
A FAULT-TOLERANT CAUSAL BROADCAST ALGORITHM TO BE APPLIED
TO UNRELIABLE NETWORKS

Eduardo Lopez Dominguez1, Jorge Estudillo Ramirez1, Jean Fanchon2, Saul E. Pomares Hernandez1

1Computer Science Department
National Institute of Astrophysics, Optics and Electronics (INAOE)

Luís Enrique Erro #1, 72840 Tonantzintla, Puebla, México.
{edominguez, jestudillo, spomares}@inaoep.mx

2Laboratory for Analysis and Architecture of Systems of CNRS
 7 Av. Colonel Roche, 31077 Toulouse Cedex, France.

fanchon@laas.fr

ABSTRACT
In this work we propose an efficient real-time causal broadcast algorithm with fault tolerance to unreliable networks. The
algorithm allows for the delivery of causal messages with recovering capabilities on real-time systems by using the concept
of redundancy. Redundancy, in our work, is calculated based on the causal distance. The concept of causal distance was first
introduced to detect the immediate dependency relation (IDR,) which presents a distance equal to one. We extend the causal
distance idea in order to add minimal redundancy information (d>1). With information redundancy we ensure the causal
delivery property even in the presence of lost messages. Our algorithm is suitable to be used in real-time systems because it
has the characteristic of forward error recovery.

KEY WORDS
Distributed systems, causal order, causal distance, immediate dependency relation, forward error recovery, unreliable
networks.

1 Introduction

Many works concerning protocols of causal delivery of messages [1-12] exist. Most of the previous causal algorithms assume
a reliable transmission environment, while only some works consider the case of delay in the delivery of messages through
the use of ∆-time [4]. However, some environments exist where we need to consider an unreliable transfer network in order
to satisfy some temporal restrictions, as in the case of the transmission of real-time continuous media. First of all, there is no
time for the re-transmission of lost messages, and/or this kind of system tolerates a certain degree messages lost, which is
specified on the QoS restrictions of the system.

In this work we propose a fault-tolerance causal algorithm to be applied to unreliable transmission networks. We consider the
possibility of lost messages during the transmission which could alter the causal delivery of messages. In our proposal, the
algorithm is able to be re-established by itself in the presence of lost messages in a decentralized manner. We extend the
minimal causal broadcast algorithm presented in [2] to be applied to unreliable networks. This minimal algorithm is based on
the IDR (immediate precedence relation) relation. The IDR relation identifies the necessary and sufficient control information
to be attached to each message to ensure the causal order in a reliable network. In order to support the loss of messages, we
introduce redundancy on the control information attached per message. Redundancy is calculated based on the “causal
distance” between messages. Two messages immediately precede each other when their causal distance is equal to one and an
intermediate message increases this distance. Instead of restricting the causal information to its immediate predecessors, we
can attach to a message all the messages up to a maximal distance in its causal past. The main benefit is that it increases the
degree of tolerance of lost messages; a larger distance will increase the redundancy in the control information sent in the
system. We performed an analysis of the behavior of the IDR relation on the minimal algorithm. We found that there exists
inevitable and inherent redundancy information in the case of concurrent messages. Taking this into account, we only
introduce extra redundancy in our causal algorithm when the number of concurrent messages sent is less than the causal
distance previously established.

Our algorithm is suitable to be used in real-time systems since it presents the characteristic of recovery without the
retransmission of lost messages. The present work is one of the first works on causal algorithms oriented towards the forward
error recovery mechanism.

The rest of the article is structured in the following way: Section 2 presents the most relevant related works concerning the
loss/recovery of information in unreliable networks. In Section 3, the system model is described and the background
information is presented. Next, in Section 4 we present an informal analysis of the behavior of the causal distance. The
development of the proposal and the functional algorithm is described in Section 5. Finally, the conclusions and the future
works are presented in Section 6.

2 Related work

Many works concerning real-time causal algorithms [1, 2, 3, 4, 5, 6, 7] can be cited. These works can be classified into two
categories. In the first category the algorithms are conceived over reliable networks, and only some of them consider
transmission delay. The second category considers algorithms that work in unreliable networks; most of these consider delays
and dropped messages. In this work we only present works of the second category, which are the ones we are interested in.

The most important works about fault-tolerance over unreliable networks are [4, 5, 11, 12]. In [5] the author incorporates a
version field into a vector clock to create the Fault-Tolerant Vector Clock (FTVC). He uses a history mechanism to detect
orphan states and obsolete messages. After a failure, the process restores its last checkpoint from the stable storage. In order
to inform the other processes about the failure, all received logged messages are replied in the same order in which they were
received.

Other works related to fault-tolerance in unreliable networks are [11, 12]; both of these consider a causal server. In this
approach, when some process fails, the server sends it its causal information to recover it. In others words, the causal server is
responsible for the causal recovery of the system.

3 Background

Causal ordering delivery is based on the causal precedence relation defined by Lamport [8]. This relation is a partial order
relating the sending and delivery events executed by a set of communicating sequential processes denoted c. The sending of a
message m is denoted send(m), the delivery of m to the process k is denoted delivery(k,m) and p(e) denotes the process where
the event e occurs.

Definition 1: The causal precedence relation, denoted by →, is the partial order generated by the following pairs:

1. e→ e’ for all e,e’such that p(e)=p(e’) and e occurs before e’ on p(e)
2. send(m)→ delivery(k, m) for every message m and process k

The causal precedence is extended to messages in the following way: m→ m’ iff send(m)→ send(m’).

A behaviour or a set of behaviours satisfy Causal broadcast delivery if when the diffusion of a message m causally precedes
the diffusion of a message m’, then the delivery of m causally precedes the delivery of m’ for all participants that belong to c.
It is defined as follows [2] .

Definition 2 Causal broadcast delivery :

IF send(m)→ send(m’), then ∀k ∈ c :
deliver(k,m) → deliveryk(k,m’)

3.1 The Immediate Dependence Relation

The Immediate Dependency Relation (IDR) [2] is the propagation threshold of the control information CI, regarding the
messages sent in the causal past that must be transmitted to ensure a causal delivery. We denote it by ↓, and its formal
definition is the following

Definition 3: Immediate Dependency Relation ↓ (IDR):

m↓m’⇔[(m → m’) ∧ ∀ m”∈ M, ¬(m → m”→ m’)]

Thus, a message m directly precedes a message m’, iff no other message m’’ belonging to M exists (M is the set of messages
of the system), such that m’’ belongs at the same time to the causal future of m, and to the causal past of m’.
This relationship is important since we show that if the delivery of messages respects the order of their diffusion for all pairs
of messages in IDR, then the delivery will respect the causal delivery for all messages. This property is formalized as
follows:

Property 1:

If ∀ m,m’ ∈ M, m ↓ m’ ⇒ ∀k ∈ c :
delivery(k,m) → deliver(k,m’)

then m → m’ ⇒ ∀k ∈ c :
delivery(k,m) → delivery(k,m’)

Causal information that includes the messages immediately preceding a given message is sufficient to ensure a causal
delivery of such message.

3.2 Causal distance

Intuitively the causal distance between two causally dependent messages is the greatest number of pairwise dependent
messages sent between them plus one. Formally it is defined as follows:
:

Definition 4. The distance d(m,m’) is defined for any pair of messages m and m’ ∈ M such that m→m’: d(m,m’) is the
greatest integer n such that for some sequence of messages (mi, i= 0...n) with m= m0 and m’=mn, we have mi↓mi+1 for all i
=0…n-1.

4 Causal Distance Analysis

There are two possible cases in the transmission of causal events: the serial case and the concurrent case.

t

∅ m1 m2 m3 m4

m1

m2

m3

m4

t

∅ m1

m2

m3

m4

m1

m2 m3

m4

m5

a) b)

t

∅ m1 m2 m3 m4

m1

m2

m3

m4

t

∅ m1

m2

m3

m4

m1

m2 m3

m4

m5

a) b)
Figure 1. Example scenarios and their associated graphs

In the serial case (Fig. 1a), when the causal distance is equal to one (IDR relation), redundancy does not exist in the control
information sent. In this case, it is impossible to recover the system when a message is lost. In the case of concurrent
messages (Fig. 1b), the redundancy is directly proportional to the number of concurrent messages. In our case, the
redundancy defines the number of times the information about a causal message is sent in the system. For example, in Figure
1b (using d=1) the concurrent messages m2 and m3 send information about message m1 which has a d=1 with both of them.
As we can see, the information about m1 is sent twice. In this case, if one of the two concurrent messages is lost, the system is
causally recovered through the information provided by the other concurrent message received. However, if both messages
are lost, the system cannot be recovered.
In order to increment the degree of fault-tolerance, we introduce extra redundancy to be timestamped to each message. For
example, in the serial case, by using d=2, the system can causally recover in the presence of one lost message. With the IDR
relation, messages only send information about the immediate predecessors (d=1). For example, in Figure 1a, m2 sends
information only about m1, m3 sends information only about m2, and m4 sends information only about m3. With d=2 the
control information sent per message corresponds to the messages which have a causal distance equal to two with the current

message. For example, message m3 must send information about messages m2 and m1 and lastly m4 must send information
about m3 and m2.

p5p1 p2 p3 p4

x

x

m1

m2

M4

m3

p5p1 p2 p3 p4

x

x

m1

m2

M4

m3

p1 p2 p3 p4

x

x

m1

m2

M4

m3

Figure 2. Faulty scenario

5 The Algorithm

In order to explain how the redundancy is increased, we present the following faulty scenario.
Consider the scenario presented in Figure 2 with a causal distance d=2. The diffusion of m1 is not received by the processes p4
and p5. Process p3, after the reception of m1, sends m2 with control information about m1. Process p4 receives m2 and through
the control information attached to m2 about m1 it is able to detect that message m1 has been lost. Then p4 proceeds to update
its logical vector and delivers message m2. Next, process p4 sends message m3 which carries causal information about m2 and
m1 with distances d=1 and d=2, respectively. Process p5 which neither received m1 nor m2, now receives m3. It analyzes the
control information attached to message m3 and it can determine that two messages have been lost. It proceeds to deliver and
to update its vector time clock. Finally, we can see that when m4 arrives to p5, the causal order m1→m2→m3→m4 is achieved.

Note. In this algorithm, for simplicity, we consider that if a message arrives out of order or if it is delayed, it is determined
to be lost and is automatically discarded. In future works, this algorithm will be easily adapted to consider a deadline
associated to each message.

5.1 Data structures

The structures used in this work have few changes compared to the structures used in [2]. Only the CI structure was modified
by adding the distance field d. The data structures used in the algorithm are:

• VT(p)[] is the vector timeclock. The size of the vector is equal to n. It is here that we keep track of the number of messages
diffused by the participant.
• The structure of the control information CI(p) is a set of entries (k, t, d). Each entry in CI(p) denotes a message that is not
ensured by participant p of being delivered in a causal order. The entry (k, t, d) represents a diffusion by participant k at a
logical local timeclock t = VT(p)[k], and d is potentially the causal distance.
• The structure of a message m , is a quadruplet m = (i, t, message, H(m)), where i is the participant identifier, t=VT(p)[i] is
the logical local timeclock at node i, message is the message in question, and H(m) contains the set of all entries that have an
IDR with m.
• The dist_def variable is the causal distance predetermined.

5.2 Algorithm codification

1. Initially,
2. VT(p)[j] = 0 ∀ j:1…n.
3.. CI(p) ← ∅
4. For each diffusion of message send(m) at p

5. VT(p)[i] = VT(p)[i] +1
6. For each (k,t,d) ∈ CI(p)

7. (k,t,d)← (k,t,d+1)
8. H(m) ←Η(m) ∪ {k,t}

9. endfor
10. m= (i, t=VT(p)[i], message, H(m))

11. Diffusion : send(m)
12. CI(p)←CI(p) ∪ {(k,t,d=0)}
13. For all (k,t,d) ∈ CI(p) if d = dist_def.
14 then
15. CI(p)←CI(p) / (k,t,d)
16. endif
17. endfor.
18. For each reception receive(m) at p
 m=(k,t,message, H(m))
 /* To enforce a causal delivery of m */
 /*Delivery condition*/
19. if not (t =VT(p)[k] +1 and ∀ (l,x)∈ Η(m):

 x≤ VT(p)[l))
20. then
 /* Detection of lost message and update of vectors*/
21. For all (l,x) ∈ H(m))
22. if (x >VT(p)[l] then VT(p)[l]=x
23. endif
24. endif
 /* causal delivery of message*/
25. Delivery: delivery(m)
26. VT(p)[k] = VT(p)[k] +1
27. For all (l,x) ∈ H(m) if ∃d : (l,x,d) ∈ CI(p)
28. then
29. (l,x,d) ←(l,x,d+1)
30. endif.
31. CI(p)←CI(p) ∪ {(k,t,d=0)}
32. For all (l,x,d) ∈ CI(p) if d=dist_def.
33. then
34. CI(p)←CI(p) / (l,x,d).
35. endif

5.3 Example

Consider the group of participants g={p1, p2, p3, p4, p5} and the diffusion of message m4 to p1. Before the delivery of m4 to p1,
CI1={(1,1,0)} and VT(p1)=(1,0,0,0,0) (See Fig. 3). These values are deduced from the fault-tolerance broadcast protocol
(Figure 3). The complete run is shown in Appendix A.

p5p1 p2 p3 p4

x

x

m1

m2

M4

m3x

p5p1 p2 p3 p4

x

x

m1

m2

M4

m3x

Figure 3. Scenario with lost messages

Difussion of message m4 by p3.

Line 5. The value of vector time VT(p3)[3] is incremented by one. This ensures the sequential delivery of all messages m
diffused by the same participant pk.

Lines 6-9. We increase the distance value d for each triplet of CI3={(3,1,1),(4,1,1)}. This is done in order to know how many
times the messages which have causal order at m4 have been diffused. In the same loop (2iv) we assign at H(m) only the tuple
(k,t) from each element of CI3, H(m)={(3,1),(4,1)}. These entries in H(m) are responsible for the detection of lost of messages,
and afterwards, they are used to update the vector time in order to maintain a consistent causal state.

Line 11. Diffusion of message m4=(3,2,event, {(3,1),(4,1)}), send(m4).

Line 12. Now CI3 is updated with control information from message m4, CI3={(3,1,1),(4,1,1),(3,2,0)}.

Later on, in Line 13. we search for a triplet with distance d=2 and we deleted it in Line 15 of CI3. When a triple in CIk has a
distance d=2, it indicates that it has send its control information in the network twice and it is not necessary to send this
control information again. In CI3 there is not a triplet with d=2; therefore, no action is necessary.

Delivery of message m4 to p1.

Each time a participant receives a message, it verifies that the message satisfies the delivery condition, which verifies that the
reception message fulfills the causal property. In this case, message m4=(3,2,event,{(3,1),(4,1)} does not satisfy the delivery
condition Line 19 because t=2 and VT(p1)[3]=1 and the conditions t=VT(p)[k] and as t ≤ VT(p)[l] are not satisfied, as same
corresponding to the information of H(m). Then, the algorithm executes the procedure of lost messages and proceeds to
update the vector time of p1. In this step, the vector VT(p1) is updated with de causal information from H(m), resulting in
VT(p1)=(1,0,1,1,0).

Line 25. Now message m4 is causally delivered and in Line 26 the vector is increased by one in VT(p1)[3] resulting in
VT(p1)=(1,0,2,1,0).

CI is updated in the following manner.

Line 27. If (l,x) exists in H(m) which correspond to a triplet (k,t,d) on CI1 where l=k and t=x, we increase the value of d by 1.
In this case, the message m4 do not have in its H(m) any tuple which corresponds with the values of CI1.

Line 31. We updated CI1 adding control information from m4, resulting in CI1={(1,1,0),(3,2,0)}.

Linea 32-35. Lastly, we check that there does not exist any triplet with d=2 in CI1. If it exists, we delete this triplet. In this
example in the CI1 there is not a triplet with d=2; therefore, no action is taken.

6 Conclusions and future works

We presented an algorithm that tolerates the loss of messages by increasing the redundancy in the control information
timestamped per message. The redundancy is calculated by the causal distance between events. The importance of this
proposal is the recovery of the system in the presence of lost messages in a forward error correction manner. The algorithm
presented does not considered restrictions of time, such as transmission delays or lifetime constraints. For future works, it can
incorporate restrictions of time to consider the cases previously mentioned.

7 References

 [1] R. Baldoni, R. Prakash, M. Raynal, M. Singhal, Efficient causally ordered comunications for multimedia real-time

applications, In Proceedings of the 4th International Symposium on Hight performance Distributed computing, pp 140-
147,Whasington, D.C. Aug. 1995.

[2] S. Pomares Hernández, J. Fanchon, K. Drira, The Inmediate Dependency Relation: An Optimal Way to Ensure Causal
Group Communication. annual Review of Scalable Computing , Vol. 6, Series on Scalable Computing. Ed. Y.C. Kwong,
World Scientific, No. ISBN 981-238-902-4, 2004, Chapter 3, pp. 61-79.

[3] L. Rodríguez, P. Verissimo, Causal Separators and Topological Timestamping: an Aproach to Support Causal Multicast
in Large-Scale Systems, proc. 15th International Conference on Distributed Computing Systems, Vancouver, British
Columbia, Canada, 1995.

 [4] Roberto Baldoni and Achour Mostefaoui and Michel Raynal, Causal Deliveries in Unreliable Networks With Real-Time
Delivery Constraints, Journal of Real-Time Systems, volume 2, Issue 1, Pages 308--321, 1996

[5] O. Damani, V. K. Garg, How to Recover Efficiently and Asynchronously when Optimism Fails, 'Proc. IEEE
International Conference on Distributed Computing Systems,Hong Kong, May 1996, pp. 108 – 115.

[6] Paulo Veríssimo, Causal Delivery Protocol in Real-Time Systems: a Generic Model. Instituto de Engenharia de Sistemas
e Computadores, Lisboa-Portugal, Technical University of Lisboa.

[7] Takayuki Tachikawa, Makoto Takizawa, ∆-Causality in Wide – Area Group Communications. Proc. 1997 Int'l Conf. on
Parallel and Distributed Systems (ICPADS-97), 260-267, 1997.

[8] L. Lamport, Time Clocks and the Ordering of Messagesin Distributed Systems, Communications ACM 21(7), pp. 558-
565, 1978.

[9] K. Birman, The Process Group Approach to Reliable Distributed Computing, Communications of the ACM, Vol. 36, No.
12, pp 36-53, 1993.

[10] R. Prakash, M. Raynal, M. Singhal, An Adaptive Causal Ordering Algorithm Suited to Mobile Computing Environment,
Journal of Parallel and Distributed Computing , pp. 190-204, Mar. 1997.

[11] Roberto Baldoni, Roy Friedman, Robbert van Renesse, The Hierarchical Daisy Architecture for Causal Delivery, In
Proceedings of the 17 th IEEE International Conference on Distributed Systems, pp 570-577, May 1997.

[12] Kenneth P. Birman, Thomas A. Joseph, Reliable Communication in the Presence of Failures, ACM Transactions on
Computer Systems (TOCS), Volume 5, Issue 1, February 1987, Pages: 47 – 76, ISSN:0734-2071

Appendix A

p1 p2 p3 p4 P5
VT1=(0,0,0,0,0)
CI1←∅

VT2=(0,0,0,0,0)
CI2←∅

VT3=(0,0,0,0,0,)
CI3←∅

VT4=(0,0,0,0,0)
CI4←∅

VT5=(0,0,0,0,0)
CI5←∅

diffusion(m1)
VT1=(1,0,0,0,0)
m1=(1,1,event, ∅)
send(m1)
CI1={(1,1,0)}

 reception(m1)
delivery(m1)
VT2=(1,0,0,0,0)
CI2={(1,1,0)}

reception(m1)
delivery(m1)
VT3=(1,0,0,0,0)
CI3={(1,1,0)}

reception(m1)
delivery(m1)
VT3=(1,0,0,0,0)
CI3={(1,1,0)}

lost message m1

 diffusion(m2)
VT3=(1,0,1,0,0)
CI3={(1,1,1)}
H(m)={(1,1)}
m2=(3,1,event,(1,1))
send(m2)
CI3={(1,1,1),(3,10)}

diffusion(m3)
VT4=(1,0,0,1,0)
CI4={(1,1,1)}
H(m)={(1,1)}
m2=(4,1,event,(1,1))
send(m3)
CI4={(1,1,1),(4,10)}

lost message m2

reception(m2)
delivery((m2)
VT2=(1,0,1,0,0)
CI2={(1,1,1),(3,1,0)}

 reception(m2)
delivery(m2)
VT4=(1,0,1,1,0)
CI4={(4,1,0),(3,1,0)}

reception(m3)
/*Detection lost
message m1 and
update of vectors)*/
VT5=(1,0,0,0,0)
/*causal devlivery*/
VT5=(1,0,0,1,0)
CI5={(4,1,0)}

 lost message m3

reception(m3)
delivery(m3)
VT3=(1,0,1,1,0)
CI3={(3,1,0),(4,1,0)}

 reception(m2)
delivery(m2)
VT5=(1,0,1,1,0)
CI5={(3,10),(4,1,0)}

Lost message m3

 Diffusion(m4)
VT3=(1,0,2,1,0)
CI3={(3,1,1),(4,1,1)}
H(m)={(3,1),(4,1)}
m4=(3,2,event,{(3,1),
 (4,1)}
send(m4)
CI3={(3,1,1),(4,1,1),
 (3,2,0)}

reception(m4)
/*Detection lost
message m2 and m3
and update of
vectors)*/
VT1=(1,0,1,1,0)
/*causal devlivery*/
VT1=(1,0,2,1,0)
CI1={(1,1,0),(3,2,0)}

reception(m4)
/*Detection lost
message m3 and
update of vectors)*/
VT2=(1,0,1,1,0)
/*causal devlivery*/
VT2=(1,0,2,1,0)
CI2={(1,1,1),(3,1,1)
 (3,2,0)}

 reception(m4)
delivery(m4)
VT4=(1,0,2,1,0)
CI4={(4,1,1),(3,1,1),
 (3,2,0)}

reception(m4)
delivery(m4)
VT5=(1,0,2,1,0)
CI5={(3,1,1),(4,1,1)}
 (3,2,0)}

Table 1.- Running Example related to Figure 3.

