phase of the field opens up new possibilities for characterizing multiply scattered
waves. We illustrate this with a simple example, which involves computing a time-
windowed temporal correlation between fields measured at different spatial locations.
This enables the identification of individual scattering events, and could lead to a
new method for imaging in random media.
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1. Introduction

Measurements of diffuse photons have proven to be a powerful tool in statistical
optics. Narrowband diffuse photon density waves can be used for imaging of objects
immersed in a random medium (Lasocki et al. 1998; O’Leary et al. 1995; Ripoll
& Nieto-Vesperinas 1999; Schotland & Markel 2001). It is also possible to extract
information using diffusing wave spectroscopy, which involves measurements of the
temporal intensity or field correlations in a dynamic random medium (Boas & Yodh
1997; Boas et al. 1995; Pine et al. 1988). Alternatively, one can obtain similar data
from spatial correlations within a speckle pattern (Berkovits & Feng 1990; Naul-
leau et al. 1995; Thompson et al. 1997). All of these techniques have found broad
applicability, particularly in the field of biomedical imaging. However, due to the
difficulties associated with determining the phase of an optical field, all rely on mea-
surements of light intensity, rather than electric field. Furthermore, intensities are
generally measured only in an average sense, over a time-scale much longer than the
optical period. A notable exception involves time-resolved field measurements using
microwave techniques (Genack et al. 1999; Sebbah et al. 2000; van Tiggelen et al.
1999). However, these have generally employed a waveguide geometry in which the
issue of imaging does not generally arise.

One contribution of 16 to a Discussion Meeting ‘The terahertz gap: the generation of far-infrared radiation
and its applications’.
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In this work, we describe measurements of photon diffusion using terahertz time-
domain spectroscopy (THz TDS). This technique permits us to characterize both the
amplitude and phase variations of a random electromagnetic field with a spatial res-
olution smaller than the size of a speckle spot and a temporal resolution better than
one optical cycle. As a first step, it is necessary to characterize the statistics of the
diffusive component of the wave. These statistics can be used to extract information
on the nature of the random medium (Thompson et al. 1997), and are a key indica-
tor of the onset of localization (Rivas et al. 2001). We then explore the computation
of temporal correlations between fields measured at different spatial locations. We
demonstrate that this permits us to obtain information about individual scattering
events experienced by portions of the diffusing field, and holds great promise for the
location and characterization of objects buried within the random medium.

2. Statistics of broadband diffusive pulses

Much of the research on diffusive optical waves has concentrated on the case of
monochromatic or narrowband waves (Boas et al. 1995; Feng et al. 1988; Genack
et al. 1990, 1999; Matson 1997; O’Leary et al. 1992; Sebbah et al. 2000; Webster et
al. 2002). Several authors have used short optical pulses as a means of separating
the diffusive portion of the wave from the ballistic light (Bashkansky et al. 1994;
Herrmann et al. 2002; Rivas et al. 2001; Yoo et al. 1991, 1992). Others have used
low-coherence interferometry to extract relative phase information (Brodsky et al.
1997, 2000; Petoukhova et al. 2001; Popescu & Dogariu 1999; Thurber et al. 2000).
However, the treatment of the statistics of broadband fields in random media have
not been addressed.

Here, we report measurements of the electric field of multiply scattered broadband
optical pulses (Pearce et al. 2003). We compute the statistics of these random fields
and demonstrate the connections to the case of monochromatic radiation. These mea-
surements employ THz TDS, in a configuration quite similar to the one described
previously (Mittleman et al. 1996, 1999). Using this technique, it is possible to gener-
ate pulses with a fractional bandwidth in excess of 100% (50 GHz–1 THz). Further-
more, the coherent measurement of the electric field permits extraction of both the
amplitude and phase of the field, with a temporal resolution better than one optical
cycle, without the use of interferometric techniques. As a result, one directly observes,
among other things, the distribution of photon transit times (i.e. the time-of-flight
distribution function). This quantity usually must be extracted from time-integrated
measurements using spatial intensity correlations (Webster et al. 2002). Finally, we
emphasize that these measurements have been performed in a three-dimensional
sample, rather than in the waveguide geometry customarily employed in microwave
measurements (Chabanov & Genack 1997).

The experimental set-up is illustrated in figure 1. Single-cycle terahertz pulses are
focused into a random medium, and the emerging radiation is measured at an angle θ
with respect to the transmitted beam direction. In these initial measurements, the
angle is fixed at θ = 90◦. This set-up ensures that no ballistic radiation reaches the
detector. The model random medium consists of a large number of teflon spheres
with a diameter of 0.794 ± 0.025 mm, contained in a cell with teflon walls. Teflon
is an excellent material for these measurements, because of its low absorption and
because the refractive index of teflon, n = 1.4330, is nearly independent of frequency
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Figure 1. Schematic of the experimental set-up, showing the fibre-coupled THz detector posi-
tioned at an angle θ with respect to the transmitted beam. A spherical wave produced by a
hypothetical scattering event, centred to the right of the axis of the displayed detector location,
is also shown. This partial spherical wave would produce a correlated signal on detectors at
different locations, with a temporal shift resulting from the geometrical path length difference.
In the case illustrated here, a detector at a larger angle θ would receive the signal earlier.

throughout the spectral range of the measurements (Birch et al. 1981). The volume
fraction of the spheres in the sample cell is measured to be 0.56± 0.04. Our previous
measurements indicate that the mean free path in these samples ranges from ca. 1
to ca. 70 mm within the bandwidth of the terahertz pulse (Pearce & Mittleman 2001,
2002).

Figure 2 shows several representative terahertz waveforms. Each output waveform
corresponds to a realization of a unique configuration of the random medium. These
waveforms have been spectrally filtered at both low and high frequencies to improve
the signal-to-noise ratio, which is about 10:1 at the spectral peak. For reference, the
signal-to-noise ratio for a measurement of the incident single-cycle pulse (figure 2a)
exceeds 20 000 after equivalent spectral filtering. The result of the multiple scattering
is a randomization of the phase, which produces the complex structure shown in
figure 2. By taking the Fourier transform of these waveforms, we can extract both the
real r = Re[E(ω)] and the imaginary i = Im[E(ω)] parts of the scattered electric field
E(ω). From these measurements, we are able to obtain the probability distribution
of the real and imaginary parts of the transmitted field, P (r) and P (i).

If we assume that the complex electric field component at a given frequency is the
sum of a large number of random phasors, then the central limit theorem predicts
that the scattered field should obey Gaussian statistics (Chabanov & Genack 1997;
Goodman 2000). Assuming that the phase is uniformly distributed, the joint prob-
ability distribution of the real and imaginary parts at a given frequency ω can be
considered zero-mean jointly Gaussian variables, and therefore

P (r, i | ω) =
1

2πσω(ω)2
exp

[
− r2 + i2

2σω(ω)2

]
(2.1)

where the variance σω(ω)2 = 1
2〈I(ω)〉. Here, 〈I(ω)〉 is the spectral intensity of the

diffuse light averaged over all configurations of the medium and it is dependent
on the input pulse spectrum and the scattering parameters of the random media.
To determine the joint distribution of the real and imaginary parts within a finite
frequency range ∆ω = ω2 − ω1, we integrate (2.1) over ω and normalize by the
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Figure 2. (a) A typical input waveform. (b) Three typical scattered waveforms, for three different
configurations of the random medium. These waveforms have been vertically offset, for clarity.
In (b), the amplitudes are arbitrary but can be compared with the amplitude of the input
waveform shown in (a). The time axis of (b) has an arbitrary origin (see figure 5 and associated
discussion).

bandwidth ∆ω, to get

P (r, i) =
1

π∆ω

∫ ω2

ω1

dω
1

〈I(ω)〉 exp
[
−r2 + i2

〈I(ω)〉

]
. (2.2)

This expression may be interpreted as the sum of a large number of zero-mean
Gaussian distributions (one for each spectral component), each with a unique vari-
ance proportional to 〈I(ω)〉. The marginals P (r) and P (i) are equivalent to each
other and can be computed as

P (a) =
1

∆ω

∫ ω2

ω1

dω
1√

π〈I(ω)〉
exp

[
− a2

〈I(ω)〉

]
, (2.3)

with a = r, i, and with variance

σ2 =
1

2∆ω

∫ ω2

ω1

dω 〈I(ω)〉.

The variance of P (r, i) is proportional to the integrated average intensity of the dif-
fuse light. This is analogous to a monochromatic speckle pattern, where the variance
is proportional to the average intensity (Chabanov & Genack 1997).
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Figure 3. The probability distribution of the normalized real (triangles) and imaginary (open
squares) parts of the complex scattered electric field, P (r/σ) and P (i/σ), plotted on a log scale.
The dashed line shows the Gaussian distribution, which is the result expected for monochromatic
radiation (Chabanov & Genack 1997). The solid curve is the prediction of equation (2.3), using
an experimentally determined estimate for the mean spectral intensity.

We measure waveforms for 22 distinct configurations of the random medium. For
each, we extract the complex parts of E(ω) over the 50–500 GHz spectral range,
where there is appreciable signal in the measured waveforms. The probability distri-
butions of the normalized real and imaginary parts P (r/σ) and P (i/σ) are shown in
figure 3. The real and imaginary parts are zero-mean and have nearly identical dis-
tributions, as predicted by (2.2). As anticipated, the Gaussian distribution expected
for the case of monochromatic illumination (Chabanov & Genack 1997) (dashed line)
does not accurately describe the data. In order to compare with the predicted result
(equation (2.3)), we extract an estimate of the average intensity 〈Î(ω)〉 by averaging
the frequency-dependent intensity spectrum over the 22 measured waveforms. By
substituting 〈Î(ω)〉 for the average intensity in (2.3), we can numerically calculate
P (a/σ). The result (solid line) is in excellent agreement with the experimental data.

The statistics of the phase derivative dφ/dω ≡ φ′ are also of great importance.
In the case of narrowband wave packets, the ensemble average of this quantity is
inversely proportional to the transport velocity, so it can be interpreted as a time
delay for photons in the medium. For broadband waves, its connection to the con-
cept of a delay time is questionable, because of the randomization of the spectral
phase. Nevertheless, it is instructive to investigate the statistics of φ′, because of
its relevance in the study of higher-order (i.e. C2) correlations (van Tiggelen et al.
1999). For narrowband wave packets, the probability distribution for the normalized
phase derivative has been derived within the Gaussian approximation as (Genack et
al. 1999; van Tiggelen et al. 1999)

P

(
φ̂′ ≡ φ′

〈φ′〉

)
=

1
2Q

[Q + (Q + (φ̂′ − 1))2]3/2
, (2.4)
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Figure 4. The probability distribution of the normalized spectral phase derivative φ̂′, plotted
on a log scale. The solid line is the probability distribution given in (2.4), equivalent to the
monochromatic case (van Tiggelen et al. 1999), with Q = 0.234.

where φ̂′ is the phase derivative normalized to its ensemble-averaged mean and where
Q is a parameter related to the absorption length La and the sample geometry.
We note that this relation between Q and La is not trivial to compute except for
very simple sample geometries such as the case of normal incidence on a thin slab
(Berkovits & Feng 1994).

For broadband waves, P (φ̂′) can be derived by integrating (2.4) over frequency
with an appropriate weighting function, as in equations (2.2) and (2.3) above. How-
ever, because, in our measurements, the absorption length is approximately constant
over the entire bandwidth of the radiation, Q should not vary much as a function of
frequency. Since this is the only parameter, the distribution of the phase derivative
for broadband waves should also be given by (2.4). Figure 4 shows the probability
distribution for φ̂′, extracted from the Fourier transforms of the measured wave-
forms. The solid curve is the predicted result (equation (2.4)), with Q = 0.234. As
anticipated, the theoretical expression derived for the monochromatic case can also
accurately predict the statistics of the broadband wave packet.

3. Spatiotemporal field correlations

With a good understanding of the statistical nature of the measured fields, we now
turn to an investigation of the correlations between fields measured at different spa-
tial locations. In essence, this is a study of speckle patterns, but with a time resolution
sufficient to resolve a single cycle of the field. As we shall demonstrate, this measure-
ment permits us to obtain information about the locations of individual scattering
events experienced by portions of the diffusing field (Jian et al . 2003). Such data
are typically not experimentally accessible because the measured field generally con-
sists of a superposition of many random phasors, corresponding to waves that have
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Figure 5. Photon time-of-flight distribution, determined from the data by averaging the squares
of the measured waveforms. This serves as a sort of calibration for the delay axis, as described
in the text.

traversed many different possible paths (Goodman 2000). However, by computing
the temporal correlations between waves measured at different spatial locations, we
are able to highlight the portions that originate from a single scattering event. This
represents a completely new method for characterizing a random medium, since the
concept of locating individual scattering events within a diffusing wave has not pre-
viously been considered. We note that it has recently become possible to measure the
amplitude and phase of ultra-short optical pulses (Trebino 2002), so our results could,
in principle, be extended to biologically relevant wavelengths in the near infrared.
Thus these measurements open up new possibilities for imaging in biological media.

The experimental configuration is the same as shown in figure 1. Because the ran-
dom medium is static, we can measure numerous portions of the scattered field with
a single detector, simply by repositioning the detector. For each fixed configuration
of the random medium, we measured waveforms at angles within two groups, at
θ = 65, 66, . . . , 75◦ and θ = 105, 106, . . . , 115◦, corresponding to forward and back-
ward scattering, respectively. We note that all of our waveforms, as with most THz
TDS experiments, are measured on an arbitrary time axis. That is, the zero of the
time axis is arbitrarily specified and is not equal to the time at which the pulse is
generated. For this reason, it is difficult to extract absolute photon transit times
within the random medium, since we do not have an accurate measurement of the
time at which the pulse entered the sample. However, the arbitrary offset is the same
for all measurements, so relative delays can still be extracted from these data. In
order to provide some sense of the meaning of the time axis, we show in figure 5
a determination of the photon time-of-flight distribution, obtained by averaging the
squares |E(t)|2 of all of our measured waveforms. These data can serve as a sort of
calibration for the time axis, since they shows the time at which the first photons
reached the detector after emerging from the sample. All scattered waveforms in this
paper (including those shown in figure 2) are plotted on the same time axis used in
figure 5.

For a given random configuration, we expect that the correlation between fields
measured at two different angles, 〈Eθ1(t)Eθ2(t)〉, decreases with increasing δθ ≡
θ2 − θ1 (Goodman 2000). Since we directly measure E(t), we may easily compute
this correlation coefficient, averaged over all configurations for each value of δθ. The
result, shown in figure 6, exhibits an exponential decay, with an angular 1/e width
of ca. 3.7◦. This is essentially a measure of the mean size of a speckle spot, which
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Figure 6. Ensemble-averaged electric-field correlation coefficients at zero offset as a function of
the angular separation δθ between the measurement points. The inset shows the data on a log
scale, indicating an exponential decay of the spatial correlation, exp[−δθ/3.7◦], to the noise floor
at δθ ∼ 18◦.

is related to the illuminated area on the sample cell input facet (Berkovits & Feng
1990; Tomita & Matsuoka 1991).

A more surprising result can be found by computing the correlation function
between portions of the measured time-domain waveforms, rather than using the
entire waveform. By choosing a temporal window, one can highlight correlations
that occur at particular time delays. For example, we expect that the later parts of
a particular pair of waveforms show smaller correlations than the earlier parts, since
these late-arriving parts have scattered more times (Snieder et al. 2002). In addition,
partial waves may arrive at each detector location with a different delay, so corre-
lated signals may appear at non-zero values of the correlation offset. To formalize
the computational procedure, we define a correlation function with a variable-delay
window,

Cδθ(τ, T ) =
1
C0

〈[Eθ1(t) · WT (t)][Eθ2(t + τ) · WT (t + τ)]〉,

where τ is the correlation offset and WT (t) is a window function centred at t = T ,
defined to be unity in a symmetric window about t = T and zero otherwise. The
window width is fixed at 50 ps, approximately equal to the inverse coherence band-
width for our experimental geometry (Ishimaru 1978). As usual, the angular brackets
indicate integration with respect to t, followed by an ensemble average over all wave-
form pairs with the specified value of δθ. C0 is a normalization factor, which ensures
that Cδθ=0(τ = 0, T ) = 1. This windowed correlation function is similar to the one
recently used for the analysis of coda waves in seismic tomography (Snieder et al.
2002).
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Figure 7. Correlation function Cδθ(τ, T ) plotted versus the correlation offset τ and the delay of
the temporal window T . The T -axes (vertical axes) are the same as the time axis in figure 5.
These data represent an ensemble average of all pairs of measured fields with the indicated
angular separation, for one particular realization of the random configuration of scatterers. In
this example, an extended oscillatory correlation is observed at a window delay of T ∼ 730 ps.
This correlation persists even for large angular separations. The dashed lines indicate cuts
through these datasets displayed in figure 8. (a) δθ = 2◦. (b) δθ = 5◦. (c) δθ = 8◦.

A typical result for Cδθ(τ, T ) is shown in figure 7, for three different values of
δθ. Clearly, the correlation at zero offset (τ = 0) decreases with increasing window
delay T , as a result of the increasing average number of scattering events. Also, as
expected from figure 6, the correlation between pairs of waveforms with δθ = 8◦ is
nearly zero, since this is more than twice the angular speckle decay width. However,
a strong oscillatory signal, indicating a correlation extending over several cycles of
the field, is observed at window delay of T ∼ 730 ps. This extended correlation is
observed at this value of T for many angular separations, even those which are larger
than the angular width of a typical speckle spot. This surprising feature arises when
a partial wave from one particular scattering event gives rise to synchronized (though
not simultaneous) signals at all detector locations. In the example shown here, only
one scattering event is observed. However, for other configurations of the random
medium, we generally observe numerous oscillatory signatures, occurring at various
values of T .

From Cδθ(τ, T ), it should be possible to determine the location of the particular
scattering event that gave rise to the observed correlation. Here, we use the evolution
of the phase of the correlation to determine the direction from the detector to the
scattering event. As shown in figure 8, this phase evolves in a systematic way with
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Figure 8. Three cuts through the data of figure 7, along the horizontal dashed lines in each of the
three panels. These show the evolution of a portion of the oscillatory correlation with increasing
angular separation (dashed, δθ = 2◦; solid, δθ = 5◦; dotted, δθ = 8◦). As δθ increases, the
correlation signal shifts towards negative offsets. This shift is related to the tilt of the correlated
wavefront emerging from the random medium. From the rate of the phase shift with increasing
δθ, it is possible to determine the direction from which the scattered signal emerged.

increasing δθ. In these data, the oscillations shift to larger negative correlation offset
with increasing δθ. This indicates that, for waveforms with larger angular separa-
tion, a larger (negative) temporal offset is required to cause the oscillations in one
waveform to coincide with those in the other. This offset is a result of the geomet-
rical path length difference arising from the tilt of the wavefront. This increasing
negative shift with increasing δθ means that the correlated portion of the wavefront
arrived earlier at detectors with larger values of θ, and therefore the corresponding
scattering event took place on the side of the detector axis closer to the sample input
facet. Conversely, an increasing positive shift with increasing δθ would be observed
if the scattering event took place on the opposite side of the detector axis from the
input facet. Thus the evolution of the correlation phase is a direct indication of the
direction of the scattering event relative to the detector axis.

From numerous measurements of the type illustrated in figure 8, we can collect
statistics on the value of the correlation phase shift. This gives a direct measurement
of the degree of asymmetry of the radiation emerging from the random medium.
We have measured both forward and backward scattering for four distinct configura-
tions of the random medium. We have computed Cδθ(τ, T ) for these eight cases and
have tabulated the parameters of the numerous oscillatory correlation signatures in
each. In these eight datasets, we have observed a total of 98 such signatures, each
corresponding to a unique scattering event. For each of these, we have extracted a
numerical value for the phase shift of the oscillatory component, as described above.
These 98 results are displayed in figure 9, divided according to whether the signal
was extracted from the forward or backward scattering datasets.
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Figure 9. Histograms of the correlation phase shift, for all of the observed scattering events in
measurements of four distinct random configurations. These are displayed for both the case of
forward (θ = 65, . . . , 75◦) and backward (θ = 105, . . . , 115◦) scattering. The forward-scattering
events exhibit an asymmetric correlation phase, indicating that the scattering events are more
likely to originate from the side of the detector axis closer to the input beam. In contrast, the
backward-scattering events are nearly symmetric. (a) θ = 110◦ ± 5◦. (b) θ = 70◦ ± 5◦.

These histograms represent a compelling illustration of the new information that
can be obtained using our approach. We have determined that, in the backward
direction, the scattering events are largely symmetric. That is, a detector in this
region is equally likely to detect scattering events located to the left and right of
the detector axis. This follows from the fact that the mean value of the correlation
phase shift is approximately zero (−0.03± 0.04 ps deg−1). On the other hand, in the
forward direction, the mean value is negative (−0.10±0.04 ps deg−1). This indicates
a marked asymmetry, with more scattering events located on the side of the detector
closer to the input facet.

4. Conclusion

We report the first use of THz TDS in the study of diffuse waves. The direct measure-
ment of the multiply scattered electric field allows for the computation of statistics for
both amplitude and phase. We have extended the theoretical framework, developed
for monochromatic waves, to the broadband case, and found excellent agreement
with our measured results. In addition, we have demonstrated a unique method for
characterizing the diffusive radiation emerging from a random medium, involving the
measurement of both its amplitude and phase. We have developed a simple compu-
tational tool that highlights the correlations buried within these random waveforms.
Using this technique, it is possible to extract information about specific scattering
events, which is not possible using conventional measurements. This work should
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spur further theoretical considerations, since the possibility of time-resolved field
measurements has not been considered, other than in a waveguide geometry where
imaging considerations are not relevant. Also, we expect that analogous information
could be obtained using near-infrared or visible light diffusing through biological tis-
sue. This could, in turn, lead to a new method for diffuse photon imaging with phase
coherent detection.

This work has been supported in part by the US National Science Foundation.
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Discussion

P. Planken (University of Technology Delft, The Netherlands). There must be some
mathematical definition of what randomness really is, and how you decide that your
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sample is really a random medium. Is it possible that there is some long-range order,
for example, near the windows where all the spheres must be pressed?

D. M. Mittleman. That is an excellent question and it is something that people
fight about all the time! There is an extensive literature going back fifty years and
you find that if you pour spheres into a box, there is a correlation function that
provides a really good description except within two or three diameters of any edge;
near edges, the problem becomes much more complicated. The correlation function
describes exactly the positional correlations and tells you if there is a sphere here,
how likely that there is a sphere anywhere else. And even at these high densities,
you see four or five oscillations in this correlation function before it stops oscillating
and at that point there is no longer any correlation. So you can be pretty confident
that there are no long-range correlations, but on a length-scale of five diameters or
so from any sphere there is definitely correlation and you have to take that into
account. The other solution, and one of the next experiments that we are going to
do, is to look at higher index random media comprising randomly shaped grains. In
this case, you do not have to worry about it nearly as much; if the poly-dispersity is
more than about 10%, you just get one oscillation and it stops. You only get these
correlation effects if you are using scatterers which are all of the same size and shape.

K. Unterrainer (Institute of Solid-State Electronics, Vienna University of Tech-
nology, Austria). I see no reflections from the windows in your ballistic measurements.

D. M. Mittleman. The average index of the spheres in air is 1.25 or 1.26 and the
index of the window is about 1.42, so that is not a very big difference. So, on the
inner surfaces, the reflection is very small. On the outer surfaces you are going to
get a reflection, but it falls late enough in time that you can time gate it away. But,
yes, you certainly have to think about that.
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