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Background: Human papillomavirus (HPV) vaccine may be
commercially available in a few years. We explored the
clinical benefits and cost-effectiveness of introducing an
HPV16/18 vaccine in a population with an organized cervical
cancer screening program. Methods: A computer-based
model of the natural history of HPV and cervical cancer was
used to project cancer incidence and mortality, life expect-
ancy (adjusted and unadjusted for quality of life), lifetime
costs, and incremental cost-effectiveness ratios (i.e., the ad-
ditional cost of a strategy divided by its additional clinical
benefit compared with the next most expensive strategy)
associated with different cancer prevention policies, includ-
ing vaccination (initiated at age 12 years), cytologic screen-
ing (initiated at 18, 21, 25, 30, or 35 years), and combined
vaccination and screening strategies. We assumed that vac-
cination was 90% effective in reducing the risk of persistent
HPV16/18 infections and evaluated alternative assumptions
about vaccine efficacy, waning immunity, and risk of re-
placement with non-16/18 HPV types. Results: Our model
showed that the most effective strategy with an incremental
cost-effectiveness ratio of less than $60 000 per quality-
adjusted life year is one combining vaccination at age 12
years with triennial conventional cytologic screening begin-
ning at age 25 years, compared with the next best strategy of
vaccination and cytologic screening every 5 years beginning
at age 21 years. This triennial strategy would reduce the
absolute lifetime risk of cervical cancer by 94% compared
with no intervention. These results were sensitive to alterna-
tive assumptions about the underlying patterns of cervical
cancer screening, duration of vaccine efficacy, and natural
history of HPV infection in older women. Conclusions: Our
model predicts that a vaccine that prevents persistent
HPV16/18 infection will reduce the incidence of HPV16/18-
associated cervical cancer, even in a setting of cytologic
screening. A program of vaccination that permits a later age
of screening initiation and a less frequent screening interval
is likely to be a cost-effective use of health care resources. [J
Natl Cancer Inst 2004;96:604–15]

In countries with organized cervical cancer screening pro-
grams, there has been a marked reduction in the incidence of
invasive cancer; however, screening and treatment have not been
equally accessible to all groups of women (1–3). Cost-effective
public health strategies to reduce the risk of cervical cancer in
these vulnerable groups of women are a priority. From health,
economic, and national policy perspectives, among the most
pressing concerns are the escalating costs associated with cur-
rent screening practices. For example, in the United States, more
than $6 billion is spent each year on the evaluation and man-
agement of low-grade lesions, the majority of which would
regress without intervention (4).

In the past several years, there have been substantial advances
in our understanding of the epidemiology of cervical carcino-
genesis and the causal role of oncogenic types of HPV (5–7).
HPV DNA has been detected in up to 99.7% of all cervical
cancers, and infection with one of four types of HPV (i.e., 16,
18, 45, or 31) accounts for approximately 75% of all cervical
cancers diagnosed each year (8,9). Recent results from a phase
II trial of an HPV vaccine showed 100% efficacy over an
18-month period in preventing persistent HPV16 infection and
HPV16-specific cervical intraepithelial neoplasia (CIN) (10).
Larger phase III trials of vaccines targeted against different
oncogenic HPV types are underway (11). A combined strategy
of vaccination for primary prevention of oncogenic HPV infec-
tion and cervical cytologic screening for secondary prevention
of cervical cancer offers an intriguing option to further reduce
the mortality from invasive cervical cancer in the United States,
although the potential risks and costs will need to be evaluated.

Cost-effectiveness analysis in the fields of health and medi-
cine provides a tool for evaluating the efficiency of resource
utilization for health care interventions by characterizing differ-
ent interventions in terms of the extra cost per added unit of
health benefit conferred. The basic principle of a decision ana-
lytic approach is that all consequences of decisions (e.g., indi-
vidual clinical outcomes, population-based outcomes, and costs)
should be identified, measured, and valued (e.g., monetary value
of patient time, quality-adjustment of life expectancy). When a
decision analysis compares the relationship between the health
and economic consequences associated with different public
health care interventions, it is considered a cost-effectiveness
analysis. To explore the relative costs and benefits of introducing
a type-specific HPV vaccine in a population with existing cer-
vical cytologic screening, a number of factors must be explicitly
considered. These include, but are not limited to, the age-specific
incidence of HPV and the natural history of cervical carcino-
genesis; vaccine efficacy, coverage, and acceptability; and cer-
vical cytologic screening practices. No single clinical trial or
longitudinal cohort study will be able to consider all of these
components. A decision analytic approach using a mathematical
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simulation model can be a useful tool, in conjunction with
vaccine efficacy trials, to incorporate data from multiple sources,
to extrapolate clinical and economic outcomes beyond the time
horizon of a clinical study, to evaluate more strategies than are
possible in a single clinical trial, and to assess the relative costs
and benefits of alternative policies (screening and/or vaccina-
tion) in reducing mortality from cervical cancer (12–14). Build-
ing upon the foundation of other cervical cancer models (15–20),
we developed a computer-based model to project the clinical
benefits and cost-effectiveness of an HPV16/18 vaccine in the
setting of an existing cervical cytologic screening program.

METHODS

The Model

We developed a Markov model that was capable of simulat-
ing the natural history of HPV infection and cervical carcino-
genesis and incorporating the underlying type-specific HPV
distribution within each stage of cervical disease. A Markov
model is composed of a set of mutually exclusive and collec-
tively exhaustive health states (14). Each person in the model
can reside in only one health state at any point in time, and all
persons residing in a particular health state are indistinguishable
from one another. Transitions occur from one state to another at
defined recurring intervals (Markov cycle) of equal length (e.g.,
monthly or yearly) according to a set of transition probabilities.
These probabilities can be made dependent on population char-
acteristics, such as age, sex, and chronic disease, by specifying
the probabilities as functions of these characteristics, and they
may be constant or time-dependent. A state transition framework
is used in which members of a population are allocated and
subsequently reallocated into different health states over time.
Values are assigned to each health state to reflect the cost and
utility of spending one Markov cycle in that state. The contri-
bution of these values to population outcomes (e.g., life expect-
ancy, quality-adjusted life expectancy, and lifetime costs) de-
pends on the length of time spent in each state. By synthesizing
data on costs, effects, and quality of life, a Markov model
permits comparison of the outcomes associated with different
clinical strategies.

In our model, the natural history of disease was modeled as a
sequence of 6-month transitions among mutually exclusive
health states (Fig. 1). These states were defined by use of five
general categories of HPV infection (persistent HPV16/18, per-
sistent high-risk non-16/18 HPV types, persistent low-risk HPV
types, transient low-risk or high-risk HPV types, and no HPV),
three categories of cervical disease (no neoplasia or cancer,
cervical intraepithelial neoplasia 1 [CIN1], and cervical intra-
epithelial neoplasia 2,3 [CIN2,3]), and three categories of inva-
sive cervical cancer (local, regional, and distant) (21,22). Studies
that have examined the risk of cervical neoplasia associated with
persistent HPV infection have defined “persistence” in a variety
of ways (23–30). We stratified the HPV sector of health states
into categories that were consistent with the classification used
in the main clinical studies from which the parameter estimates
for the incidence of HPV were derived (23,30,31). The HPV
stratum reflecting persistent high-risk types of HPV was further
stratified into two groups (one to represent HPV16 or HPV18
and the other to represent high-risk non-16 or non-18 HPV
types, including 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68).

The HPV stratum reflecting persistent low-risk types included
women with all other HPV types.

The time horizon of the analysis incorporated a woman’s
entire lifetime and was divided into equal 6-month increments,
referred to as Markov cycles, during which women “transi-
tioned” from one health state to another. The model assumed a
cohort of 100 000 adolescent girls subjected to age-dependent
probabilities of acquiring and clearing HPV infection starting at
age 13 years. Women with either transient or persistent HPV
infection could develop histopathologic cervical changes, and
those with CIN1 or with CIN2,3 could progress, regress, or stay
the same. The probabilities governing each of these transitions
were conditional on the type of HPV infection. We assumed that
only women with persistent HPV infections developed CIN2,3
and invasive cancer. In each cycle, women with invasive cancer
could develop symptoms or progress to the next stage of cancer.
We assumed that symptomatic women with invasive cancer
received stage-specific treatment for their disease and were
subject to the corresponding stage-specific survival rates. From
every health state and in every cycle, women faced competing
all-cause mortality risks (32).

Adding Vaccination to Current Cervical Cancer Screening
in the United States

We first conducted an analysis to estimate the clinical benefits
and costs associated with the introduction of an HPV16/18
vaccine in the setting of cervical cancer screening and conser-
vatively assumed that vaccination would not alter current
screening practice. We based initial estimates for screening
behavior on data from the Centers for Disease Control and
Prevention’s Behavioral Risk Factor Surveillance System, which
estimated that 5.2% of women had never been screened and that
70.5% of those women who had received a Papanicolaou (Pap)
test had received it in the last year. An additional 12.6%, 4.3%,
and 3.0% of women reported receiving a Pap test within the last
2 years, 3 years, and 5 years, respectively (33). We assumed that

Fig. 1. Simple schematic of model. Model simulates the natural history of human
papillomavirus (HPV) infection and cervical carcinogenesis while incorporating
the underlying type-specific HPV distribution within each stage of cervical
disease, by use of a sequence of 6-month transitions among mutually exclusive
health states. Health states are defined by use of five general categories of HPV
infection (persistent HPV16/18, persistent high-risk non-16/18 HPV types, per-
sistent low-risk HPV types, transient low-risk or high-risk HPV types, and no
HPV), three categories of cervical disease (no neoplasia or cancer, cervical
intraepithelial neoplasia 1 [CIN1], and cervical intraepithelial neoplasia 2,3
[CIN2,3]), and three categories of invasive cervical cancer (local, regional, and
distant). The probabilities governing each of these transitions are conditional on
the type of HPV infection. HPV infections may be persistent or transient.
Persistent infection with a high-risk type is necessary for invasive cervical
cancer. Transient infection with any HPV type may be accompanied by the
development of CIN1, and vaccination prior to sexual activity prevents 90% of
persistent infection with HPV16/18.
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9.6% of women were screened more than 5 years ago. The
model was then calibrated to the lifetime risk of cervical cancer
reported in the National Cancer Institute’s Surveillance, Epide-
miology, and End Results Program (34). The model was used to
evaluate the cost-effectiveness of an HPV16/18 vaccine and to
explore the impact of changes in 1) vaccine efficacy, defined as
a reduction in the probability of acquiring a persistent HPV16/18
infection; 2) vaccine coverage, defined as the proportion of the
cohort that receive three doses of vaccine (actual coverage) and
the proportion of the cohort fully immunized (effective cover-
age); and 3) duration of vaccine efficacy, defined as the period
before waning immunity.

Primary and Secondary Cervical Cancer Prevention
Strategies

We then assessed the costs and clinical benefits associated
with a variety of hypothetical cervical cancer control policies
consisting of a primary prevention component (i.e., vaccination)
and/or a secondary cervical cancer prevention component (i.e.,
cervical cytologic screening starting at a specific age and con-
ducted at a specific frequency). We evaluated screening intervals
of 1–5 years with conventional and liquid-based cytology initi-
ated at age 18, 21, 25, 30, or 35 years. To permit comparison of
our findings with previously published cost-effectiveness anal-
yses of cervical cancer screening (16–20,35–39), we assumed
100% compliance with vaccination and screening but varied
these estimates widely in sensitivity analyses.

Assumptions

For strategies that incorporated cytologic screening, we made
the following assumptions: 1) All women with abnormal Pap
test results, which were classified as a low-grade squamous
intraepithelial lesion (LSIL) or above, received colposcopy and
a biopsy examination (40). 2) Women with a cytologic screening
result of atypical squamous cells of uncertain significance un-
derwent HPV DNA testing (using either the residual sample
from a liquid-based cytology specimen or, for conventional
cytology, a sample co-collected at the time of the initial screen-
ing) (41). 3) Women with a conventional cytologic screening
result of atypical squamous cells of uncertain significance were
managed with immediate colposcopy or repeat cytologic screen-
ing in 6 months. 4) Colposcopy and biopsy examination accu-
rately determined the true underlying histology of the cervix. 5)
All women with histologically confirmed CIN2,3 or worse were
treated appropriately. 6) Women with histologically confirmed
CIN1 were not treated but were monitored every 6 months until
they regressed to normal or progressed to CIN2,3.

For strategies that incorporated vaccination, we made the
following assumptions for the base case: 1) All (100%) of the
adolescent cohort would be successfully vaccinated at age 12
years (actual coverage) before their first exposure to HPV. 2) All
12-year-olds would have received three doses of the vaccine and
would be fully immunized by age 13 years (effective coverage).
3) Among women successfully vaccinated, the probability of
acquiring persistent infection with HPV16/18 would be reduced
by 90% (efficacy). 4) Recipients of an effective vaccine were
subjected to the competing risks associated with acquisition of
other types of HPV (replacement). 5) Vaccination would have
no impact on HPV16/18 infections that were destined to be
transient and no effect on any non-HPV16/18 infections (cross-

protection). (6) Finally, immunity would not wane over time.
Because of the obvious uncertainty as to the real-world perfor-
mance of a prophylactic vaccine against HPV16/18, we explored
the implications of alternative assumptions to each of those used
in the base case.

For each strategy, we tracked clinical events (e.g., HPV
infection), life expectancy–adjusted and unadjusted for quality
of life, and costs (expressed in 2002 U.S. dollars) accrued by this
hypothetical cohort throughout their lifetimes. Following the
recommendations of the Panel on Cost-Effectiveness in Health
and Medicine (14), we adopted a societal perspective and ex-
pressed clinical benefits as quality-adjusted life years gained to
reflect both the gains in longevity and quality of life associated
with effective interventions to prevent cervical cancer. Future
costs and life years were discounted at an annual rate of 3%. The
results of a cost-effectiveness analysis are summarized by use of
an incremental cost-effectiveness ratio. In this ratio, all health
outcomes associated with a particular strategy (compared with
an alternative) are included in the denominator, and all costs or
changes in use of resources with a particular strategy (compared
with an alternative) are included in the numerator. The incre-
mental cost-effectiveness ratio for a strategy is computed in
reference to the next most effective option after eliminating
strategies that are dominated (i.e., strategies that are more costly
and less effective than other options) and strategies that are ruled
out by extended (weak) dominance (i.e., strategies that have
higher incremental cost-effectiveness ratios than more effective
options).

Statistical issues in cost-effectiveness studies are different
from those that arise in experiments or other data analyses.
Rather than testing hypotheses using traditional statistical sig-
nificance as a criterion, model-based evaluation studies aim to
portray the scope and nature of the uncertainties that surround
the estimates of costs, benefits, and cost-effectiveness ratios that
they produce through the use of a sensitivity analysis (14). In a
sensitivity analysis, some critical component in the calculation is
varied over a plausible range, and the cost-effectiveness ratio is
recalculated. The resulting difference in the ratio provides some
indication of how sensitive the results might be to a change in
that parameter. We conducted extensive sensitivity analyses to
evaluate the stability of our conclusions over a wide range of
parameter estimates and structural assumptions.

Data

Selected data are shown in Table 1 (42–97). Transition prob-
abilities required by the model that were not available from
primary data were obtained by use of calibration methods de-
scribed elsewhere (15–19). We assessed the face validity of the
model by projecting a series of intermediate-term and long-term
outcomes for which there were suitable data in the absence of
screening (e.g., age-specific cervical cancer incidence and stage
distribution of invasive disease) (74,75). Using published data to
establish the range of HPV types within LSIL, high-grade SIL
(HSIL), and cancer (1,9,38,41,66–71), we calibrated the model
to the best available data on age-specific HPV infection, LSIL,
HSIL, and cancer (34,46–50,63–65). Model corroboration was
assessed by comparing the predicted outcomes in the setting of
screening at different intervals with those of other published
analyses (19,20). Estimates for the sensitivity and specificity of
cervical cytologic screening were obtained from large clinical
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trials and recent comprehensive reviews (76–87). Because of
the uncertainty in screening test performance after the introduc-
tion of a type-specific vaccine, we varied these parameters over
a wide plausible range in a sensitivity analysis.

Selected costs are shown in Table 1 (88–95). We assumed
that vaccination required the costs of three brief clinic visits,
surveillance and educational costs, and patient (or parent) time
costs. We assumed that all adolescents and their parents would
require a 10-minute pre-vaccination counseling session with a
registered nurse or nurse practitioner. Data from the U.S. Bureau
of Labor Statistics were used to assign a cost for the time

Table 1. Selected model variables: baseline values and ranges used in
sensitivity analysis*

Variable Base case Range

Incidence and clearance of HPV infection
(42–50)†

Normal to persistent HPV DNA
Age �35 y 0.010–0.030 †
Age �35 y 0.002–0.006 †

Normal to transient HPV DNA
Age �35 y 0.030–0.070 †
Age �35 y 0.002–0.010 †

HPV DNA to normal
Age �35 y 0.100–0.460 †
Age �35 y 0.100–0.460 †

Natural history of CIN (51–71)
HPV DNA to CIN1

Age �35 y 0.030–0.060 †
Age �35 y 0.007–0.015 †

HPV DNA to CIN2,3
Age �35 y 0.001–0.006 †
Age �35 y 0.004–0.025 †

CIN1 to CIN2,3‡
Age �35 y 0.008–0.050 †
Age �35 y 0.037–0.220 †

CIN2,3 to invasive cancer‡
Age �35 y 0.001–0.002 †
Age 35–64 y 0.006–0.012 †
Age �65 y 0.001–0.020 †

CIN1 to HPV 0.440–0.540 †
CIN1 to normal 0.110–0.540 †
CIN2,3 to HPV 0.010–0.030 †
CIN2,3 to normal 0.001–0.003 †

Natural history of invasive cervical cancer§
(2,72–75)

Probability of progression
Stage I to Stage II 0.1500 0.1125–0.1875
Stage II to Stage III 0.1600 0.1200–0.2000
Stage III to Stage IV 0.2252 0.1689–0.2815

Probability of developing symptoms
Stage I 0.0750 0.0563–0.0938
Stage II 0.1125 0.0844–0.1406
Stage III 0.3000 0.2250–0.3750
Stage IV 0.4500 0.3375–0.5625

Probability of survival at 5 years
Stage I 0.84 0.63–0.98
Stage II 0.66 0.49–0.83
Stage III 0.38 0.28–0.48
Stage IV 0.11 0.08–0.14

Vaccine characteristics (10,11)
Vaccine efficacy, % 90 50–100
Age at vaccination, y 12 12–15
Vaccine coverage, % 100 50–100

Screening test characteristics (76–87)�
Sensitivity of liquid-based cytology, % 84 69–88
Specificity of liquid-based cytology, % 88 77–93
Sensitivity of conventional cytology, % 66 34–86
Specificity of conventional cytology, % 97 88–99

Vaccination costs, $U.S. (88–90)¶
Vaccination series 377 188–565
Patient time cost 16 8–24

Costs of cervical cancer screening and
treatment, $U.S. (91–95)

Screening costs
Conventional cytology# 15–51 12–75
Liquid-based cytology# 28–64 20–80
HPV DNA test (Hybrid Capture 2) 49 30–200
Office visit 22 11–50
Patient time cost 21 11–200

Table 1 (continued).

Variable Base case Range

Diagnostic and treatment costs, $U.S.**
Colposcopy and biopsy 436 200–600
CIN1 1264 800–1706
CIN2,3 2833 1500–3275
Stage I 21 533 16 150–26 916
Stage II 23 046 17 285–28 808
Stage III 27 067 20 300–33 834
Stage IV 36 912 27 684–46 140

Health-related quality of life (88,96,97)††
Quality weights for detected invasive
cancer

Stage I 0.65 0.49–0.81
Stage II 0.56 0.42–0.70
Stage III 0.56 0.42–0.70
Stage IV 0.48 0.36–0.60

Quality weights after treatment for
invasive cancer

Stage I 0.97 0.73–0.99
Stage II 0.90 0.68–0.98
Stage III 0.90 0.68–0.98
Stage IV 0.62 0.47–0.78

*Selected parameter values used for the baseline analysis are shown. Range
for each parameter indicates the upper and lower bound for each value used in
sensitivity analysis. In a sensitivity analysis, some critical component in the
calculation is varied over a plausible range, and the cost-effectiveness ratio is
recalculated. The resulting difference in the ratio provides some indication of
how sensitive the results might be to a change in that parameter. Clinical
estimates (base case and range) are reported as 6-month probabilities unless
otherwise noted. HPV � human papillomavirus; CIN � cervical intraepithelial
neoplasia.

†Plausible range was established with age-specific values where indicated.
HPV infection was categorized as persistent high-risk HPV16/18, persistent
high-risk non-16/18 HPV, persistent low-risk types, and any type of transient
HPV. Details of point estimates for each age group available from authors on
request.

‡Persistent HPV infection was assumed to be necessary for progression to
CIN2,3 and invasive cancer.

§Probabilities for progression through cancer stages and for development of
stage-specific symptoms imputed through previously described methods (17–19,72–
75).

�Estimates for sensitivity conditional on age and cervical lesion severity were used
in sensitivity analyses.

¶The vaccination series includes three doses (estimated at $100 each, based on the
assumptions made by the Institute of Medicine) (88), as well as three brief clinic
visits, surveillance, and educational costs.

#Costs reflect a weighted average of normal and abnormal cytologic smears.
**Aggregate costs reflect the sum of the costs of the procedure, office visit, and

woman’s time.
††Age-related quality weights (weights for each health state were multiplied by

the time spent in the state and then summed to calculate the number of quality-
adjusted life years) for noncancer states were based on published data from the
Health Utilities Index (Mark II Scoring System) and ranged from 0.92 in women
aged 25–34 years to 0.74 in women older than 85 years.
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required from each provider (90). To account for inflation, all
costs were converted to 2002 U.S. dollars by use of the Medical
Care Component of the Consumer Price Index (95). We included
the costs of additional booster doses in sensitivity analyses.

Direct medical costs for screening and treatment were derived
from previously published data (16,91–94). Costs of invasive
cancer were obtained from published results, including a report
from the Agency for Health Care Policy and Research (50) that
used data from the Medstat MarketScan database. The time
spent undergoing screening was derived from a prospective
study of time costs associated with cervical cancer screening
(94), and previously published data incorporating transportation
costs were used in sensitivity analyses.

Selected quality weights are shown in Table 1 (88,96,97).
Quality weights for each health state, which ranged from 0 to
1, where a weight of 1 corresponds to perfect health and a
weight of 0 corresponds to a health state judged equivalent to
death, were multiplied by the time spent in the state and then
summed to calculate the number of quality-adjusted life
years. Age-specific quality weights were used for noncancer
states, as recommended by the Panel on Cost-Effectiveness in
Health and Medicine (14,96). The quality weights for the time
spent in cancer health states were derived from utility esti-
mates by the Committee to Study Priorities for Vaccine
Development (Institute of Medicine) (88) and varied with
stage of disease. The plausible ranges for these quality
weights were established by use of the lowest and highest
values reported in the literature (88,96,97). Sensitivity anal-
yses were conducted to evaluate the impact of quality-of-life
decrements associated with receiving an abnormal cytologic
screening result.

RESULTS

Model Validity

In the absence of screening, the absolute lifetime risk of
cervical cancer predicted by the model is 3.64%. The age-
specific incidence of cervical cancer peaks at an age of 48 years
at a rate of 81.2 cases of cervical cancer per 100 000 women.
The model predicts that 65% of all cancers are caused by
HPV16/18, 26% are caused by non-16/18 HPV types, and 9%
are preceded by persistent infections with low-risk HPV types.

Impact of an HPV16/18 Vaccine on LSIL and HSIL With
Current Cervical Cancer Screening

Fig. 2 shows the impact of introducing an HPV16/18 vaccine
in the setting of current cervical cancer screening on the age-
specific prevalence of LSIL and HSIL. The reduction in total
cases of LSIL and HSIL (caused by any type of HPV) is a
function of the proportion of lesions attributable to HPV16/18
and the efficacy of the vaccine. Because the proportion of HSIL
attributable to HPV16/18 is greater than the proportion of LSIL
attributable to HPV16/18, there is a greater reduction in the
projected age-specific prevalence of HSIL than LSIL. In the
presence of an organized screening program, the model predicts
that the absolute difference in the prevalence of HSIL will be
relatively small because HSIL is already a relatively rare event.

Cost-effectiveness of an HPV16/18 Vaccine With Current
Cervical Cancer Screening

Table 2 shows the discounted costs, quality-adjusted life
expectancy, and the estimated lifetime risk of cervical cancer
associated with the introduction of a type-specific HPV vaccine
(ranging in efficacy from 70% to 100%) in the setting of current
cervical cancer screening practice in the United States. If we
conservatively assume that vaccination would not alter screen-
ing practice, an HPV16/18 vaccine ranging in efficacy from 70%
to 100% would reduce the lifetime risk of cancer by 46%–66%
(i.e., the absolute lifetime risk would be reduced from 0.86% to
0.30%–0.47%), compared with current screening. The incre-
mental cost-effectiveness ratio of an HPV16/18 vaccine would
vary from $20 600 per quality-adjusted life year with a vaccine
that prevents 100% of persistent HPV16/18 infections to
$33 700 per quality-adjusted life year with a vaccine that pre-
vents 70% of persistent HPV16/18 infections.

Cost-effectiveness of Primary and Secondary Cervical
Cancer Prevention Strategies

We then assessed the costs and clinical benefits associated
with three basic strategies, including 1) no vaccination and no
screening, 2) no vaccination and cytologic screening, and 3)

Fig. 2. Impact of an human papillomavirus (HPV) 16/18 vaccine on low-grade
squamous intraepithelial lesion (LSIL) and high-grade SIL (HSIL). The impact
of introducing an HPV16/18 vaccine, in the setting of current cervical cancer
screening, on the age-specific prevalence of LSIL (A) and HSIL (B) is shown.
The reduction in total cases of LSIL and HSIL (caused by any type of HPV) is
a function of both the proportion of lesions attributable to HPV16/18 and the
vaccine efficacy.
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vaccination and cytologic screening. The discounted costs,
quality-adjusted life expectancy, and reduction in lifetime risk of
cancer associated with each of the potential 80 cervical cancer
prevention strategies were calculated (data available from au-
thors upon request). The non-dominated strategies (i.e., strate-
gies that were more effective and less costly or that were more
effective and more cost-effective than all other options) are
shown in Table 3. Strategies shown differ by type of cytologic
screening (e.g., conventional versus liquid-based screening, age
at which screening is initiated, frequency of screening, and use
of vaccination [90% efficacy] as an adjunct to cytologic screen-
ing). The most effective strategy with an incremental cost-
effectiveness ratio of less than $60 000 per quality-adjusted life
year is one combining vaccination at age 12 years with triennial
conventional cytologic screening beginning at age 25 years,
which would reduce the lifetime risk of cancer by 94% com-
pared with no intervention. Increasing screening frequency with
either liquid-based or conventional cytologic screening to an

annual basis provides an additional reduction in the lifetime risk
of cancer of less than 2% compared with biennial strategies, yet
is accompanied by an appreciable increase in costs. For exam-
ple, vaccination at age 12 years with annual liquid-based cyto-
logic screening starting at age 18 years costs more than U.S.$3.5
million per quality-adjusted life year, compared with the next
best non-dominated strategy of vaccination at age 12 years with
annual conventional cytologic screening starting at age 18 years.

Impact of Vaccine Efficacy on Cost-effectiveness of
Cervical Cancer Prevention Strategies

Table 4 presents the reduction in lifetime risk of cervical
cancer, quality-adjusted life expectancy, and total lifetime costs
associated with the non-dominated cervical cancer control strat-
egies for four hypothetical HPV16/18 vaccines that vary in
efficacy from 70% to 100%. Strategies that would reduce the
lifetime risk of cervical cancer by less than 85% are not shown

Table 3. Discounted costs, quality-adjusted life expectancy, reduction of lifetime risk of cervical cancer, and cost-effectiveness of different cervical cancer
prevention policies*

Strategy
Cytology

type

Age at
screening

initiation, y
Screening
interval, y

Lifetime
costs, $U.S.

Quality-adjusted life
expectancy, QALYs

Reduction in
lifetime cancer

risk, %

Cost-
effectiveness,

($U.S./QALY)†

No intervention — — — 235 25.9112 — —
Screening only Conventional 35 5 386 25.9607 67.4 3100
Screening only Conventional 30 5 443 25.9696 71.4 6400
Screening only Conventional 25 5 526 25.9765 73.9 12 100
Screening/vaccine Conventional 30 5 748 25.9893 88.9 17 200
Screening/vaccine Conventional 25 5 828 25.9919 89.8 31 200
Screening/vaccine Conventional 21 5 896 25.9930 89.7 57 400
Screening/vaccine‡ Conventional 25 3 1030 25.9953 94.0 58 500
Screening/vaccine Conventional 21 3 1144 25.9967 95.4 83 000
Screening/vaccine Conventional 21 2 1450 25.9986 96.6 164 400
Screening/vaccine Conventional 18 2 1581 25.9990 96.8 280 200
Screening/vaccine Liquid-based 18 2 2314 26.0002 98.0 617 900
Screening/vaccine Conventional 18 1 2581 26.0006 98.5 771 300
Screening/vaccine Liquid-based 18 1 3992 26.0009 99.0 3 867 500

*Average per woman lifetime costs, quality-adjusted life expectancy, and reduction in lifetime risk of cervical cancer associated with three basic cervical cancer
prevention strategies: 1) no vaccination and no screening, 2) no vaccination and cytologic screening, and 3) vaccination and cytologic screening. Strategies differ
by type of cytologic screening (e.g., conventional versus liquid-based screening, age at which screening is initiated, frequency of screening, and use of vaccination
with 90% efficacy as an adjunct to cytologic screening). Strategies shown are the most efficient strategies (i.e., non-dominated) of a total of 80 strategies evaluated.
Strategies that were dominated were either less effective and more costly (i.e., strongly dominated) or more costly and less cost-effective (i.e., weakly dominated)
than the strategies shown. Vaccine efficacy was defined as prevention of 90% of persistent human papillomavirus 16/18 (HPV16/18) infections. Costs have been
rounded to the nearest whole dollar. QALY � quality-adjusted life-year.

†The difference in cost divided by the difference in quality-adjusted life expectancy for each strategy compared with the next best strategy. All strategies are
assumed to be equally available.

‡Cost-effectiveness ratios are often placed in context by comparisons with interventions that are widely mandated. As such, a cost-effectiveness ratio of less than
$75 000 per quality-adjusted life year gained would be considered good value for resources (i.e., a cost-effective intervention) in the United States (14).

Table 2. Discounted costs, quality-adjusted life expectancy, lifetime risk of cancer, and incremental cost-effectiveness of vaccination in the setting of current
screening in the United States, by varying vaccine efficacy*

Screening strategy
Total lifetime
costs, $U.S.

Incremental
costs, $U.S.

Quality adjusted life
expectancy, QALY

Lifetime risk
of cancer, %

Cost-effectiveness
ratio, $U.S./QALY†

Current screening program 1111 — 25.9815 0.86 —
Vaccination at 70% efficacy 1421 310 25.9907 0.47 33 700
Vaccination at 80% efficacy 1409 298 25.9921 0.41 28 100
Vaccination at 90% efficacy 1400 289 25.9934 0.36 24 300
Vaccination at 100% efficacy 1384 274 25.9948 0.30 20 600

*Average per woman lifetime costs, quality-adjusted life expectancy, and the estimated lifetime risk of cervical cancer associated with the introduction of a
type-specific HPV vaccine (ranging in efficacy from 70% to 100%) in the setting of current cervical cancer screening practice in the United States. Each vaccination
strategy is being compared with the current screening program in the United States. Costs have been rounded to the nearest whole dollar. QALY � quality-adjusted
life year.

†The difference in cost divided by the difference in quality-adjusted life expectancy for each strategy compared with the current screening program.
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because these strategies would imply less protection against
cervical cancer than current cervical cancer screening practice.
The reduction in lifetime risk of cervical cancer varies from 67%
to 99%, depending on vaccine efficacy, screening frequency, and

age at which screening is begun. Provided that the vaccine is at
least 70% effective, vaccination at age 12 years combined with
cytologic screening every 3 years beginning at age 25 years is
more effective than our current screening program, provides a

Table 4. Discounted costs, quality-adjusted life expectancy, reduction in cancer incidence, and incremental cost-effectiveness of selected cervical cancer
prevention policies for vaccine efficacy varying from 70% to 100%*

Strategy
Cytology

type

Age at
screening

initiation, y
Screening
interval, y

Total average
lifetime

costs, $U.S.

Quality-adjusted
life expectancy,

QALYs

Reduction in
lifetime cancer

risk, %

Cost-
effectiveness
ratio, $U.S./

QALY)†

No screening/no vaccine — — — 235 25.9112 — —

Vaccine with 100% efficacy
Screening/vaccine‡ Conventional 35 5 679 25.9888 89.6 12 300‡
Screening/vaccine Conventional 30 5 738 25.9916 90.9 21 400
Screening/vaccine Conventional 25 5 818 25.9936 91.6 38 800
Screening/vaccine Conventional 25 3 1020 25.9965 95.1 70 900
Screening/vaccine Conventional 21 3 1133 25.9976 95.3 103 700
Screening/vaccine Conventional 18 2 1438 25.9991 97.2 201 800
Screening/vaccine Conventional 18 2 1568 25.9994 98.1 354 200
Screening/vaccine Liquid-based 18 2 2301 26.0004 98.3 766 300
Screening/vaccine Conventional 18 1 2567 26.0007 98.8 963 400
Screening/vaccine Liquid-based 18 1 3977 26.0010 99.2 4 863 000

Vaccine with 90% efficacy
Screening/vaccine§ Conventional 30 5 748 25.9893 88.9 17 300§
Screening/vaccine Conventional 25 5 828 25.9919 89.8 31 200
Screening/vaccine Conventional 21 5 896 25.9930 89.7 57 400
Screening/vaccine Conventional 25 3 1030 25.9953 94.0 58 500
Screening/vaccine Conventional 21 3 1144 25.9967 95.4 83 000
Screening/vaccine Conventional 21 2 1450 25.9986 96.6 164 400
Screening/vaccine Conventional 18 2 1581 25.9990 96.8 280 200
Screening/vaccine Liquid-based 18 2 2314 26.0002 98.0 617 900
Screening/vaccine Conventional 18 1 2581 26.0006 98.5 771 300
Screening/vaccine Liquid-based 18 1 3992 26.0009 99.0 3 867 500

Vaccine with 80% efficacy
Screening/vaccine� Conventional 30 5 758 25.9870 86.9 22 200�
Screening/vaccine Conventional 25 5 839 25.9901 88.0 26 200
Screening/vaccine Conventional 21 5 907 25.9915 88.1 47 900
Screening/vaccine Conventional 25 3 1040 25.9942 92.9 50 000
Screening/vaccine Conventional 21 3 1154 25.9958 93.2 69 500
Screening/vaccine Conventional 21 2 1461 25.9980 95.9 138 800
Screening/vaccine Conventional 18 2 1592 25.9986 96.0 232 400
Screening/vaccine Liquid-based 18 2 2327 26.0000 97.6 518 400
Screening/vaccine Conventional 18 1 2595 26.0004 98.3 645 800
Screening/vaccine Liquid-based 18 1 4007 26.0009 98.9 3 205 600

Vaccine with 70% efficacy
Screening/vaccine¶ Conventional 25 3 1050 25.9931 91.7 52 200¶
Screening/vaccine Conventional 21 3 1165 25.9950 92.2 59 900
Screening/vaccine Conventional 21 2 1472 25.9975 95.3 120 400
Screening/vaccine Conventional 18 2 1604 25.9982 95.4 199 100
Screening/vaccine Liquid-based 18 2 2339 25.9998 97.2 446 800
Screening/vaccine Conventional 18 1 2609 26.0003 98.0 556 300
Screening/vaccine Liquid-based 18 1 4022 26.0008 98.7 2 748 000

*Average per woman lifetime costs, quality-adjusted life expectancy, and reduction in lifetime risk of cervical cancer associated with the non-dominated cervical
cancer control strategies for four hypothetical HPV16/18 vaccines that vary in efficacy from 70% to 100% are shown. Strategies shown reflect the non-dominated
options among a total of 320 strategies evaluated (80 for each vaccine efficacy). Strategies that were dominated were either less effective and more costly (i.e.,
strongly dominated) or more costly and less cost-effective (i.e., weakly dominated) than the strategies shown. Not shown are strategies that would reduce the lifetime
risk of cervical cancer by less than 85% because these would imply less protection against cervical cancer than current cervical cancer screening practice. Costs have
been rounded to the nearest whole dollar. QALY � quality-adjusted life year.

†The difference in cost divided by the difference in quality-adjusted life expectancy or life expectancy for each strategy compared with the next best strategy. All
strategies are assumed to be equally available.

‡The next best non-dominated comparator (data not shown) used to calculate the incremental cost-effectiveness ratio was conventional screening every 5 years
starting at age 30 years without vaccination (total costs � $443; total QALYs � 25.9696).

§The next best non-dominated comparator (data not shown) used to calculate the incremental cost-effectiveness ratio was conventional screening every 5 years
starting at age 25 years without vaccination (total costs � $526; total QALYs � 25.9765).

�The next best non-dominated comparator (data not shown) used to calculate the incremental cost-effectiveness ratio was conventional screening every 5 years
starting at age 21 years without vaccination (total costs � $597; total QALYs � 25.9798).

¶The next best non-dominated comparator (data not shown) used to calculate the incremental cost-effectiveness ratio was conventional screening every 3 years
starting at age 21 years without vaccination (total costs � $845; total QALYs � 25.9891).
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92% reduction in cervical cancer incidence, and costs approxi-
mately $50 000 per quality-adjusted life year. As a general rule,
with more effective vaccines, less frequent cytologic screening
produced equivalent protection against cancer. For example,
with a vaccine that prevents 100% of persistent HPV16/18
infections, the same level of cancer protection may be obtained
(92% reduction in lifetime cancer risk), but screening frequency
may be decreased to every 5 years rather than every 3 years.

Other Sensitivity Analyses

Results were most sensitive to alternative assumptions about
the 1) duration of vaccine efficacy; 2) proportion of persistent
HPV in women older than 30 years attributable to newly ac-
quired HPV infection versus reactivation of infection acquired in
earlier adulthood; and 3) underlying frequency of cervical can-
cer screening, age at which screening is initiated, and cost of
following women with atypical cytologic screening results and
low-grade lesions. Results were less sensitive to plausible
changes in the natural history parameters, screening test char-
acteristics, cervical cancer mortality, and costs.

Although the clinical benefits of vaccination diminish pro-
portionally with decreasing vaccination coverage, the incremen-
tal cost-effectiveness ratio of vaccination in the base case was
not sensitive to plausible changes in vaccine costs because the
unvaccinated proportion of the cohort did not accrue the costs of
vaccination. In contrast, the cost-effectiveness of vaccination
strategies improved as screening coverage decreased (i.e., as the
proportion of the population never screened was increased). For
example, the incremental cost-effectiveness ratio of adding a
vaccine with 90% efficacy against persistent HPV infections to
current screening practice in the United States is less than
$25 000 per quality-adjusted life year. Adding this same vaccine
to a hypothetical screening program in which all women comply
with every scheduled screening session exceeds $50 000 per
quality-adjusted life year.

In strategies that combined vaccination and screening, the
choice of conventional versus liquid-based cytologic screening
depends mainly on their relative costs and test characteristics.
For example, when the cost of conventional cytologic screening
is doubled, vaccination combined with liquid-based cytologic
screening is preferred. When the sensitivity of conventional
cytologic screening is reduced to less than 50%, liquid-based
cytologic screening is preferred. Our cost-effectiveness results
are stable over a wide plausible range of vaccination costs;
however, when total per person vaccination costs (including
initial dose, office visits, counseling, and booster doses) exceed
$1000, strategies that combine vaccination with screening are
dominated by strategies that rely on screening alone. Results are
sensitive to the costs (both monetary costs and decrements in
quality of life) associated with the workup of positive screening
test results, including costs attributable to workup after false-
positive cytologic results, equivocal cytologic results, and LSIL
results. The incremental cost-effectiveness ratios of vaccination
strategies become more attractive as the costs and/or quality-of-
life decrements attributable to screening increase.

We evaluated the impact of waning (i.e., vaccine efficacy
wanes after 5, 10, 15, or 20 years) on the effectiveness of a
vaccine that prevents 90% of persistent HPV16/18 infections
(Fig. 3). As the proportion of persistent HPV infections attrib-
utable to new (versus latent or previously acquired) infections is

varied from 75% to 50% to 25%, the relative effect of waning is
markedly attenuated. When we evaluated the cost-effectiveness
of different policies under these three assumptions, we found
that a policy that combines vaccination and screening costs less
than $100 000 per quality-adjusted life year, provided that the
proportion of persistent HPV infections attributable to new (ver-
sus latent) infection was equal to or less than 75%.

DISCUSSION

This analysis was motivated by the prospect that an HPV
vaccine may be commercially available in the next several years

Fig. 3. Sensitivity analysis of vaccination waning. The impact of waning (i.e.,
vaccine efficacy wanes after 5, 10, 15, or 20 years) on the effectiveness of a
vaccine that prevents 90% of persistent human papillomavirus (HPV) 16/18
infections is shown. As the proportion of persistent HPV infection attributable to
new (versus latent or previously acquired) infections is varied from 75% (A), to
50% (B), and to 25% (C), the relative effect of waning is markedly attenuated.
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(10,11,98–104). Our results indicate that the addition of an HPV
16/18 vaccine to current cervical cancer screening in the United
States has the potential to be a cost-effective use of health care
resources. Our model, like other reports (105–107), predicts that
a type-specific HPV vaccine will reduce, but not eliminate, the
risk of cervical cancer. Moreover, because data on the long-term
effectiveness of vaccination, duration of immunity, and impact
of type-specific vaccination on other HPV types will not be
available for several decades, it is unlikely that serious consid-
eration would be given to replacing organized screening pro-
grams with vaccination. However, it is plausible that a compre-
hensive cervical cancer prevention program that includes both a
primary prevention (vaccination) and secondary prevention
(screening) component could provide distinct advantages over
the status quo. For example, it has been well documented that
screening is not equally accessible to all groups of women and
that most cases of invasive cervical cancer occur in women who
have not been screened at regular intervals (108). In addition,
previous cost-effectiveness analyses have consistently reported
that annual cervical cytologic screening, compared with screen-
ing every 2 or 3 years, results in very small gains in life
expectancy (e.g., hours) yet is accompanied by enormous incre-
mental costs.

Therefore, in our first analysis, we sought to estimate the
costs and clinical benefits associated with the introduction of a
type-specific HPV vaccine in the setting of current cervical
cancer screening as practiced in the United States. If we con-
servatively assume that vaccination would not alter screening
behavior, an HPV16/18 vaccine ranging in efficacy from 70% to
100% would reduce the lifetime risk of cancer by 46%–66%
compared with current screening practices. Provided the vaccine
prevents at least 70% of persistent HPV16/18 infections, the
incremental cost-effectiveness ratio of an HPV16/18 vaccine
was well below $50 000 compared with that for current screen-
ing practices.

Recommendations for cervical cancer screening are likely to
be modified in the next several years as enhanced cytologic
methods evolve, new technology is developed, and the ability to
test for high-risk types of HPV DNA is refined (109–111). In
this context, it is important to define the conditions under which
combined vaccination and screening efforts may be cost-
effective. In our second analysis, we thus explored the costs and
clinical benefits associated with a variety of hypothetical cervi-
cal cancer control policies consisting of primary prevention with
vaccination and/or secondary prevention with screening. Our
general results indicated that strategies that combine vaccination
with cytologic screening were more cost-effective than strate-
gies relying only on cytologic screening. If one imposed a
minimum threshold of clinical effectiveness (e.g., the reduction
in cervical cancer risk over a woman’s lifetime must be at least
equivalent to or greater than that in our current screening pro-
gram), then the best balance between costs and benefits appeared
to be triennial screening starting at age 25 years with vaccination
at age 12 years. These general results supporting the cost-
effectiveness of a combined vaccination and screening program,
provided that screening may be initiated at a later age and
conducted less frequently, are similar to those reported in a
recent analysis that used an independent model (107).

Results were sensitive to alternative assumptions about the
underlying patterns of cervical cancer screening, the duration of
vaccine efficacy, and the natural history of HPV in women older

than 30 years. The relative value of vaccination-induced protec-
tion against cervical cancer (compared with screening-induced
protection against cervical cancer) was greater in the presence of
more aggressive strategies for low-grade lesions that are likely to
regress without intervention when a substantial proportion of
high-risk women were not screened and when screening prac-
tices were inefficient (e.g., annual cytologic screening). There is
a greater reduction in the projected age-specific prevalence of
HSIL than of LSIL because a greater proportion of overall LSIL
is associated with non-16/18 HPV types compared with HSIL.
The implication of what will potentially be very minor reduc-
tions in LSIL within a screened community is that the economic
benefits of potentially averted procedures will only be realized in
the context of altered practice patterns that permit LSIL to be
less aggressively managed and screening to be conducted less
frequently.

Assumptions about the relative proportion of persistent HPV
infections in women older than 30 years attributable to new
exposure and acquisition of HPV, as opposed to reactivation of
latent or previously acquired HPV, also have a major impact on
the projected clinical effects of waning of vaccine efficacy. At
one extreme, if the majority of cervical cancer in 50-year-old
women is a result of new HPV infections that are acquired after
age 25 or 30 years, administering a vaccine to a 12-year-old girl
that wanes after 10 or 15 years will have a dramatically reduced
impact on the prevention of cervical cancer. At the other ex-
treme, if the majority of cervical cancers are caused by reacti-
vation of latent or previously acquired HPV, then an HPV16/18
vaccine administered to a 12-year-old girl that is effective during
the 10–15 years that she is at the highest risk for incident HPV
infections may still have a substantial effect on the risk of
cervical cancer. We felt it prudent to present the projected
cost-effectiveness results for both of these extreme assumptions.
The need for better data to inform these assumptions is high-
lighted by the dramatic differences in the relative effects of
waning as the proportion of persistent HPV infection attributable
to new (versus latent or previously acquired) infections is varied.
Despite the uncertainty, we did find that, provided the proportion
of persistent HPV infection attributable to new (versus latent)
infections was equal to or less than 75%, a policy that combines
vaccination and screening was still attractive.

There are a number of limitations to this exploratory analysis.
First, if the proportion of cervical cancers caused by HPV16/18
is higher than we assumed in our base case, we may have
underestimated the benefits of vaccination. Second, we did not
explicitly model the natural history of multiple HPV infections.
Therefore, vaccination against HPV16/18 in our model appeared
to reduce the overall total number of HPV infections, although
the lifetime risk of non-16/18 HPV infections appeared to in-
crease marginally because women effectively vaccinated against
HPV16/18 were then at risk for acquiring other HPV types. It
will be important to better elucidate the natural history of mul-
tiple infections, the effect on the natural history of other HPV
types when vaccine targets are effectively eliminated, and
whether HPV DNA assays used for cervical cancer screening
will need to be modified as a result of a vaccine program that
alters the type-specific HPV prevalence over time. Third, we did
not consider any potential cross-protection from other HPV
types; if this occurs, we may have underestimated the benefits of
vaccination. Fourth, we have implicitly assumed that the major-
ity of persistent HPV infections in older women represent reac-
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tivation of latent or previously acquired HPV. A better under-
standing of what proportion of persistent HPV infections that
eventually lead to cancer are a result of reactivation of latent or
previously acquired HPV as opposed to new incident infections
acquired later in life will substantially affect the clinical and
economic consequences of waning immunity in vaccinated
women. Fifth, our model cannot be used to assess the impact of
HPV vaccination of both men and women on the dynamics of viral
transmission and will therefore underestimate the impact of
factors such as herd immunity (105,112,113). Sixth, long-term
vaccine efficacy is uncertain, and there are heterogeneities in
vaccine response that we did not include in the absence of
empiric data (114). Clinical trials may provide information on
some of these parameters, facilitating cost-effectiveness analy-
ses in the future. Finally, data are needed about patient and
parent preferences, likelihood of vaccine acceptability, and be-
havioral response (e.g., screening behavior) to an intervention
that is only partially protective against cervical cancer; we were
unable to assess these issues in this analysis (115).

Although a decision analytic approach using mathematical
simulation modeling cannot replace clinical trial–based evalua-
tion of vaccine efficacy, model-based analyses can provide qual-
itative and quantitative insight into the relative importance of
different parameters, can help to prioritize and to guide the
design of future clinical studies, and can provide information on
the potential cost-effectiveness of different policy alternatives.
Our analysis, intended to be an exploration of the potential
cost-effectiveness of an HPV16/18 vaccine, suggests that a
prophylactic vaccine that prevents at least 70% of persistent
HPV16/18 infections should substantially reduce HPV16/18-
associated SIL and cervical cancer, even in a setting of estab-
lished cytologic screening. A combined program of vaccination
and screening that permits a later age of screening initiation and
a less frequent screening interval will likely be a cost-effective
use of limited health care resources.
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