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ABSTRACT 
In this work we propose an efficient real-time causal broadcast algorithm with fault tolerance to unreliable networks. The 
algorithm allows for the delivery of causal messages with recovering capabilities on real-time systems by using the concept 
of redundancy.  Redundancy, in our work, is calculated based on the causal distance. The concept of causal distance was first 
introduced to detect the immediate dependency relation (IDR,) which presents a distance equal to one. We extend the causal 
distance idea in order to add minimal redundancy information (d>1). With information redundancy we ensure the causal 
delivery property even in the presence of lost messages. Our algorithm is suitable to be used in real-time systems because it 
has the characteristic of forward error recovery.  
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1 Introduction 
 
Many works concerning protocols of causal delivery of messages [1-12] exist. Most of the previous causal algorithms assume 
a reliable transmission environment, while only some works consider the case of delay in the delivery of messages through 
the use of ∆-time [4].  However, some environments exist where we need to consider an unreliable transfer network in order 
to satisfy some temporal restrictions, as in the case of the transmission of real-time continuous media.   First of all, there is no 
time for the re-transmission of lost messages, and/or this kind of system tolerates a certain degree messages lost, which is 
specified on the QoS restrictions of the system.   

    
In this work we propose a fault-tolerance causal algorithm to be applied to unreliable transmission networks. We consider the 
possibility of lost messages during the transmission which could alter the causal delivery of messages. In our proposal, the 
algorithm is able to be re-established by itself in the presence of lost messages in a decentralized manner. We extend the 
minimal causal broadcast algorithm presented in [2] to be applied to unreliable networks. This minimal algorithm is based on 
the IDR (immediate precedence relation) relation. The IDR relation identifies the necessary and sufficient control information 
to be attached to each message to ensure the causal order in a reliable network.  In order to support the loss of messages, we 
introduce redundancy on the control information attached per message. Redundancy is calculated based on the “causal 
distance” between messages. Two messages immediately precede each other when their causal distance is equal to one and an 
intermediate message increases this distance. Instead of restricting the causal information to its immediate predecessors, we 
can attach to a message all the messages up to a maximal distance in its causal past. The main benefit is that it increases the 
degree of tolerance of lost messages; a larger distance will increase the redundancy in the control information sent in the 
system. We performed an analysis of the behavior of the IDR relation on the minimal algorithm. We found that there exists 
inevitable and inherent redundancy information in the case of concurrent messages. Taking this into account, we only 
introduce extra redundancy in our causal algorithm when the number of concurrent messages sent is less than the causal 
distance previously established.  

 



Our algorithm is suitable to be used in real-time systems since it presents the characteristic of recovery without the 
retransmission of lost messages. The present work is one of the first works on causal algorithms oriented towards the forward 
error recovery mechanism. 

 
The rest of the article is structured in the following way: Section 2 presents the most relevant related works concerning the 
loss/recovery of information in unreliable networks. In Section 3, the system model is described and the background 
information is presented. Next, in Section 4 we present an informal analysis of the behavior of the causal distance. The 
development of the proposal and the functional algorithm is described in Section 5. Finally, the conclusions and the future 
works are presented in Section 6. 
 
2 Related work 
 
Many works concerning real-time causal algorithms [1, 2, 3, 4, 5, 6, 7] can be cited. These works can be classified into two 
categories. In the first category the algorithms are conceived over reliable networks, and only some of them consider 
transmission delay. The second category considers algorithms that work in unreliable networks; most of these consider delays 
and dropped messages. In this work we only present works of the second category, which are the ones we are interested in. 
 
The most important works about fault-tolerance over unreliable networks are [4, 5, 11, 12]. In [5] the author incorporates a 
version field into a vector clock to create the Fault-Tolerant Vector Clock (FTVC).  He uses a history mechanism to detect 
orphan states and obsolete messages. After a failure, the process restores its last checkpoint from the stable storage. In order 
to inform the other processes about the failure, all received logged messages are replied in the same order in which they were 
received.  
 
Other works related to fault-tolerance in unreliable networks are [11, 12]; both of these consider a causal server. In this 
approach, when some process fails, the server sends it its causal information to recover it. In others words, the causal server is 
responsible for the causal recovery of the system. 
 
3 Background 
 

Causal ordering delivery is based on the causal precedence relation defined by Lamport [8]. This relation is a partial order 
relating the sending and delivery events executed by a set of communicating sequential processes denoted c. The sending of a 
message m is denoted send(m), the delivery of m to the process k is denoted  delivery(k,m) and p(e) denotes the process where 
the event e occurs.   
 

Definition 1: The causal precedence relation, denoted by  →, is the partial order generated by the following pairs: 
 
1.  e→ e’  for all e,e’such that   p(e)=p(e’) and e occurs before e’ on p(e) 
2.  send(m)→ delivery(k, m)  for every message  m and process k  
 
The causal precedence is extended to messages in the following way:  m→ m’  iff   send(m)→ send(m’). 

 
A behaviour or a set of behaviours satisfy Causal broadcast delivery if when the diffusion of a message m causally precedes 
the diffusion of a message m’, then the delivery of m causally precedes the delivery of m’ for all participants  that belong to c. 
It is defined as follows [2] . 

 
Definition 2 Causal broadcast delivery : 

IF send(m)→ send(m’), then ∀k ∈ c : 
deliver(k,m) → deliveryk(k,m’) 

 
 
3.1 The Immediate Dependence Relation 
 
The Immediate Dependency Relation (IDR) [2] is the propagation threshold of the control information CI, regarding the 
messages sent in the causal past that must be transmitted to ensure a causal delivery. We denote it by ↓, and its formal 
definition is the following 
 

Definition 3: Immediate Dependency Relation ↓ (IDR): 
 



m↓m’⇔[ (m → m’) ∧ ∀ m”∈ M, ¬(m → m”→ m’)] 
 

Thus, a message m directly precedes a message m’, iff no other message m’’ belonging to M exists (M is the set of messages 
of the system), such that m’’ belongs at the same time to the causal future of m, and to the causal past of m’. 
This relationship is important since we show that if the delivery of messages respects the order of their diffusion for all pairs 
of messages in IDR, then the delivery will respect the causal delivery for all messages. This property is formalized as 
follows: 
 
Property 1: 

If ∀ m,m’ ∈ M, m ↓ m’ ⇒ ∀k ∈ c : 
delivery(k,m) → deliver(k,m’) 

then m → m’ ⇒ ∀k ∈ c : 
delivery(k,m) → delivery(k,m’) 

 
Causal information that includes the messages immediately preceding a given message is sufficient to ensure a causal 
delivery of such message. 
 
3.2 Causal distance  
 
Intuitively the causal distance between two causally dependent  messages is the greatest number of pairwise dependent 
messages sent between them plus one. Formally it is defined as follows: 
: 
   

Definition 4. The distance d(m,m’) is defined for any pair of messages m and m’ ∈ M such that m→m’:  d(m,m’) is the 
greatest integer n such that for some sequence of messages (mi, i= 0...n) with  m= m0 and m’=mn, we have  mi↓mi+1 for all i 
=0…n-1.       
 
 
4 Causal Distance Analysis 
 
There are two possible cases in the transmission of causal events: the serial case and the concurrent case. 
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Figure 1. Example scenarios and their associated graphs 

 
In the serial case (Fig. 1a), when the causal distance is equal to one (IDR relation), redundancy does not exist in the control 
information sent. In this case, it is impossible to recover the system when a message is lost. In the case of concurrent 
messages (Fig. 1b), the redundancy is directly proportional to the number of concurrent messages. In our case, the 
redundancy defines the number of times the information about a causal message is sent in the system. For example, in Figure 
1b (using d=1) the concurrent messages m2 and m3 send information about message m1 which has a d=1 with both of them. 
As we can see, the information about m1 is sent twice. In this case, if one of the two concurrent messages is lost, the system is 
causally recovered through the information provided by the other concurrent message received.  However, if both messages 
are lost, the system cannot be recovered.   
In order to increment the degree of fault-tolerance, we introduce extra redundancy to be timestamped to each message. For 
example, in the serial case, by using d=2, the system can causally recover in the presence of one lost message. With the IDR 
relation, messages only send information about the immediate predecessors (d=1). For example, in Figure 1a, m2 sends 
information only about m1, m3 sends information only about m2, and m4 sends information only about m3. With d=2 the 
control information sent per message corresponds to the messages which have a causal distance equal to two with the current 



message. For example, message m3 must send information about messages m2 and m1 and lastly m4 must send information 
about m3 and m2.  
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Figure 2. Faulty scenario 
 

5 The Algorithm 
 

In order to explain how the redundancy is increased, we present the following faulty scenario. 
Consider the scenario presented in Figure 2 with a causal distance d=2. The diffusion of m1 is not received by the processes p4 
and p5.  Process p3, after the reception of m1, sends m2 with control information about m1. Process p4 receives m2 and through 
the control information attached to m2 about m1 it is able to detect that message m1 has been lost. Then p4 proceeds to update 
its logical vector and delivers message m2. Next, process p4 sends message m3 which carries causal information about m2 and 
m1 with distances d=1 and d=2, respectively. Process p5 which neither received m1 nor m2, now receives m3. It analyzes the 
control information attached to message m3 and it can determine that two messages have been lost.  It proceeds to deliver and 
to update its vector time clock. Finally, we can see that when m4 arrives to p5, the causal order m1→m2→m3→m4 is achieved.  

Note. In this algorithm, for simplicity, we consider that if a message arrives out of order or if it is delayed, it is determined 
to be lost and is automatically discarded. In future works, this algorithm will be easily adapted to consider a deadline 
associated to each message.      
 
5.1 Data structures 
 
The structures used in this work have few changes compared to the structures used in [2]. Only the CI structure was modified 
by adding the distance field d. The data structures used in the algorithm are: 
 
• VT(p)[] is the vector timeclock. The size of the vector is equal to n. It is here that we keep track of the number of messages 
diffused by the participant. 
• The structure of the control information CI(p) is a set of entries (k, t, d). Each entry in CI(p) denotes a message that is not 
ensured by participant p of being delivered in a causal order. The entry (k, t, d) represents a diffusion by participant k at a 
logical local timeclock  t = VT(p)[k], and d is potentially the causal distance. 
• The structure of a message m , is a quadruplet  m = (i, t, message, H(m)), where i is the participant identifier, t=VT(p)[i] is 
the logical local timeclock at node i, message is the message in question, and H(m) contains the set of all entries that have an 
IDR with m. 
• The dist_def variable is the causal distance predetermined.  
 
5.2 Algorithm codification 
 
1. Initially, 
2. VT(p)[j] = 0 ∀ j:1…n. 
3.. CI(p) ← ∅ 
4. For each diffusion of message send(m) at p 

5.      VT(p)[i] = VT(p)[i] +1 
6.      For each (k,t,d)  ∈ CI(p) 

7.        (k,t,d)← (k,t,d+1) 
8.        H(m) ←Η(m) ∪ {k,t} 

9.     endfor 
10.   m= (i, t=VT(p)[i], message, H(m)) 



11.   Diffusion : send(m) 
12.   CI(p)←CI(p) ∪ {(k,t,d=0)} 
13.   For all  (k,t,d)  ∈ CI(p)  if  d = dist_def. 
14        then  
15.           CI(p)←CI(p) / (k,t,d) 
16.       endif   
17.   endfor.   
18.  For each reception receive(m) at p  
      m=(k,t,message, H(m)) 
     /*  To enforce a causal delivery of m */ 
    /*Delivery condition*/ 
19.  if not ( t =VT(p)[k] +1 and ∀ (l,x)∈ Η(m): 

   x≤ VT(p)[l) ) 
20.       then 
    /* Detection of  lost message and update of vectors*/ 
21.          For all  (l,x) ∈ H(m)) 
22.                if ( x >VT(p)[l]  then  VT(p)[l]=x  
23.               endif 
24.  endif  
    /* causal delivery of message*/ 
25.  Delivery: delivery(m) 
26.  VT(p)[k] = VT(p)[k] +1 
27.  For all  (l,x) ∈ H(m)  if ∃d :  (l,x,d) ∈ CI(p) 
28.      then   
29.             (l,x,d) ←(l,x,d+1)            
30.      endif. 
31.  CI(p)←CI(p) ∪ {(k,t,d=0)} 
32.  For all (l,x,d) ∈ CI(p)   if  d=dist_def.  
33.      then  
34.            CI(p)←CI(p) / (l,x,d). 
35.       endif   
 
5.3 Example 
 
Consider the group of participants g={p1, p2, p3, p4, p5} and the diffusion of message m4 to p1. Before the delivery of m4 to p1, 
CI1={(1,1,0)} and VT(p1)=(1,0,0,0,0) (See Fig. 3). These values are deduced from the fault-tolerance broadcast protocol 
(Figure 3). The complete run is shown in Appendix A. 
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Figure 3. Scenario with lost messages  
 

Difussion of message m4 by p3. 
 
Line 5. The value of vector time VT(p3)[3] is incremented by one. This ensures the sequential delivery of all messages m 
diffused by the same participant pk. 
 



Lines 6-9. We increase the distance value d for each triplet of CI3={(3,1,1),(4,1,1)}. This is done in order to know how many 
times the messages which have causal order at m4 have been diffused. In the same loop (2iv) we assign at H(m) only the tuple 
(k,t) from each element of CI3, H(m)={(3,1),(4,1)}. These entries in H(m) are responsible for the detection of lost of messages, 
and afterwards, they are used to update the vector time in order to maintain a consistent causal state.       
   
Line 11. Diffusion of message  m4=(3,2,event, {(3,1),(4,1)}), send(m4).  
 
Line 12. Now CI3   is updated with control information from message m4,  CI3={(3,1,1),(4,1,1),(3,2,0)}.       
     
Later on, in Line 13. we search for a triplet with distance d=2 and we deleted it in Line 15 of CI3. When a triple in CIk has a 
distance d=2, it indicates that it has send its control information in the network twice and it is not necessary to send this 
control information again. In CI3 there is not a triplet with d=2; therefore, no action is necessary. 

 
 
 
 
    

Delivery of message m4 to p1. 

 
Each time a participant receives a message, it verifies that the message satisfies the delivery condition, which verifies that the 
reception message fulfills the causal property. In this case, message m4=(3,2,event,{(3,1),(4,1)} does not satisfy the delivery 
condition  Line 19 because t=2 and  VT(p1)[3]=1 and the conditions t=VT(p)[k] and as t ≤ VT(p)[l] are not satisfied, as same 
corresponding to the information of H(m). Then, the algorithm executes the procedure of lost messages and proceeds to 
update the vector time of p1. In this step, the vector VT(p1) is updated with de causal information from H(m), resulting in 
VT(p1)=(1,0,1,1,0). 
 
Line 25. Now message m4 is causally delivered and in Line 26 the vector is increased by one in VT(p1)[3] resulting in 
VT(p1)=(1,0,2,1,0). 
 
CI is updated in the following manner. 
 
Line 27. If (l,x) exists in H(m) which correspond to a triplet (k,t,d) on CI1 where l=k and t=x, we increase the value of d by 1. 
In this case, the message m4 do not have in its H(m) any tuple which corresponds with the values of CI1. 
 
Line 31. We updated CI1 adding control information from m4, resulting in CI1={(1,1,0),(3,2,0)}. 
 
Linea 32-35. Lastly, we check that there does not exist any triplet with d=2 in  CI1. If it exists, we delete this triplet. In this 
example in the CI1 there is not a triplet with d=2; therefore, no action is taken. 
 
6 Conclusions and future works 
 
We presented an algorithm that tolerates the loss of messages by increasing the redundancy in the control information 
timestamped per message. The redundancy is calculated by the causal distance between events. The importance of this 
proposal is the recovery of the system in the presence of lost messages in a forward error correction manner. The algorithm 
presented does not considered restrictions of time, such as transmission delays or lifetime constraints. For future works, it can 
incorporate restrictions of time to consider the cases previously mentioned. 
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Appendix A 
 

 

p1 p2 p3 p4 P5 
VT1=(0,0,0,0,0) 
CI1←∅ 

VT2=(0,0,0,0,0) 
CI2←∅ 

VT3=(0,0,0,0,0,) 
CI3←∅ 

VT4=(0,0,0,0,0) 
CI4←∅ 

VT5=(0,0,0,0,0) 
CI5←∅ 

diffusion(m1) 
VT1=(1,0,0,0,0) 
m1=(1,1,event, ∅) 
send(m1) 
CI1={(1,1,0)} 

    

 reception(m1) 
delivery(m1) 
VT2=(1,0,0,0,0) 
CI2={(1,1,0)}   

reception(m1) 
delivery(m1) 
VT3=(1,0,0,0,0) 
CI3={(1,1,0)}   

reception(m1) 
delivery(m1) 
VT3=(1,0,0,0,0) 
CI3={(1,1,0)}   

lost message m1 

  diffusion(m2) 
VT3=(1,0,1,0,0)  
CI3={(1,1,1)} 
H(m)={(1,1)} 
m2=(3,1,event,(1,1)) 
send(m2) 
CI3={(1,1,1),(3,10)} 

diffusion(m3) 
VT4=(1,0,0,1,0)  
CI4={(1,1,1)} 
H(m)={(1,1)} 
m2=(4,1,event,(1,1)) 
send(m3) 
CI4={(1,1,1),(4,10)} 

 

lost message m2 
 
 

reception(m2) 
delivery((m2) 
VT2=(1,0,1,0,0) 
CI2={(1,1,1),(3,1,0)}   
 

 reception(m2) 
delivery(m2) 
VT4=(1,0,1,1,0) 
CI4={(4,1,0),(3,1,0)}   
 
 

reception(m3) 
/*Detection lost 
message m1 and 
update of vectors)*/ 
VT5=(1,0,0,0,0) 
/*causal devlivery*/ 
VT5=(1,0,0,1,0) 
CI5={(4,1,0)} 

 lost message m3 
 

reception(m3) 
delivery(m3) 
VT3=(1,0,1,1,0) 
CI3={(3,1,0),(4,1,0)} 

 reception(m2) 
delivery(m2) 
VT5=(1,0,1,1,0) 
CI5={(3,10),(4,1,0)} 

 
Lost message m3 

 Diffusion(m4) 
VT3=(1,0,2,1,0) 
CI3={(3,1,1),(4,1,1)} 
H(m)={(3,1),(4,1)} 
m4=(3,2,event,{(3,1), 
      (4,1)} 
send(m4) 
CI3={(3,1,1),(4,1,1), 
         (3,2,0)} 

  

reception(m4) 
/*Detection lost 
message m2 and m3 
and update of 
vectors)*/ 
VT1=(1,0,1,1,0) 
/*causal devlivery*/ 
VT1=(1,0,2,1,0) 
CI1={(1,1,0),(3,2,0)} 

reception(m4) 
/*Detection lost 
message m3 and 
update of vectors)*/ 
VT2=(1,0,1,1,0) 
/*causal devlivery*/ 
VT2=(1,0,2,1,0) 
CI2={(1,1,1),(3,1,1) 
          (3,2,0)} 

 reception(m4) 
delivery(m4) 
VT4=(1,0,2,1,0) 
CI4={(4,1,1),(3,1,1), 
          (3,2,0)}   
 

reception(m4) 
delivery(m4) 
VT5=(1,0,2,1,0) 
CI5={(3,1,1),(4,1,1)} 
          (3,2,0)} 
 

 
Table 1.- Running Example related to Figure 3. 


