

Towards a General Model of Variability in Product Families

Martin Becker
System Software Group, University of Kaiserslautern

Kaiserslautern, Germany
mbecker@informatik.uni-kl.de

Abstract
The increasing amount of variability in software systems
meanwhile leads to a situation where the complexity of
variability management becomes a primary concern dur-
ing software development. Whereas sound methodic sup-
port to analyze and specify variability on an abstract level
is already available, the corresponding support on realiza-
tion level is still lacking. The goal of this paper is to pave
the way towards more systematic and consequently more
efficient approaches to manage variability. To this end, it
discusses the different motivations for variability in prod-
uct families and the interrelationships between the specifi-
cation and realization of variability. The paper further
identifies appropriate concepts and interrelates them in
form of a general model of variability in product families.
In addition to this meta-model, the paper outlines an in-
stantiation of the model: our language to specify variabil-
ity in product family assets.

1. Introduction

During the past few years a noticeable shift towards an
increased amount of variability1 in software systems went
through the software industry. The reasons for the in-
crease of variability are twofold. First, variability has been
recognized as the key to systematic and successful reuse.
Especially in family-based approaches as software product
lines or software product families, variability is a means to
handle the inevitable differences among the systems in the
family while exploiting the commonalities. In this case,
variability enhances the reusability of software. Second,
by providing more variability in software systems the
flexibility and maintainability of those systems can be
improved, as features can be added or adapted – even at
runtime – without releasing new products. This can con-
siderably increase the usability of the products.

Meanwhile the increase of variability leads to a situa-
tion where the complexity of managing the variability
becomes a primary concern during software development
that needs to be addressed explicitly by the software de-

1 the capability to be changed or adapted

velopment methods and tools. Whereas sound methodic
support to analyze and specify variability on the abstract
level – e.g. the feature level – is already available, the
corresponding support on realization level is still lacking
[10]. This holds for the method as well as the tool support.

The realization and management of variability is for
some reasons a non-trivial task. A first fact that hampers
the consistent management of variabilities is that they
often cannot be localized well but have widespread im-
pacts down in the implementation documents. This is
especially true, if the variability represents a varying qual-
ity of the system, as its overall performance, resource
demands or interoperability, for instance. As with invari-
able solutions, a variability has to be addressed on the
different levels of abstraction, e.g. architecture, compo-
nents, subcomponents, classes, etc. to cope with complex-
ity. In addition to this vertical impact, a variability often
shows a horizontal impact, i.e. the variability affects sev-
eral locations spread over the work products on the same
level of abstraction. If the interface of a component is
affected by a variability, for instance, then the calling
components will be affected by the variability in some
way too. However, a widespread impact of a variability
results in interdependencies among the solution frag-
ments2 that have to be considered and managed. Further-
more, variabilities may interfere with each other, i.e. the
variants3 offered by the variabilities may exclude or re-
quire each other, resulting in further interdependencies.
No matter how, the interdependencies caused by variabili-
ties strongly aggravate the consistent and efficient man-
agement of the variabilities, as they raise the complexity
of the overall solution and have to be considered through-
out the whole lifecycle of the variabilities.

Another fact that complicates the management of vari-
ability is that variability appears in manifold forms and
realizations. Generally, a variability extends the problem
and consequently the solution space covered by the com-
prising system. A system that provides variabilities is
planned to be applicable in a broader range of problems
than its invariable counterparts. Those extensions are

2 the so-called variation points
3 potential incarnation of the variability

neither restricted to certain problems nor to special solu-
tions. In principle, every solution in a software system can
be kept variable. A whole string of techniques and mecha-
nisms to realize variability [13][11][17] in the various
solution documents are already available, especially to
handle variability on the code level but also on the upper
levels of abstraction, the architecture for instance. Unfor-
tunately, the impacts of the different realizations are not
completely understood yet and there is consequently only
little methodic support in the realization and management
of variability.

This paper concentrates on the more product-family-
related issues of variability management. The experiences
we have made with variability management in various
domains (building automation, embedded operating sys-
tem, automotive), give us reason to believe, that the man-
agement of variability can be facilitated substantially, if
we find a general model of how variability is realized and
handled in product families that holds for all kind of vari-
ability throughout all abstraction levels. Such a model
should:
 provide well-defined concepts to foster a common

understanding of variability and its impacts
 identify common issues in the handling of variability,

e.g. traceability, variable binding times and evolution
 and thus ease the development of variability aware

software development methods and tools
Unfortunately, such a model is still missing, although the
required terminology has already been defined quite well
[19]. As a consequence, different approaches and slightly
differing notions are used to realize and handle variability
on the diverse abstraction levels, e.g. architecture, source
code, and documentation, which inhibits synergistic ef-
fects to appear and complicates the consistent manage-
ment of variability considerably.

In order to approach such a model, this paper discusses
the interrelationships between the specification and reali-
zation of variability, identifies appropriate concepts and
interrelates them in form of a general model of variability
in product families. In addition to this model, the paper
outlines an application of the model: our language to spec-
ify variability in product family assets.

The remainder of the paper is structured as follows:
Section 2 discusses variability in product families. Besides
the different motivations for variability, the two levels on
which variability is approached are described. Section 3
illustrates the various incarnations of variability in the
product family assets and identifies common properties
among them. These commonalities in the realization of
variability led to our model of variability in product fami-
lies that is presented in section 4. Section 5 outlines an
instantiation of the model: the Variability Specification
Language. The paper closes with a conclusion.

2. Variability in Product Families

Product family4 engineering [14] is a commonly accepted
approach to exploit the reuse potential of similar software
systems in a systematic and pre-planned way. The ration-
ale behind this approach is to identify common solutions
parts in a set of envisioned systems, which only have to be
implemented once as so-called assets5 and can be reused
afterwards during the construction of the manifold family
members in application engineering processes. This leads
to the characteristic development process (six-pack) with
the two development tracks: domain engineering (devel-
opment for reuse) and application engineering (develop-
ment with reuse).

Commonly, a product family comprises a reference ar-
chitecture and a string of components. In addition to de-
sign and implementation documents, other kinds of assets
as requirement specifications, test processes and data,
production plans or domain knowledge can be supplied
through the family as well depending on their reuse poten-
tial. The overall success of a product family approach,
however, is closely coupled with the capability to handle
the required differences among the family members in a
consistent but also economic way. To this end, the family
and its members are designed to be variable, i.e. they
provide variabilities.

Generally speaking, a variability represents a capability
to change or adapt system [19], i.e. the system facilitates
certain kinds of modifications. Such a change or adapta-
tion can affect the behavior of the system as well as its
qualities. From a more technical perspective of a software
engineer, a variability is a means to delay a (design) deci-
sion to a later phase in the lifecycle of the software system
[19]. If a decision among a set of possible variants cannot
be taken at a certain time during the development of the
system, then a generic solution has to be realized in the
work products at hand that allows to take the decision
later on.

An analysis of the driving forces behind variability in
software systems in general and product families in spe-
cial reveals that two main motivations can be distin-
guished:
 Usability. By providing variability in a software

system, the flexibility and maintainability of the sys-
tem can be improved, as features can be added or
adapted – even at runtime – without releasing new
products. This can increase the usability of the prod-
ucts considerably.

4 group of systems built from a common set of assets4 [4]
5 partial solution, such as a component, a design document or

knowledge that engineers use to build or modify software
products [21]

 Reusability. Variability has been recognized as the
key to systematic and successful reuse. Especially in
family-based approaches like software product fami-
lies, variability is a means to handle the inevitable
differences among systems in the family while ex-
ploiting the commonalities and thus increases the re-
usability of software.

The distinction between both motivations is necessary –
although often neglected –, because the respective vari-
abilities are handled differently and influence the software
development processes in different ways. In case of in-
creased usability, which can be generally of interest in any
software development approach, the respective variability
is used to handle an intra-product variation [11] and thus
is a feature of the product, i.e. the product contains a
mechanism to handle the variability dynamically after the
delivery of the product to the customer. Apparently, such
dynamic variabilities in principle require no special treat-
ment during the development of the software systems as
the can be realized and handled like any other feature of
the system. The main issues raised by dynamic variabili-
ties are the mastering of the increased functional complex-
ity and the available implementation mechanisms. The
increased reusability, on the other hand, can be considered
as a peculiarity of family-based approaches. In this case,
variability is used to handle the differences between the
members of a family (inter-application variability). Obvi-
ously, such a variability is not a feature of the family
members but of the comprising family and is handled
statically, i.e. once bound to a distinct variant during the
derivation of a family member, the variability vanishes
and is no longer existing in the family member. Static
variabilities affect the development processes considera-
bly and raise a string of new issues, e.g. configuration and
instantiation support, management of variants, evolution
support etc.

It has to be pointed out, that the above-mentioned mo-
tivations do not exclude each other, but can coincide in
one variability. In this case, the respective variability will
support several binding times6, and the handling of the
variability will therefore depend on the actual binding
time of the variability in the application engineering proc-
esses. If the corresponding decision is taken early enough
in the software development process, then the variability
is handled statically, i.e. the work products will be tailored
according to the decision, otherwise it will be handled
dynamically. A variable binding time allows to handle the
trade-off between tailored, highly efficient solutions on
the one-hand and flexible but more complex ones on the
other. To subsume, from a product family perspective we
have to face two motivations of variability: increased
usability and reusability, whereas the latter considerably
affects the development methods and tools and leads to

6 phase in the development process in which the variability is

bound to a certain variant

peculiar issues. The increased usability is primary of in-
terest if it coincides with attempts to increase the reusabil-
ity of the work products. Consequently, the remainder
focus of this paper focuses on static variabilities.

In family-based engineering approaches, variability is
typically approached on two different levels of abstraction
(cf. fig. 1): on the specification and the realization level. A
distinction between those both levels is sensible, since
they fulfill different functions and use different concepts
to represent variability.

On the specification level, the involved stakeholders
put their focus on the externally visible characteristics of
variability and suppress realization details. The require-
ments and knowledge about the variabilities in the family
are captured and represented by means of feature models
[15] or dedicated variability models [7][20]. These models
comprise information about the variabilities themselves,
e.g. their origins, the range of offered variants, the reuse
potential of the variants and furthermore information
about the interdependencies among the variabilities, and
information concerning the binding of the variability, e.g.
the supported binding times and the roles that can bind a
variability. In most cases, concepts of the problem space
are used to express information about variability. The
main modeling concepts used to represent variabilities are
variable features (in the feature models) or variabilities
themselves. Besides the information about the supported
variabilities, there will also be information about the fam-
ily members that are instantiated in the product family.
This information is captured in application models or
profiles that keep track of the variability-related decisions,
which were taken during the configuration of the family
members and control the resolution of the static variabili-
ties in the application engineering. The information about
variability on the specification level is used for various
purposes. First, it is a means to analyze and specify the
requirements for the implementations. Second, it docu-
ments the capabilities offered by the family on an abstract
level, and thus is the entry point to understand the family

sp
ec

ifi
ca

tio
n

Concepts FunctionsLevel

re
al

iz
at

io
n

Variability
Binding time

Dependency

Origin Profile

Variant

Rationale

Asset

VariationPoint

Mechanism

Dependency

Resolution

Rationale

specification
documentation
configuration

implementation
application

?

Specific solution

Figure 1. Two levels of variability handling

and its members. Third, it forms the basis for the configu-
ration and instantiation of family members [12].

On the implementation level, i.e. in the set of reusable
assets provided through the product family7, the software
engineers have to realize and handle the required variabil-
ity that has been specified on the specification level. To
this end, they identify the impact of the variabilities in the
various software assets offered through the product family
and support the demanded variation by using appropriate
mechanisms. In the application engineering processes, the
application engineers deploy the static variabilities to
derive specific solutions. During this derivation, the static
variabilities are resolved to specific solutions. The main
concept that represents variability on the implementation
level is the variation point. A variation point is a spot in a
software asset where variation will occur [13][19], i.e.
where a variability is realized, at least partially. Thus, a
variation point can be considered as some kind of generic
element in a software asset. This is especially true, if the
variability is motivated by reuse concerns.

Whereas sound methodic support to analyze and spec-
ify variability on the specification level is already avail-
able, the situation on the implementation level is quite
different. Although a whole string of variability mecha-
nisms exits to realize variability in the variation points (at
least in the source code assets), e.g. appropriate language
constructs, pre-processors, external generators etc., only
few methodological and tool support is available that
meets the rising demands of variability management.
Thus, the mapping between the two levels (illustrated
through the question mark in fig. 1.) and the management
of variability on the realization level often remains a
highly creative, individual and consequently complicated
task. In order to cope with the rising complexity induced
through variability, more systematic approaches are re-
quired. To this end, a general model of variability in prod-
uct families is required, which identifies concepts, issues
and patterns that can be applied throughout the whole
lifecycle of a product family. Before we present our
model, we first take a closer look at the implementation
level of variability to reveal commonalities in a way vari-
ability is realized in the various asset types.

3. Variability on the Implementation Level

Within a product family any kind of work product used to
construct a software system can be provided as a reusable
software asset. Generally, some of them are not affected
by variability – i.e. they are used as is in every member of
the family –, but they usually form the minor part. Most of

7 the implementation level of variability (all assets affected by

variability on the different levels of abstraction) should not be
confused with the implementation level of the product family
(only code assets).

the assets are influenced by variability in one or the other
way (illustrated through the grey triangle in fig. 2). Since
the impact of a variability is neither limited to certain
abstraction levels nor to distinct asset types, any asset
provided through a product family can in principle contain
variation points. Examples for such software assets are
generic requirement templates, reference architectures,
components, source code, test cases and even generic
documentation assets (cf. fig. 2).

Apparently, there are different ways to represent the in-
formation contained in the assets. The information can be
expressed through text, diagrams and binary data and each
of these representations can contain variation points (cf.
fig. 2). In recent years, especially variation points in dia-
grams attracted the attention of industry [18][16] and
academia [9][2], as variability had to be implemented on
the architectural level too, in order to allow for reuse in
the large. Regarding the granularity of a variation point it
can be stated, that a variation point can extend from mul-
tiple files, e.g. in case of software components, over
document fragments like blocks, lines or diagram ele-
ments down to single information items, as characters or
bytes. To summarize, variation points can appear in mani-
fold ways in software assets, which complicates the man-
agement of the variabilities considerably, especially if
they show widespread impacts.

Although the various incarnations of variation points
differ substantially (cf. fig. 2), they also share some com-
mon properties. If we abstract from the different asset
contents and the concrete realizations of variation points
we observe the following common functions of variation
points:

010100010101010101
010101010101010010
101010010001000100
010100101011010100
010101010101010101
010101010010101010
010001000100010100
101011010100010101

010100010101010101
010101010101010010
101010010001000100
010100101011010100
010101010101010101
010101010010101010
010001000100010100
101011010100010101

Requirements

Architecture

Components

Code

Figure 2. Various asset types in a product family

 Localisation. A variation point localizes a variation
in an asset.

 Abstraction. From an external point of view, i.e. by
suppressing internal realization details, a variation
point abstracts from the specific realizations of the
variants.

 Specialization. In addition to the abstraction, a varia-
tion point supports its specialization to a concrete so-
lution in an appropriate way. To achieve this, it pro-
vides a specification that describes how to specialize
the variation point to a distinct variant and a mecha-
nism that realizes the specialization. In order enable
variation, the specification of the specialization must
be parameterized by the variabilities in some way, i.e.
the specification must be a function of the variabili-
ties.

Besides the aforementioned common functions, also de-
sirable features can be identified that any variation point
should have in order to render its functions and retain
manageable (cf. [1]):
 Identification. It should be evident what part of the

asset is immutable and what part is affected by vari-
abilities. That way, the added complexity has only a
limited impact in the asset.

 Clear Structure. Variation points in the assets
should be structured as clearly as possible. First, they
should not obscure the structure of the comprising as-
set. Second, if necessary, variation points should be
structured in a hierarchical way, i.e. they should not
overlap partially.

 Expressiveness. Along with the variation point its
specialization must be specifiable. This is of special
interest in the case of variation points that implement
static variability, where the specialization is often car-
ried out manually.

 Localized. The impact of a variability should be as
localized as possible, i.e. the variation points should
be designed and implemented in a way that concen-
trates the impact of the variability to as few points as
possible.

 Tracability. Bidirectional traces between variabilities
and the variation points that implement them must be
maintainable in order to interrelate the two abstrac-
tion levels. Additionally, traces between the variation
points that implement the same variability must be
maintainable as well, in order to allow the consistent
evolution of a variability.

In spite of the considerable differences between the vari-
ous realizations of variability, e.g. in the way a variation
point localizes variability and the way it supports its spe-
cialization in detail, apparently the commonalities among
the variation points are substantial. The realization of this
led to our model of variability, which is presented in the
next section.

4. A Model of Variability in Product Families

In order to pave the way towards more systematic and
consequently more efficient approaches to manage vari-
ability, we have developed a general (meta-)model of
variability in product families that identifies and interre-
lates the concepts on the two abstraction levels mentioned
in section 2. The motivation behind this model was:
 to provide concepts to foster a common understand-

ing of variability and its impacts,
 to identify common issues and patterns in the han-

dling of variability, and finally
 to ease the development of variability aware methods

and tools
In fig. 3. you find an excerpt8 of our model, which will be
explained in the following.

The upper box at the right side addresses variability on
the specification level. The main concepts are Variability
and Profile. A Variability represents a variability in the
ProductFamily and provides a Rationale and a Range of
Variants. Between the Variants Dependencies, e.g. re-
quires or excludes relationships, can be stated. As the
Variants are associated with Variabilities, the Dependen-
cies consequently concern the respective Variabilities.
Furthermore, a Variability provides information about its
supported BindingTimes.

A Profile keeps track of the variability-related deci-
sions that were taken during the configuration of a family
member. Thus, it specifies or identifies a member of the
family. A Profile comprises a set of Assignments that can
be accessed via the Variability. Each assignment repre-
sents a taken decision, e.g. Variant A has been chosen for
Variability B at the BindingTime C. If no Assignment is
available for a Variability, then the Variability is unbound
in the profile.

The lower box at the right side addresses variability on
the realization level. The main concept is the Variation-
Point. The Assets provided through the ProductFamily
can contain VariationPoints. A VariationPoint implements
a Variability of the specification level, at least partially.
Usually, a Variability causes several VariationPoints that
are spread over multiple Assets. The concrete number of
VariationPoints caused by a Variability depends of course
on the Variability itself and the Assets provided through
the ProductFamily. On the other side, a VariationPoint can
be affected by more than one Variability. In this case, the
impacts of the Variabilities overlap. Consequently, the
multiplicity of the relationship between Variabilities and
VariationPoints is n:m.

Local dependencies, i.e. Dependencies between the
VariationPoints that are not already expressed through the
Dependencies on the specification level, can be stated on
the realization level. However, in order to keep the num-

8 the complete model will be presented in our PhD thesis

ber of dependencies and the effort to manage them as
small as possible, dependencies should be specified glob-
ally on the specification level, if possible. Dependencies
that result from the fact, that VariationPoints realize the
same Variability, do not have to be expressed explicitly,
they can be derived from the association between Vari-
ability and VariationPoint.

A VariationPoint is associated with a Mechanism that
handles the Variability. Various Mechanisms can be used
to this end. The Mechanisms can be coarsely9 categorized
into three classes [5][6]: Selection, Generation and Substi-
tution. By means of a Selection mechanism, an existing
solution can be selected to specialize the variation point.
The corresponding specification of the specialization is
illustrated in fig. 4. Exemplary selection mechanisms are
if/else or switch constructs in preprocessor and program-
ming languages, or inheritance in object oriented lan-

9 more detailed taxonomy of such mechanisms can be found in

[17]

guages. A generative mechanism allows the generation of
a solution, e.g. through an external generator. The spe-
cialization specification forms the input of the generator
and the generated output specializes the variation point.
Substitution mechanisms are rather simple; they support
the specialization of the VariationPoints by unique, exter-
nally provided solutions. Therefore, the corresponding
variation points can be considered as some kind of gap.

As stated in section 2, two different motivations can be
identified for a Variability. Those motivations lead to
different types of VariationPoints. The first one, the Dy-
namicVariationPoint demarcates a solution in an Asset
that allows to handle the Variability late in the lifecycle of
the product, i.e. after the delivery. Consequently, Dy-
namicVariationPoints are not specialized during the de-
sign of the corresponding FamilyMember. In contrast to
them, a StaticVariationPoint has to be specialized during
the design and implementation of the FamilyMember. The
result of such a resolution is a ResolvedVariationPoint,
which no longer supports variation. In order to support

realization level

specification level

ProductFamily

2..*

contains

1

1..*

0..*

Variability

VariationPoint

Specification

2..*
Range Variant

BindingTime
1..*

can be bound at

Rationale

* 1

mamages

1..*

Variability

1 0..*

Asset

Profile Assignment
specifies

controls specialization

GenericAsset

StaticAsset

DerivedAsset

ResolutionRule

FamilyMember

0..*

StaticVariationPoint

ResolvedVariationPoint
2..*

derived from
2..*

resolved to

1..*

Mechanism
1

handles variability

1

1

Selection

Generation

SubstitutionDymamicVariationPoint

0..*

*

actual parameter

formal
parameter

Rationale

Dependency

1..*concerns

LocalDependency

2..*

1..*

1..*

0..*

implements

Specification

AssetType

1

VPManager

Figure 3. A general model of variability in a product family

their specialization, StaticVariationPoints provide a Speci-
fication, which contains a Rationale and a ResolutionRule.
The specialization can be automated through an appropri-
ate mechanism. To facilitate the evolution of a variability
realization, the association between StaticVariationPoint
and ResolvedVariationPoint should be maintained in the
ProductFamily, in order to propagate changes in both
directions.

StaticAssets contain no StaticVariationPoints. Thus,
they can be used in the application engineering without
any specialization. GenericAssets on the other hand con-
tain at least one StaticVariationPoint. The specialization
of a GenericAsset results in a DerivedAsset that is used to
construct the FamilyMember. DerivedAssets contain no
StaticVariationPoints but only ResolvedVariationPoints.

Variabilities control as formal parameters the speciali-
zation of the VariationPoints. What serves as actual pa-
rameters depends on the type of the VariationPoint. In the
case of a DynamicVariationPoint, the specialization is
controlled by runtime parameters in the software system.
With StaticVariationPoints the assignments in the profiles
form the actual parameters of the specialization. If the
ProductFamily supports several BindingTimes for a Vari-
ability, then the specialization specification of the result-
ing variation points may also depend on the variability’s
binding time, e.g. the conditions in a selection (cf. exem-
plary condition 3 in fig. 4. above). Hence, the variation
point's specialization specification is not only a function
of the corresponding variabilities but also of their actual
binding times.

As illustrated in the model, the only two associations
between concepts on both levels are the implements asso-
ciation between Variability and VariationPoint and the
association between the Assignments and the Resolution-
Rules. The first association is established during the im-
plementation of the assets and has to be maintained during
the whole lifecycle of the ProductFamily. Along this asso-
ciation, information can be propagated between the both
abstraction levels. The second association does not need
to be maintained explicitly. It can be derived from the first
one. If the actual parameters have to be determined for the
specialization of a StaticVariationPoint, then the corre-
sponding assignments can be retrieved from the profile
through the variabilities associated with the Variation-
Point. Obviously, the first association is of utmost impor-
tance for any product family approach. Bidirectional
traces between the variabilities and the variation points
must be expressible and maintainable in an efficient way.
As a prerequisite, the variation points – static as well as
dynamic ones – must be identifiable in the assets.

To support the management of variability on the im-
plementation level, VPManager instances can and should
be provided for the different AssetTypes of a ProductFam-
ily. A VPManager is a tool that supports the domain and
application engineers in the various variability-related
tasks, as implementation, identification, resolution, as-

sessment, and evolution of variation points in assets of the
respective types. The VPManager class in the model cap-
tures the management-related issues and solution patterns
or principles, e.g. the resolution in case of variable bind-
ing times or the automated evolution of a variabilty. A lot
of methodical and tool support is conceivable and required
to this end, but only few is available yet.

5. Instantiation of the Model:

Variability Specification Language
Based on the above-mentioned meta-model and the identi-
fied demands for variation points, we have developed a
language to specify variability in product family assets –
the Variability Specification Language (VSL) – and ap-
propriate tools (processor, viewer). VSL is an XML-based
language that can be applied in a broad range of docu-
ments and thus allows to handle variability in a uniform
manner. Besides the previous drivers, VSL has been in-
spired by the frame technology [3] and the popular C pre-
processor. Both of them can be considered as macro lan-
guages and the same applies to VSL – at least partially –
too.

VSL first of all allows to specify the impacts of vari-
abilities in the assets, i.e. the variation points. Besides the
clear identification of the variation points and the vari-
abilities that affect them, the specialization of the varia-
tion points can be formulated as well. To this end, VSL
provides markup to specify the selection of pre-built vari-
ants and the generation (up to now XSLT and JScript are
supported) or the substitution of specific solutions and
hence supports the basic mechanisms to handle variability.

Based upon the VSL-specifications, specialized solu-
tions (XML or text documents) can be derived from the
VSL-based generic assets during the application engineer-
ing. This resolution is controlled by profiles, which can be
expressed by means of VSL too (cf. fig. 5). Besides the
values of the variabilities, VSL specifications can take the
variabilities’ binding time into consideration. Although
the main driving force behind VSL was to support static
variability, VSL can be applied with dynamic variability

if (condition1) solution1

elif (condition2) solution2
…
elif (conditionN) solutionN

else default-solution

Specification of a selection:

1. VariantA

2. VariabilityA.VariantB and
not VariabilityB.VariantD

3. VariabilityA.BindingTime < BindingTime.IntDes

Exemplary conditions:

Figure 4. Specification of a selection

as well. In this case, the VSL markup is not processed by
the VSL-processor, but merely serves for identification
and specification purposes. A more detailed discussion of
the VSL features can be found in [8].

The main advantages in applying VSL to specify vari-
ability in a product family can be seen in the uniform and
explicit treatment of variability. First, the language can be
used to specify the variability in the different asset types.
This considerably eases the development of special vari-
ability management tools, e.g. to facilitate the evolution of
variability, that can be applied throughout the whole prod-
uct family engineering process. Second, due to the explicit
specification of the variability by means of a dedicated
language it gets quite easy to identify and assess the
impacts of a variability down in the assets. A general
advantage of VSL – as with all XML-based approaches –
is the extensibility of the language and the remarkable tool
support. Although still being in a evolving state, VSL has
already proven the feasibility of XML-based variability
management. It has been deployed successfully to handle
the variability in an embedded operating system on the
requirements and the code level (C-Code). In an industrial
context we have deployed VSL to specify variability on
the architecture level in UML-diagrams.

6. Conclusion

The increased amount of variability in software systems
meanwhile requires more systematic approaches to cope
with the rising complexity introduced through variability.
This is especially true in product families, where variabil-
ity is a means to handle the inevitable differences among
the systems in the family while exploiting the commonal-
ities. Widespread impacts of variability and the various
realizations considerably complicate the management of
variability in product families. In order foster more sys-

tematic and consequently more efficient approaches of
variability management we have discussed the commonal-
ities and differences of variability in product families,
identified appropriate concepts and interrelated them in
form of a general model of variability in product families.
The model has been applied to develop a small language
to specify and realize variability in product family assets.

We believe that the management of especially static
variabilities, which can be considered as a main character-
istic of product family approaches, is an issue that can and
should be addressed in an explicit and overall manner to
keep track with the rising complexity. To achieve this, a
common understanding and management of variability is
required across the various asset types. The presented
approaches intent to pave the way towards this.

References

[1] Bandinelli, S.: Product Family Engineering with XML,
Proc. of Dagstuhl Seminar No. 01161 Product Family De-
velopment, Wadern, Germany, 2001

[2] Bachmann, F.; Bass, L.: Managing Variabilities in Soft-
ware Architectures, Proc. of 2001 Symposium on Software
Reusability, Toronto, Ontario, Canada, May 2001

[3] Bassett, P.G.: Framing Software Reuse - Lessons From the
Real World, Yourdon Press Computing Series, 1997

[4] Bass, L.; Clements, P.; Donohoe, P.; McGregor, J.; North-
rop, L.: Fourth Product Line Practice Workshop Report,
http://www.sei.cmu.edu/publications/documents/00.reports
/00tr002.html, November 1999

[5] Baum, L.; Becker, M.; Geyer, L.; Molter, G.: Mapping
Requirements to Reusable Components using Design
Spaces, Proc. of IEEE Int’l Conference on Requirements
Engineering (ICRE 2000), Chicago, USA, 2000

[6] Becker, M.: Generic Components: a symbiosis of para-
digms, 2nd International Symposium on Generative and
Component-Based Software Engineering (GCSE'00), 2000

[7] Becker, M.; Geyer, L.; Gilbert, A.; Becker, K.: Compre-
hensive Variability Modelling to Facilitate Efficient Vari-
ability Treatment, Fourth International Workshop on Prod-
uct Family Engineering (PFE-4), Bilbao, Spain, October
2001

[8] Becker, M.: XML-Enhanced Product Family Engineering,
Proceedings of the Sixth Biennial World Conference on
Integrated Design and Process Technology (IDPT2002),
Pasadena, USA, June 2002

[9] Bosch, J.: Design and Use of Software Architectures -
Adopting and Evolving a Product Line Approach, Addi-
son-Wesley, 2000

<vsl:profile id="StdCfg" vm="prosekko">
<vsl:set var="Status" bt="ReqSpec">extended</vsl:set>
<vsl:set var="PreemptiveMultitasking">yes</vsl:set>
<vsl:set var="ConformanceClass">ECC2</vsl:set>
…

 <vsl:set var="Tasks" bt="IntDes">
<task>…</task> …

</vsl:set>
 <vsl:set var="Resources" bt="IntDes">3</vsl:set>
</vsl:profile>

Profile:

Asset:
<vsl:import href="../include/debug.h.vsl" once="yes"/>
…
<vsl:select var="Status">
<vsl:option value="basic"/>
<vsl:option value="extended">

 int resource_occupied[<vsl:subst var=""/>]
[<vsl:subst var="Resources"/>];

</vsl:option>
</vsl:select>

Figure 5. A VSL document and profile fragment

[10] Bosch, J.; Florijn, G.; Greefhorst, D.; Kuusela, J.; Obbink,
H.; Pohl, K.: Variability Issues in Software Product Lines,
Proc. 4th Int'l Workshop on Product Family Engineering,
Bilbao, Spain, 2001

[11] Czarnecki, K; Eisenecker, U.W.: Generative Programming
- Methods, Tools, and Applications, Addison-Wesley,
2000

[12] Geyer, L.; Becker, M.: On the Influence of Variabilities on
the Application Engineering Process of a Product Family,
Proceedings of the 2nd the Second Software Product Line
Conference, San Diego, USA, 2002

[13] Jacobson, I.; Griss, M.; Jonsson P.: Software Reuse -
Architecture, Process and Organisation for Business Suc-
cess, ACM Press / Addison-Wesley, 1997

[14] Jazayeri, M.; Ran. A; Van der Linden, F.: Software Archi-
tecture For Product Families: Putting Research into Prac-
tice, Addison-Wesley, May 2000

[15] Kang, K.; Cohen, S.; Hess, J.; Nowak, W.; Peterson, S.:
Feature-Oriented Domain Analysis (FODA) Feasibility
Study, Technical Report, CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, USA, November 1990

[16] Muthig, D.; Atkinson, C.: Model-Driven Product Line
Architectures, Proc. of the Second Software Product Line
Conference, LNCS 2379, Springer, San Diego, USA, Au-
gust 2002

[17] Svahnberg, M.; Van Gurp, J.; Bosch, J.: A Taxonomy of
Variability Realization Techniques, Technical paper,
ISSN: 1103-1581, Blekinge Institute of Technology, Swe-
den, 2002

[18] Thiel, S.; Hein, A.: Systematic Integration of Variability
into Product Line Architecture Design, Proceedings of the
Second Software Product Line Conference, LNCS 2379,
Springer, August 2002

[19] Van Gurp, J.; Bosch, J.; Svahnberg, M.: On the Notion of
Variability in Software Product Lines, Proceedings of
WICSA 2001, August 2001

[20] Voget, S.; Angilletta, I.; Herbst, I.; Lutz, P.: Behandlung
von Variabilitäten in Produktlinien mit Schwerpunkt Ar-
chitektur, Proceedings of 1. Deutscher Software-
Produktlinien Workshop (DSPL-1),, Kaiserslautern, Ger-
many, November 2000

[21] Withey, J.: Investment Analysis of Software Assets for
Product Lines,
http://www.sei.cmu.edu/publications/documents/96.reports
/96.tr.010.html, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, USA, 1996

