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Abstract— The outcome of many complex manipulation ac-
tions is contingent on the spatial relationships among pairs of
objects, e.g. if an object is “inside” or “on top” of another.
Recognising these spatial relationships requires a vision system
which can extract appropriate features from the vision input
that capture and represent the spatial relationships in an easily
accessible way. We are interested in learning to predict the
success of “means end” actions that manipulate two objects at
once, from exploratory actions, and the observed sensorimo-
tor contingencies. In this paper, we use relational histogram
features and illustrate their effect on learning to predict a
variety of “means end” actions’ outcomes. The results show that
our vision features can make the learning problem significantly
easier, leading to increased learning rates and higher maximum
performance. This work is in particular important for robots
that need to reliably predict the success probability of their
multi object manipulating action repertoire in novel scenes.

I. INTRODUCTION

We want to learn to predict the success of means-end
actions (i.e.where one action is used in order to facilitate
another) grounded in sensorimotor contingencies (SMC).
The outcome of means-end actions in complex environments
is contingent on the spatial relationships among the ma-
nipulated objects. Robots performing means-end actions in
complex environments need a sound understanding of how
these spatial relations affect the success of their actions.
Learning how spatial relationships affect action outcomes
can be slow and difficult, if the state space representation
does not capture and represent the important information
appropriately and easily accessible. In previous work we have
developed a histogram feature which is good at capturing
information about spatial relationships for a variety of object
pairs [1]. This paper uses that feature, but instead of learning
to recognise manually defined spatial relationships as done
in [1], it focuses on the learning of preconditions that
determine the outcome of actions that are based on spatial
relationships such as pushing an object which is ‘under
another’, or lifting an object which ‘contains another’.

The action preconditions we learn are similar to affor-
dances of object pairs. It is the spatial relationship between
the pair of objects that determines what actions are possible,
i.e. what actions are afforded by the pair of objects in
the current spatial configuration. These spatial relationship
based object pair affordances are important for service robots
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that interact in complex environments like everyday home
environments. For example a robot carrying a kitchen tray
with cups and plates on the tray needs good knowledge about
the spatial relations between the objects.

Our approach to learning action preconditions is to ground
the learning in the robot’s own sensorimotor contingencies.
This grounding helps to avoid problems with classical AI
which relied on a humans’ judgement of what knowledge
and representation might be appropriate for the robot [2].
Hand-coded knowledge tended to result in brittle systems
(i.e. these systems broke down when the task went outside
the scenarios that the human had foreseen). Knowledge learnt
from action can be expected to be more useful to the robot,
and more robust, in line with the “Verification Principle” [3]:

“An AI system can create and maintain knowledge
only to the extent that it can verify that knowledge
itself.”

To enable the robot to efficiently learn important spatial
relationships that afford certain actions, we use as state space
representation the RGB-D sensor based visual histogram
features introduced in [1]. In [1] we used these features
to learn to recognise spatial relationships among objects
from data with labels that are based on the hand defined
spatial relationships. With this, our current work continues
our previous work from [4] in which we learnt classifiers pre-
dicting the outcome of actions but used a less adequate state
space representation, making the learning of preconditions
of multi-object manipulation actions difficult. The main new
contribution here is that we demonstrate the usefulness of our
histogram features for learning action preconditions, which,
as we show, implicitly capture spatial relationships among
objects. In particular, we aim to demonstrate how the learning
of preconditions for manipulation actions can be improved
in both, learning speed and maximum reachable performance
by using relational histogram features as vision based state
space representation. The goal of the classifiers trained here
is to accurately predict whether the action associated to the
classifier can be executed successfully in a given scene,
depending on the objects and their relative positions.

While our histogram features make it easier to learn some
preconditions that are contingent on the spatial relationships
among objects, we show that they can also limit a classi-
fier’s performance if not adding relevant information to the
learning task, due to their large amount of inputs.

The remainder of this paper is structured as follows:
Section II reviews the literature. Sections III and IV describe
the methods and experiments used. Section V presents the
results. Section VI concludes the work.



II. RELATED WORK

Our concept of a precondition is loosely related to the
notion of an affordance [5] used as a planning operator,
which has been well studied within the field of developmen-
tal robotics (see e.g. [6], [7]). We focus on learning classifiers
that predict the success of actions that are contingent on the
spatial relationship among a pair of objects. This is quite
close to work on learning relational “affordances” [8], [9]
(i.e. not just the affordance of a single object, but a pair).

The relational features considered in the work of [8] are
the distance between two objects, their relative positioning
to one another and whether or not they are touching. Our
relational histogram approach provides a much more detailed
state space representation, that encodes not only object
positions, orientations and sizes, but also relative spatial
relations between surface patches of the two objects. With
this, our relational histograms encode whether, for example,
one object encloses (parts of) another object, or whether one
object is in front or above another.

Ugur et al. [9] follow a different approach to learn “paired
object affordances”. They learn to predict the outcome of
a “stacking” action where one object is placed on top of
another. The effects of the action observed were “tumbled
over”, “piled up” (i.e. successfully stacked), “covered” (when
the top object is a cup that covers and completely contains the
lower object), and “inserted in” (when the lower object is the
container and the top object drops into it). They attempted to
learn the stacking effects with 18 pairs of objects. As input to
their classifiers they used the combined set of shape features
of each object. The shape features consist of histograms
of normal vectors for object surface points. Given these
visual object shape features for both objects, their classifiers
learnt to predict the effect of the stacking action. This is a
significant difference in our approaches as we are looking at
the spatial relationship of two objects in order to determine
the effect of an action, whereas Ugur et al. are looking at
the features of the two objects before they are put in a
relationship, in order to determine what relationship they
might end up in after an action.

Our work is also related to infant development. In the
period from six months of age through to two years human
infants undergo significant development in their skills and
understanding relating to physical world objects and their
manipulation. Observations of infants show that, from as
early as three months of age, they possess a repertoire of
behaviours which they apply to various objects or surfaces
they encounter [10], [11], [12]. Each such behaviour could
be seen as roughly analogous to a planning operator in
Artificial Intelligence (like an “OAC” in [13]), because there
are situations which make them likely to be executed (like
the precondition of a planning operator), and expected effects
(postcondition), as well as some motor control program
describing the behaviour executed. As infants develop they
solve the problems of (i) identifying when a new behaviour
should be created, (ii) learning the new precondition, (iii)
postcondition, and (iv) motor program for the new behaviour.

In this paper, we focus on learning the precondition for a
new behaviour. This is a particularly interesting problem in
the case of means-ends behaviours (i.e. where one action is
used in order to facilitate another [14]), because it is through
learning means-ends behaviours that infants begin to learn
about relationships between objects [15]. The precondition
must capture the relationship between objects which deter-
mines where the behaviour works or does not work.

III. METHODS

In this work, we collected data using a physically realistic
simulation environment [16] designed for robot simulations
and a vision system using a simulated Kinect camera [17],
inclusive the noise of real Kinect devices [18]. This gives us
data about the depth to the objects in our 3D scene similar to
what we would have obtained from a real Kinect looking at
a real scene with 3D objects. As robot we used a simulated
six degrees of freedom (DOF) arm mounted on a table with
a two finger gripper as its hand (see Fig. 1).

A. The Perception System

The Kinect sensor is mounted opposite to the robot,
looking down towards the robot, as illustrated in Fig. 2.
Using the Kinect data we calculate a high resolution 3D
point cloud of the scene (as illustrated in the right image of
Fig. 2).

In this work, we used a trivial method for object segmen-
tation. For this simple method to work, it is assumed that the
objects are coloured in one of a known set of colours. This
is a strong assumption also made by others, e.g. Rosman
and Ramamoorthy [19], but it could be relaxed by using
more sophisticated segmentation methods (e.g. [20]), which
take into consideration factors like discontinuities of surface
curvatures and colour differences. After segmentation, each
object is assigned its unique set of points.

Fig. 1. Illustration of the simulated robot grasping a cup.

Fig. 2. Kinect camera looking at workspace. The left image shows a die
on a plate-like object, with the robot “shoulder” visible at the top. The right
image shows the point cloud representation of the same scene as on the left.



Kinect image 1D histogram parts 2D histogram

Fig. 3. 1D and 2D histogram illustrations of “inside”, “ontop” and “beside” cases. On the left is the image recorded by the Kinect camera. In the
middle/left are the X/Y/Z distance parts of the 1D histogram. In the middle/right are the XY/XZ/YZ angle relation parts of the 1D histogram. On the right
side is the 2D histogram.

We apply our learning approach on different state space
representations to compare their efficiencies with regard to
representing the state space in a accessible way. From each
segmented point cloud, our vision system extracts, using
PCA, approximations of the position of the object’s centre of
gravity, the object’s orientation and the object’s dimensions.
Thus, each segmented object is described by nine variables.
These are X, Y and Z for the position, Roll, Pitch and Yaw
for the orientation and three size values for the elongation
along the objects three PCA axes. These variables are the
baseline vision state space representation. We will refer to
this as the PCA state space in the remainder of this paper.

We then use the segmented point clouds, to create re-
lational histograms to capture the spatial relations between
objects. These relational histograms form a relational space
into which the absolute geometric information (3D position
and orientation) of the 3D points is transferred. To achieve
this transfer, we define a set of relational features which
encode the spatial relationship structure of the objects in the
scene.

More specifically, for each scene we have two point clouds
Π1 and Π2 representing the segmented objects 1 and 2
in the scene. For each cross object pair of points of the
form Π1

i ⊕ Π2
j we calculate four Euclidean distances

Rd(Π1
i ,Π

2
j ) (the Euclidean distances along the X, Y and

Z axes respectively and in the XY plane, where the X axis
goes towards the front of the robot, the Y axis goes towards
the left and the Z axis represents the height) and three Angle
Relations Ra(Π1

i ,Π
2
j ) (the line through the two points is

projected onto one of the planes XY, XZ, or YZ, and we
look at the angle between the projected line and the axes
X, Y and Z respectively). Fig. 5 illustrates this process for
two example point clouds projected into the XY plane. The
amount of feature vectors, describing the relation between
the two objects in the scene, is variable and determined
by the amount of points extracted by the vision system.
To obtain a generic input vector of fixed length to apply
Supervised Learning Algorithms on, we compute 1-, 2-, and 3
dimensional relational histograms from the calculated vectors
Rd(Π1

i ,Π
2
j ) and Ra(Π1

i ,Π
2
j ) and use these as learning input.



Fig. 4. Illustration of the objects used for the experiments of this work. On the left side are the base objects, on the right side are per row: toys, obstacles
and rakes.

TABLE I
LIST OF ACTIONS

Action Motor Program Goal
Lift Grasp base object and lift it. Toy object is lifted.

Move Move hand to toy object and push it aside. Toy & base objects have moved aside.
Pull Grasp base object and pull it. Toy object is pulled closer.
Push Grasp base object and push it. Toy object is pushed further away
Rake Put rake head behind toy object and pull. Toy object has been brought closer.
Take Grasp toy object and lift it. Toy object is lifted.
Pour Grasp base object and lift & tilt it. Toy object is lifted.
Slide Grasp base object and lift & tilt it. Toy object has moved but not been lifted.

Unobstruct Grasp base/obstacle object and push aside. The toy object that wasn’t reachable before, is now reachable.

2

1

X

Y

j

i
x=-0.3m

y=0.2m

|xy|=0.36m

α=146.3°

X’

Y’
R   =-0.3md(x)

R   = 0.2md(y)

R   =0.36md(xy)

R   =146.3°a(xy)

Π

Π

Fig. 5. Illustration of the variable extraction process that leads from point
clouds to Histograms. Visualised as projections into the XY plane are two
point cloud examples Π1 and Π2, from which the points i and j respectively
have been selected to calculate distances and angles.

The 1D relational histogram are a combination of six
individual 1D histograms, capturing the distances between
points along each of the three main axes and the angle
relations between points in each of the three planes spanned
by the three main axes.

The 2D relational histograms capture the absolute distance
of inter-object pairs of points in the XY plane and puts it
into relation with the height difference (i.e. difference along
the Z axis).

The 3D relational histograms capture the distances be-
tween points among three dimensions, in a similar fashion

as the 2D histogram does for two dimensions. For the 3D
histogram, however, we used the actual position differences
among all three main axes (X, Y and Z).

When creating the histograms from the distance values we
apply pre- and post-processing methods on the input data and
on the histograms to increase robustness and performance.
These methods are logarithmic scaling of input data and
histogram normalisation and smoothing. Fig. 3 illustrates the
final histograms for three different scenes. See [1] for more
details on pre- and post-processing methods and their effect
compared to histograms without pre- and post-processing.

The state space is then made up from the 18 values of the
PCA state space representation on their own, or combined
with one of the relational histograms, e.g. 18 + 300 for the
1D case. We will refer to these as the PCA or 1D, 2D or 3D
histogram state spaces respectively.

IV. EXPERIMENTAL SETUP

In the following subsections we will describe in more
detail the objects (see Section IV-A) used during the ex-
periments and the actions (see Section IV-B) executed on
them.

A. Objects

We use 29 different objects in our experiments (see
Fig. 4). These 29 objects can belong to four different object
categories1.

1. Toys (5 Objects)
2. Bases (15 Objects)
3. Obstacles (5 Objects)
4. Rakes (5 Objects)

1One Object (Cup) is member of two Groups (Toys and Sup-
ports/Containers)
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Fig. 6. Illustration of the precondition learning speed for nine actions in different state spaces. Note that the X-axes are logarithmic scaled

We used exactly two objects for every experiment, where
one object was a toy and the other object was a member of
a different group. The workspace of the robot forms a semi-
circle with a radius of 1.8 metres with the robot arm placed in
the centre of the semi-circle. The robot has a maximum reach
of approximately 1.2 meters. The two objects are randomly
distributed in the workspace area. An exception to this were
experiments with the rake objects. Rakes were attached to
the robot arm, replacing the gripper.

B. Actions

We equipped the robot with nine actions it could execute.
The actions, their motor program and their goals are briefly
described in Table I.

The action’s motor control follows a naive forward kine-
matics approach. A target position for the gripper to ma-
nipulate an object is selected and forward kinematics used
to find appropriate robot arm joint angles. The joint angles
are then driven directly to the calculated target values. As
no path planning is applied, some action execution trials
lead to error states. For some toy objects the grasp targets
are unreliable, leading to low success rates of actions that
primarily manipulate toy objects.

Out of all data samples that were collected in the simula-
tions, we picked a smaller data set with approximately 10.000
samples per action, with 50% positive and 50% negative
samples. The positive samples were selected uniformly. The
negative samples were selected with a bias such that the
distribution of distances between the centres of gravity
(COG) of the two objects is similar within the groups of
positive and negative samples. We focus on negative samples
with centre of gravity distance distributions similar to that of
positive samples to make the differentiation between positive
and negative cases less trivial.

V. RESULTS

Fig. 6 illustrates the learning rate for the different actions
using different state space representations for up to 3000
random samples on a logarithmic scaled X-axis.

As can be seen by comparing the different subfigures,
an appropriate state space representation is of significant
importance for learning. The more expressive state repre-
sentation using histograms massively outperforms learning
without histograms.

These results are based on histogram features, where the
1D histograms have 300 variables, the 2D histograms have
225 variables and the 3D histograms have 1000 variables.
These histogram sizes are a compromise between size and
resolution and where found to give best results. In this case,
the 1D and 2D histograms allow for the fastest learning,
with both being about equally good for the actions that
were learnt fastest (see e.g. the Lift action in Fig. 7), and
the 2D histogram a bit better for the actions that were
learnt at a moderate speed (see e.g. the Unobstruct action
in Fig. 7). We believe that the 1D histogram is a bit more
generic and should lead to increased performance for a larger
spectrum of potential actions. Whereas the 2D histogram
is especially designed to differentiate between two objects
being ontop or inside of each other vs. beside each other.
This potentially gives it the leading edge compared to the
1D histogram for our set of actions where the success relies
on the difference between ontop, inside and beside. The
3D histogram is the most simplistic approach to histograms
with the highest dimensionality and at the same time with
the lowest resolution. All three properties making learning
from the 3D histogram more difficult than learning from
1D or 2D histograms, but learning from 3D histograms still
outperforms learning from the PCA representation.



The “Take” action serves as a good example of the
potential shortcomings of hand designed state spaces. The
extended state space representation does not benefit the
“Take” precondition classifier. Instead, the increased amount
of input variables causes a decrease of its learning speed
(curse of dimensionality). The reason for this is likely to
be the increased “noise” as the toy grasping success rate
of the take action is not very high. At the same time, the
likelihood of the inside relation is fairly low. This means
that most negative samples are not negative due to the inside
relation, which could be better recognised in the extended
state spaces, but due to the noise in the motor program
success, e.g. the low success rate of grasping toy objects.

Fig. 7 illustrates the degree to which the success predic-
tion of the different actions correlates to the actual spatial
relation between the objects, which we labelled based on the
manually defined spatial relationships for this comparison as
“ontop”, “inside” or “beside”. One can see that many of
the precondition classifier capture knowledge that strongly
correlates to one or more of the manually defined spatial
relationships

Correlation

Fig. 7. Correlations between Actions and the heuristically learnt categories.

VI. CONCLUSIONS

In this paper we have demonstrated that our relational
histogram features can significantly increase the learning
speed of precondition classifiers for complex actions manipu-
lating pairs of objects, compared to learning from the simple
PCA features only. This achievement is possible when the
outcome of actions does rely on the spatial relations that our
relational histogram features are capturing. This highlights
the importance of appropriate features that describe the state
space in an informative and accessible way.

The precondition classifiers were found to implicitly cap-
ture categories such as ‘on top’, ‘not on top’ or ‘inside’.
In our ongoing research we attempt to extract this implicit
knowledge into explicit symbolical category knowledge. This
might serve as a first step towards higher level symbolic
reasoning and planning, similar to the pathway in infants
from simple action development through sensorimotor con-
tingencies to higher level reasoning with abstract ideas e.g.
about containers and containment and object permanence.

In future work we intend to evaluate the spatial relation-
ship discriminating performance of our relational histogram
features in a real world set up in a similar way as we did
in [1]. But instead of a simulation we would work with
real Kinect sensors and more sophisticated segmentation
algorithms such as [20].

REFERENCES

[1] S. Fichtl, A. McManus, W. Mustafa, D. Kraft, N. Kruger, and
F. Guerin, “Learning spatial relationships from 3D vision using
histograms,” in Robotics and Automation (ICRA), 2014 IEEE Inter-
national Conference on, May 2014, pp. 501–508.

[2] R. A. Brooks, “Intelligence without representation,” Artificial Intelli-
gence, vol. 47, pp. 139–159, 1991.

[3] R. S. Sutton, “Verification, The Key to AI,” p. 1, 2001. [Online].
Available: http://www.cs.ualberta.ca/ sutton/IncIdeas/KeytoAI.html

[4] S. Fichtl, J. Alexander, D. Kraft, J. Jorgensen, N. Krüger, and
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