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ABSTRACT. We make a systematic study of rational S'-equivariant cohomology theories,
or rather of their representing objects, rational S!-spectra.

In Part I we construct a complete algebraic model for the homotopy category of S!-
spectra, reminiscent, of the localization theorem. The model is of homological dimension
one, and simple enough to allow practical calculations; in particular we obtain a classifi-
cation of rational S!'-equivariant cohomology theories.

In Part 1T we identify the algebraic counterparts of all the usual S'-spectra and con-
structions on S'-spectra. This enables us in Part III to give a rational analysis of a
number of interesting phenomena, such as the Atiyah-Hirzebruch spectral sequence, the
Segal conjecture, K-theory and topological cyclic cohomology.
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CHAPTER 0

General Introduction.

0.1. Motivation

Spaces with actions of the circle group T are of particular interest. Loops occur in many
constructions, and it is often appropriate to take into account the action of the circle by
rotation; in particular the free loop space has been the object of much study. This in turn
leads towards the use of the circle group in cyclic cohomology; the refinements of topological
Hochschild homology and topological cyclic constructions are also important in algebraic
K-theory. More prosaically the circle is simply the first infinite compact Lie group, and
it plays a fundamental role in the understanding of all positive dimensional groups. For
any one of these reasons it is important to understand equivariant cohomology theories for
spaces with circle action.

To obtain a reasonably broad and simple picture, we consider the case of rational co-
homology theories; these have been considered before for special classes of spaces (see
for example [5]), but this appears to be the first attempt to obtain a complete algebraic
picture. In any case, the understanding of the rational case is a necessary first step to-
wards a general understanding of T-equivariant cohomology theories. It is well known [14]
that, for finite groups, all cohomology theories are products of ordinary cohomology the-
ories, but this is false for the circle group. A test case of particular interest is rational
topological K-theory. The example of J.-P.Haeberly [16] shows that, by contrast with the
case of finite groups of equivariance, there is no Chern character isomorphism. It follows
that T-equivariantly some topological structure remains, even after rationalization. The
author began the present work to understand the T-equivariant Chern character, the T-
equivariant Segal conjecture, the Tate construction on T-equivariant K-theory and several
other T-equivariant rational objects that had come to light. The list of contents contains
a list of examples treated here.

From now on we let T denote the circle group. We only consider closed subgroups, and
the letters H, K and L will denote finite subgroups. The family of all finite subgroups will
be denoted by F. We work rationally throughout, without displaying this in the notation;
for example S™ denotes the rationalized n-sphere.

1



2 0. GENERAL INTRODUCTION.

0.2. Overview

Equivariant cohomology theories are represented by equivariant spectra, and we shall
conduct most of the investigation at the represented level. This gives more precise infor-
mation both about individual theories and about natural transformations between them,;
indeed, the only loss is any geometric interpretation of the cohomology theory concerned,
which is inevitable in any general study. It is important to be explicit that we only consider
cohomology theories which admit suspension isomorphisms for arbitrary representations;
these are sometimes known as ‘genuine’ or ‘RO(G)-graded’ cohomology theories. The
corresponding representing objects are G-spectra. For these too there are adjectives to
emphasize the type of spectra concerned: they are ‘genuine’ G-spectra or G-spectra ‘in-
dexed on a complete G-universe’. Since these cohomology theories and these G-spectra
form the most natural classes to consider, we shall not use these adjectives unless required
for emphasis. As made clear by the title, we consider the circle group G = T.

Before summarizing our results we begin by putting the circle group into context. In
fact the circle stands at a watershed: for finite groups of equivariance rational cohomology
theories may be analysed completely, and any group more complicated than the circle is
substantially harder to understand.

The main problem in analyzing spectra is to choose basic objects which are easy to work
with and which give theorems of practical use. It is natural to be guided by one’s favourite
algebraic invariant, and this suggests analysis in terms of Moore spectra or Filenberg-
Maclane spectra. For finite groups of equivariance both approaches work well, and one
may analyse rational spectra completely. There are two reasons for this: firstly the group
has no topology, and secondly the classifying space has no rational cohomology. The first
fact means the category of Mackey functors is very simple, and the second means that the
classes of Eilenberg-MacLane spectra, of Moore spectra and of Brown-Comenetz spectra
coincide, so that all their characteristic properties can be used at once. Both simplifying
factors fail for infinite groups, and the three basic classes are distinct. This means that
different methods must be used: in essence we base our analysis for the circle group on
a slightly embellished version of equivariant homotopy with its primary operations. The
reason such a simple invariant suffices is that the rank of the circle group is one. In general
the injective dimension of the category of rational Mackey functors and the Krull dimension
of the cohomology of its classifying space are both equal to the rank of the group. When
the rank is one there is no room for extension problems, and some hope of a simple answer.
However, even for the group O(2), it is necessary to take into account a topology on the
space of subgroups, and to work with sheaves: it is no longer possible to treat different
conjugacy classes of subgroups entirely separately. This explains why it is worthwhile to
treat the single case of the circle in such detail.

The work is broken into three parts: Part I in which we construct the algebraic models
for various classes of T-spectra, Part Il in which we identify the algebraic counterparts of
various general constructions, and Part III in which we consider several classes of examples
of particular interest. Each part has a detailed introduction of its own, but we give a
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general outline here.

Part T begins by discussing K-theory. On the one hand, we give Haeberly’s example
showing that K-theory cannot be described simply using ordinary cohomology. On the other
hand, we give a generalization of McClure’s result that the K-theory Atiyah-Hirzebruch
spectral sequence collapses for F-free spaces. This suggests the necessity of the present
work and that it is practical. We then turn to the main business of constructing a model:
in this introduction we describe the model in an aesthetically satisfying way, but do not
attempt to explain the proof that it is a model. The introduction to Part I gives a different
approach to the model which does suggest the proof. We would prefer to achieve these two
ideals simultaneously.

To motivate the form of the model, one should recall the classical localization theorem
for semifree T-spaces. This states that if X is a finite space which only has isotropy groups
T and 1, then the inclusion of the fixed point space X' — X induces an isomorphism in
Borel cohomology once the Euler classes € = {1, ¢y, i, ...} are inverted:

EVH*(ET, Ay X) — E'H*(ET, Ar XT) = E'H*(BT,) @ H*(XT).

We conclude that N = H*(ET, Ar X), regarded as a module over Q[c;| = H*(BT,) is
very nearly enough to identify the homology of the fixed point space X, but we need
to pick out a vector subspace V = H,(X") of £ 'N which is a basis in the sense that
E'N=E TH*(BT,)® V. In particular, if X is free then N is £-torsion.

Now T-equivariant cohomology theories are represented by T-spectra, and the localiza-
tion theorem suggests a model which turns out to be a complete invariant. To describe it,
we first note that there is a natural homotopy-level analogue of the set of isotropy groups
which occur. This uses the geometric K-fixed point functor X —— ®% X which is the func-
tor extending the K-fixed point functor on spaces, in the sense that ®* (X*Y) = ¥°°(YK);
it also enjoys similar formal properties to the space-level functor. We then define the set
of isotropy groups of a spectrum X to be the set of subgroups K for which the geometric
fixed point spectra ®¥ X are non-equivariantly essential. This gives the notion of a free
T-spectrum (alternatively characterized as a T-spectrum X for which ET, A X — X is
an equivalence). We therefore suppose given a collection H of finite subgroups of T, and
we may consider the class of H-free spectra (i.e. those with isotropy in H), and the class
of H-semifree spectra (i.e. those with isotropy in # U {T}). The reader should concentrate
on the case H = {1}, which gives the usual classes of free and semifree spectra, and on
the case H = F: the class of F-semifree spectra is the class of all T-spectra. However the
additional generality makes the picture clearer, and the two special cases are representative
of the two classes of examples: those with H finite, and those with H infinite. Analagous
to the ring H*(BT,) we have the ring of operations

Oy = C(H, Qc],

where C(H,Q) denotes the Q-valued functions on the discrete set H, and ¢ is of degree
—2. The notation is chosen to suggest that Oy is a ring of functions on H. This ring is
Noetherian if A is finite and not otherwise. We let ey € C(H,Q) = (Oy)o denote the
idempotent with support H € H, and we let ¢y = eyc. Next we need the set £ = £y
of Euler classes. If H = {1} this is simply the multiplicative subset {1,¢1,c¢,...} of Oy
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used for the localization theorem above, but in general it needs a little more explanation.
For any finite subset ¢ C H we have an associated idempotent e, € Oy, and we have an
Euler class ¢, = egc + (1 — e4), which is not a homogeneous element of Oy. The effect
of ¢, on an Oy-module M = e, M & (1 — e,) M is to multiply by ¢ on the first factor and
do nothing to the second: thus the result of inverting ¢, on M is again a graded module:
esM[c '] @ (1 — ey) M. Thus our second ingredient is the set

Ex = {c} | ¢ C H finite, k > 0}

of Euler classes. The category modelling semifree #H-spectra is then the category Ay of
Oy-modules N with a specified graded vector space V to act as a basis of £ 'N. It is
convenient to package this as saying that we are given a basing map

BN — (E'0u) @V

which becomes an isomorphism when £ is inverted. This makes clear that a morphism in
Ay is a diagram

M 4, N

al LB
E'0) U 28 (£'04) ®V.

We refer to N as the nub and V' as the vertex. We also refer to an Oy-module with specified
basing map as a based Oz-module, and to a morphism 6 : M — N for which there is
a compatible map ¢ as a based map. Note that if H is a singleton the existence of a
basing isomorphism £ 'N 2 £ 'O, ® V for some V is automatic, but in general it puts a
restriction on the modules V.

The connection with topology arises since O = [EF,, EF.]!, and hence this acts on
both 7T (EF, A X) and 7 (DEF, A EF A X) for any X; if X is H-semifree this action
factors through the projection O — . Furthermore, since ¢ is of negative degree
and any element of 7. (EF, A X) is supported on a finite subspectrum, one sees that
E'rN(EF, A X)=0. Next, we have a map

DEF,ANX — DEF_ ANEFAX ~DEF, NEFA®"X

with cofibre DEF, ANXEF, AN X ~ YEF, AN X. Since the homotopy of the cofibre is
Euler-torsion, its homotopy

(X)) = (Trjf(DEﬂ AX)— 1Y (DEF, ANEFA®'X) =1 (DEF, NEF)® TF*(CI)TX))

*

is therefore an object of Ay.
Now we may state our main classification theorem.

Classification Theorem: For any collection H of finite subgroups of the circle T, the
above invariant induces bijections

(1)

{H-free rational spectra} / ~ «— {Euler-torsion Oy-modules} / =
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where ~ denotes homotopy equivalence, and = denotes isomorphism, and
(i)

{H-semifree rational spectra} / ~ <+— {based Oy-modules} / =
where ~ denotes homotopy equivalence, and = denotes isomorphism. In particular, ra-
tional T-equivariant cohomology theories are in bijective correspondence to isomorphism
classes of based Oz-modules.

In practice this is derived as a corollary of a theorem identifying the categories of spectra
in algebraic terms. More precisely, recall that the derived category of a graded abelian cat-
egory is the category of differential graded objects with homology isomorphisms inverted,
although for practical purposes a more concrete construction is essential. The theorem
identifies the categories of spectra as the derived category of the associated algebraic cate-
gory:

H-free T-spectra ~ D(Euler torsion Oy-modules)
and
‘H-semifree T-spectra ~ D(based Oy-modules).

Furthermore, cofibre sequences of spectra correspond to triangles under these equivalences.
The point here is that both algebraic categories turn out to be abelian and one dimensional,
so that morphisms in the derived category can be calculated from a short exact sequence
involving Hom and Ext in the abelian category.

It is sometimes more practical to identify the place of a spectrum X in the classification
by a different route. This amounts to identifying first EF, A X and ®" X, and then the
map

qx : EF ANO"X = EFAX — SEF, AN X
of which X is the fibre. It is not enough to identify the effect of ¢x in homotopy: one
must also take into account the twisting given by representations, and in general this
requires both primary and secondary information. Nonetheless, there is a second model
for semifree H-spectra based on this approach, which we call the torsion model. We show
it is equivalent to the standard model described above, and it is often the easiest route to
placing a spectrum in the classification.

There are really three stages to the proof of these theorems. Firstly one shows, using
idempotents in the Burnside rings of finite subgroups, that for F-free spectra it is essentially
enough to deal with the case of free spectra. Next, one constructs an Adams spectral
sequence for free spectra, which collapses to a short exact sequence and gives a means of
calculation. Because of the particularly simple algebraic behaviour of O; = Q[¢;] this is
enough to identify the entire triangulated category. The final stage is to take this work and
process it: this stage is essentially formal.

Once we have algebraic models for various categories of spectra we naturally want to
understand familiar topological constructions in algebraic terms. This is the business of
Part II. We have followed the order suggested by logic, and therefore begin by studying the
smash product and function spectrum constructions, and then go on to functors changing
equivariance. Unfortunately the smash product and function spectrum are by far the
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most complicated examples, and require more algebraic machinery than any of the other
examples we consider. Furthermore, their complexity means that we are not able to show
that our description is functorial, and our approach is necessarily indirect. This highlights
a shortcoming of our method: the correct proof of our results would follow that used
by Quillen in modelling rational homotopy of simply connected spaces. The functorial
identification of smash products and function spectra would then be automatic. At present,
such a proof is not accessible, but the present results strongly suggest that such a proof
exists. In any case, the model of the smash product is essentially the left derived tensor
product, and the model of function spectra is its right adjoint. There are two warnings here:
in the categories of H-free spectra, there are not enough flat objects, so the left derived
tensor product must be calculated in a larger category; it results in an Euler-torsion object
since it coincides with the suspension of the right derived torsion product. With this caveat,
if the spectra X and Y are modelled by M and N respectively then

X AY is modelled by M ®@% N.

There is also a caveat for function objects, which we now explain. It is convenient in
both cases to consider the larger algebraic category in which no condition is placed on the
behaviour of Euler classes. For H-free spectra this is the category of all Oy-modules, and
for H-semifree spectra it is the category of all maps N — £ 'Oy @ V. It turns out that
the internal Hom functor in the abelian category is the composite functor I' Hom (M, N),
where Hom(M, N) is an object in the category with no condition on behaviour under
inversion of Euler classes, and where I' is the right adjoint to the inclusion of the smaller
category. For example, in the case of H-free spectra Hom(M, N) is simply the Oz-module
of Oz-morphisms, and for an arbitrary Oy-module M’, the Euler-torsion module I'M is
defined to be the kernel of M — £ 'M. In the semifree case both functors are harder
to describe, and we refer the reader to Chapter 8. It turns out that the right adjoint of
M +— M @Y N is not the right derived functor of P +— I' Hom(N, P), but rather it is
P +— RT' RHom(N, P). Thus if the spectra Y and Z are modelled by N and P, then

The internal function spectrum of maps from Y to Z is modelled by RI' RHom(N, P).

An essential step in identifying the function spectrum on objects is to give a functorial
identification of the product. In these terms we may say that if X; is modelled by M; then

The internal product of the spectra X; is modelled by RI’ H M;,

and this model is functorial.

The other topological functors we consider can be modelled functorially, and we shall
discuss only the full category of T-spectra. The forgetful functor and its left and right
adjoints, induction and coinduction, are straightforward. Similarly the geometric fixed
point functor X +— ®TX is the passage-to-vertex functor given as part of the structure.
The first interesting functor is the geometric fixed point functor ®% : T — spectra —
T/K — spectra for a finite subgroup K. This turns out to be easy to describe: we simply
let e € C'(F,Q) denote the idempotent supported on the set [2 K] of subgroups containing
K. The algebraic model of ®¥ is multiplication by e; this make sense since eQ# is naturally
identified with the ring O% of operations for T = T/K. As usual, the Lewis-May fixed
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point functor ¥X : T — spectra — T/K — spectra (the spectrum UXX is written XX in
[18]) is much harder to understand, and we only describe its behaviour here for F-free and
F-contractible spectra, referring the reader to Chapters 11 and 12 for details of how these
are spliced. On F-contractible spectra X ~ EF A ®TX, we have VX (X) = EF A OTX,
so this is easy. We have seen that an F-spectrum X is modelled by an Euler-torsion Oz-
module N; from the form of Euler classes it follows that this is equivalent to specifying the

function
IN]: F — torsionQ|c] — modules

H +— BHN.

The Lewis-May fixed point functor groups these modules together according to the be-
haviour of the subgroup on passage to quotient. More precisely, we observe that passage
to quotient ¢ : T — T/K = T defines a map ¢, : F — F on finite subgroups. If the
function [N] models the F-free spectrum X then the function [¥* N] modelling WX X is
the map

F — torsionQ[c] — modules

H v @ u-ulNI(H).
A little thought shows that it is not a trivial matter to see how the F-free and F-
contractible parts should be spliced together. Because the Lewis-May fixed point functor
is so complicated, we actually approach it via its left adjoint, the inflation map infg/,( :
T/K — spectra — T — spectra. This is the functor given by regarding a T/K spectrum
as a T-spectrum by pullback along the quotient, and then building in representations (it is
written ¢ in [18], but more commonly i, by abuse of notation; we shall stick to the more
descriptive notation). From our description of Lewis-May fixed points it is easy to deduce

inflation on F-contractible and F-free specta. On F-contractible spectra Y ~ EFAQTY
we have inf%r/KY = EF A®TY. If [P] is the model of the F-spectrum Y then the model

[infr,, P] of inff Y is the composite

F o F P torsionQ[c] — modules.

In cases where N is Euler-torsion, the right adjoint of the inflation map is also its left
adjoint; it therefore also gives a model for the topological quotient when X is K-free.

The final chapter of Part II turns to ordinary cohomology and its variants. After Eilen-
berg and Steenrod we define a cohomology theory to be ordinary if its coefficients are non-
zero only in degree 0, and similarly in homology. For each integer ¢, an equivariant coho-
mology theory F((-) specifies a contravariant additive functor G/H, — F4L(G/Hy) = F},
on the stable category of orbits; such a functor is called a Mackey functor. As in the clas-
sical case, ordinary cohomology theories are classified by their non-zero Mackey functor M
in degree 0, and we write HZ(-; M) for this theory and HM for its representing spectrum.
Similarly, for each integer ¢ a homology theory F¢(-) defines a covariant additive functor
G/H, +— F{(G/H,) on the stable category of orbits; such a functor is called a coMackey
functor. Ordinary homology theories are classified by their associated coMackey functors
N, and we write HE(-; N) for this functor and JN for the representing spectrum. For
finite groups GG the stable orbit category is self-dual, so that a coMackey functor can also
be viewed as a Mackey functor; in this case the ordinary homology theory classified by a
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Mackey functor M is also represented by H M. However, for positive dimensional groups
such as the circle, the functor given by a homology theory cannot usually be viewed as a
Mackey functor.

Our first task is to identify objects of the form H M and JN in our model; we find that
they are well behaved but by no means trivial. Finally, whenever one has an injective
Mackey functor I one may consider the cohomology theory defined by Brown-Comenentz
I-duality

hIL(X) = Hom(z$(X). 1),

q

and its representing spectrum hl. Again, in the case of a finite group all rational Mackey
functors are injective, and HM = JM = hM. Indeed, this is the basis of a simple proof
that all rational cohomology theories are ordinary for finite groups. However, for the circle
group the spectrum hl is rather complicated, and in particular it is unbounded; we identify
it exactly in our model.

In Part III we apply the general theory of Parts I and II to several examples of particular
interest. First we answer a number of obvious general questions. To begin with, we relate
the model we have used to the use of Postnikov towers and the use of cells. In fact, we
can understand the Atiyah-Hirzebruch spectral sequence Hy(X; K7) = K3(X) for F-free
spectra X completely, in terms of our model. It collapses at the Ey page if and only if
KI(EF,) is injective over Ox. The latter condition holds for complex K-theory, so we
recover McClure’s theorem that the Atiyah-Hirzebruch spectral sequence for the rational
K-theory of an F-space collapses at E;. However, in general there are arbitrarily long
differentials. The contrast with the simplicity of the one dimensional nature of the category
of Euler-torsion Oz-modules suggests that the Postnikov tower is a poor way to study T-
spectra. On the other hand, because of the simplicity of the graded maps between cells,
we can contemplate homological algebra over it, and it is easy to construct a convergent
spectral sequence based on cellular resolutions with a calculable Ey term. Unfortunately
the spectral sequence does not appear to be useful in general.

We do not have the means to detect purely unstable phenomena, but the splitting the-
orem of Segal and tom Dieck shows that suspension spectra of T-spaces are very special,
and we briefly comment on the implications of this for their algebraic model.

Finally we return to complex K-theory and identify its algebraic model. It is simple
to describe in terms of representation theory, and is well behaved algebraically (‘formal’
in the torsion model). However there remain many interesting questions that we have
not treated. Firstly, a qualitative comparison of the F-spectrum Euler classes and the K-
theory Euler classes is sufficient for our purpose, but an exact comparison using the Chern
character, along the lines of Crabb’s work [5], would be illuminating. Secondly, it would be
interesting to compare our model with that of Brylinski [3]. Presumably these questions
would be useful preparation for the more substantial project of modelling T-equivariant
elliptic cohomology as constructed by Grojnowski [8] and Ginzburg-Kapranov-Vaserrot [6].

The other motivating problem was that of understanding the T-equivariant analogue of
the Segal conjecture. We had the ironic situation that we understood the harder profinite
part by virtue of work on the Segal conjecture for finite groups, whilst we could not un-
derstand the rational part. Using the model described here, it is now an easy exercise to
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identify DET, in the torsion model as the composite
5710]: 030} 5710}‘ — 5710]: — 5710]:/0}‘ — Q[Cl, C;l]/Q[Cl]

where the first map is the product. It is quite instructive to view this as a special case of
the identification of the function spectrum.

Turning to more specialised examples, we reach Tate cohomology theories in the sense of
[14]. This construction on T-spectra corresponds precisely to Tate cohomology in commu-
tative algebra in the sense of [10]. Perhaps more interesting is our study of the integral Tate
spectrum of complex equivariant K-theory. We are able to identify the exact homotopy
types of both t(KZ) A EF, and t(KZ) A EF and the map ¢ of which ¢(KZ) is the fibre:
the first is rational, and identified using our general theory, and the second is formed from
K-theory with suitable coefficients by inflating and smashing with EF.

Finally we turn to examples gaining their importance from algebraic K-theory. The mo-
tivation for the notion of a cyclotomic spectrum comes from the free loop space AX =
map(T, X) on a T-fixed space X. This has the property that if we take K-fixed points we
obtain the T/K-space map(T/K, X), and if we identify the circle T with the circle T/K
by the | K |th root isomorphism we recover AX. For spectra one also needs to worry about
the indexing universe, but a cyclotomic spectrum is basically one whose geometric fixed
point spectrum ®X X, regarded as a T-spectrum, is the original T-spectrum X. After the
suspension spectrum of a free loop space, the principal example comes from the topological
Hochschild homology of T"H H(F') of a functor F with smash products. Given such a cyclo-
tomic spectrum X one may construct the topological cyclic spectrum T'C'(X) of Bokstedt-
Hsiang-Madsen [2], which is a non-equivariant spectrum. An intermediate construction of
some interest is the T-spectrum T'R(X). Although these constructions are principally of
interest profinitely, it is instructive to identify the cyclotomic spectra in our model and fol-
low the constructions through. In fact we show that cyclotomic spectra, are those spectra
X so that the function [N]: F — torsionQ|c|] — modules modelling EF, A X is constant,
and so that the structure map £ 'O ® V. — N commutes with any translation of the
finite subgroups. It therefore factors through € 'Oz @V — (£ '0#)/Or ® V, and the
map (€ 'Ox)/Or®@V — N is a direct sum of copies of Q[c, ¢ ']/Q[c]®@V — X[N](1).
Furthermore, we may recover Goodwillie’s theorem that for any cyclotomic spectrum X
we have T'C'(X) = X"": topological cyclic cohomology coincides with cyclic cohomology in
the rational setting.

This summarises the contents of the body. There are also a number of appendices. Ap-
pendix A gives the structure of rational Mackey functors, and is of independent interest:
in particular the category is of projective and injective dimension 1. Appendix B gives
Quillen closed model category structure on the algebraic categories. Finally we suggest the
reader glance at Appendix C summarising our conventions. There are also a number of
indices.

It is appropriate to comment briefly on reading this document. Formally, Part I is the
basis of all that follows, and is cumulative. Part II consists of an introductory chapter,
followed by the treatment of four classes of examples. Since it gives algebraic models of
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topological constructions it must therefore develop the relevant algebra before comparing
it to topology. Thus Chapters 8 and 11 are purely algebraic, and are prerequisites for
Chapters 9 and 12 respectively. Otherwise the chapters are independent of each other,
but the geometric results depend on Part [. Finally, the chapters of Part III are again
independent, and depend only on Part I and the appropriate results from Part 1. We have
made some effort to ensure it is possible for the trusting reader to read a part without
previously reading its predecessors.

We expect there will be those only interested in Chapters 1 to 3. There may also be
those wanting to gain a feel for the behaviour of certain functors, who may find Part II
worthwhile, even without reading Part I. Finally, there may be those who want to begin
with Part III and read earlier chapters as necessary.

The author is grateful to the Nuffield Foundation for its support, to the Universities
of Georgia (Athens) and Chicago for their hospitality, and to the towns of Karlsruhe and
Worms. The author also thanks L..Hesselholt, J.P.May and N.P.Strickland for useful com-
ments and conversations.
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The algebraic model of rational T-spectra.
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CHAPTER 1

Introduction to Part 1.

This chapter motivates Part I and provides a map for it. In Section 1.1 we explain the
strategy used in Part I to analyse the category of rational T-spectra, and in Section 1.2
give a brief guide to help readers with particular interests. This is followed in Sections 1.3
and 1.4 by accounts of Haeberly’s example and a generalization of McClure’s theorem: this
is designed to show there is a need for analysis and some hope of achieving it.

1.1. Outline of the algebraic models.

The main business of Part I is to construct a complete algebraic model of the category
of rational T-spectra. Since spectra represent cohomology theories, this gives a complete
algebraic classification of rational T-equivariant cohomology theories. Having given the
overview in the General Introduction, we concentrate here on the practical approach. In
fact, we lead the reader through the investigative process to the algebraic model of T-
spectra. This should help explain the how geometric information is packaged in the model,
and how the algebraic model can be used.

The main problem in analyzing T-spectra is to choose basic objects which are easy to
work with and which give theorems of practical use. We explained in the introduction that
the building blocks familiar from finite groups of equivariance are not suitable: Eilenberg-
MacLane spectra, Moore spectra and Brown-Comenetz spectra form distinct classes. This
means that different methods must be used.

The redeeming feature is that there is no complication at all from representation theory
since the Weyl groups are all connected. This means we can return to geometric intuition
and concentrate on isotropy groups. It is appropriate for our present purpose to think of
T-spectra as generalized stable spaces. It is standard practice in transformation groups
to consider various fixed point spaces X of a space X. In particular, spaces with a free
action are especially approachable. One reason for this is that only one subgroup occurs as
an isotropy group. In the rational case the behaviour at each finite subgroup is reasonably
similar and reasonably simple. Therefore it is common to consider spaces X all of whose
isotropy groups are finite. These are variously called F-spaces, F-free spaces, almost free
spaces, or spaces without fixed points. We shall call them F-spaces, and concentrate on
the fact that they are equivalent to spaces constructed from cells G/H x E™ with H finite.

13
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In any case, our analysis follows this time-honoured pattern, by breaking any object X
into into F-free and F-contractible parts by the isotropy separation cofibering

X — XAEF X XAYNEF,.

We thus consider X in two parts: the F-contractible object X(T) = X A EF and the F-
free object X (F) = X A EF,. The object X(T) is determined by its T-homotopy groups
as rational vector spaces. The main content of the analysis is therefore in understanding
F-objects such as X (F), and how they may be stuck to F-contractible objects X (T). By
use of idempotents in Burnside rings it is easy to see that X (F) splits as a wedge of objects
X (H), one for each finite subgroup H, where only the isotropy group H is relevant to
X (H). The category of these will be called the category of T-spectra over H and denoted
T- Spec/H; the mathematical core of the whole enterprise is the analysis of this category of
objects X (H). It turns out that 7 (X (H)) is a torsion module over the ring Oy = Qley],
in which ¢y is an Euler class, and of degree —2, and that the category T—Spec/H of objects
X (H) is equivalent to the derived category of differential graded torsion Q[cy]-modules.
The object X (F) is thus determined by the torsion module 7} (X (F)) over Oz = [1 Qley].
Because we are working rationally it is not difficult to calculate homotopy groups of any
precisely described spectrum, so this description is of practical use.

Finally we must determine the assembly map ¢x : X(T) — XX(F). Note first that

7L (X (T)) is not naturally a module over Oz, and also that 7} (¢x) may be zero without gx

being zero. The answer is to take into account the twisting available from representations
of T. This twisting is measured by Euler classes, and since there are Thom isomorphisms
for arbitrary F-spectra we may consider the ring £ 'O formed from Oz by inverting all
Euler classes. We denote this ring t7, since it is in fact the F-Tate cohomology of S in

the sense of [14]. It turns out that t7 is @, Q in positive even degrees and [], Q in even
degrees < 0. By construction, t7 is a Or-module, and ¢x determines a map

gy 7 @7, (X(T)) — m, (X (F))

in the derived category of differential graded Oz-modules. It transpires that ¢x is a com-
plete invariant of ¢x, so that X is determined by the rational vector space 71 (X (T)), the
torsion Q[er]-modules 7 (X (H)), and the derived Oz-map ¢x. Continuing from this stage,
it is not hard to identify which triples (7L (X (T)), 7. (X (F)), Gx) occur, and to identify the
relevant algebraic triangulated category.

In fact we may consider the torsion model category A; whose objects are maps t7 @V —
T of Or-modules, T being a sum @, T(H) with T(H) a torsion Q[cy]-module. It turns
out that this category is abelian and of injective dimension 2. One may therefore consider
differential graded objects in A;, and invert homology isomorphisms to form the derived
category DA; . This category is equivalent to the category of rational T-spectra, and
provides the complete algebraic model we seek. However we prefer not to emphasize this
model: the analysis is only possible by introducing a second model, which we call the
standard model. This proves to be more convenient for most purposes. The real difficulty
is that, since A; is of dimension 2, it is rather hard to get a precise hold on morphisms
in the derived category. On the other hand the standard model is of dimension 1. The
identification of the standard model is the most important result of the analysis.
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It will help to explain the construction of algebraic models for four triangulated categories
of T-spectra in increasing order of complexity. They are (i) the category of free T-spectra,
or more generally the category T—Spec/H of T-spectra in which only the isotropy group
H is important, (ii) the category of T—Spec/F of F-spectra, (iii) the category T—Spec,
of semifree T-spectra and (iv) the category of all rational T-spectra. For each of these
categories C, we find an abelian category A = Ac¢ of dimension 1, and a linearization
functor 7 : C — Ac. Because the abelian category Ac is so simple in each case, it is
possible to reconstruct the original triangulated category C from it. Recall that the derived
category of an abelian category A is the category formed from the category of differential
graded objects by inverting homology isomorphisms; if A is finite dimensional, the derived
category may be constructed explicitly.

THEOREM 1.1.1. If C is one of the above four categories of rational T-spectra, there is
a category A = Ac which is abelian and one dimensional so that there is an equivalence of
triangulated categories

C~ DA,
where DA is the derived category of A. Hence in particular, for any objects X and Y of
C, there is a natural short exact sequence

0 — Exty(n2(2X), 72(Y)) — [X,Y]" — Homy (7 (X), 72(Y)) — 0,

* *

which splits unnaturally.

Before making the theorem explicit for the four categories we make some general remarks
about the levels at which the theorem is useful. Firstly, every geometric object X of C
has an algebraic model 7*(X) and there is a bijection between isomorphism classes in
C and isomorphism classes in A. Next, if we know the algebraic models of two objects
X and Y, the short exact sequence allows us to use the algebra of the abelian category
to calculate the group [X,Y]T of maps between them. Finally, we may model all primary
constructions (such as formation of cofibres, smash products, function spectra, composition
of functions and calculation of Toda brackets) in the algebraic category. This much is
internal to the category, but in addition, all homotopy functors of T-spectra have their
algebraic counterparts. It is very illuminating to identify the algebraic behaviour of various
well known functors.

We now make Theorem 1.1.1 explicit in the four cases.

THEOREM 1.1.2. If C = T Spec/H is the category of T-spectra over H, then A is the
category of torsion Q[ey]-modules. The functor 7 is simply T-equivariant homotopy ..
This category A is abelian and one dimensional. Accordingly, for two T-spectra X and Y
over H there is a split short exact sequence

0 — Extgpe, (7, (2X), 7, (Y)) — [X, Y], — Homgye, (m, (X), 7, (Y)) — 0. O

The proof of this will be completed in Section 4.3. The short exact sequence is Theorem

3.1.1, and it is the central result of the analysis of Part I.
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THEOREM 1.1.3. If C = T Spec/F is the category of F-spectra, then A is the full
subcategory of Oz-modules M of the form M = @y M(H) for torsion Q[cy]-modules
M(H). We refer to these as F-finite torsion modules, and they may also be described
as the Oz-modules annihilated by inverting all Euler classes. The functor 7 is simply

T-equivariant homotopy 7.. The category of F-finite torsion modules is abelian and one
dimensional. Accordingly, for two F-spectra X and Y there is a split short exact sequence

0 — Exto, (1. (2X), 70 (Y)) — [X, Y], — Home, (71 (X), 7. (Y)) — 0. O

* *

The proof of this will also be completed in Section 4.3.

THEOREM 1.1.4. If C = T—Spec,, is the category of semi-free spectra, then A is the
category whose objects are morphisms M — Qlc, ¢ '] ® V' of Q[c]-modules (for some
graded vector space V') which become isomorphisms when c¢ is inverted. This category A
is abelian and one dimensional. The functor 7 is defined by
7 (X) = (7. (X ADET,) — (X A DET, A EF)).

Accordingly, for two semifree T-spectra there is a split short exact sequence

0 — Bxt (72 (2X), 72(Y)) — [X, Y] — Homy (7 A(X), 72(Y)) — 0. O

Finally the model of all rational T-spectra is as follows.

THEOREM 1.1.5. If C = T—Spec then A is the category whose objects are morphisms
M — t7 ® V of Oz-modules (for some graded vector space V') which become isomor-
phisms when all Euler classes are inverted (i.e. the kernel and cokernel are F-finite torsion
modules). This category A is abelian and one dimensional. The functor 72! is defined by
TA(X) == (7}(X A DEF,) — w1 (X A DEF, A EF)).

*

Accordingly, for two T-spectra there is a split short exact sequence

0 — Exta(r2(2X), 72(Y)) — [X, Y]] — Homy(r2(X), 72(Y)) — 0. O
The proof of this is given in Section 5.4. It should be emphasized that Hom4(M, N) and
Ext4(M, N) are routinely computable, and that, because we are working rationally, there
is usually no serious trouble in calculating 7(X).

Part I begins with the concrete and moves towards the abstract in two steps. Thus we
begin with the cohomology theories, move on to homotopy theory, pass to algebra by an
Adams spectral sequence, and finally package this in categorical terms. Here is a more
detailed outline of contents.

We begin with two sections which can be expressed in classical terms. These give evidence
that there is some complexity in rational T-equivariant cohomology theories, but not too
much. In particular they give some evidence for the simplicity of F-objects.
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After this, the discussion is conducted in the Lewis-May [18] stable category of T-spectra.
The first step is to introduce the basic building blocks and the methods for breaking general
objects up. This gives us the setting to construct an Adams spectral sequence, which
provides the connection between topology and algebra. Once the Adams spectral sequence
for T—Spec/H has been constructed we need only do some algebra and certain formal
manipulations to obtain and exploit all the algebraic models. We have taken the view that
an abstract machine should only be introduced when there is a particular case on which
its operation can be illustrated. Accordingly we have not described the transition from an
Adams spectral sequence to an algebraic model (in Section 4.2) until we have constructed
the simplest instance to which it applies. On the other hand Section 4.2 may be relevant in
quite different settings, and it is written axiomatically so that it can be read and applied
independently of the preceding sections.

Once the general analysis is completed we consider standard T-spectra and constructions
on T-spectra in Part II. In Part III we consider in more detail certain examples of estab-
lished interest. More detailed accounts of the contents of Parts II and III may be found in
their introductions.

1.2. Reading Guide.

Some readers may not wish to read all of the material in Part I, so we provide further
guidance here.

Those only interested in the Atiyah-Hirzebruch spectral sequence for the K-theory of
an F-space will only need to read Sections 1.3, 1.4, 2.1, referring to Appendix A for the
necessary facts about Mackey functors. Sections 1.3 and 1.4 are not used elsewhere in Part
I. We shall return to the Atiyah-Hirzebruch spectral sequence in Section 15.1 of Part III,
where we give more complete results.

Those interested in Mackey functors should read Section 2.1 and then refer to Appendix
A. Mackey functors are not used until we consider ordinary cohomology theories in Chapter
13 from Part II.

The central material constructing the main Adams spectral sequence for the categories
of F-spectra and T-spectra over H is to be found in Chapters 2 and 3. Maps from F-
contractible spectra to F-free spectra are deduced in Sections 5.1 and 5.2. This is sufficient
to answer most direct questions about particular T-spectra, and may satisfy some readers.
On the other hand readers wishing to understand the shape of the algebraic models without
reading these chapters.

In Chapter 4, we explain the abstract process of reaching an algebraic model from an
Adams spectral sequence and we illustrate it for T-spectra over H. However the goal of a
full algebraic model is fulfilled in Chapter 5. We deduce the remaining topological input
from the Adams spectral sequence in Sections 5.1 and 5.2, and construct the algebraic
model in Section 5.3. It is then a simple matter to show in Section 5.4 that the algebra
does indeed model the topology. Chapter 6 completes the circle by introducing the torsion
model, closely following geometric intuition, and by showing that it gives a model equivalent
to the standard model.
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1.3. Haeberly’s example.

We give Haeberly’s example [16] showing there is no Chern character isomorphism, for T-
equivariant K-theory. This simply involves constructing a T-space X whose equivariant K-
theory is concentrated in even degrees, but whose ordinary cohomology with coefficients in
the rationalized representation ring functor is nonzero in odd degrees. Since the homotopy
functors of the K-theory spectrum are in even degrees the K-theory cannot be a product
of copies of ordinary cohomology. In the next section we give a proof of a generalization of
McClure’s result that there is a Chern isomorphism for T-spaces X with X' trivial.

To explain Haeberly’s example it is convenient to consider the group I' = T x T" where
both T and T" are copies of the circle group. The group I' has a 3-dimensional complex
representation V = (1 &t & t*) @ t, where ¢ is the natural representation of T on C, and
similarly for T'. We may consider the unit sphere S(V') as a I'-space, give it a disjoint
basepoint and then form the T-space X = S(V),/T'. We could equally well describe X
as a copy of CP? on which T acts via s(z : 21 : 22) = (20 : sz : §%29). From the first
description it is easy to calculate the K-theory since we have K} (X) = K (S(V)4 ), because
S(V) is free as a T'-space. Indeed, the cofibre sequence S(V), — S® — SV of I-spaces
gives an exact sequence

s KSY) M KIS0 s KE(S(V)y) —— KEF(SY) e

Now by Bott periodicity Kj-(S") is R(T) if  is even and 0 if 7 is odd, and because the degree
0 Euler class A(V') = (1—¢')(1—#t')(1—#?') is not a zero divisor in R(T) = Z[t, ¢t 1, ¢, (#')7!]
we find

K2(X) = R([)/A\V) and Kp(X) = 0.

In particular the K-theory of X is entirely in even degrees.

On the other hand from the second description it is not hard to see that X has isotropy
groups T, Cy and 1. Furthermore X2 = (S v S%), and X may be given a T-CW structure
with two free 1-cells, one free 2-cell and one free 3-cell. Hence for any Mackey functor M
we see that Hi(X; M) is the cohomology of a complex

3M(T) 25 M(Cy) @ 2M (1) 2 M(1) 25 M(1),

and it is easy to see that d' is surjective. Thus H*(X; M) = M (1), and in particular if M
is the rationalized representation ring Mackey functor this is the non-zero group Q.

1.4. McClure’s Chern character isomorphism for F-spaces.

McClure has observed that the if X is an F-space then the Atiyah-Hirzebruch spectral
sequence for the K-cohomology of X does collapse at E,. His proof involves appealing to
unstable results and the work of Slominska. We shall give a proof of the corresponding
statement for any cohomology theory whose homotopy functors are concentrated entirely
in even degrees, and of the corresponding statement for homology theories. Of course this
applies in particular to K theory, by the Bott periodicity theorem. In Section 15.1 of Part 3
we shall give a necessary and sufficient condition for the collapse of the Atiyah-Hirzebruch
spectral sequence for F-spaces, which will give an alternative to the proof of this section.
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Before stating the theorem, we recall that for each integer k it is appropriate to consider
the entire system of homotopy groups n/(X) = [G/H, A S*, X]T as H runs through
all subgroups of T. It is appropriate to regard this as a functor m,(X) : G/H, —
[G/H NSk, X]" on the category of stable orbits. An additive functor of this form is called
a Mackey functor; we examine the algebraic structure of the category of rational Mackey
functors in Appendix A, but for the present we only need the basic terminology. In line
with the usual abbreviation we write the coefficient functor z} (K) as K.

Since the orbits are the equivariant analogues of points, an ordinary cohomology theory
is one for which the cohomology of each orbit is concentrated in degree zero. Thus ordi-
nary cohomology theories correspend to Mackey functors M, and they are represented by
Eilenberg-MacLane spectra H M.

THEOREM 1.4.1. If K is any rational T-spectrum with homotopy functors K = 0 for

all odd integers m then for any F-space X there are isomorphisms
(a)

Ki(X) = [T Hr(3"X; KDy,

nez

and
(b)

K, (X) =D H, (5" X: Ky,).

nez

This follows from a geometric statement.

THEOREM 1.4.2. If K is any rational T-spectrum with homotopy functors K. = 0 for
all odd integers m then
(a)
F(EF,,K) ~ F(EF,, [| S H(K},))
nez
and
(b)
KANEF, ~\/ EF NS H(K},).

nez

To see how Theorem 1.4.1 follows from 1.4.2 we use a lemma which is immediate from
the definition of EF, and its unreduced suspension EJF.

LEmMMA 1.4.3. For any F-spectrum X,
(a) X A EF ~ % and hence X ~ EF, A X; also
(b) for any T-spectrum Y we have F(X,Y A EF) ~ % and hence F(X,Y A EF,) ~
F(X,Y). O

By 1.4.3 (a), Theorem 1.4.1 follows by applying F/(X, ) to Part (a) of 1.4.2 and XA to
Part (b) of 1.4.2 and taking homotopy groups.
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Proof: We turn to the proof of 1.4.2. Note first that it is enough to prove Part (b); indeed,
by 1.4.3 (b), Part (a) follows by applying F(EF,,-) to the equivalence of Part (b).

It is enough to construct a T-map 0 : K A EF, — EF| AV ,pez S H(K,,) which is
an H-equivalence for all finite subgroups H. By the Whitehead theorem it is sufficient
that 0 induces an isomorphism of 7 for all finite subgroups H. By 1.4.3 (b) again, it is
equivalent to give the composite

0': KANEF, — \/ S"H(K,,),
nez
and since this wedge is equivalent to the product we may specify §' by giving its components.
These are elements of the cohomology groups [K A EF,, HM]; = H}(K N EF; M) for
various Mackey functors M. Accordingly we set about calculating the cohomology of
KANEF,.

The idea is to filter EF, so that the subquotients are analogues of cells, but with all
elements of finite order as isotropy groups. This extends the idea of [9]. Thus we note that
if H C L we have a projection T/H — T/L, and that the subgroups of finite order form a
directed set. We may therefore let T/ F, := hoLimH T/H, where the limit is over all finite
subgroups H (or over a cofinal sequence if that appears more comfortable). Analogously,
if H is a finite subgroup of order n we may let V(H) denote the representation ¢" with
kernel H, and there are maps mV (H) — mV (L) (of degree |L/H|™) for all m. We let
S(mV(F))y = hoLimH S(mV (H))4 for 0 < m < oo. The usefulness of these constructions

is summarized in a lemma.

LEMMA 1.4.4. The infinite sphere S(coV(F)); is a model for EF,. We thus have a
filtration

*=S(O0V(F))r CSAV(F))+ € SQRV(F))+ € -+ € S(ocV(F))y = EF,
and the subquotients are generalized cells
S(mV(F))+/S((m =DV (F))s = S 2 ANT)F.
for 1 <m < o0.
Proof: Since (S(mV (H))): =0if L ¢ H or S(mV (H)) if L C H the fact that S(coV (F)),

is a universal space is clear. To identify the quotients we use the fact that the cofibre
sequences

S((m—1)V(H))y — S(mV(H))y — S*™ 2 AT/H,
fit into a direct system. [

In other words we have
EF, =T)F. UT)F ne? UT)F.Net UTJFNe® U---

Thus, for any spectrum K, we may form the spectral sequence of the filtered spectrum
K AN EF, which will have the form

B}t = HY (K A (BFY JEFSY); M) = HEYK A EF; M),
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Indeed, from the form of the filtration, we find the spectral sequence is concentrated in the
first quadrant in terms with even s where we have

E{™ = HL(K AT Fy; M).
Of course, using the change of groups isomorphism H} (K AT/H ;M) = Hj;(K; M), we
have a Milnor exact sequence

0 — lim! Hj ' (K; M) — Hi(K AT)Fo; M) — lim  H}y (K; M) — 0.

It is in the analysis of this exact sequence that it is essential we are working rationally.
Indeed, because H is finite, every rational H-spectrum is a product of Eilenberg-MacLane
spectra and these are necessarily also Moore spectra. It now follows that, provided K has
its homotopy functors in even degrees, the groups H% (K; M) are only nonzero for even t.
The collapse of the spectral sequence is thus ensured once we show the liim1 terms vanish.

In fact the restriction maps
Hy (K5 M) — Hy (K; M)

are surjective. Perhaps the quickest way to see this is to note that Hj,(HM'; M) =
[HM', HM];, = Homy (M', M), for any Mackey functors M’ and M. We may then use the
corresponding fact for Mackey functors, that

Homy (M', M) — Homg(M', M)

is surjective. This surjectivity is due to the fact that all Weyl groups are connected, and it
is easily deduced from Appendix A.
We conclude that if K has all its homotopy functors in even degrees then

Hi{(KNEF ;M) = n};[zlignH H (™ K; M),
and in particular we can find a map
04 K NEF, — P H(K,,,)
inducing the identity in 7,/ (e) for all finite subgroups H. The map
0:KANEF, — \/ ¥"H(K3,)
nez

is thus an F-equivalence and hence f is a homotopy equivalence as required. [

In Section 15.1 of Part III we shall complete the picture of Atitiyah-Hirzebruch spectral
sequences for F-spaces by giving an analysis without hypothesis on the rational cohomol-
ogy theory. We characterize those theories K7 (-) for which the spectral sequence always
collapses at Fs,, show that arbitrarily high differentials occur, and give a geometric expla-
nation of them in terms of universal examples. The behaviour of the spectral sequence for
arbitrary spaces X is much more complicated.



