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Abstract

This paper presents an empirical study of NK landscapes with the main focus on the rela-
tionship between (1) problem parameters, (2) various measures of problem difficulty of fitness
landscapes, and (3) performance of hybrid evolutionary algorithms. As the target class of prob-
lems, the study considers two types of NK landscapes: (1) Standard, unrestricted NK landscapes
and (2) shuffled NK landscapes with nearest-neighbor interactions. As problem difficulty mea-
sures, the paper considers the fitness distance correlation, the correlation coefficient, the distance
of local and global optima, and the escape rate. Experimental results are presented, analyzed
and discussed. Promising avenues for future work are also outlined.
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1 Introduction

For success in both applied and theoretical research in evolutionary computation it is important
to understand what makes one problem more difficult than another. Several approaches have been
proposed to measure problem difficulty for evolutionary algorithms and other metaheuristics. The
most popular measures include the fitness distance correlation [13], the autocorrelation function [29],
the signal-to-noise ratio [9], and scaling [28]. A number of studies investigated these measures on
various types of optimization problems [29, 13, 16, 27]. However, most of these studies considered
only several isolated problem instances and only a handful of detailed studies exist that focus on
large sets of randomly generated instances of important classes of problems [27, 24]. Yet, analysis
on large sets of random instances is often immensely helpful in gaining a better understanding of the
strengths and limitations of evolutionary algorithms and other optimization methods [21, 23, 27].

The purpose of this paper is to present a detailed empirical study of the relationship between
problem parameters, problem difficulty measures, and performance of hybrid evolutionary algo-
rithms. As the target class of problems, the study uses NK fitness landscapes [14, 15], which were
introduced by Kauffman as tunable models of rugged fitness landscape. The paper considers two
types of NK landscapes: (1) Standard, unrestricted NK landscapes and (2) shuffled NK landscapes
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with nearest-neighbor interactions. As problem difficulty measures, the paper considers the fitness
distance correlation for arbitrary solutions or only the local optima, the correlation length, the
distance of local and global optima, and the escape rate. As a representative evolutionary algo-
rithm, a hybrid of the hierarchical Bayesian optimization algorithm (hBOA) [19, 20, 18] and local
search is used. Hybrid hBOA was chosen mainly because it is capable of linkage learning, and it
was shown to outperform conventional evolutionary algorithms on numerous classes of additively
decomposable problems such as NK landscapes [23].

The paper starts by describing NK landscapes and the types of NK landscapes studied in this
work. Section 3 outlines the problem difficulty measures. Section 4 describes the hierarchical
BOA with local search, which is used as the main algorithm in the experimental part of the
paper. Section 5 presents experimental results. Section 6 summarizes and concludes the paper,
and discusses the future work.

2 NK Landscapes

This section describes NK landscapes and the specific types of NK landscapes studied in this work.

2.1 Problem Definition

An NK fitness landscape [14, 15] is fully defined by the following components: (1) The number of
bits, n. (2) The number of neighbors per bit, k. (3) A set of k neighbors Π(Xi) for the i-th bit,
Xi, for every i ∈ {0, . . . , n − 1}. (4) A subfunction gi defining a real value for each combination
of values of Xi and Π(Xi) for every i ∈ {0, . . . , n − 1}. Typically, each subfunction is defined as a
lookup table with 2k+1 values. The task is to maximize the objective function

fnk(X0, X1, . . . , Xn−1) =
n−1
∑

i=0

gi(Xi, Π(Xi)).

The difficulty of optimizing NK landscapes depends on all of the four components defining an
NK problem instance. One useful approach to analyzing complexity of NK landscapes is to focus on
the influence of k on problem complexity. For k = 0, NK landscapes are simple unimodal functions
similar to onemax or binint, which can be solved in linear time and should be easy for practically
any genetic and evolutionary algorithm. The global optimum of NK landscapes can be obtained in
polynomial time [30] even for k = 1; on the other hand, for k > 1, the problem of finding the global
optimum of unrestricted NK landscapes is NP-complete [30]. The problem becomes polynomially
solvable with dynamic programming even for k > 1 if the neighbors are restricted to only adjacent
string positions (using circular strings) [30] or if the subfunctions are generated according to some
distributions [7]. For unrestricted NK landscapes with k > 1, a polynomial-time approximation
algorithm exists with the approximation threshold 1 − 1/2k+1 [30].

Because of their difficulty, properties, and similarity with other classes of difficult optimization
problems, NK landscapes have attracted researchers in a number of areas, especially in stochastic
optimization and computational biology [15, 2, 30, 7, 1, 5].

2.2 Considered Classes of NK Landscapes

Problem instances in this work are inspired by two recent papers on performance analysis of evo-
lutionary algorithms on NK landscapes [23, 24]. More specifically, two types of NK landscapes are
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considered: (1) Standard NK landscapes with randomly generated subfunctions and neighborhoods
and (2) nearest-neighbor NK landscapes where the neighbors are restricted to the consequent po-
sitions in the solution strings (the neighborhoods wrap around at the end). In both cases, each
subfunction is defined by a unique lookup table, the elements of which are generated at random
using the uniform distribution over [0, 1). For nearest-neighbor NK landscapes, the string positions
are randomly shuffled to eliminate tight linkage, although for the algorithm considered here, the
ordering of the variables does not matter.

The considered class of random problem instances of standard NK landscapes is identical as
that in ref. [23]. The class of nearest-neighbor instances is similar to that in ref. [24], although here
the neighborhoods wrap around whereas in ref. [24] the neighborhoods were cut at the end of the
string.

2.3 Identifying Optima of NK Landscapes

In order to provide useful results and problem difficulty analyses, it is desirable to know the value
and location of the global optima. Although NK landscapes are NP-complete for k > 1, a branch
and bound algorithm can be used to solve relatively small instances of sizes up to 30 to 60 bits
if neighborhood size is relatively small [23]. The nearest-neighbor instances can be solved using
dynamic programming using an approach similar to that in ref. [24].

To solve standard NK instances, the branch and bound implementation obtained from the
authors of ref. [23] was used. To solve nearest-neighbor NK instances, we modified the dynamic
programming implementation for solving random additively decomposable problems [22]. It is
beyond the scope of this paper to discuss details of these methods; for more information, please see
refs. [22, 23, 24].

Due to the method used for generating problem instances, it is highly unlikely that there exist
multiple global optima for any instance. This was verified for the nearest-neighbor instances, and
there has not been a single generated instance that had more than one global optimum. Although it
is computationally prohibitive to verify this fact for most instances of unrestricted NK landscapes,
in the experiments presented here it is assumed that even in this case there is a single global
optimum for each problem instance.

3 Measuring Problem Difficulty

A fitness landscape consists of three main components: (1) A set S of admissible solutions, (2)
a fitness function f that assigns a real value to each solution in S, and (3) a distance measure d
that defines a distance between any two solutions in S. S and f define the problem being solved.
Specifically, the task is to find arg maxx∈S f(x). On the other hand, the distance measure depends
on the operators used. Specifically, d(x, y) defines the number of steps to get from x to y. For
binary strings, Hamming distance is often used, which is equal to the number of string positions
in which the two binary strings differ. Hamming distance metric accurately represents distances
between solutions using the simple neighborhood based on flipping a single bit at a time. For more
complex variation operators, such as crossover, other distance measures may be more appropriate,
although the standard bit-flip neighborhoods provide useful inputs on problem difficulty even in
those cases.

The remainder of this section discusses some of the approaches for measuring the difficulty of
fitness landscapes.
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3.1 Fitness Distance Correlation

Consider a set of n candidate solutions with fitness values F = {f1, f2, . . . , fn} and a corresponding
set D = {d1, d2, . . . , dn} of the distances of these solutions to the nearest global optimum. The
fitness distance correlation (FDC) quantifies the strength and nature of the relationship between
the fitness value and the distance to the nearest global optimum as

r =
cFD

σF σD

, (1)

where σF and σD are standard deviations of F and D, respectively, and cFD is the covariance of
F and D. The covariance cFD is defined as

cFD =
1

n

n
∑

i=1

(fi − f̄)(di − d̄),

where f̄ and d̄ are the means of F and D, respectively. Note that the computation of FDC
necessitates knowledge of all global optima.

FDC takes values from [−1, 1]. Assuming that we are interested in maximization of fitness, it
should be easier to find a global optimum for smaller values of FDC than for larger ones, because
for small FDC values the fitness values point towards global optima more consistently than they
do for high values. On the other hand, higher values of FDC indicate that the fitness may often
mislead the search away from the global optimum. Thus, the smaller the values of r, the easier the
maximization problem should be. For example, for onemax, r = −1, whereas for the fully deceptive
trap function of size 20, r ≈ +1 [13].

Since in this paper the main focus is on a hybrid evolutionary algorithm, we also consider a
modification of FDC in which only local optima are used in the computation of FDC. In this variant,
each value fi corresponds to the fitness value of a local optimum and the distance di denotes the
distance of this local optimum to the closest global one. We denote FDC restricted to local optima
by rl or FDCL.

3.2 Correlation Length

Consider a random walk through the landscape which starts in a random solution and moves to
a random neighbor of the current solution in each step (neighbors of a candidate solution are all
solutions at distance 1 from it). To measure problem difficulty based on random walks, we can use
the random walk correlation function (also called the fitness autocorrelation function) [29], which
quantifies the strength of the relationship between the fitness values of a candidate solution x and
the solutions that are obtained by taking a given number s of steps starting in x. In other words,
the correlation function quantifies ruggedness of the landscape.

For a random walk of m − 1 steps passing through solutions of fitness values {ft}t=1...m, the
random walk correlation function ρ(s) for gap s is defined as [29]

ρ(s) =
1

σ2
F (m − s)

m−s
∑

t=1

(

ft − f̄
) (

ft+s − f̄
)

,

where s is the number of steps (gap), and f̄ and σF denote the average fitness and the standard
deviation of the fitness values, respectively. Typically, the larger the value of s, the weaker the
correlations between fitness values; ρ(s) can thus be expected to decrease with increasing s. Fur-
thermore, the smaller the value of ρ(s), the more rugged the landscape is. Therefore, the landscape
should be relatively easier to explore for smaller ρ(s) than for larger ρ(s).
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The correlation function can be used to compute the correlation length, which estimates the
effective range of correlations between states in a random walk. The correlation length may be
defined as [26]

l = −
1

ln(|ρ(1)|)
·

The correlation function ρ(s) can also be used to compute the autocorrelation coefficient δ =
1/(1−ρ(1)) [3], which has approximately the same value as the correlation length [17]. The smaller
the correlation length or autocorrelation coefficient, the harder the problem instance.

3.3 Escape Rate

One of the factors that may influence problem difficulty especially for hybrid algorithms that
combine global and local search is the number of steps required to escape a local optimum. To
quantify this factor, Merz [16] defined the escape rate measure. The escape rate for a given number
s of steps is the probability of escaping the basin of attraction of a local optimum after performing
s steps starting in this local optimum.

One way to estimate the escape rate is to consider a set of local optima {x1, x2, . . . , xn} as
starting points. Then, for each xi, m solutions Si = {yi,1, yi,2, . . . , yi,m} are created that are at
distance of s steps from xi. For each created solution yi,j , local search is executed to find the local
optimum at the basin of attraction of yi,j . The percentage of solutions from Si that lead to a
different local optimum than xi is then defined as the escape rate.

The greater the escape rate for any particular value of s, the easier it is to escape a local optimum
after performing s steps in the search space. From this perspective, the greater the escape rate,
the easier the problem should be. Nonetheless, at the same time, greater escape rates also indicate
a more rugged landscape, thereby increasing the difficulty. This is confirmed with the empirical
results presented in this paper, which indicate that as the problems become more difficult to solve,
the escape rates decrease.

3.4 Distance of Local and Global Optima

Additionally to the above measures of problem difficulty, we computed the average distance of
local optima to the closest global optimum. The distance is measured by the number of steps of
a local searcher (e.g., the number of mismatched bits). Although it is clearly advantageous when
the local optima are closer to the global one, the results indicate that in some cases this measure
is misleading and in fact shorter distances pose a greater challenge.

4 Hybrid Hierarchical BOA

As a representative evolutionary algorithm, a hybrid of the hierarchical Bayesian optimization
algorithm (hBOA) [19, 20, 18] and the deterministic local search is used in this paper.

hBOA evolves a population of candidate solutions typically represented by binary strings of
fixed length. The first population is generated at random according to the uniform distribution
over all solutions. Each iteration starts by selecting promising solutions from the current population;
here binary tournament selection without replacement is used. Next, hBOA (1) learns a Bayesian
network with local structures for the selected solutions and (2) generates new candidate solutions
by sampling the distribution encoded by the built network [4, 6]. To maintain useful diversity in
the population, the new candidate solutions are incorporated into the original population using
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restricted tournament selection (RTS) [10]. The run is terminated when termination criteria are
met. In this paper, each run is terminated either when the global optimum is found or when a
maximum number of iterations is reached. For more details on hBOA, please consult refs. [19, 18].

The deterministic hill climber (DHC) is incorporated into hBOA to improve its performance.
DHC takes a candidate solution represented by an n-bit binary string on input. Then, it performs
one-bit changes on the solution that lead to the maximum improvement of solution quality. DHC is
terminated when no single-bit flip improves solution quality and the solution is thus locally optimal.
Here, DHC is used to improve every solution in the population before the evaluation is performed.
Without DHC, the number and size of problem instances would have to substantially reduce due
to the increased computational requirements.

5 Experiments

5.1 Problem Instances

For both types of NK landscapes, the number of neighbors ranged from k = 2 to k = 6 with step
1. For standard NK landscapes, problem sizes were limited due to the computational complexity
of branch an bound; the problem sizes ranged from n = 20 to n = 56 for k = 2, n = 48 for k = 3,
n = 40 for k = 4, n = 40 for k = 5, and n = 36 for k = 6. The problem size was increased with
step of 4. For NK landscapes with nearest neighbors, the problem sizes ranged from n = 20 to
n = 100 with step 10. For each considered combination of n and k, 104 unique problem instances
were generated. For each of these, a guaranteed optimum was found using the branch and bound
or dynamic programming.

5.2 hBOA Parameters

To select promising solutions, binary tournament selection without replacement was used. New
solutions (offspring) were incorporated into the old population using RTS with window size w =
min{n, N/5} as suggested in ref. [18]. Bayesian networks with decision trees [4, 6, 18] were used and
the models were evaluated using the Bayesian-Dirichlet metric with likelihood equivalence [12, 4]
and a penalty for model complexity [6, 18].

For each problem instance, an adequate population size was approximated using bisection [25,
18] to ensure that the optimum is found in 10 out of 10 independent runs. Each run was terminated
when the global optimum was found (success) or when the maximum number of generations equal
to the number of bits n was reached (failure). There are four relevant statistics that can be used
to determine the overall complexity of hBOA: the population size, the number of evaluations, the
number of DHC steps, and the number of generations (iterations). Due to the variety of hardware,
CPU time is not as useful. According to the results, the number of DHC flips represents the
overall complexity of the search most reliably and we thus use this statistic to quantify hBOA time
requirements.

5.3 Estimating Measures of Difficulty

To estimate the fitness distance correlation r for each problem instance, 100 samples of 1,000 points
each were first generated and r was computed for each of these samples using eq. 1. In each sample,
the local optima were then found using DHC for each of the 1,000 points in the sample, and the
fitness distance correlation rl was computed for the local optima. The mean estimates r and rl over
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the 100 samples were returned if these mean estimates were within 1% of their true value with 99%
probability (assuming Gaussian distribution of the means). If the estimates were not sufficiently
accurate, additional 1,000 samples were generated for each of the 100 samples and the procedure
was repeated for the increased sample size. Once the number of points in each sample exceeded
106 without reaching sufficient accuracy, the procedure was terminated even if the error would not
decrease below the threshold; in practice, this case happened only rarely and only for the largest
problem sizes.

The correlation length was estimated in a similar way, starting with 100 random walks of 1000
steps each. These walks were used to estimate the correlation length and the autocorrelation
coefficient. If both these values were within 1% of their actual value with 99% probability, the
mean estimates were returned. Otherwise, the random walks were extended by 1000 points each
and the procedure was repeated. The maximum length of each random walk was restricted to 106

steps.

The estimate of the escape rate was computed in a simpler manner, since for each value of n,
n/2 + 1 estimates must be computed and using more than 100 samples of 1000 points each would
become intractable due to the large number of instances considered here. However, even in this
case, deviations of the results were rather small and the results thus appeared very accurate.

The distances of local optima from their closest global optimum and the number of steps until
the closest local optimum were estimated analogically to the fitness distance correlation and the
correlation length.

5.4 Results

This section presents and discusses the results.

5.4.1 Effects of n and k

It was empirically shown that for NK landscapes and other additively decomposable problems,
problem instances typically become more difficult to solve as the problem size n and the size of
subproblems k grow [23]. This behavior was theoretically explained for separable problems for both
genetic algorithms as well as estimation of distribution algorithms [8, 11, 18]. The results of the
experiments presented in this paper confirm this behavior.

The effects of problem size n on the performance of hBOA+DHC and the measures of problem
difficulty are summarized in table 1. Only the results for k = 2 and k = 6 are shown; the results
for other values of k are qualitatively similar. In all cases, the computational requirements of
hBOA+DHC grow with the value of n. Furthermore, the fact that the problem difficulty increases
with problem size is also clearly reflected by the correlation length and the distance of local and
global optima. However, the influence of problem size on the fitness distance correlation for local
optima is nearly negligible, and in some cases the fitness distance correlation for arbitrary candidate
solutions is even misleading. The fitness distance correlation thus does not clearly reflect the fact
that the instances become more difficult as the problem size increases.

The effects of k on performance of hBOA+DHC and the problem difficulty measures are illus-
trated in figures 1 and 2. Only the results for several problem sizes are shown; the results for other
problem sizes are qualitatively similar. The results confirm that as k grows, the computational
requirements of hBOA+DHC grow as well. Furthermore, the effects of k on problem difficulty are
well captured by the fitness distance correlation, the correlation length, and the distance of local
and global optima.
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(a) Standard NK landscapes, n = 36.
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(b) Nearest-neighbor NK landscapes, n = 100.

Figure 1: Scatter plot for the fitness distance correlation and the correlation length with respect to
the number of DHC flips required by hBOA+DHC to reach the optimum. The results are shown
for standard NK landscapes of n = 36 bits (top), and nearest-neighbor NK landscapes of n = 100
bits (bottom). Boxes with a number k indicate mean values for samples with that k.
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(b) Nearest-neighbor NK landscapes, n = 100.

Figure 2: The effects of k on the fitness distance correlation, the correlation length, and the average
distance of local optima from the global one.
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Table 1: Some of the measures of problem difficulty for instances of varying problem size. Standard
deviations are shown in brackets.

(a) Standard NK landscapes for k = 2 and k = 6.

DHC steps until fitness dist. corr. avg. dist. of
n k opt. (hBOA+DHC) fitness dist. corr. for local optima corr. length local from global

20 2 147.8 (88.6) −0.3202 (0.105) −0.6862 (0.18) 5.30 (0.41) 14.92 (0.63)
28 2 355.9 (195.9) −0.3177 (0.090) −0.6624 (0.17) 7.63 (0.50) 20.91 (0.74)
36 2 666.3 (340.2) −0.3181 (0.079) −0.6542 (0.16) 9.97 (0.56) 26.91 (0.83)
44 2 1105.0 (515.4) −0.3145 (0.072) −0.6424 (0.15) 12.29 (0.61) 32.88 (0.91)
52 2 1633.6 (727.7) −0.3145 (0.068) −0.6384 (0.14) 14.62 (0.67) 38.88 (0.98)

20 6 563.2 (308.9) −0.0496 (0.050) −0.2086 (0.11) 2.30 (0.05) 15.83 (0.30)
28 6 1916.5 (1148.3) −0.0491 (0.043) −0.1605 (0.09) 3.44 (0.06) 22.28 (0.32)
36 6 5583.8 (3940.5) −0.0489 (0.038) −0.1355 (0.08) 4.58 (0.07) 28.72 (0.33)

(b) Nearest-neighbor NK landscapes for k = 2 and k = 6.

DHC steps until opt. fitness dist. corr. avg. dist. of
n k (hBOA+DHC) fitness dist. corr. for local optima corr. length local from global

20 2 173.0 (93.0) −0.3428 (0.104) −0.7271 (0.151) 5.31 (0.39) 14.96 (0.64)
40 2 873.4 (286.7) −0.3412 (0.074) −0.7180 (0.107) 11.13 (0.56) 29.89 (0.91)
60 2 1881.4 (435.9) −0.3416 (0.061) −0.7151 (0.087) 16.95 (0.68) 44.85 (1.11)
80 2 3055.0 (691.9) −0.3416 (0.054) −0.7143 (0.076) 22.76 (0.80) 59.79 (1.29)
100 2 4436.2 (1019.5) −0.3423 (0.049) −0.7134 (0.067) 28.59 (0.88) 74.75 (1.44)

20 6 634.3 (350.1) −0.0494 (0.051) −0.2518 (0.122) 2.30 (0.06) 15.80 (0.33)
40 6 5747.2 (3770.7) −0.0486 (0.036) −0.2430 (0.091) 5.14 (0.08) 31.68 (0.45)
60 6 16569.5 (10933.3) −0.0481 (0.030) −0.2416 (0.075) 7.97 (0.10) 47.53 (0.54)
80 6 34485.9 (23700.1) −0.0488 (0.026) −0.2419 (0.065) 10.80 (0.11) 63.37 (0.62)
100 6 60774.8 (42442.8) −0.0486 (0.024) −0.2431 (0.058) 13.63 (0.13) 79.21 (0.69)

5.4.2 Measures and actual performance

The previous subsection focused on the influence of n and k on the performance of hBOA+DHC and
the measures of problem difficulty. But what is the relationship between the measures of problem
difficulty and the actual performance of hBOA+DHC for fixed values of n and k? Furthermore, it is
well known that for NK landscapes and other difficult classes of additively decomposable problems,
performance of metaheuristics varies substantially from one problem instance to another. Will
these variations be captured by the considered measures of problem difficulty?

The relationship between the measures of problem difficulty and the actual computational
requirements of hBOA+DHC is illustrated in tables 2 and 3. Only the results for several values
of n and k are shown; the results for other values of n and k were qualitatively similar. The
results show that the correlation length and both versions of the fitness distance correlation are
all in agreement with the actual problem difficulty measured by the number of DHC flips until
optimum. However, the distance of local and global optima is misleading in that for the easier
problem instances the local optima are in fact further from the global ones than for the more
difficult instances. This result is quite surprising. It is also of note that the measures of problem
difficulty vary only a little across the instances for the same value of n and k.

5.4.3 Standard vs. nearest-neighbor instances

Table 4 summarizes the results for standard and nearest-neighbor NK landscapes for n = 36,
and k = 2 to k = 6. The table compares the actual performance of hBOA+DHC as well as the
measures of problem difficulty. The fixed problem size was chosen to focus only on the effects of
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Table 2: Some of the measures of problem difficulty for instances of varying difficulty. Standard
NK landscapes are considered with n = 36, and k = 2 or k = 6. The difficulty of each instance
is measured by the number of DHC steps until optimum using hBOA+DHC. Standard deviations
are shown in brackets.

(a) Standard NK landscapes, n = 36, k = 2.

desc. of DHC steps until fitn. dist. corr. avg. dist. of
instances opt. (hBOA+DHC) fitn. dist. corr. for local optima corr. length local from global

10% easiest 239.0 (54.6) −0.3691 (0.074) −0.7828 (0.112) 10.2259 (0.567) 27.3003 (0.847)
25% easiest 317.9 (78.6) −0.3549 (0.074) −0.7457 (0.127) 10.1340 (0.548) 27.1788 (0.839)
50% easiest 422.4 (123.6) −0.3411 (0.076) −0.7081 (0.141) 10.0599 (0.553) 27.0721 (0.835)
all instances 666.3 (340.2) −0.3181 (0.079) −0.6542 (0.160) 9.9729 (0.555) 26.9069 (0.831)
50% hardest 910.1 (311.8) −0.2952 (0.076) −0.6004 (0.160) 9.8859 (0.543) 26.7417 (0.793)
25% hardest 1119.1 (323.4) −0.2819 (0.075) −0.5635 (0.161) 9.8345 (0.547) 26.6541 (0.781)
10% hardest 1391.1 (358.7) −0.2695 (0.076) −0.5259 (0.158) 9.8102 (0.570) 26.5672 (0.757)

(b) Standard NK landscapes, n = 36, k = 6.

desc. of DHC steps until fitn. dist. corr. avg. dist. of
instances opt. (hBOA+DHC) fitn. dist. corr. for local optima corr. length local from global

10% easiest 1785.8 (315.3) −0.0737 (0.035) −0.2113 (0.070) 4.5874 (0.069) 28.9966 (0.370)
25% easiest 2279.8 (488.9) −0.0675 (0.035) −0.1909 (0.068) 4.5836 (0.067) 28.8979 (0.356)
50% easiest 3034.4 (882.5) −0.0604 (0.036) −0.1682 (0.069) 4.5803 (0.067) 28.8242 (0.340)
all instances 5583.8 (3940.5) −0.0489 (0.038) −0.1355 (0.075) 4.5752 (0.067) 28.7155 (0.332)
50% hardest 8133.3 (4156.7) −0.0374 (0.035) −0.1029 (0.067) 4.5701 (0.066) 28.6067 (0.285)
25% hardest 10738.5 (4534.7) −0.0316 (0.036) −0.0868 (0.066) 4.5699 (0.066) 28.5572 (0.272)
10% hardest 14542.1 (5101.1) −0.0242 (0.036) −0.0716 (0.064) 4.5652 (0.066) 28.5074 (0.258)

Table 3: Some of the measures of problem difficulty for instances of varying difficulty. Nearest-
neighbor NK landscapes are considered with n = 100, and k = 2 or k = 6. The difficulty of each
instance is measured by the number of DHC steps until optimum using hBOA+DHC. Standard
deviations are shown in brackets.

(a) Nearest-neighbor NK landscapes, n = 100, k = 2.

desc. of DHC steps until fitn. dist. corr. avg. dist. of lo-
instances opt. (hBOA+DHC) fitn. dist. corr. for local optima corr. length cal from global

10% easiest 3330.9 (163.9) −0.3763 (0.045) −0.7594 (0.054) 28.9495 (0.878) 75.2075 (1.370)
25% easiest 3550.2 (217.0) −0.3657 (0.045) −0.7466 (0.058) 28.8338 (0.878) 75.1053 (1.395)
50% easiest 3758.6 (265.2) −0.3578 (0.046) −0.7364 (0.058) 28.7432 (0.873) 74.9838 (1.427)
all instances 4436.2 (1019.5) −0.3423 (0.049) −0.7134 (0.067) 28.5919 (0.885) 74.7529 (1.440)
50% hardest 5113.8 (1044.2) −0.3269 (0.047) −0.6905 (0.067) 28.4405 (0.871) 74.5221 (1.415)
25% hardest 5805.5 (1089.4) −0.3178 (0.047) −0.6728 (0.069) 28.3831 (0.854) 74.3572 (1.390)
10% hardest 6767.6 (1152.3) −0.3115 (0.048) −0.6632 (0.069) 28.3347 (0.865) 74.3459 (1.372)

(b) Nearest-neighbor NK landscapes, n = 100, k = 6.

desc. of DHC steps until fitn. dist. corr. avg. dist. of lo-
instances opt. (hBOA+DHC) fitn. dist. corr. for local optima corr. length cal from global

10% easiest 21364.1 (2929.9) −0.0601 (0.023) −0.2962 (0.050) 13.6468 (0.135) 79.6971 (0.720)
25% easiest 26787.7 (5261.6) −0.0564 (0.023) −0.2778 (0.053) 13.6432 (0.131) 79.5491 (0.706)
50% easiest 34276.6 (8833.1) −0.0529 (0.023) −0.2626 (0.055) 13.6395 (0.132) 79.4021 (0.687)
all instances 60774.8 (42442.8) −0.0486 (0.024) −0.2431 (0.058) 13.6344 (0.131) 79.2125 (0.690)
50% hardest 87272.9 (46049.2) −0.0444 (0.023) −0.2237 (0.055) 13.6294 (0.130) 79.0228 (0.638)
25% hardest 114418.9 (52085.3) −0.0430 (0.023) −0.2163 (0.056) 13.6274 (0.131) 78.9531 (0.638)
10% hardest 154912.8 (62794.1) −0.0418 (0.024) −0.2107 (0.057) 13.6243 (0.130) 78.9277 (0.633)
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Table 4: Comparison of the results for the standard NK landscapes (std) and for the nearest-
neighbor NK landscapes (nn). In both cases, n = 36 and k varies from 2 to 6. Standard deviations
are shown in brackets.

(a) Fitness distance correlation

k
DHC steps fit. dist. corr. fit. dist. corr. (local)
std nn std nn std nn

2 666 697 −0.32 (0.08) −0.34 (0.08) −0.65 (0.16) −0.72 (0.11)
3 1029 983 −0.20 (0.07) −0.21 (0.07) −0.50 (0.16) −0.60 (0.13)
4 1629 1437 −0.13 (0.06) −0.13 (0.06) −0.35 (0.13) −0.48 (0.13)
5 2846 2397 −0.08 (0.05) −0.08 (0.05) −0.23 (0.10) −0.35 (0.11)
6 5584 4255 −0.05 (0.04) −0.05 (0.04) −0.14 (0.08) −0.24 (0.09)

(b) Correlation length, and distance of local and global optima

k
DHC steps corr. length dist. of local from global
std nn std nn std nn

2 666 697 9.973 (0.555) 9.962 (0.527) 13.06 (0.72) 12.58 (0.84)
3 1029 983 7.912 (0.342) 7.911 (0.333) 11.33 (0.41) 10.74 (0.55)
4 1629 1437 6.450 (0.200) 6.446 (0.202) 9.96 (0.24) 9.33 (0.33)
5 2846 2397 5.379 (0.116) 5.379 (0.123) 8.86 (0.14) 8.25 (0.20)
6 5584 4255 4.575 (0.067) 4.576 (0.073) 7.95 (0.10) 7.39 (0.12)

the neighborhood and not on the effects of n and k. We would expect the measures of problem
difficulty to indicate that problem instances with nearest neighbors are easier than those with
standard neighborhoods. This is indeed the case for the fitness distance correlation restricted to
local optima. However, the fitness distance correlation for arbitrary solutions and the correlation
length provide nearly no indication that nearest-neighbor NK landscapes are easier than those
with standard neighborhoods. Furthermore, the distance of local and global optima indicates that
standard neighborhoods are easier to solve, although this is clearly not the case.

5.4.4 Escape rate

The effects of the escape rate for NK landscapes with nearest-neighbor interactions for n = 100 and
k = 6 are presented in figure 3. The results for NK landscapes with standard neighborhoods and
those for other values of n and k are similar and are thus omitted. The results clearly indicate that
the escape rate increases with the number of steps s. Furthermore, the escape rate increases with k
regardless of the value of s. Since the difficulty of problem instances increases with k, this indicates
that the greater the escape rate, the more difficult the problem becomes. However, further work is
necessary to gain better understanding of the escape rate on the actual problem difficulty.

6 Summary and Conclusions

This paper presented a thorough analysis of several measures of problem difficulty on a large
number of problem instances of NK landscapes with standard neighborhoods and those with nearest
neighbors. Various values of n and k were considered and for each combination of n and k, 10,000
problem instances were generated and tested. Several measures of difficulty were examined for each
problem instance and the measures of problem difficulty were compared to the actual computational
requirements of hybrid hBOA.
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Figure 3: Escape rate for nearest-neighbor NK landscapes of n = 100 and k = 6.

The paper shows that in most cases the measures of problem difficulty correlate with the actual
computational requirements of hybrid hBOA. Most measures capture the effects of n and k on
problem difficulty, and they provide input on problem difficulty even for fixed n and k. Nonetheless,
in some cases the measures of problem difficulty do not provide a clear indication of what problem
instances are difficult and what instances are easy. Furthermore, there is no single measure that
would be more accurate than others. Finally, while the differences between the computational
requirements of hybrid hBOA across a set of problem instances are substantial, the variance of the
problem difficulty measures for this set of instances is typically very low.

One of the interesting topics for future work is to further analyze the results obtained in this
paper. Furthermore, analytical approaches may be designed to provide more accurate and faster
estimates of the measures of problem difficulty. Additional measures of problem difficulty should
also be studied and the relationship between the different measures of problem difficulty should be
investigated in more detail. Finally, practical approaches should be proposed to use the measures
of problem difficulty for choosing an appropriate optimization method and adequate parameters.
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