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Abstract—This paper addresses the problem of blind multiple
access interference (MAI) and inter-symbol interference (ISI)
suppression in direct sequence code division multiple access (DS
CDMA) systems. A novel approach to obtain the coefficients of
a linear receiver using the maximum likelihood (ML) principle
is proposed. The method is blind because it only exploits the
statistical features of the transmitted symbols and Gaussian noise
in the channel. We demonstrate that an adequate linear constraint
on these coefficients ensures that the desired user is extracted
and the resulting linearly constrained maximum likelihood linear
(LCMLL) receiver can be efficiently implemented using the
iterative space alternating generalized expectation–maximization
(SAGE) algorithm. In order to take advantage of the diversity
inherent to multipath channels, we also introduce a blind rake
multiuser receiver that proceeds in two steps. First, soft estimates
of the desired user transmitted symbols are obtained from each
propagation path using a bank of appropiate LCMLL receivers.
Afterwards, these estimates are adequately combined to enhance
the signal-to-interference-and-noise ratio (SINR). Computer
simulations show that the proposed blind algorithms for mul-
tiuser detection are near–far resistant and attain convergence
using small blocks of data, thus outperforming existing linearly
constrained minimum variance (LCMV) blind receivers.
Index Terms—Blind receivers, CDMA, interference suppression,

maximum likelihood, multiuser detection, rake receiver.

I. INTRODUCTION

CODE division multiple access (CDMA) is the multiple ac-
cess technique to be used in the next generation of mo-

bile communication systems because it provides a higher spec-
tral efficiency and a superior flexibility in the radio interface
[1]–[3]. In CDMA, different users simultaneously transmit over
the same bandwidth, and each user-signal modulates an unique
spreading code or signature waveform. The capacity of current
practical CDMA systems, however, is limited by the multiple
access interference (MAI) caused by code nonorthogonality due
to diverse phenomena such as asynchronous transmission, mul-
tipath propagation, or limited bandwidth. Moreover, the pres-
ence of inter-symbol interference (ISI) due to the time-disper-
sive nature of wireless channels is often neglected in low rate
CDMA systems, but it becomes a major problem in wideband
CDMA.
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Different techniques have been proposed to suppress MAI
as well as ISI using linear filtering. Decorrelating receivers
[4] require a perfect knowledge of the received user codes,
which are likely to be distorted by the unknown channel, and
they suffer from noise amplification problems. Conventional
linear minimum mean square error (MMSE) receivers [4],
[5] overcome both drawbacks through the use of training
sequences, but such sequences are not available in many
applications. Therefore, alternative blind implementations are
preferred [6]–[8]. Several blind schemes based on the linearly
constrained minimum variance (LCMV) criterion have been
proposed. The LCMV receivers described in [6] and [9] require
a very precise knowledge of the desired user code and timing
that is not likely to be available in practice. This limitation
is overcome with the solution proposed in [7], which only
requires the transmitted (i.e., nondistorted) spreading code to
be known. Nevertheless, all LCMV multiuser receivers exhibit
a very low convergence rate, especially at moderate and high
signal-to-noise ratio (SNR) values [10], that restricts their prac-
tical applicability. Subspace techniques with somehow faster
convergence rate have also been suggested [11]–[13], but their
high computational complexity and their poor performance
in the low SNR region are important disadvantages in real
applications.
In this paper, we introduce a new blind approach to linear

multiuser interference cancellation that exploits the statistical
features of the desired user signal taking into account the ad-
ditive white Gaussian noise (AWGN) in the channel. The max-
imum likelihood (ML) principle is used to estimate the coeffi-
cients of the linear multiuser receiver that supresses both MAI
and ISI in time-dispersive multipath channels. Since the pro-
posed ML linear (MLL) receiver exploits the statistical charac-
terization of the received information-bearing signals, and this
is the same both for the desired user and the interfering ones,
the receiver may capture an interference instead of the user of
interest. We show, however, that a linear constraint on the re-
ceiver coefficients is enough to guarantee that the resulting de-
tector extracts the desired user symbols. Since a closed-form so-
lution for the proposed linearly constrained (LC) MLL receiver
does not exist, we also suggest an efficient iterative implemen-
tation based on the expectation-maximization (EM) algorithm
[14]–[17] that provides very fast convergence.
The LCMLL multiuser receiver presents, however, an impor-

tant disadvantage because it is unable to exploit the diversity
inherent to multipath channels. The linear constraint avoids the
capture problem by ensuring that the desired user signal arriving
through one particular propagation path is never cancelled.With
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Fig. 1. Baseband discrete-time equivalent model of a DS CDMA system with
time dispersive channels.

this approach, the other desired user components due to alter-
native paths are dealt with as interferences, and they are sup-
pressed instead of recombined to enhance the signal to inter-
ference and noise ratio (SINR). Thus, the resulting LC MLL
receiver exhibits a clearly suboptimum performance. To over-
come this limitation, we introduce a blind rake multiuser re-
ceiver [4], [18] that proceeds in two steps. First, soft estimates
of the desired user-transmitted symbols are obtained for each
propagation path using a bank of appropiate LCMLL receivers.
Second, these soft estimates are suitably recombined to enhance
the SINR. The weight vector for this recombination is also esti-
mated according to the ML criterion.
The remainder of this paper is organized as follows. The next

section introduces the baseband discrete-time equivalent signal
model of an asynchronous CDMA communication system
with time-dispersive channels. In Section III, we introduce the
LCMLL multiuser receiver. Section IV describes the iterative
EM-based algorithm used to compute the filter coefficients. In
Section V, the implementation of the blind rake receiver based
on the ML principle is addressed. Finally, Section VI presents
some illustrative computer simulation results, and Section VII
is devoted to the conclusions.

II. SIGNAL MODEL

Let us consider a baseband direct-sequence (DS) CDMA
system with users and time dispersive channels whose
discrete-time equivalent model is shown in Fig. 1. When
the th user transmits a sequence of statistically independent
complex symbols , it modulates a unique spreading code
waveform . Each channel use consists of the transmission
of a sequence of symbols, and thus, the signal transmitted
by the th user is given by

(1)

where is the symbol period, which is assumed to be equal to
the code waveform duration, and is the th user
unknown delay. The overall received signal for the th user is

(2)

where denotes convolution, and is the continuous-time
channel response between the -th transmitter and the multiuser
demodulator.
The th spreading code can be decomposed into a se-

quence of binary chips that modulate a pulse waveform
of duration , i.e.,

(3)

where is the chip period . Therefore, we can
substitute (1) and (3) into (2) to yield

(4)

where is the equivalent channel re-
sponse obtained when the pulse is transmitted through
the channel . Note that accounts not only for the con-
tinuous-time channel response but for the relative time delays of
the different users (this “equivalent channel” approach is rather
common; see, for instance, [7] and [11]) as well. The resulting
signal is passed through a chip-matched filter followed by a chip
rate sampler. The obtained output for the th user, in the th chip
period, during the th symbol period is

(5)

If the equivalent channel is long, i.e., it is
zero outside of the interval , the th transmitted
symbol interferes with , where

is the channel memory size, and (5) can
be simplified as

(6)

where is
the discrete-time equivalent channel response, and the sequence
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has length
and will be termed received code. Using (6), we

can write the overall received th sample during the th symbol
period

(7)

where , and is the
th component of the AWGN sequence.1
Using vector notation, the vector given by the observa-

tions in (7) can be written as

(8)

where is the received
code matrix for the th user, which is composed of the column
vectors

is the vector of symbols
contributed by the th user to the th observation vector, and

is a vector of independent
and identically distributed (i.i.d.) complex Gaussian variables
with zero mean and covariance matrix .
The linear multiuser receiver consists of a finite impulse re-

sponse (FIR) filter followed by a threshold
detector as shown in Fig. 2. The soft estimate corresponding to
the th symbol period can be written as

(9)

where the superindex denotes Hermitian transposition.

III. SELECTION OF THE RECEIVER COEFFICIENTS

In this section, we derive a novel statistical approach to se-
lect the receiver coefficients in order to obtain MAI and ISI free
estimates of the desired user symbols. The selection criterion
is based on the fact that, when the MAI and the ISI are totally
suppressed, the symbol soft estimate consists of just two com-
ponents: the desired user symbol and an additive Gaussian
noise term . Indeed, let denote the optimum value of the
filter coefficients that eliminate the MAI and the ISI. Then, we
can write

(10)

where
desired user symbol;
unknown complex amplitude that depends on both the
channel vector and ;
complex Gaussian random variable with zero mean
and variance .

Although the filtered noise variance clearly depends on ,
we will assume in the sequel that it is a priori known, and
1The Gaussian noise sequence is white if the chip waveform is

chosen according to the zero ISI criterion [19].

Fig. 2. Linear multiuser receiver.

therefore, it is dealt with as a constant.2 In Appendix A, it
is demonstrated that the probability density function (pdf) of

is given by

(11)

where denotes statistical expectation with respect to
(w.r.t.) the desired user-transmitted symbols.
In digital communications the transmitted symbols are usu-

ally modeled as discrete i.i.d. random variables with known pdf
and finite alphabet. Therefore, the statistical expectation in (11)
reduces to a simple summation. Moreover, the soft estimates
obtained with the optimum filter can also be considered as
i.i.d. random variables, and when a block of observation vec-
tors is available, the joint pdf of the resulting frame of estimates

is

(12)

Note that the pdf of given by (12) depends on the unknown
parameters and , which are given by

(13)

where

(14)

is the log-likelihood of w.r.t. the block of soft estimates
.

Unfortunately, the log-likelihood is a non-
quadratic function that presents several local maxima. In
particular, the solutions to problem (13) guarantee that the
soft estimates have a pdf close to , but this is
not enough to ensure that the desired user is extracted. Since
2Nevertheless, the computer simulation results in Section VI show that this is

not an important parameter, and large deviations in the selection of do not
lead to a significant performance degradation.
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in CDMA all users transmit symbols with the same modula-
tion format, the pdf of the th interference at the receiver is

, which only differs from the target pdf in
the unknown complex amplitude . Therefore, solving
the optimization problem (13) may lead to the capture of an
interference. In order to avoid this limitation, we propose to set
an adequate linear constraint on the coefficient vector that
prevents the capture of a nondesired user.
Let us consider the factorization of the received code

... (15)

where is the vector con-
taining the channel components for the th user, and

. . . (16)

is an matrix whose columns are length segments of
the th user transmitted code. Using this decomposition, the soft
estimate can be written as

(17)

In order to prevent the desired signal component
from being cancelled or attenuated when selecting the filter co-
efficients, vector can be constrained to verify

(18)

It is apparent that is unknown, but the above condition
holds as long as and

since

(19)

Therefore, we propose to select the coefficient vector and the
amplitude parameter estimates as the solution to the linearly
constrained problem

subject to (20)

Notice that the constraint in (20) is always feasible if ,
and it guarantees that an interference is not captured as long as

is non-negligible, as shown in Appendix B. The mul-
tiuser receiver built using vector is the LCMLL detector for
user 1.
It is important to remark that, rigorously speaking, criterion

(20) is inherently unrealizable because it relies on the hypoth-
esis that the soft estimates have the desired pdf (11). It is
apparent that this assumption does not hold in practice because

both and are unknown. Nevertheless, the computer simu-
lations in Section VI illustrate that the criterion is still valid. The
explanation of this is twofold. On the one hand, criterion (20)
is equivalent to a partial minimization of the Kullback–Leibler
distance (KLD) between the actual pdf of and the
target pdf [20]. Indeed, the KLD between both pdf
can be written as

KLD

(21)

and the second term in (21) can be estimated from
as

(22)

which is, except for a scale factor, the negative of the log-likeli-
hood in (13). On the other hand, the analysis pre-
sented in Appendix C shows that the LCMLL multiuser re-
ceiver , which is obtained as the solution to problem (20),
is closely related to the linear MMSE detector subject to the
same linear constraint. Analytical results concerning the large
sample (asymptotic) properties of would also be desirable,
but they exceed the scope of the present paper and remain for
future work.

IV. ITERATIVE IMPLEMENTATION

Unfortunately, it is not possible to find a closed-form solution
to problem (20), and therefore, some optimization algorithm
must be used to obtain the parameter estimates . In order
to find an iterative rule that adequately computes and , we
will first convert problem (20) into an unconstrained form. This
can be done using the generalized sidelobe canceller (GSC) de-
composition [21]

(23)

where
quiescent vector;
blocking matrix;
unconstrained part of .

Both and are completely determined by the constraint:
The quiescent vector belongs to the subspace defined by the con-
straint, i.e., it is a solution of the overdetermined linear system

, and is an matrix that spans
the null column subspace of , i.e., . As a
consequence, (20) is equivalent to

(24)

where and the dimension of is .
The next step is to compute using the EM algorithm

[14]–[16], [22] that provides an iterative procedure to perform
ML estimation when direct maximization of the likelihood
is not feasible. The EM approach postulates the existence of
some missing (unobserved) data that, if known, would aid in
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the estimation problem. The algorithm consists of a two-step
iteration: Use the incomplete (observed) data and the current
parameter estimates to compute sufficient statistics of the
complete data (E-step), and re-estimate the parameters using
the computed complete data sufficient statistics (M-step). The
sequence of estimates thus obtained exhibits the desirable
property of being monotonically nondecreasing in likelihood.
In our problem, the incomplete-data set is given by

the soft estimates , whereas
the complete-data set is given by the extended vectors

. Let us build the
complete-data block with joint
pdf . It is easy to decompose as

(25)

and taking logarithms and conditional expectations on both
sides of (25), we arrive at the relationship

(26)

where

(27)
and

(28)

and denote , and , respectively.
An application of Jensen’s inequality shows that [14]

(29)

for any value of , and as a consequence, the sequence of esti-
mates

(30)

is clearly nondecreasing in likelihood. Substituting

(31)

(see Appendix A) into (30) and neglecting constant terms leads
to the single iterative rule

(32)

where

(33)

that comprises the E and M steps of the EM algorithm.
Nevertheless, analytically solving (32) w.r.t. the joint param-

eter vector is rather involved. The space alternating
generalized EM (SAGE) algorithm [23] is a suitable modifi-
cation of the conventional EM approach that consists of suc-
cesively maximizing function w.r.t. different parameter

subsets [15], [23]. In our case, it is straightforward to find sep-
arate updating rules for and

(34)

(35)

wherewe have neglected all terms that are constant w.r.t. and
. The optimization problems (34) and (35) have closed-form

solutions, and the sequence of estimates provided by the SAGE
algorithm turns out to be

(36)

(37)

where

(38)

and we have also used the fact that the only random part
in is . The conditioned expectations

in (36) and (37) are calculated in terms
of and using the Bayes theorem.
Note that is obtained from by simply
dropping the expectation. As a result, the following relationship
is obtained:

(39)

where is an arbitrary function of .
At first glance, it may seem that the SAGE algorithm given

by (36) and (37) is computationally very demanding due to the
need to obtain an inverse matrix in (36). This is not the case
in practice, however. Since we are only interested in updating
the unconstrained vector, it is not necessary to explicitly carry
out the matrix inversion. Vector can be obtained by
solving a system of linear equations, and it is well known that
there are several fast and numerically stable methods to accom-
plish this task [24]–[26]. Therefore, our approach is computa-
tionally less complex than subspace techniques, which usually
require carrying out an eigendecomposition of the observations
autocorrelation matrix. Although currently feasible due to the
advances in VLSI technology, the computation of eigenvalues
and eigenvectors [25], [26] is clearly more demanding than the
iteration of algorithm (36) and (37).
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Fig. 3. Rake receiver.

V. RAKE RECEIVER

The LCMLL receiver described so far is a valid solution to
the multiuser detection problem because it provides estimates
of the desired user transmitted symbols with significantly re-
ducedMAI and ISI. Unfortunately, it is a suboptimum approach
because it fails to exploit the inherent temporal diversity of mul-
tipath channels. Indeed, the linear constraint, as defined in (19),
avoids the capture problem at the expense of cancelling all the
desired user components except the one received through the th
propagation path. Therefore, not all the desired user received en-
ergy is fully exploited. Clearly, a more adequate choice of the
linear constraint that circumvents this drawback is

(40)

where vector is selected in order to maximize the scalar mag-
nitude

(41)

However, this constraint can only be established if the channel
vector is known, which is not the case in the context of blind
detection.
As an alternative approach, we propose the implementation of

the blind rake detector [4], [18], which is shown in Fig. 3. It con-
sists of a bank of LCMLL receivers: one for each propagation
path. The th receiver provides a soft estimate
of the desired user-transmitted symbol , using the linear
constraint corresponding to the th path, i.e., .
Afterwards, these estimates are linearly combined to yield the
improved symbol estimate

(42)

where is the soft-es-
timate vector , and is
an adequately chosen weight vector. There are several criteria
that may lead to a proper selection of vector (e.g., MMSE
and maximum SINR), but they require knowledge of either the
transmitted symbols or the channel coefficients, which are not
available. Notice that the th LCMLL receiver in the bank also
provides an estimate of the desired user channel gain for the
corresponding path, i.e., the complex amplitude is actually
an ambiguous phase estimate of the th channel coeffi-

cient . We can then build an estimate of the channel vector
, but this is not useful at all in

calculating the vector because each coefficient has a
different unknown phase rotation.
Following the same reasoning that led to the development of

the LCMLL receiver, we propose to select the weight vector
according to the ML criterion, i.e.,

(43)

where is the pdf of the symbol estimate when the
optimum weight vector is used. Analogously to Section III,
we assume that

(44)

where is a Gaussian noise scalar compo-
nent3 with zero mean and variance , and

(45)

Substituting (45) into (43), we arrive at the equivalent optimiza-
tion problem

(46)

where

(47)

which can be solved using the EM algorithm. Following a rea-
soning analogous to the one explained in Section IV and con-
sidering the incomplete data set and the
complete data set ,
it is straightforward to obtain the iterative updating rule

(48)

The conditioned expectation in the above equation can be cal-
culated via the Bayes theorem to yield

(49)

where is an arbitrary funtion of .
3Furthermore, note that is a zero-mean white process. Indeed, since

, it is straightforward to show that
, where is Kronecker’s delta function.
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VI. COMPUTER SIMULATIONS

Finally, we present computer simulations that illustrate the
validity of our approach. We have considered an asynchronous
DS CDMA communication system with users transmitting
QPSK symbols and length random binary spreading
codes. The length of the discrete-time equivalent channel re-
sponse for each user is . Recall from Section I that
the discrete-time channel coefficients account for the contin-
uous-time channel response as well as for the relative delays of
all users and the transmitter and receiver terminal filters. Sym-
bols are transmitted in blocks of length , and the channel
coefficients are assumed to vary slowly enough so that they
remain constant for the duration of the block. Unless some-
thing different is stated, the simulation results presented in this
section have been averaged over 150 randomly generated sets
of multiaccess channels. To obtain these sets, we have con-
sidered a Rayleigh channel model where each channel coeffi-
cient is modeled as
a complex random variable with statistically independent real
and imaginary parts, where both of them are Gaussian with zero
mean and standard deviation . In order to estimate
the symbol error rate (SER), we have simulated the demodula-
tion of 10 000 length independent data blocks for each dif-
ferent channel. The SAGE algorithm used to estimate the pa-
rameters of the LCMLL receivers is initialized with
and , whereas the EM algorithm used to compute the
weight vector in the blind rake receiver is always initialized with

.
Fig. 4(a) plots the SER attained by the proposed LCMLL re-

ceiver for several values of the input SNR, which is defined as

SNR (50)

when the linear constraint is set to protect the desired user com-
ponent corresponding to the propagation path with the highest
gain. The number of system users is , the number of ob-
servation vectors available to estimate the receiver coefficients
is , and the value of the filtered noise variance re-
quired to run the SAGE algorithm is roughly approximated by
the channel noise variance, i.e., we use an estimate
instead of the true value of . It is apparent that the proposed
algorithm performs close to the theoretical LCMV receiver con-
structed with the same linear constraint as the proposed receiver
and perfect knowledge of the channel vectors . In
this figure, we have also plotted the SER achieved by the LCMV
receiver constructed using an estimation of the autocorrelation
matrix , as should be done
in practice. It can be seen that the performance of the prac-
tical LCMV receiver is considerably worse than the theoretical
one because 100 observations are not enough to obtain an ad-
equate estimation of the true autocorrelation matrix

. We have repeated the previous ex-
periments for observation vectors and plotted the re-
sulting curve in Fig. 4(b). It can be seen that the LCMLL re-
ceiver performance matches the theoretical limit, and the prac-
tical LCMV receiver also approaches this limit, but its conver-
gence is still poorer for the medium to high SNR region.

Fig. 4. SER for several values of the SNR in a time-dispersive asynchronous
DS CDMA system with users, length random binary spreading
codes, and length discrete channels. (a) . (b) .

We have also verified the robustness of the proposed LCMLL
receiver in near-far enviroments. Let us define the signal-to-in-
terference ratio (SIR) of the desired user w.r.t. the th interfer-
ence as

SIR (51)

First, we have chosen the value of so that SIR
dB . The resulting SER curves for the LCMLL receiver, the
theoretical LCMV receiver, and the practical LCMV receiver
are plotted in Fig. 5(a) for and . No degrada-
tion in performance is observed, and the proposed receiver still
approaches the theoretical limit. The near-far resistance prop-
erty of the LCMLL detector is clearly illustrated in Fig. 5(b),
where only a very slight performance loss is appreciated when
SIR dB , and again, the theoretical performance limit
is practically matched.
Another important measure of the receiver performance is the

SER achieved for different system loads. Fig. 6 plots the SER
for several values of the number of users when the block size
is and SNR dB. The resulting curve shows that
the performance degradation of the LCMLL receiver with in-
creasing system load is the same one suffered by the theoretical
LCMV receiver, whereas the practical LCMV receiver perfor-
mance is considerably worse.
Fig. 7 illustrates the fast convergence speed of the SAGE al-

gorithm.With the same simulation parameters as in Fig. 4(a) and
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Fig. 5. SER for several values of the SNR in a time-dispersive asynchronous
DS CDMA system with users, length random binary spreading
codes, length discrete channels, and block size . (a) SIR

dB. (b) SIR dB.

Fig. 6. SER for several values of the number of users in a time-dispersive
asynchronous DS CDMA system with length random binary spreading
codes, length discrete channels, block size , and SNR
dB.

a fixed SNR value of 12 dB, we have plotted the mean square
error (MSE) at the receiver output as a function of the number
of iterations of algorithm in (36) and (37). It is apparent that
very few iterations are enough to obtain the receiver filter co-
efficients. This may be an important advantage when time or
computational load constraints have to be fullfilled.
In order to verify the robustness of the LCMLL receiver to

mismatches in the selection of the tentative filtered noise vari-
ance , we havemeasured theMSE that is attained (in a system
with users and block size ) w.r.t. the ratio

Fig. 7. MSE versus the number of iterations of the SAGE algorithm that
obtains the LCMLL receiver coefficients in a DS CDMA system with
users, length random binary spreading codes, length discrete
channels, observation block size , and SNR dB.

Fig. 8. MSE versus in a time-dispersive asynchronous DS CDMA
system with users, length random binary spreading codes,
length discrete channels, and block size . (a) SNR dB.
(b) SNR dB.

, where is the true value of the filtered noise variance
when the optimum filter is employed. The results can be ob-
served in Figs. 8(a) and (b) for SNR values of 6 dB and 12 dB,
respectively. It can be clearly seen that the MSE hardly varies,
even when the deviation in the selected variance is very large.
Finally, we present some computer simulations that illustrate

the performance of the blind rake receiver. Fig. 9 shows the per-
formance improvement that can be achievedwhen using the rake
receiver instead of a plain LCMLL receiver.We have considered
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Fig. 9. MSE for several values of the SNR in a time-dispersive asynchronous
DSCDMAsystemwith users, length random binary spreading
codes, length discrete channels, and block size .

a system with users and block size symbols.
The curve labeled Path 1 represents the MSE of the LCMLL re-
ceiver that extracts the desired user signal arriving through the
strongest path, whereas Paths 2, 3, and 4 correspond to the de-
sired user signal extracted from each one of the remaining paths
in decreasing power order. When the soft estimates from the
bank of LCMLL receivers are linearly combined using the pro-
posed blind rake solution, a considerable reduction in the MSE
is obtained, as shown by the curve labeled RAKE (ML).
Fig. 10 shows the SER achieved by the blind rake receiver for

several values of SNR when the number of users in the system
is and the block size is . The theoretical
performance limit of this receiver is given by the linear LCMV
detector

subject to (52)

where the linear constraint requires the desired user channel
to be known.4 The solution of problem (52) includes the ob-
servation autocorrelation matrix , which depends on the re-
ceived codes of all the system users. This knowledge is not usu-
ally available, so we distinguish the theoretical LCMV detector
(curve labeled LCMV) and the practical implementation where

should be estimated from the available observations [curve
labeled LCMV (practical)]. It is apparent that the proposed rake
multiuser receiver practicallymatches the SER of the theoretical
LCMV receiver and clearly outperforms the practical LCMV
detector.
We have also evaluated the convergence speed of the EM al-

gorithm to compute the weight vector in the blind rake re-
ceiver. Fig. 11 shows that convergence is achieved in less than
30 iterations when considering a system with users,
block size , and SNR dB.

VII. CONCLUSION

We have introduced a new blind approach to linear interfer-
ence cancellation in DS CDMA that relies on the ML criterion
to estimate the coefficients of a linear FIR filter that suppresses

4Notice that the proposed blind rake receiver does not have such knowledge.

Fig. 10. SER for several values of the SNR in a time-dispersive asynchronous
DSCDMAsystemwith users, length random binary spreading
codes, length discrete channels, and .

Fig. 11. MSE versus the number of iterations of the EM algorithm that obtains
the weight vector . System parameters: users, length random
binary spreading codes, length discrete channels, block size ,
and SNR dB.

both MAI and ISI. The method is blind because it does not re-
quire the transmission of training sequences, but in turn, it ex-
ploits the knowledge of the pdf of the transmitted symbols and
noise. Since the statistical characterization of all user signals is
the same, a linear constraint has to be set on the receiver coeffi-
cients to ensure that the desired user is extracted. As a result, a
linearly constrained maximum likelihood linear (LCMLL) mul-
tiuser receiver is obtained that can be efficiently implemented
using the iterative SAGE algorithm.
The LC imposes an important limitation on the performace

of the MLL receiver because it does not allow to exploit the
temporal diversity inherent to multipath channels. To circum-
vent this drawback, we have introduced a blind rake multiuser
receiver that proceeds in two steps. First, soft estimates of the
desired user-transmitted symbols are obtained from each prop-
agation path using a bank of appropiate LCMLL receivers, and
second, these soft estimates are suitably combined to increase
the SINR. The weight vector for this linear combination is also
estimated according to the ML criterion.
Computer simulations show that the proposed blind mul-

tiuser receivers exhibit considerable near–far resistance
and attain convergence using small blocks of observations

, thus outperforming existing blind LCMV
receivers.
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APPENDIX A
DERIVATION OF AND

A. Derivation of
Let us assume that the system users employ the same

modulation format with i.i.d. and equiprobable symbols.
Thus, an arbitrary symbol belongs to the finite alphabet

, where is the number of bits per
symbol, and its pdf is

(53)

where is Kronecker’s delta function. Obviously, the pdf of
the rescaled symbol is

(54)

The pdf of the noisy rescaled symbols is simply
the convolution of and the Gaussian pdf , i.e.,

(55)

B. Derivation of
When is adequately chosen (i.e.,

) the extended vector is easily
obtained through a linear invertible transformation of the ex-
tended symbol vector as

(56)

It is well known that the pdf’s of and are related
by [27]

(57)

where is the Jacobian of the transformation, and denotes
absolute value. It is straightforward to show that

(58)

and, assuming is statistically independent of

(59)

Since the transmitted symbols are i.i.d., the joint pdf of the
extended vectors can be written
as

(60)

APPENDIX B
CAPTURE PROBLEM

In this Appendix, we show that if the soft estimates pdf
matches the target pdf, i.e.,

(61)

where , the receiver necessarily extracts the
desired user and not an interferent one. When the filter coeffi-
cients are subject to the constraint

(62)

and with non-negligible , the resulting soft
estimates can be written as

(63)

Since the symbols transmitted by the users are i.i.d. discrete
random variables, the soft estimates pdf is

(64)

Since

(65)

it follows that

(66)
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where

(67)

and it is clear that

(68)

if, and only if

(69)

which is equivalent to .

APPENDIX C
RELATIONSHIP BETWEEN THE LCMLL AND THE LINEAR

MMSE RECEIVERS

Let us consider the linear MMSE multiuser receiver subject
to the same linear constraint in problem (20), i.e.,

subject to (70)

Applying the GSC decomposition, it is straightforward to show
that the solution to the above problem is

(71)
(72)

where , and .
In this Appendix, wewill show the close relationship between

the LCMLL receiver and the MMSE solution given by (72).
Toward this aim, let us characterize the local maxima of the
log-likelihood function

(73)

w.r.t. the unconstrained vector . The stationary points
of are found by calculating the gradient and
equalling it to zero as

(74)

Taking into account that and the GSC decom-
position , the previous equation can be elabo-
rated to yield

(75)

where

(76)

and the conditioned expectation is the nonlinear mean-squared
estimate of [28]. Solving for , we arrive at

(77)

where

(78)

is the empirical autocorrelation matrix, and

(79)

is an empirical cross-correlation vector where the transmitted
symbols are substituted by their mean-squared estimates. Ex-
cept for the scale factor , it is apparent that (77) converges to
the MMSE solution (72) when the block size is large enough.
Notice that (77) is not a useful result from a practical point

of view since it does not provide a closed-form solution for .
This unsconstrained vector must be known in order to compute
the mean-squared estimates of the symbols. The SAGE algo-
rithm proposed in this paper is actually an iterative method to
numerically approximate solution (77).
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